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ABSTRACT OF THE DISSERTATION 

 

Green Space Exposure Assessment and Association with Maternal Mental Health 

by 

Yi Sun 

Doctor of Philosophy in Public Health 

University of California, Irvine, 2022 

Professor Jun Wu, Chair 

 

Existing studies regarding green space and mental health were mainly with general 

population and relied on satellite-based imagery, without considering eye-level green space 

and vegetation types, which is important to elucidate the underlying mechanisms linking 

green space and health. To improve green space exposure assessment, a machine learning 

model was evaluated and applied to investigate the associations between street green space 

and socioeconomic factors. Microsoft Bing Maps images in conjunction with deep learning 

was used to measure street green space, which were compared to normalized difference 

vegetation index (NDVI) as commonly-used satellite-based green space measure. The results 

show that street view imagery coupled with deep learning can accurately and efficiently 

measure eye-level street green space and distinguish vegetation types (i.e., tree, low-lying 

vegetation, grass); street view data reflect different aspects of natural environments 

compared to satellite imagery. In Los Angeles County, lower socioeconomic status and 

racial/ethnic minority communities had substantively less street green space. 

Relationships between green space and postpartum depression (PPD) has not been studied. 

I investigated the relationships between PPD and green space and examined the mediation 
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effect of physical activity during pregnancy. Clinical data were obtained for 415,020 

pregnancies in southern California (2008-2018) from Kaiser Permanente Southern 

California. PPD was based on both diagnostic codes and prescription medications. Multiple 

indicators were used to characterized green space exposure, including street view-based 

green space and vegetation types, satellite-based measures (i.e., NDVI, land-cover green 

space, and tree canopy cover), and proximity to the nearest park. The results indicate that 

street green space and tree coverage were associated with a decreased risk of PPD. 

Protection and restoration of trees may translate into a more pronounced reduction of PPD 

in southern California. Physical activity could be considered as one of the plausible pathways 

linking green space to depression (mediation effect: 9.6% -15.6%).  

To further explore the underlying mechanism, an experimental study was conducted to 

examine physiological and affective responses to green space on stress recovery among 

pregnant women, using simulated green space exposure through virtual reality (VR). 

Participants (n=63) were randomly assigned to view one of three, 5-min, VR videos with 

different green space levels (i.e., low, moderate, and high) after a laboratory stressor, the 

Trier Social Stress Test. Physiological stress responses and self-reported affect were 

measured during the experiment. This study demonstrated that even a short immersion in 

VR green space environments, especially park-like setting, could effectively ease both 

physiological and affective stress and improve mental health during pregnancy.  

This study contributes to the improvement of green space exposure assessment 

methodology for health studies, and provide evidence of the relationship between green 

space and maternal mental health during postpartum period, and potential pathways. 
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Chapter 1. INTRODUCTION 

About 55% of the global population lives in urban areas as of 2018 and this percentage is 

predicted to reach 68% by 2050 (United Nations, 2018). Due to rapid urbanization, an 

increasing number of people live in complex environments with many high-rise buildings, 

high population density and low-level green space (H. Li et al., 2015; Skyscrapercity, 2015; 

Urban Audit, 2007). Concerns are mounting about the association between lack of green 

space and various adverse health outcomes in urban-dwelling populations (Bettencourt LM, 

2007; Fong et al., 2018; James et al., 2015; Nieuwenhuijsen et al., 2017; World Health 

Organization, 2016). Green space may have a positive effect on health outcomes through 

several pathways, including reducing stress, increasing social cohesion, promoting physical 

activity, improving immune status, and lowering levels of environmental nuisances such as 

air pollution, ambient noise, and outdoor temperature (Bowler et al., 2010a; Hartig et al., 

2014; Lee & Maheswaran, 2011; Markevych et al., 2017; Twohig-Bennett & Jones, 2018; 

Vienneau et al., 2017; World Health Organization, 2016).  

 

Green Space Exposure Assessment  

There are various sources, scales and types of green space indicator used in epidemiological 

studies (Cusack et al., 2017; Klompmaker et al., 2018; Larkin & Hystad, 2019; Mitchell et al., 

2011; Reid et al., 2018; Villeneuve et al., 2018). The most commonly used method to 

objectively assess exposure to green space is based on remote sensing data (Markevych et 
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al., 2017; Mitchell et al., 2011), such as normalized difference vegetation index (NDVI) 

(Tucker, 1979) and land use or land cover databases (Helbich et al., 2018; James et al., 2015; 

Zock et al., 2018). However, green space from downward-facing remotely sensing imagery 

including NDVI and traditional land-use measures, may significantly differ from surrounding 

green space at the eye level. Green space from satellite data cannot fully reflect the vertical 

dimension of green space, especially in locations with dense greenness (Jiang et al., 2017; Li, 

2018), but can better represent the horizontal dimension of green space. For example, both 

seen and unseen trees may improve air quality by filtering air pollutants or reducing 

emission sources due to the competitive land use between green space and sources of air 

pollution, or provide cooling benefits for their surroundings. Green space from street view 

images may represent how environments are perceived and experienced by people on the 

ground (Dong et al., 2018; Lu et al., 2018), which is critical to better understand the 

underlying mechanisms linking green space with human behaviors and various health 

outcomes. For example, eye-level street green space may be more related to mental health 

and physical activity (Helbich et al., 2019; Lu, 2018; Lu et al., 2018) than the overhead-view 

satellite assessments. According to the Stress Recovery Theory (Ulrich, 1983; Ulrich et al., 

1991), natural elements (e.g. scenes, odors and sounds) activate the parasympathetic system 

that could decrease blood pressure, heart rate, skin conductance, and salivary cortisol level. 

Only eye-level, perceived and experienced green space can cause these physiological 

responses that could induce relaxation and help to reduce stress (Ulrich et al., 1991). Further, 

eye-level street green space may promote both transportation walking and recreational 
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walking behaviors. The evidence suggests that street green spaces improve the perceived 

aesthetics and quality of a neighborhood's built environment, which are key predictors of 

route choice and walkability (Nagata et al., 2020; Saelens & Handy, 2008; Sallis et al., 2012).  

Moreover, types of green space could be efficiently recognized from high resolution street 

view imagery. The differences in the composition of vegetation, such as the proportion of 

trees and grass, might have distinctive impacts on human behavior and health through 

different pathways. So far, only a few epidemiological studies have investigated the effects 

of different types of green space (Astell-Burt & Feng, 2019; Astell-Burt & Feng, 2020; Reid et 

al., 2017; Zhang & Tan, 2019). For example, higher tree density within 1000 m was 

associated with better self-reported health in New York City, but not grass density (Reid et 

al., 2017). A study in Singapore measured urban green space in different buffer sizes 

between 400 m to 1600 m using three metrics: vegetation cover, canopy cover and park area. 

Although all three metrics were positively related to mental health, overall, canopy cover 

showed the strongest associations with mental health at most spatial scales (Zhang & Tan, 

2019). Another study in Australia reported urban tree canopy may be a better option for 

promoting community mental health and preventing insufficient sleep than other urban 

greening (Astell-Burt & Feng, 2019; Astell-Burt & Feng, 2020). Therefore, measuring types 

of green space may help to better capture different aspects of green space and improve our 

understanding of the mechanisms that underlie green space exposure and health.  

To overcome the constraints of remote sensing assessments of green space, people can use 

street view imagery, such as Google Street View (GSV) images to effectively characterize 
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visual greenery along roads (Gong et al., 2018; Li, 2018; Middel et al., 2019). Street view data 

in combination with machine learning approach has been shown to be effective to 

characterize overall green space (Dong et al., 2018; Seiferling et al., 2017; Weichenthal et al., 

2019). However, no prior study has applied deep learning techniques to characterize 

different types of green space based on high resolution street view image data. Only a few 

studies have applied computer vision (Larkin & Hystad, 2019; X. Li et al., 2015) to detect 

green color features or semantic segmentation techniques (Helbich et al., 2019; Lu, 2018) to 

measure overall green space from street view images. The types of green space were only 

measured using satellite imagery rather than eye-level street view data (Astell-Burt & Feng, 

2020; Brandt et al., 2020). More advanced and robust deep learning architectures are needed 

to reliably classify types of green space based on high-resolution street view image data and 

thus refine the methodology and underlying pathway of health impact studies of green space. 

 

Green Space, Physical Activity and Postpartum Depression  

The biophilia hypothesis and psycho-evolutionary theory suggest that humans have an 

inherent need of affiliation with nature which may affect our mental health by bringing 

emotional stability, and helping with stress recovery (Ulrich et al., 1991; Wilson, 2017). 

Green space exposure has been associated with mental health benefits in several studies, 

including general mental health, depression and stress (Fong et al., 2018; James et al., 2015; 

Pun et al., 2018; Song et al., 2019; van den Bosch & Ode Sang, 2017). However, the existing 
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body of knowledge is mainly with general population (Gascon et al., 2018; Kardan et al., 2015; 

Nutsford et al., 2013; Reklaitiene et al., 2014), youth (Dzhambov et al., 2018; Kabisch et al., 

2017) or elderly people (Garrett et al., 2019; Helbich et al., 2019; Kabisch et al., 2017; Pun et 

al., 2018). Only a few studies addressed mental health outcomes among pregnant women 

(Feng & Astell-Burt, 2018; McEachan et al., 2016; Nichani et al., 2017; Runkle et al., 2022), 

and reported inconsistent results. In a cross-sectional study in England, McEachan et al. 

assessed depressive symptoms through self-reported General Health Questionnaire and 

found that pregnant women living in areas with higher quintiles of residential NDVI within 

100 m buffer zone were 18-23% less likely to have depressive symptoms than those in the 

least green quintile (McEachan et al., 2016). In addition to residential individual-level green 

space, neighborhood-level green space may also facilitate beneficial effects on mental health 

and well-being (Helbich et al., 2019; Kardan et al., 2015; Nutsford et al., 2013), although 

limited studies showed no association of neighborhood green space with mental health 

outcomes during pregnancy. For example, a longitudinal study in Australia reported that no 

association was found between land-use green space quantity within the “Statistical Area 2” 

(with populations of 10,000 on average, ranging from 3000 to 25,000) and symptoms of 

psychological distress among pregnant women (Feng & Astell-Burt, 2018). Another study in 

New Zealand found exposure to higher proportion of land-cover green space within the 

“census area unit” (median area: 1.6 km2 for the Auckland and Counties Manukau District 

Health Board regions, 6.6 km2 for the Waikato District Health Board region) were not 

associated with decreased antenatal depression (Nichani et al., 2017). To our knowledge, no 



 

6 
 

study has investigated the association between green space exposure and postpartum 

depression (PPD), as well as the underlying mechanisms that links green space exposure 

with postpartum mental health. 

Approximately 10% to 20% of new mothers experience PPD (Gavin et al., 2005; Gelaye et al., 

2016). Women are especially vulnerable to depression during postpartum period, likely 

because of hormonal fluctuations, stress and other biological and psychosocial factors (Yim 

et al., 2015). PPD has been linked to both short- and long-term negative health-related 

behaviors and adverse outcomes, such as psychological and developmental disturbances for 

infants and children, and increasing emotional and behavioral problems among family 

members (Field, 2010; Gelaye et al., 2016). In addition, physical activity (PA) is an important 

pathway linking green space and mental well-being (Nieuwenhuijsen et al., 2017). There was 

limited evidence regarding the role of PA on the relationship of green space exposure and 

mental health in pregnant women; the literature reports conflicting findings (McEachan et 

al., 2016; Nichani et al., 2016). Whether PA could be the mechanism by which green space 

impacted on PPD is unclear. Therefore, it is necessary to examine the relationship between 

green space, physical activity and maternal mental health with richer exposure and outcome 

information rather than single or neighborhood-scale exposure assessment and cross-

sectional design (Banay et al., 2017). 

Green space measurements from remote sensing data were most commonly used in previous 

environmental health studies (Klompmaker et al., 2018; Markevych et al., 2017), such as 

NDVI (Tucker, 1979) and land-use or land-cover databases (Helbich et al., 2018; James et al., 
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2015; Zock et al., 2018). However, the downward-facing remotely sensing imagery may not 

fully reflect the eye-level green space that are perceived by people in their daily life (Lu et al., 

2018). Therefore, eye-level green space is critical to explore underlying mechanisms linking 

green space to human behaviors and health. For example, it is expected that eye-level green 

space can be perceived and experienced to cause physiological responses (e.g., blood 

pressure, heart rate, and skin conductance) that could induce relaxation and reduced stress. 

Previous studies also suggest that eye-level street green space may promote physical activity 

(Helbich et al., 2019) and walking behaviors (Nagata et al., 2020) than the bird’s eye view 

satellite assessments. 

While types of green space might be differentially associated with health outcomes through 

different pathways (e.g., encouragement of health-enhancing behaviors and mitigation of 

harmful environmental nuisances), only a few epidemiological studies have investigated the 

effects of different types of green space (Astell-Burt & Feng, 2019; Reid et al., 2017; Zhang & 

Tan, 2019). For example, higher tree density within 1000 m was associated with better self-

rated health in New York City, but not grass density (Reid et al., 2017). Another study in 

Australia reported urban tree canopy may be a better option for promoting mental health 

than other urban greening such as low-lying vegetation or grass (Astell-Burt & Feng, 2019). 

Better understanding of the effects of different types of green space on health can not only 

expand knowledge on mechanisms that underlie green space and health, but also provide 

evidences to support specific public health and urban planning practices. Recently, street 

view imagery has been coupled with machine learning approach to accurately and efficiently 
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measure (Helbich et al., 2019; Larkin & Hystad, 2019; Villeneuve et al., 2018) and distinguish 

green space types (Sun et al., 2021). The previous work of our team (Sun et al., 2021) has 

laid foundation to examine the effects of different types of green space on health. 

 

Physiological and Cognitive Responses to Green Space Virtual Reality (VR) 

The biophilia hypothesis and psycho-evolutionary theory claim that human beings have an 

innate biological connection to nature and that natural environments bring emotional 

stability, attention restoration and stress recovery (Ulrich et al., 1991; Wilson, 2017). 

According to the Stress Recovery Theory (Ulrich, 1983; Ulrich et al., 1991), natural elements 

such as scenes, odors and sounds can activate the parasympathetic system, thereby leading 

to decreases in blood pressure, heart rate, skin conductance, and salivary cortisol level. 

These physiological responses could induce relaxation and help to reduce stress and 

autonomic arousal (Ulrich et al., 1991). 

Epidemiological and experimental studies consistently suggest that green space is associated 

with better health outcomes. For example, epidemiological studies suggest that green space 

is positively associated with a wide range of health benefits, including reduced risk of all-

cause mortality, cardiovascular disease, type 2 diabetes, improved pregnancy outcomes such 

as decreased risk of low birth weight and preterm birth, as well as improved mental health 

(Fong et al., 2018; Gascon et al., 2015; Grinde & Patil, 2009; Hartig et al., 2014; James et al., 

2015; Laurent et al., 2019; Laurent et al., 2016; Sun et al., 2020; Twohig-Bennett & Jones, 
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2018; World Health Organization, 2016). Moreover, experimental studies found that 

exposure to natural environment is positively associated with recovery from surgery (Ulrich, 

1984), productivity (Lohr et al., 1996), cognitive and affective improvement (Berman et al., 

2012), and stress reduction (Berto, 2014). 

A subset of experimental studies has used virtual stimuli to examine and manipulate the 

impacts of the natural environment on health and well-being. Virtual stimuli representing 

green space exposure include photographs (Berto, 2005), images in slideshows (Brown et 

al., 2013) and plasma display “windows” (Kahn et al., 2008). With the rapid advances in 

technology, researchers are seeking new ways for a more immersive experience of exposure 

to the natural environment, such as the use of virtual reality (VR). These studies explore the 

potential beneficial effects of immersing individuals into green space VR after stressor tasks 

(Hedblom et al., 2019; Jiang et al., 2014; Jiang et al., 2016; Valtchano & Ellard, 2010; Yin et 

al., 2019; Yin et al., 2018). Previous research found that immersion in virtual nature 

environments has similar physiological and cognitive responses compared to immersion in 

real or actual nature environments (Browning et al., 2019; Higuera-Trujillo et al., 2017; 

Kjellgren & Buhrkall, 2010; Kuliga et al., 2015; Nukarinen et al., 2020; Yin et al., 2018). 

Several studies show that virtual nature immersion results in restorative effects such as 

increased positive affect, decreased negative affect, decreased stress, as well as decreases in 

physiological markers of stress such as blood pressure, skin conductance and salivary 

cortisol (Hedblom et al., 2019; Jiang et al., 2014; Valtchano & Ellard, 2010; Yin et al., 2018). 
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Most existing studies to date have focused on the general population in work or study 

settings. There is a lack of understanding of the link between physiological mechanisms and 

green space among special populations (Li et al., 2021), such as pregnant women. Green 

space can enhance restoration and relaxation by affecting the brain and body via psycho-

endocrine mechanisms, including the function of the hypothalamic pituitary adrenal (HPA) 

axis (Aspinall et al., 2015; Egorov et al., 2017; Haluza et al., 2014; Roe et al., 2013). During 

pregnancy, the regulation of the maternal HPA axis undergoes dramatic changes. These 

changes may be further modified by maternal stress, and dysregulation of the maternal HPA 

axis has been linked to adverse outcomes in both the mother and her offspring, including 

perinatal mood disturbances, low birth weight and preterm birth (Duthie & Reynolds, 2013; 

Latendresse, 2009; Yim et al., 2015). Similarly, positive effects on the HPA axis system, such 

as those documented through green space exposure, may have beneficial effects for 

maternal-fetal health, making this a particularly interesting time of life to study.  

It should be noted that accessing nature green space can in some circumstances be difficult, 

especially for housebound or mobility-constrained individuals including some pregnant 

women, or under unusual circumstances (e.g., extreme weather, pandemic). Under such 

conditions, the VR technology may be an alternative (White et al., 2018). 
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Chapter 2. Green Space Exposure Assessment 

 

2.1 Objective of Present Study  

In Chapter 1, I aimed to: 1) test and evaluate machine learning models that can reliably and 

efficiently classify three types of green space, i.e., tree, low-lying vegetation, and grass based 

on street view imagery; and 2) apply this model to examine street-level green space types 

and investigate their associations with socioeconomic factors in Los Angeles County, 

California, U.S. 

 

2.2 METHODS 

2.2.1 Study population 

This study was set in Los Angeles County, excluding the island areas. The primary unit of 

analysis was census tract (n=2343). Los Angeles County is an ideal site to investigate the 

environmental justice or disparity issue related to urban greenness because it is one of the 

most populous (>10 million people) and racially/ethnically diverse counties in the U.S. (U.S., 

2015a). Minority and low-income communities in the city of Los Angeles have a high 

prevalence of chronic diseases and poor mental health (Brown et al.; Jennings et al., 2017; 

LA County, 2017; Robles et al., 2019). In terms of plant biodiversity, Los Angeles County has 
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a particularly mild climate with high-plant species richness due to the large range of 

vegetation species that can thrive there (Hondagneu‐Sotelo, 2014). 

2.2.2 Socioeconomic Factors 

The CalEnviroScreen3.0 dataset (2018 update) was obtained from the California 

Communities Environmental Health Screening Tool (OEHHA, 2018). CalEnviroScreen (CES) 

was created and designed by the California Environmental Protection Agency (CalEPA) to 

address the issue of environmental justice and screening disadvantaged communities, which 

is suitable for community-level estimates. This tool integrates 20 indicators representing 

pollution and population vulnerability for all 58 counties in California. There are two main 

categories of indicators: pollution burden (7 exposure indicators and 5 environmental 

effects indicators) and population characteristics (3 sensitive population indicators and 5 

socioeconomic factors). The CES Score was calculated by combining all these components 

(Faust et al., 2017). To comprehensively capture the population characteristics and SES for 

Los Angeles County at census tract-level, I included all five socioeconomic indicators (i.e., 

educational attainment, housing burden, linguistic isolation, poverty and unemployment), 

and two SES-related summary indicators (Population Characteristics Score and 

CalEnviroScreen3.0 score) (Figure 2.1) in this analysis. 
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Figure 2.1 Selected indicators and year of data source from CalEnviroScreen3.0 

Educational Attainment: Percent of population over 25 with less than a high school education; Housing 

Burden: Percent housing burdened low-income households; Linguistic Isolation: Percent limited English 

speaking households; Poverty: Percent of population living below two times the federal poverty level; 

Unemployment: Percent of the population over the age of 16 that is unemployed and eligible for the labor 

force. 

Note: Full version and further information on the construction of the individual metrics is given in 

CalEnviroScreen3.0 Report (Faust et al., 2017). 

 

Another notable use of CES was that Senate Bill 535 requires CalEPA to identify 

disadvantaged communities based on geographic, socioeconomic and environmental hazard 

criteria. Disadvantaged community (DAC) pursuant to SB 535 (CalEPA, 2017), defined as the 

top 25% scoring census tracts from CalEnviroScreen3.0, was included in this analysis as a 

binary variable (1,038 DAC, and 1,305 non-DAC in Los Angeles County). Total population and 

race/ethnicity data from the 2010 Census were also constructed from the 

CalEnviroScreen3.0 dataset. 

2.2.3 Outcome Variable: Green Space 

2.2.3.1 Street view green space 

Street view images were requested using Microsoft Bing Maps API. Bing StreetSide provides 

360-degree panoramic imagery of street-level scenes across large regions of the United 
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States. The street network data for Los Angeles County were obtained from the U.S. Census 

Bureau (U.S., 2015b) and include all features within the "Road/Path Features" (e.g., primary, 

secondary, local neighborhood, and rural roads, city streets, alleys, bike paths or trails, etc.). 

Sampling points for street view images were constructed along the road network with a 200 

m space interval between each point and geocoded with ArcMap 10.5 (Esri, Redlands, CA, 

USA)(X. Li et al., 2015; Li, 2018). To include the entire streetscape, four main cardinal 

directions at each point were retrieved (e.g., 0, 90, 180, and 270 degrees; vertical angle: 0 

degrees) (Helbich et al., 2019; Li, 2018; Lu, 2018). The amount of eye-level street green space 

for each point was determined by the average proportion of greenery pixels in the images of 

four directions. The proportion of different vegetation types in the image was predicted by 

the deep learning model described below. Total green space was defined as the sum of area 

proportion of all types of green space in each image. The size of each image was 480×320 

pixels. To create census tract variables, all sampling points were assigned one of Los Angeles 

County's census tract in ArcMap. The proportion of green space for all points in a census tract 

were averaged to assess the census tract-level street green space, and then linked to the 

CalEnviroScreen3.0 data. The summary statistics of green space level and socioeconomic 

factors are shown in Appendix 2.1. In the U.S., census tracts generally have a 

population size about 4,000 inhabitants with similar population characteristics, economic 

status, and living conditions. In Los Angeles County, the areas of census tracts range from 0.1 

to 74.5 km2 in urban area. The largest census tract in rural area has an area of 1460.5 km2. 

The spatial size of census tracts (5.1±45.3 km2) varies widely depending on the population 
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density. The number of sampling points (103±231) per census tract varies depending on the 

area and street density. The distribution of street network and summary statistics of 

sampling points are shown in Appendix 2.2. 

Deep learning model and image segmentation 

A machine learning model using semantic segmentation was applied to identify three 

different types of vegetation including tree (e.g., canopy), low-lying vegetation (e.g., shrub, 

bush), and grass based on high resolution street view image data.  

-  Model Structure 

Deep convolutional neural networks have achieved state-of-the-art results in semantic 

segmentation (Li et al., 2018). Two recent studies used classical semantic segmentation 

models, namely fully convolutional neural network (FCN-8s) and Pyramid scene parsing 

network (PSPNet), to identify total green space from streetscape images, achieving 81.4% 

and 93.4 % accuracy, respectively (Helbich et al., 2019; Lu, 2018). I compared top ranked 

semantic segmentation models on Cityscapes test in 2020 (PapersWithCode, 2020); the FCN 

and PSPNet models ranked 71 and 32 on the list respectively. Summary of the comparison 

for the top nine ranked models plus the FCN and PSPNet models are described in Appendix 

2.3. After thorough model comparison, I chose to apply a deep high-resolution 

representation learning model named High-Resolution Net (HRNet) coupled with the object-

contextual representations (OCR) method for the classification of green space types (Wang 

et al., 2020; Yuan et al., 2019). The HRNet has the advantage of maintaining high-resolution 
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representations throughout the network, making the model not only semantically strong but 

also spatially precise. This model can leverage multi-scale fusion mechanism, e.g., repeatedly 

exchange the information between high- and low-resolution subnetwork, to improve its 

capacity to capture both high- and low-resolution features. The OCR technique can 

characterize a pixel by exploiting the representation of the corresponding object class. This 

HRNetV2+OCR+ model, with a high accuracy of 84.5% on Cityscapes test dataset, ranked 

among the top semantic segmentation models (PapersWithCode, 2020).  

- Model Training 

Annotated images from three data sources were combined to create the training and 

validation datasets. First, two hundred annotated images including three green space 

categories were obtained from ADE20K dataset, which is a densely annotated dataset 

covering a diverse set of scenes and object categories (Zhou et al., 2017). The existing public 

datasets of annotated green space images are not big enough to train and test the model. 

Therefore, 1000 additional Google/Tencent Street View images randomly located in 

southern California (N=500)/ Beijing, China (N=500) were manually annotated using the 

open annotation tool “LabelMe” (Russell et al., 2007) by three researchers, and verified by a 

senior researcher from April, 2020 to June, 2020. I further increased the sample size of the 

training and validation data by annotating 300 street images from Cityscapes, which focuses 

on semantic understanding of complex urban street scenes (Cordts et al., 2016). In total, 

1500 annotated images were obtained as the training and validation data for the model. 
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Ninety percent of the annotated images were randomly selected as the training dataset and 

the remaining 10% as the validation dataset. 

Since the proportion of images with low-lying vegetation (14.3% of images) or grass (19.1% 

images) was much smaller compared to that with trees (66.6 % of images), the focal loss was 

used to address sample imbalance (Lin et al., 2017). For the training process, I combined the 

focal loss function with the Adam optimizer (Kingma & Ba, 2015), which improved the model 

performance by 4% compared with the use of cross entropy and stochastic gradient descent 

(SGD) optimizer in the original model (Robbins & Monro, 1951).  

The image segmentations were obtained by feeding the street view images into the trained 

model. Then, the total number of pixels of each green space type (i.e., tree, low-lying 

vegetation, grass) were identified and the proportion of each type was determined (in % of 

pixels) for each image.  

- Model Validation 

Intersection over union (IoU) was used to evaluate the performance of the models. Briefly, 

IoU is the number of overlap pixel between predicting and ground-truth divide by the union 

of the predicting and ground-truth, which is a common method in image segmentation field 

to judge the quality of predicting images (Garcia-Garcia et al., 2017). The 10-fold cross-

validation was used to further evaluate the accuracy of the model (Bengio & Grandvalet, 

2004). The original dataset was randomly partitioned into 10 equal-sized subsets. Of the ten 

subsets, one subset was retained as the validation data for testing the model, and the 
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remaining nine subsets were used the training data. The cross-validation process was then 

repeated 10 times, with each of the 10 subsamples used exactly once as the validation data. 

Additionally, one hundred Google Street View images of Los Angeles County were randomly 

selected as an independent test set to assessed the performance of the model. 

2.2.3.2 Normalized Difference Vegetation Index (NDVI) 

To compare the street view green space with satellite imagery-based green space, I also used 

the NDVI (Tucker, 1979) to characterize green space. Briefly, NDVI ranges from -1 to 1 and 

describes the different reflectance between visible and near-infrared wavelength of 

vegetation cover from satellite data, where higher values indicate more greenness. Negative 

values, representing water bodies, were recorded to zero before further analyses were 

conducted (Markevych et al., 2017), so that the effects of blue space do not negate the 

presence of green space. The NDVI estimates were based on the Moderate Resolution 

Imaging Spectroradiometer (MODIS) products from NASA. I combined measurements from 

both the Terra (MOD13Q1) and the Aqua (MYD13Q1) satellite instruments. The data had a 

spatial resolution of 250 m x 250 m and a temporal resolution of every 8-days (46 time-

points annually). Because of the year-round mild-to-hot climate in Los Angeles County, 

green spaces do not change substantially across seasons. Previous study showed the NDVI 

values are highly correlated during the entire year in California (Sun et al., 2020). Therefore, 

the distinction between seasons and thus the recognition of species (evergreen or deciduous 

species) was not taken into account. Annual average NDVI in 2015 was calculated and 

assigned to each census tract based on the NDVI values in all 250 m grids within the census 
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tract. In addition to the census tract-level assessment, I extracted the NDVI grid’s value at the 

location of each sampling point along the street (N= 361,213) to examine the correlation 

between NDVI and street view-based green space at point level. 

2.2.4 Statistical analyses 

A GIS map was generated to show the spatial pattern of street green space across census 

tracts. The street green space level was calculated based on all sampling points along the 

road network within each census tract, and the percentage of green space for all points were 

averaged to assess the census tract-level street green space. The outcome variables in this 

analysis are four percentage of street green space (greenery pixels/total pixels) variables at 

a continuous scale:   total and three types of green space, tree, low-lying vegetation, and grass. 

Percentage of green space were visualized according to their quintiles. Pearson’s correlation 

was used to examine the correlation between green space types; t-test was applied to 

determine the difference between disadvantaged and other communities.  

The generalized linear mixed models (GLMMs) with an identify link function and normal 

distribution were applied to examine the association between SES factors and street green 

space levels (Proc GLIMMIX in SAS). Ordinary least squares (OLS) regression was not 

employed because significant spatial autocorrelation was found among the residuals of OLS. 

Thus, I used GLMMs with spherical spatial covariance structure to account for the spatial 

autocorrelation in the green space outcome variables. All models included one of SES factors 

as the main fixed effect and adjusted for population density and rural/urban status.  
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The distribution of street network and spatial size vary across different census tracts 

(Appendix 2.2). The sampling points in larger rural areas with sparse street network may 

not represent the true green space level at census tract-level due to a small number of 

sampling points. Therefore, I conducted sensitivity analyses restricting to only urban areas. 

Urban areas were defined as those with a rural-urban commuting area (RUCA) code of 1.0, 

which indicates the metropolitan area core with primary flow of the population within an 

urbanized area (U.S., 2020) (Appendix 2.2). All analyses were conducted with SAS 9.4 (SAS 

Institute, Inc., Cary, NC). 

 

2.3 RESULTS 

The accuracy of our model was high with 92.5% mean IoU. The IoU values for tree, low-lying 

vegetation and grass were 96.2%, 86.5% and 94.4%, respectively (Appendix 2.4). Figure 2.2 

shows examples of training and predicting process through the HRNetV2+OCR+ model. The 

results of cross-validation were shown in Appendix 2.5. The mean IoU in 10-fold cross-

validation was 90.6% with a range of 89.4% and 91.9%, demonstrating the reliability and 

stability of the deep learning model. The average IoU in 10-fold cross-validation for tree, low-

lying vegetation and grass were 95.4%, 84.9%, and 92.0%, respectively. Moreover, the mean 

IoU in the independent test set was 83.8%, and the IoU for tree, low-lying vegetation and 

grass were 93.7%, 71.3%, and 86.6%, respectively. 
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Los Angeles County population characteristics with definitions and street green space levels 

are presented in Table 2.1. Total green space and the three specific types were lower in 

disadvantage communities than in other communities (p<0.001). The spatial distribution of 

street view green space and neighborhood SES in Los Angeles County at census tract-level 

are depicted in Figure 2.3. The map shows that total street green space had a similar spatial 

pattern with street tree coverage and NDVI; whereas the total green space, street tree 

coverage and NDVI value showed an opposite distribution pattern of CES scores. 

 

Figure 2.2 Examples of green space type segmentation through HRNetV2+OCR+. 
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Table 2.1 Description of the population characteristics and street green space levels. 

Characteristics 

Disadvantaged 

Communities 

n = 1,038 

Other 

Communities 

n = 1,305 

Total 

n = 2,343 

CalEnviroScreen3.0 Indicators, mean (SD) 

Educational Attainment, % 38.0 (15.4) 13.3 (11.7) 24.3 (17.9) 

Linguistic Isolation, % 21.4 (11.2) 9.8 (9.2) 15.0 (11.6) 

Poverty, % 56.3 (15.4) 28.6 (16.3) 40.8 (21.0) 

Unemployment, % 12.2 (5.0) 8.7 (3.8) 10.3 (4.7) 

Housing Burden, % 29.1 (8.3) 18.6 (7.8) 23.3 (9.6) 

Population Characteristics Score, 0-10 7.5 (1.0) 4.4 (1.7) 5.8 (2.1) 

CalEnviroScreen3.0 score, 0-100 51.7 (8.2) 24.3 (9.3) 36.5 (16.3) 

Racial/ethnic minority groups, n (%) 

High (4th quartile) 524 (50.5) 70 (5.4) 594 (25.3) 

Moderate/low (1st – 3rd quartile) 514 (49.5) 1235 (94.6) 1749 (74.7) 

Green space, mean (SD) 

Tree, % 14.9 (2.9) 18.4 (4.8) 16.8 (4.4) 

Low-lying, % 4.2 (0.9) 4.9 (1.6) 4.6 (1.4) 

Grass, % 4.6 (1.2) 5.2 (1.5) 4.9 (1.4) 

Total green space, % 23.7 (2.9) 28.5 (5.1) 26.3 (4.9) 

NDVI, 0-1 0.11 (0.03) 0.15 (0.04) 0.13 (0.04) 

SD, standard deviation. NDVI, normalized difference vegetation index. 
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Figure 2.3 Spatial pattern of street green space and neighborhood socioeconomic status in Los 

Angeles County, census tracts. 
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Table 2.2 shows the correlations between each type of green space from street view images 

and NDVI. Total tract-level green space was positively correlated with all green space types, 

and the correlations were most pronounced with tree (r = 0.90), followed by low-lying 

vegetation (r = 0.36) and grass (r = 0.29). The correlations between street tree, low-lying 

vegetation and grass were weak. For NDVI, it was moderately highly correlated with total 

tract-level green space from street view imagery (r=0.73). Point-level correlation between 

NDVI and street view green space was lower than the tract-level (r=0.57). NDVI was 

moderately correlated with street tree for both point- and tract-level. However, the 

correlations between NDVI and low-lying vegetation and grass were weak. Moreover, green 

space indicators were negatively correlated with all CES socioeconomic factors. Summary 

statistics of green space indicators and socioeconomic factors are shown in Appendix 2.1. 

Table 2.3 shows the results of the GLMMs to assess the association of street green space with 

neighborhood SES, controlling for population density and urban/rural status. Overall, I 

found statistically significant inverse associations between SES factors and street green 

space. For example, for each interquartile range (IQR) increase in CES score (26 unit), the 

percentage of total green space decreased by 2.62 (95% CI: -3.02 to -2.21, p < 0.001). The 

percentage of total green space in disadvantaged communities was 1.26 less than in other 

communities, accounting for approximately 5% of average street green space in Los Angeles 

County.  
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Table 2.2 Correlations between tract-based types of street green space, point- and census tract-based NDVI, and census tract socioeconomic 

factors. (Number of sampling points: 361,213; number of census tracts: 2,343). 

Type Tree Low-
lying 
veget
ation 

Grass Total 
green 
space 

Tract-
NDVI 

Point-
NDVI 

Edu-
cation 

Linguistic 
Isolation 

Poverty Unempl
oyment 

Housing 
Burden 

Popul
ation 
Score 

CES 
3.0 

Tree 1.00 0.03 0.05 0.90 0.63 0.49 -0.46 -0.31 -0.44 -0.26 -0.28 -0.49 -0.45 

Low-lying vegetation  1.00 0.19 0.36 0.31 0.23 -0.29 -0.26 -0.30 -0.10 -0.28 -0.34 -0.36 

Grass   1.00 0.29 0.23 0.16 -0.23 -0.38 -0.28 -0.03 -0.27 -0.11 -0.21 

Total green space    1.00 0.73 0.57 -0.56 -0.46 -0.56 -0.27 -0.41 -0.57 -0.57 

Tract-NDVI     1.00 1.00 -0.55 -0.53 -0.63 -0.29 -0.52 -0.59 -0.59 

 

Table 2.3 Associations between neighborhood socioeconomic status and green space in Los Angeles County, census tracts. 

 
IQRa Tree Low-lying vegetation Grass Total green space NDVIc 

Socioeconomic status   
regression 
coefficient 

95% CIb 
regression 
coefficient 

95% CI 
regression 
coefficient 

95% CI 
regression 
coefficient 

95% CI 
regression 
coefficient 

95% CI 

CalEnviroScreen 3.0 score, 0-100 26.0 -2.26  (-2.64, -1.88) 0.07  (-0.05, 0.19) -0.42  (-0.55, -0.30) -2.62  (-3.02, -2.21) -0.022  (-0.026, -0.019) 

Population Characteristics Score, 0-10 3.3 -1.89  (-2.27, -1.52) -0.18  (-0.30, -0.07) -0.46  (-0.59, -0.34) -2.54  (-2.94, -2.15) -0.019  (-0.022, -0.015) 

Educational Attainment, % 30.2 -1.81  (-2.20, -1.42) -0.08  (-0.20, 0.04) -0.44  (-0.57, -0.31) -2.33  (-2.74, -1.92) -0.014  (-0.018, -0.011) 

Linguistic Isolation, % 15.7 -0.78  (-1.02, -0.54) -0.03  (-0.10, 0.04) -0.25  (-0.33, -0.17) -1.06  (-1.32, -0.80) -0.010  (-0.012, -0.007) 

Poverty, % 35.9 -1.87  (-2.20, -1.54) -0.03  (-0.14, 0.07) -0.51  (-0.62, -0.40) -2.41  (-2.76, -2.07) -0.018  (-0.020, -0.015) 

Unemployment, % 5.6 -0.29  (-0.30, -0.01) 0  (-0.04, 0.05) -0.01  (-0.06, 0.04) -0.16  (-0.32, -0.01) -0.001  (-0.002, 0.000) 

Housing Burden, % 13.6 -0.60  (-0.81, -0.39) -0.01  (-0.08, 0.05) -0.21  (-0.28, -0.14) -0.82  (-1.04, -0.60) -0.006  (-0.008, -0.004) 

Disadvantaged community, yes - -0.97  (-1.29, -0.66) -0.01  (-0.11, 0.08) -0.27  (-0.38, -0.17) -1.26  (-1.59, -0.93) -0.010  (-0.013, -0.007) 

Racial/ethnic minority groups, high - -0.92  (-1.32, -0.51) -0.11  (-0.23, 0.02) -0.23  (-0.36, -0.10) -1.25  (-1.68, -0.82) -0.006  (-0.010, -0.003) 

a IQR, interquartile range; b CI, confidence interval; c NDVI, normalized difference vegetation index. 

All models were adjusted for population density and urban/rural status. 
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A similar trend was observed in sensitivity analyses by restricting to urban areas. In addition, 

associations between socioeconomic factors and street green space were slightly stronger 

after restricting to urban areas (Appendix 2.6). 

 

2.4 DISCUSSION 

To the best of our knowledge, this is the first study to examine different types of green space 

using street view images in combination with deep learning techniques. The results from this 

study suggest that Bing StreetSide images are valuable sources and machine learning 

techniques are powerful tools to measure overall and types of street green space. In this 

analysis, street view-based green spaces were inequitably distributed in populations with 

different neighborhood SES in Los Angeles County, the most populous county in the U.S. I 

found that communities with a higher percentage of low SES and higher percentage of 

residents from racial/ethnic minority groups had substantively less street green space 

availability. 

The fact that low-income neighborhoods have less green space is well established (Astell-Burt 

et al., 2014; Dai, 2011; Wen et al., 2013; Wolch et al., 2014). Several studies have revealed that 

the distribution of urban green space often disproportionately benefits predominantly non-

Hispanic White and more affluent communities. However, most previous studies used 

geographic information system-based methods to measure green space from an overhead 

view (e.g., satellite data). The results support the previous findings by measuring eye-level 

street view-based green space, suggesting that populations who have higher prevalence of 
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poor health outcomes (Shaw, 2016) live in environments that contain the least green space for 

supporting positive lifestyle modification. Furthermore, the results showed that the 

magnitude of association between green space and neighborhood SES varied between 

vegetation types. The greatest reduction was observed among the tree, followed by grass. 

However, I observed inconsistent associations of low-lying vegetation and neighborhood SES, 

which warrants further research. In addition, the relative associations of lower SES with NDVI 

are greater than total street green space, suggesting that deprived communities may contain 

additionally reduced “unseen” green space, such as private green spaces or large areas of park, 

forest away from the road. 

Street view data and deep learning techniques are increasingly used for environmental 

exposure assessments for health-related studies. Previous studies have suggested that 

walking behavior and physical activity is affected by eye-level street green space (Lu, 2018; 

Villeneuve et al., 2018). For example, a study in Canada compared the NDVI with the google 

street view measure of green space, and found that only street green space was positively 

associated with participation in recreational physical activities (Villeneuve et al., 2018). In 

addition, contact with surrounding green space might be more important if green space has 

the greater influence on health via restorative properties and stress reduction (Mitchell et al., 

2011). For instance, street view green spaces were protective against depression for the 

elderly in China, whereas no significant associations were found with satellite-based green 

space estimates (Helbich et al., 2019). Two previous studies used the FCN-8s and PSPNet 

models to identify total green space from street view images with moderate to excellent 

performance (81.4% and 93.4 % accuracy, respectively) (Helbich et al., 2019; Lu, 2018). 
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However, no prior study has applied street view data in conjunction with deep learning 

approach to classify vegetation types. Measuring types of green space is important to better 

understand the mechanisms linking green space to health and design urban planning 

interventions. Different vegetation types shown different capacity to provide the ecosystems 

services of air purification and microclimate regulation (Vieira et al., 2018). In addition, green 

space types can affect human behaviors. For example, more proportions of walking and 

running people were observed on the lawn and in the shade of trees than in other settings (H. 

Wang et al., 2019). Investigating their different roles may contribute to better understanding 

of etiological mechanisms and the ability to design targeted interventions. Existing studies 

regarding different types of green space and health are sparse and mainly focused on tree 

canopy. Two recent studies measured green space using machine learning and image 

classification processes across satellite imagery (Astell-Burt & Feng, 2020; Brandt et al., 2020). 

However, grass and low-lying vegetation were likely under-estimated in areas where they 

were beneath tree canopy. Our model overcomes the limitations of existing green space 

metrics and contributes to the improvement of green space exposure assessment 

methodology for health studies. Future studies are warranted to investigate the relationships 

between types of green space and other environmental factors and health outcomes using this 

deep learning technique. 

Previous studies observed poor correlation between street view-based green space and 

satellite-derived NDVI (Helbich et al., 2019; Larkin & Hystad, 2019; Villeneuve et al., 2018). In 

the correlation analyses, I observed that both community-level and point-level street view-

based total green space were moderately correlated with NDVI. The differences in the climate 
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and vegetation density in the study area may partially explain the variation in results compare 

to the literature. First, green spaces did not change substantially across seasons due to 

the year-round mild-to-hot climate in Los Angeles County. The NDVI values are highly 

correlated during the entire year in California (Sun et al., 2020). However, the variation of 

NDVI and street view green space in Los Angeles County might not represent green space 

levels in other geographical settings, such as Beijing, China (Helbich et al., 2019), and Ottawa, 

Canada (Villeneuve et al., 2018) with four distinct seasons. Second, the overhead-view 

assessments cannot fully capture the vertical dimension of green space, especially in locations 

with high-density vegetation (Jiang et al., 2017; Li et al., 2018). The substantially lower NDVI 

in Los Angeles County suggested it has thinner greenness than other study regions, such as 

Portland and Ottawa (Larkin & Hystad, 2019; Villeneuve et al., 2018). Thus, the NDVI may be 

more highly correlated with overall street green space in Los Angeles County than those in 

previous research. Moreover, the NDVI captures both public and private (e.g., residential 

backyard or gated community) green spaces, while the street view imagery mainly captures 

publicly-accessible street-based green spaces that may be most relevant to people’s daily 

activity patterns, such as walking, jogging/running, and driving. Los Angeles metropolitan 

area has the nation’s densest road network (road length≈55,785 km) (Sorensen, 2009). 

Therefore, we may expect the denser street network, the higher correlations between NDVI 

and street view green space. Indeed, I found the correlation coefficient for urban census tracts 

(r=0.77) with denser streets was higher than rural census tracts (r=0.54) in this study. 

Furthermore, the method of extracting green space and the density of street networks might 

be potential explanations of the differences between point-level and tract-level correlations. 
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The point-level variations can be caused by the different perspective and spatial resolution 

between NDVI and street view green space. The street view-based estimate represents the 

horizontal panoramic 360 degrees view of each sampling point along the road thus localized 

green space at the particular point; while the NDVI-based estimate reflects the bird’s eye view 

green space within a grid with cell size 250 m × 250 m. The street view sampling points are 

likely not in the center of satellite-based NDVI grids. The tract-level green space that contains 

multiple points or grids may smooth out the local variations and spatial mismatch in point vs. 

grid measurements, thus I observed higher correlation (r=0.73) between tract-level street 

view green space and NDVI, both of which reflect overall community green space level, 

especially for urban areas with high-density roads. It is also noteworthy that tree canopy is 

what people see the most for the total green space (64%) at the horizontal level. The 

correlation is only 0.49 for point-based NDVI and tree, indicating that vertical NDVI may not 

be a good indicator of horizontal tree canopy at a local level. In addition, correlations between 

NDVI and low-lying vegetation or grass were weak, indicating that the street view-based 

metrics capture additional information of visible street green space. Street view and satellite 

data reflect different aspects of natural environments. Green space assessments combining 

remote-sensing imagery and street view imagery may therefore represent more 

comprehensive characteristics of green space than assessments based on a single green space 

indicator (Larkin & Hystad, 2019), and provide a potential new approach to examine green 

space in epidemiological research. 

The main strengths of this study include the diversity of the types of street view-based green 

space as well as the diversity of race/ethnic composition and SES of the population in Los 
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Angeles County; the comparison with the predominant, satellite-based green space indicator 

- NDVI; the use of Bing Maps data that are publicly available and provides high-resolution 

images with mostly full coverage in the U.S.; the robust performance and application of an 

advanced deep learning model; and the generalizability of this deep learning approach in other 

regions in the future. 

However, this study has limitations, which suggest avenues for further research. First, street 

view images from Bing Maps were captured in different years and dates thus this database is 

most suitable for long-term estimation rather than seasonal or higher temporal resolution 

measurement. Nevertheless, given the year-round mild and dry climate in LA, the temporal 

variation of green space in urban areas tends to be small. Moreover, the training 

data directly impact the quality of the prediction. This model was trained mainly based on the 

street view images from southern California. Further evaluation of the model is warranted 

when the model applies to other regions with different streetscapes or landforms. Additionally, 

a single-round annotation was used in this study. Future studies may perform double 

annotation (i.e., a second round of annotation) to minimize the misclassification. Next, more 

sophisticated subtypes of green space were not examined in this research. Future studies may 

take into account other vegetation types (e.g., flowers), and quality of green space (e.g., wild 

vegetation vs. cultivated and well-maintained vegetation). Further, because the sampling 

points were extracted along the road, and the density and pattern of street networks could 

vary across different regions. Thus, the study findings need to be interpreted with caution, 

particularly in large rural areas. Nonetheless, the street level images, even though having 

sparse road network in rural areas, still represent publicly available eye-level green space. The 
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“private” or not accessible greenery in both rural and urban areas may have less impact on 

human behaviors due to the lack of accessibility. In addition to the amount of green space, 

perceived quality and accessibility of green space may play an important role, because they 

could affect the use of green space (de la Barrera et al., 2016; Zhang et al., 2017). Further 

research is needed considering more information on the use of green space and individual 

activity patterns, especially for epidemiological studies linking green space to health outcomes. 

 

2.5 CONCLUSION 

This study provides a unique understanding of the relationship between green space and 

neighborhood SES. Compared to remote sensing data, street view data reflect different aspects 

of natural environments. Street view images coupled with deep learning approach can 

accurately and efficiently extract street green space and recognize different vegetation types, 

which can contribute to methodological development and mechanistic understanding of green 

space-related health studies. Results from this study indicate that green spaces were 

inequitably distributed in populations with different SES in Los Angeles County. Communities 

with a higher percentage of low SES and racial/ethnic minority communities had substantively 

lower street green space level. Governments and urban planners may consider not only the 

size or density of green space, but also the type and visibility of street green space from 

pedestrian’s perspective. 

  



 

33 
 

Chapter 3. Green Space, Physical Activity and Postpartum Depression 

 

3.1 Objective of Present Study  

In this chapter, I aimed to: 1) investigate the relationships between PPD and both 

neighborhood and individual residential green space exposure (i.e., street view green space, 

NDVI, land-cover green space, and proximity to park) and by vegetation types (i.e., tree, low-

lying vegetation, and grass); and 2) examine the mediation effect of PA on the association 

between PPD and green space. 

 

3.2 METHODS 

3.2.1 Study population 

This retrospective cohort study used electronic health records (EHRs) obtained from nearly 

430,000 women who gave singleton live births between 2008 and 2018 at Kaiser Permanente 

Southern California (KPSC) facilities. KPSC serves approximately 19% of the population in 

Southern California and validly represents the sociodemographic diversity of the Southern 

California Census population (Chen et al., 2019; Koebnick et al., 2012). In total, 415,020 

pregnancies were included after a series of exclusions, including women who were not KPSC 

members or with gestational age < 20 or >47 weeks (n=8,912), with multiple birth (n=7,454), 

with stillbirth (n=1,961), without address data (n=680), or lived in rural areas (n=14,819). All 

maternal residential addresses were geocoded with the Texas A&M, NAACCR, Automated 
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Geospatial Geocoding Interface Environment Geocoder. Urban areas were defined as those 

with a rural-urban commuting area code of 1.0, which indicates the metropolitan area core 

with primary flow of the population within an urbanized area (2010 version, 

https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/). A wide range of 

information on demographic characteristics, medical records, birth records and self-reported 

individual lifestyle was extracted from KPSC EHRs. More details of this population have been 

described in my previous work (Sun et al., 2022). This study was approved by the Institutional 

Review Board of KPSC and the University of California, Irvine. 

3.2.2 Outcome: Postpartum depression (PPD) 

Our previous work suggested that the completeness and accuracy of PPD diagnosis solely 

based on diagnostic codes in EHRs is not reliable, and the accuracy of PPD identification can 

be improved by supplementing clinical diagnosis with pharmacy utilization records. Thus, 

PPD was defined by using both PPD diagnosis and prescription medications in this study. PPD 

diagnosis codes and related pharmacy records were identified and extracted from KPSC EHRs. 

3.2.3 Green space exposures 

I characterized green space exposure using five main indicators, including a novel measure of 

street view-based green space and vegetation types, three commonly-used satellite-based 

measures (i.e., NDVI, land-cover based green space and tree canopy cover), and another 

common measure of proximity to the nearest park. Both individual-level and neighborhood-

level green space exposures were considered in this analysis. Individual residential green 

space exposures were measured within 200 m and 500 m buffers around the maternal 

https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/
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residence at delivery for all but distance to the nearest park. The neighborhood-level green 

space exposure was calculated by averaging all individual residential green space values 

within a given zip code (median area: 18.2 km2). The main analysis focused on 200 m buffer 

as I aimed to examine between- and within- effects of green space and the larger buffer sizes 

make the individual-level exposure more similar to the neighborhood-level exposure. Zip Code 

Tabulation Areas (2010 version, https://www.census.gov/programs-

surveys/geography/guidance/geo-areas/zctas.html) defined by the U.S. Census Bureau were used 

to represent zip codes.  

- Street view green space 

I requested street view images using Microsoft Bing Maps Application Programming Interface. 

The street network shapefile for Southern California were obtained from the U.S. Census 

Bureau (U.S., 2015). Sampling points for street view images were constructed along the road 

network with a 200 m space interval between each point and geocoded with ArcMap 10.5 (Esri, 

Redlands, CA, USA) (Li et al., 2015). Four main cardinal directions at each point were retrieved 

to include the entire streetscape (e.g., 0, 90, 180, and 270 degrees) (Helbich et al., 2019; Wang 

et al., 2018). 

I applied a machine learning model using semantic segmentation to identify three different 

types of vegetation including tree (e.g., canopy), low-lying vegetation (e.g., shrub, bush), and 

grass based on high resolution street view image data. The accuracy of the deep learning 

model was high with 92.5% mean intersection over union (Sun et al., 2021). The proportion 

of different vegetation types in the image was predicted by the deep learning model. Total 

https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
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green space was defined as the sum of proportion of all types of green space in each image. 

For each address, the proportion of green space for all points within a circular buffer around 

the residential address were averaged to assess the street green space exposure. The number 

of sampling points (e.g., 500 m buffer: 83±27) per address varies depending on the buffer size 

and street density. Further details of the street view green space model have been previously 

described (Sun et al., 2021). 

- Normalized difference vegetation index (NDVI) 

To compare the street view green space with satellite imagery-based green space, I used the 

NDVI (Tucker, 1979) to characterize green space exposure. Briefly, NDVI captures the 

vegetation density on the ground from satellite data based on different land surface 

reflectance between visible and near-infrared wavelength of vegetation. NDVI ranges from -1 

to 1, with higher values indicating a higher density of greenness. Negative values, usually 

representing water bodies, were recorded to zero before further analyses were performed 

(Markevych et al., 2017). In this study, I used the Terra (MOD13Q1) satellite instrument of 

Moderate Resolution Imaging Spectroradiometer (MODIS) products from NASA, with a spatial 

resolution of 250 m × 250 m and a temporal resolution of every 16-days.  

Previous study showed the NDVI values are highly correlated during the entire year in 

California and do not change substantially across seasons (Sun et al., 2020). Therefore, I 

calculated annual mean NDVI by averaging the NDVI values in all grids within a circular buffer 

for the year 2013 (the mid year of the study period). 

- Land-cover based green space and tree canopy cover 
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Land cover data were obtained from the National Land Cover Database (NLCD, version 2013, 

https://www.mrlc.gov/data/nlcd-2013-land-cover-conus). The NLCD provides nationwide data 

on land cover at a 30 m resolution with 16 classes (Homer et al., 2012). Greenness-related 

categories from the NLCD, including forest, shrubland, herbaceous, wetlands, developed - 

open space (i.e., >80% vegetation cover) were aggregated as one measure of green space. 

Additionally, I obtained the 2011 tree canopy data from the NLCD, which contains the 

percentage of total tree canopy cover at a 30 m resolution (https://www.mrlc.gov/data/nlcd-

2011-usfs-tree-canopy-cover-conus). The percentages of area within or intersecting the circular 

buffers were assessed as land-cover based green space exposures. 

- Proximity to the nearest park 

Using the California Protected Areas Database (CPAD, version 2021, 

https://data.cnra.ca.gov/dataset/california-protected-areas-database), I estimated proximity to 

parks as a straight-line distance to the nearest park based on the geocoded residential 

addresses at delivery. The CPAD, developed and maintained by the California Natural 

Resources Agency, provides GIS dataset depicting the wide diversity of parks and open spaces 

in California, ranging from large National Parks and Forests to small neighborhood parks. In 

this study, only parks and open spaces defined as “Open Access” were included. I converted 

the positive distance value to negative as proximity to the nearest park. A binary variable was 

also used to assess whether the maternal residential address was within a 500 m buffer (about 

a 5-minute walk) from boundaries of a nearest park. 

https://www.mrlc.gov/data/nlcd-2013-land-cover-conus
https://www.mrlc.gov/data/nlcd-2011-usfs-tree-canopy-cover-conus
https://www.mrlc.gov/data/nlcd-2011-usfs-tree-canopy-cover-conus
https://data.cnra.ca.gov/dataset/california-protected-areas-database
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I additionally explored the relationship between neighborhood walkability and PPD. 

Walkability scores at block-group level were obtained from the National Walkability Index 

dataset (https://www.epa.gov/smartgrowth/smart-location-mapping#walkability). 

3.2.4 Mediator: Physical activity (PA) during pregnancy 

The PA measurements were based on self-reported information on physical activity at the 

time of the visit encounter (7±4 times during the entire pregnancy) in KPSC EHRs. Participants 

were asked the following two questions to capture frequency and average daily time spent 

engaging in physical activity over the last seven days at the time of their visit: 1) number of 

days exercised per week and 2) number of minutes exercised per day. The date of 

questionnaire completed and total number of minutes exercised per week (number of minutes 

exercised per day × number of days exercised per week) were extracted and calculated. I then 

calculated trimester-specific and entire-pregnancy PA levels by averaging the self-reported PA 

data in each specific time period from conception to the end of the pregnancy: the first 

trimester (1st - 3rd gestational months), second trimester (4th - 6th gestational months), and 

third trimester (7th gestational month to delivery). PA during the entire pregnancy was 

calculated by averaging the PA measurements in three trimesters. 

3.2.5 Statistical analyses 

Distribution of selected population characteristics and green space indicators were assessed. 

Pearson's correlation was employed to examine the correlation between green space 

indicators. First, I used multilevel logistic regressions to examine the association between each 

green space indicator, PA and PPD separately. All green space indicators were treated as 

https://www.epa.gov/smartgrowth/smart-location-mapping#walkability
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continuous exposures. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated 

per interquartile range (IQR) increment for each green space indicator. Moran’s I was used to 

test the spatial clustering for PPD given the large spatial scale of the study region. The Moran’s 

I was 0.0002 (p < 0.001). The spatial correlation is weak despite its statistical significance. I 

included zip code as a random effect to account for both within- and between- effects 

concurrently using the within-between random effects model (Bell et al., 2018): 

𝑦𝑖𝑟 = 𝛽0 + 𝛽1𝑊(𝑥𝑖𝑟 − 𝑥̅𝑟) + 𝛽2𝐵𝑥̅𝑟 + 𝛽3𝑧𝑖 + (𝜈𝑟 + 𝜖𝑖𝑟) 

Here, for individual 𝑖 and region 𝑟 , 𝛽1𝑊  represents the within region effect, while 𝛽2𝐵 

represents the between effect. The within effects reflect remaining individual-level effects 

after accounting for the between effects (i.e., individual observations clustered by zip code), 

while between effects reflect neighborhood-level effects (i.e., zip code in this study) with 

keeping the deviation constant. Confounder adjustments are denoted using simplified 

notation 𝛽3𝑧𝑖 , 𝜈𝑟  are the zip code random effects, the 𝜖𝑖𝑟  are the model’s residuals for 

individuals. 

Multiple linear regression models were applied to estimate the difference in PA in each specific 

time period during pregnancy associated with green space exposure. PA levels were log-

transformed. All results were expressed as the percent change in PA levels with 95% CIs 

relative to one unit increment of each green space indicator. 

Furthermore, I conducted causal mediation analysis (R packages “mediation”) to estimate the 

potential contribution of PA associated with green space on the risk of PPD (Tingley et al., 

2014). Green space indicators with protective effects on the risk of PPD were identified and 
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selected to further perform the mediation analysis. In the causal mediation analysis, multilevel 

models were used to take into account heterogeneity within and between groups 

simultaneously. In this case, the zip code-level neighborhood green space was a group-level 

exposure variable but PA and PPD were treated as individual-level mediator and outcome, 

respectively. The ‘‘proportion mediated’’, which is the proportion of the total effect explained 

by the mediator [mediation effect/ (mediation effect + direct effect) or mediation effect/total 

effect], was calculated. Given that the green space indicators were continuous variables, I 

specified two values of the exposure (Q3 vs. Q1) to make the contrast in the mediation models. 

In the main analysis, I adjusted for a minimal set of potential confounders, including maternal 

age, race/ethnicity (African American, Asian, Hispanic, non-Hispanic white, and others 

including Hawaiian/Pacific Islanders, American Indian/Alaskan native and mothers with 

multiple race/ethnicities specified), educational level (<college, college < 4 years, and college 

≥ 4 years), and median household income at census block group in 2013 (the mid year of the 

study period). Moreover, I performed sensitivity analyses to examine the influence of 

adjusting for maternal smoking status (never smoker, ever smoker, smoking during 

pregnancy, and passive smoker), season of conception (warm: May-October; cool: November-

April), year of infant birth, and insurance type. Mediation analysis requires no unmeasured 

confounding between the exposure of interest, the mediator and the outcome. Therefore, I 

included all above covariates and pre-pregnancy BMI in the mediation models. Due to 

potential differential susceptibility of green space effects on health across populations with 

different demographic factors, socioeconomic status and health conditions (Rigolon et al., 

2021), I performed stratified analyses by maternal age, race/ethnicity, educational level, 
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neighborhood household income, and pregnancy-related comorbidities (preeclampsia, 

gestational hypertension and gestational diabetes) to explore the differences between 

population subgroups. Cochran Q tests were applied to measure the heterogeneity among 

subgroups. All analyses were conducted with SAS version 9.4 (SAS Institute, Inc., Cary, NC) and 

R software (version 4.0.5). 

 

3.3 RESULTS 

Among 415,020 births included in this study, 43,399 (10.5%) cases of PPD cases were 

identified. The description of the sociodemographic characteristics of study participants, 

green space exposures, and PA levels are presented in Table 3.1. The mean (standard deviation) 

of maternal age in this study was 30.2 (5.8) years. Compared to the entire cohort, PPD cases 

were more frequent among older mothers, African American or non-Hispanic white mothers, 

mothers with college education < 4 years, mothers who live in middle- and high-income 

neighborhoods, smoking mothers, and mothers with less physical activity during pregnancy. 

Differences were observed for residential street view green space exposure (200 m) by 

maternal characteristics. On average, total street green space levels were higher among older 

mothers, non-Hispanic white or Asian mothers, mothers with higher education, and mothers 

who live in high-income neighborhoods. Overall, a similar distribution occurred for street tree 

and low-lying vegetation, while grass levels showed an opposite trend. For satellite-based 

green space indicators, NDVI, land-cover green space and tree canopy cover had a similar 

pattern with street view total green space. 
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- The relationship between multiple green space indicators 

Table 3.2 provides summary statistics and Pearson correlation coefficients between individual 

residential green space exposures (200 m). Street total green space was positively correlated 

with all green space types, and the correlations were most pronounced with tree (r = 0.89), 

followed by grass (r = 0.22) and low-lying vegetation (r = 0.07), while street tree coverage 

were negatively correlated with low-lying vegetation and grass; the correlations were similar 

across different buffer sizes. For satellite-based NDVI, it was moderately correlated with street 

total green space and trees (r=0.40 and 0.35, respectively), and the correlations with street 

low-lying vegetation and grass were weak. The tree canopy cover from satellite imagery was 

moderately correlated with street tree coverage (r=0.55), street total green space (r=0.55), 

and NDVI (r=0.48). Increased distance to park was correlated with decreased street tree 

coverage. Moreover, block group-level walkability score was negatively correlated with most 

green space indicators, except street tree levels and proximity to park. Additional summary 

statistics of green space indicators and PA levels are shown in Appendix 3.1. 

- The association between green space, PA and PPD 

Overall, “between” effects of neighborhood green space exposures were stronger than “within” 

effects of individual residential green space exposure, suggesting that the main effect of green 

space on the risk of PPD was due to neighborhood-level (i.e., zip code) green space exposure 

(Appendix 3.2). Figure 3.1 illustrates the associations between exposure to neighborhood-

level green space and the risk of PPD. For the zip code-level street view-based green space, 

exposure to total green space showed protective effects on PPD (OR=0.960, 95% CI: 0.934–
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0.987) (Appendix 3.2). For different types of street green space, higher street tree coverage 

was associated with a decreased risk of PPD, indicating approximately 5.4% lower PPD risks 

for an IQR increase in street tree exposure. However, the association of neighborhood low-

lying vegetation was not statistically significant in this analysis, and increased ORs were found 

for grass. For satellite-based green space indicators, zip code-level NDVI and land-cover based 

green space were associated with increased risk of PPD, except tree canopy cover for which a 

decreased risk of PPD was observed (OR=0.969, 95% CI: 0.945–0.994). No clear trend was 

observed between proximity to parks and PPD risk, while higher neighborhood walkability 

was associated with a lower risk of PPD (OR=0.920, 95% CI: 0.897–0.944). After accounting 

for the between effect of zip code-level neighborhood green space, I observed potential within 

effect of individual street low-lying vegetation, which was associated with a reduced PPD risk 

(OR=0.985, 95% CI: 0.974–0.996). Moreover, PPD was negatively associated with PA during 

the entire pregnancy (within effect: OR=0.929, 95% CI: 0.917–0.940). 

In sensitivity analyses (Appendix 3.2), overall, associations between zip code-level green 

space and PPD were slightly stronger after further adjusting for smoking during pregnancy, 

season of conception, year of infant birth, and insurance type. The pattern of results within a 

500 m buffer zone was similar to the 200 m buffer. In subgroup analyses (Appendix 3.3), the 

protective associations of PPD and street green space were significantly stronger among older 

mothers, non-Hispanic white mothers and Asian mothers, and mothers with higher education. 

- The association between green space exposure and PA mediator 



 

44 
 

I estimated the percent change of PA levels associated with green space exposures. The PA 

data were log-transformed, while the green space indicators were in its original 

metric. Overall, PA levels were positively associated with most green space indicators, 

including neighborhood street view-based total green space, tree, and low-lying vegetation, 

satellite-based tree canopy cover, distance to the nearest park, and walkability score (Figure 

3.2, Appendix 3.4). For example, each one unit increase in street tree (percentage) was 

associated with a 1.43% increase in PA during the entire pregnancy (95% CI: 1.03%-1.82%). 

The positive associations were stronger during the second trimester. In contrast, exposures to 

more grasses and higher proportion of land-cover based green space were associated with 

decreased PA during pregnancy. 

- Relative contribution of PA mediator 

Table 3.3 shows results from the mediation analysis that included green space indicators (200 

m) that were significantly associated with decreased risk of PPD, including street view-based 

total green space and tree, satellite-based tree canopy cover and walkability score. For the 

associations between neighborhood-level green space exposure and PPD, the proportions of 

mediation effects attributable to PA during the entire pregnancy ranged from 9.6% to 15.6%. 

Among all green space indicators, PA explained the largest portion of the association between 

PPD and exposure to total tree canopy cover (15.6%, 95% CI: 3.5%-30.7%). PA during 

pregnancy could also explain approximately 10% of the association between PPD and 

neighborhood street view green space, and 5% of neighborhood walkability. In addition, the 

mediation effects due to PA were higher during late pregnancy (i.e., second and third trimester) 

compared to early pregnancy (i.e., first trimester) (Appendix 3.5). 
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Table 3.1 Description of the study population and residential green space levels (mean, SD) by maternal characteristics, 2008-2018. 

Characteristics 
Total births,           

n = 415,020 (%) 

Postpartum 

depression,            

n = 43,399 (%) 

Total green 

space, % 
Tree, % 

Low-lying 

vegetation, 

% 

Grass, % 

 

NDVI 

Land-cover 

green 

space, % 

Tree 

canopy 

cover, % 

Physical activity, 

minutes/week 

79.5 (80.8) 74.9 (76.3) - - - - - - - 

Maternal age      

< 25 80513 (19.4) 6758 (15.7) 24.6 (4.5) 15.0 (4.7) 4.2 (1.6) 5.4 (1.8) 0.16 (0.04) 8.2 (16.2) 1.5 (2.0) 

25-34 245934 (59.3) 25936 (59.8) 25.3 (5.0) 15.6 (5.1) 4.4 (1.6) 5.3 (1.8) 0.16 (0.04) 8.5 (16.1) 2.0 (2.6) 

≥ 35 88573 (21.3) 10705 (24.5) 25.9 (5.4) 16.2 (5.4) 4.5 (1.6) 5.2 (1.8) 0.17 (0.04) 8.2 (15.5) 2.5 (3.0) 

Maternal race/ethnicity      

African American  31896 (7.7) 3602 (8.3) 24.5 (4.4) 14.6 (4.7) 4.3 (1.5) 5.6 (1.8) 0.15 (0.04) 6.5 (13.7) 1.3 (1.9) 

Asian 52946 (12.8) 2639 (6.1) 25.9 (5.3) 16.2 (5.4) 4.6 (1.6) 5.1 (1.7) 0.17 (0.04) 7.7 (14.5) 2.6 (3.0) 

Hispanic 213543 (51.5) 21525 (49.6) 24.7 (4.6) 15.3 (4.7) 4.1 (1.5) 5.3 (1.7) 0.16 (0.04) 7.0 (14.5) 1.7 (2.1) 

Non-Hispanic white  105728 (25.5) 14308 (33.0) 26.4 (5.6) 16.3 (5.7) 4.8 (1.8) 5.3 (1.9) 0.17 (0.04) 12.0 (19.2) 2.7 (3.2) 

Multiple/other 10865 (2.6) 1324 (3.0) 25.5 (5.2) 15.5 (5.3) 4.6 (1.7) 5.3 (1.8) 0.16 (0.04) 9.6 (17.0) 2.2 (2.7) 

Maternal education      

< College 137387 (33.1) 13258 (30.6) 24.5 (4.6) 15.0 (4.7) 4.2 (1.6) 5.3 (1.8) 0.16 (0.04) 8.1 (16.0) 1.5 (2.1) 

College (< 4 years)  93590 (22.6) 11342 (26.1) 25.0 (4.7) 15.4 (4.9) 4.2 (1.6) 5.4 (1.8) 0.16 (0.04) 7.9 (15.7) 1.8 (2.3) 

College (≥ 4 years) 184043 (44.3) 11799 (43.3) 26.0 (5.4) 16.2 (5.5) 4.5 (1.7) 5.3 (1.8) 0.17 (0.04) 8.9 (16.1) 2.5 (3.0) 

Block group median household income in 2013      

≤ $43,696 103493 (25.0) 9640 (22.3) 24.1 (4.3) 15.0 (4.4) 4.0 (1.4) 5.0 (1.7) 0.14 (0.04) 5.4 (13.3) 1.2 (1.6) 

$43,696-$55,962 103411 (25.0) 10846 (25.0) 25.0 (4.7) 15.6 (4.9) 4.1 (1.5) 5.4 (1.8) 0.16 (0.03) 7.5 (15.4) 1.7 (2.1) 

$55,962-$71,602 103473 (25.0) 11365 (26.3) 25.5 (4.9) 15.7 (5.2) 4.4 (1.7) 5.6 (1.8) 0.17 (0.04) 8.4 (15.4) 2.1 (2.4) 

> $71,602 103431 (25.0) 11427 (26.4) 26.5 (5.8) 16.2 (5.8) 4.9 (1.8) 5.3 (1.8) 0.19 (0.04) 12.3 (18.6) 3.1 (3.5) 

Smoking      

Never Smoker 346811 (83.6) 32546 (75.0) 25.3 (5.0) 15.6 (5.1) 4.4 (1.6) 5.3 (1.8) 

 

 

 

0.16 (0.03) 8.3 (15.8) 2.0 (2.6) 
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Ever Smoker 47260 (11.4) 7305 (16.8) 25.5 (5.2) 15.8 (5.2) 4.4 (1.7) 5.3 (1.8) 0.16 (0.04) 8.9 (16.5) 2.1 (2.7) 

Smoking during pregnancy 20915 (5.0) 3547 (8.2) 25.2 (4.9) 15.5 (5.0) 4.3 (1.6) 5.4 (1.8) 0.16 (0.04) 8.9 (17.1) 1.9 (2.5) 

Passive smoker      

Yes 8789 (2.1) 1080 (2.5) 24.8 (4.7) 15.1 (4.9) 4.2 (1.7) 5.5 (1.8) 0.16 (0.04) 8.6 (16.4) 1.6 (2.2) 

No 404119 (97.9) 42212 (97.5) 25.3 (4.0) 15.6 (5.1) 4.4 (1.6) 5.3 (1.8) 0.16 (0.04) 8.4 (16.0) 2.0 (2.6) 

Insurance type      

Medical 40142 (9.8) 4996 (11.6) 24.6 (4.5) 15.0 (4.7) 4.2 (1.6) 5.4 (1.8) 0.15 (0.04) 8.2 (16.1) 1.5 (2.0) 

Other 367918 (90.2) 37971 (88.4) 25.4 (5.1) 15.7 (5.2) 4.4 (1.6) 5.3 (1.8) 0.16 (0.04) 8.4 (16.0) 2.1 (2.7) 

Season of conception      

Warm season  204728 (49.3)  20976 (48.3) 25.3 (4.0) 15.3 (5.0) 4.4 (1.6) 5.3 (1.8) 0.16 (0.04) 8.5 (16.0) 2.1 (2.7) 

Cool season  210292 (50.7)  22423 (51.7) 25.3 (5.0) 15.6 (5.0) 4.4 (1.6) 5.3 (1.8) 0.16 (0.04) 8.4 (16.0) 2.0 (2.6) 

SD, standard deviation; NDVI, normalized difference vegetation index. 
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Table 3.2 Summary statistics and Pearson correlation coefficients between green space indicators. 
 

Mean 

(SD) 

IQR Total street 

green space 

Tree Low-lying 

vegetation 

Grass NDVI Land-

cover 

greenness 

Tree 

canopy 

cover 

Distance 

to park 

Walkability 

score 

Total street green space, % 25.28 (5.04) 5.99  1.00          

Tree, % 15.62 (5.13) 6.35  0.89  1.00         

Low-lying vegetation, % 4.36 (1.63) 1.96  0.06  -0.26  1.00        

Grass, % 5.30 (1.79) 2.28  0.22  -0.13  -0.01  1.00       

NDVI, (0-1) 0.16 (0.04) 0.05  0.40  0.35  0.00  0.14  1.00      

Land-cover greenness, % 8.41 (16.00) 9.22  0.16  -0.08  0.44  0.28  0.25  1.00     

Tree canopy cover, % 2.03 (2.61) 2.35  0.55  0.55  0.08  -0.11  0.48  0.06  1.00    

Distance to park, km 0.52 (0.45) 0.47  0.01  -0.09  0.07  0.21  -0.09  0.18  -0.12  1.00   

Walkability score, (0-20) 12.59 (3.32) 4.33  -0.05  0.11  -0.27  -0.19  -0.25  -0.45  -0.03  -0.16  1.00  

SD, standard deviation; NDVI, normalized difference vegetation index. 
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Figure 3.1 Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of maternal 

postpartum depression associated with residential green space and physical activity. 

NDVI, normalized difference vegetation index. 

ORs and 95% CIs were calculated for per interquartile range (IQR) increment for green space 

indicators; Models adjusted for maternal age, race/ethnicity, educational level, and block group 

household income. 

 

 

Figure 3.2 Percent change and 95% confidence intervals of the associations between 

residential green space and physical activity during the entire pregnancy. 

NDVI, normalized difference vegetation index. 

Models adjusted for maternal age, race/ethnicity, educational level, and block group household 

income. 
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Table 3.3 Proportions of the effects of green space exposure on postpartum depression due to 

mediation effects of physical activity during the entire pregnancy. 

 

Green Space Indicators Percentage mediated by 
physical activity and 95% CI, % 

Street view green space  

Total green space  11.7 (5.9, 33.0) 

Tree 10.0 (5.7, 18.0) 

Tree canopy cover 15.6 (7.8, 84.0) 

Walkability score 5.3 (3.5, 8.0) 

Models adjusted for maternal age, race/ethnicity, educational level, block group household income, 

smoking during pregnancy, pre-pregnancy BMI and season of conception. 

 

3.4 DISCUSSION 

To the best of our knowledge, this is the first study to examine the relationship of diverse 

green space measurements, PPD, and the role of PA. In this large obstetric population 

residing in southern California from 2008 to 2018, I found that the main protective effects 

of green space on PPD were for the neighborhood-level green space exposure, rather than 

individual-level residential green space. Maternal exposure to neighborhood street green 

space, and tree coverage (i.e., street tree and total tree canopy cover), was associated with 

a reduced risk of PPD compared to NDVI, land-cover green space and proximity to park. 

A protective association between individual-level street low-lying vegetation and PPD 

was also observed. Moreover, our results revealed that the effects of green space on PPD 

was mediated by PA (9.6% -15.6%) during pregnancy. 

Relationships between green space exposure and PPD has not been studied; previous 

research mainly focused on antenatal depression. While a possible protective effect of 

green space against depression during pregnancy has been reported (McEachan et al., 
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2016; Runkle et al., 2022), other findings were inconsistent (Nichani et al., 2017). Several 

limitations exist in previous studies, including potential outcome misclassification (e.g., 

solely self-reported questionnaires or diagnostic codes), and potential exposure 

misclassification due to the coarse measurements and limitations of remote-sensing 

imagery. In this study, I examined a comprehensive set of green space measures at both 

neighborhood- and individual-level, including the innovative street view-based green 

space and commonly-used satellite-based and park-related measures to facilitate 

comparison with other work. The individual-level residential green space and 

neighborhood green space might have different and independent impacts on health. For 

instance, neighborhood green space may contribute more to improve regional air quality 

by filtering air pollutants or reducing emission sources due to the competitive land use 

between green space and sources of air pollution, or provide cooling benefits for their 

surroundings. Neighborhood green space may also work more toward increasing social 

cohesion, or physical activities over longer distances (e.g., running). In this study, I found 

that the main effects of green space on PPD were for between-zip code effects of green 

space exposure, rather than individual green space within a small buffer around the 

maternal home. 

For the between effect of neighborhood green space, consistent and protective 

associations between PPD and total green space based on eye-level street view images 

were observed, but not NDVI, land-cover green space, or distance to park. Unlike parks, 

street green space can be more frequently experienced and easily accessible in daily 

activities to all residents in a given neighborhood regardless of purposely using it or not 
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(visual or presence). While the remote sensing images may better reflect the total amount 

of regional green space (including private green spaces or park and forest away from the 

road), street view green space may be more related to physical activity, social contacts, 

neighborhood safety and stress (Helbich et al., 2019; Lu et al., 2018; Shepley et al., 2019), 

which are important mental health-related factors. Although I observed increased PPD 

risk for NDVI and land-cover green space, I cannot conclude that green space is 

detrimental to PPD as such measures only reflect the top-viewed and total amount of 

greenness and miss valuable information on the type and quality of green space. For 

example, the most consistent results of crime reduction were among studies involving 

vegetated streets compared to large undeveloped green areas or other green spaces 

(Shepley et al., 2019). More land use dedicated to grass without tree canopy was 

associated with higher odds of incident fair to poor general health (Astell-Burt & Feng, 

2019). Indeed, our findings showed that PPD was negatively associated with satellite-

based tree canopy cover, but not total amount or other types of green space represented 

by NDVI or land-cover measures. For the land-cover green space exposure, total land 

cover or different landcover classes may have different roles in affecting mental health. 

For example, Tsai et al. found that closer distance to forest had lower prevalence of 

mental distress, whereas distance to shrubland had inverse correlation (Tsai et al., 2018). 

Therefore, the choice of exposure indicators can greatly impact the relationship between 

green space and health, at least for the mental health outcomes. Future studies should 

carefully select green space measures; analyzing green space-health associations using 

multiple indicators at multiple scales within a study is recommended. 
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While type of green space is important to understand potential mechanisms, develop 

targeted interventions and enhance urban planning, green space-related studies 

considering types of green space and mental health are sparse. A study in Singapore 

reported that tree canopy cover showed stronger associations with mental health than 

total green space cover or park area (Zhang & Tan, 2019). An Australia study associated 

exposure to higher total green space and tree canopy with lower incidence of 

psychological distress among adults older than 45 years, higher grass levels with higher 

risk, and low-lying vegetation with no consistent risk (Astell-Burt & Feng, 2019). 

However, no prior study has explored green space types and mental health among 

pregnant women, and existing studies were solely relied on satellite-based green space 

data. Green space from satellite data cannot fully reflect the vertical dimension of green 

space; vegetation beneath tree canopy is underestimated. Both satellite-based and street 

view-based green space types were considered in this study to overcome the constraints 

of remote sensing metrics, better classify eye-level green space types, and make a 

comparison. Results from this study are partially consistent with previous findings 

among general population. Consistently protective associations between PPD and 

neighborhood-level tree coverage from both satellite and street view imagery were 

observed; street tree showed the strongest association with PPD. In contrast, grass was 

positively associated with PPD risk, and no clear trend as observed for neighborhood low-

lying vegetation. The larger associations of trees on depression compared to low-lying 

vegetation and grass might be partially explained by the tree canopy blocking the sun and 

providing shade to mitigate environmental nuisances caused by noise, heat and air 
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pollution (Abhijith et al., 2017; Dzhambov & Dimitrova, 2015; Park et al., 2017); larger 

stature and biomass of trees on visual greenness; the aesthetic purpose of street trees 

(Nagata et al., 2020); the canopy ecosystem in relation to higher levels of biodiversity 

(Prevedello et al., 2017); and providing settings for recreation activities, such as physical 

activity and social interaction (Wang et al., 2019).  

It is also noteworthy that the findings ought not be interpreted as evidence for reducing 

grassy areas (e.g., open grassland, grass playfield), which may bring possible health 

benefits for other populations (Taylor et al., 2001). Further, our machine learning model 

was not able to differentiate the quality of green space. For instance, the roadside weeds 

are usually not well-maintained as lawns in parks or communities to provide a valuable 

aesthetic use and recreation area; it may also imply other mental health-related 

confounders, such as traffic noise and air pollution. Indeed, despite the overall protective 

effect of total green space, higher quantities of grass relative to street tree coverage did 

not afford similar levels of benefit. Given a fixed amount of space, tree and grass may 

compete with each other on the land use. Decision-makers and city planners may 

consider increase the amount of tree coverage, especially street trees, to create a healthy 

living environment. 

Regarding within-zip code effect of individual-level green space exposure, despite no 

significant association between neighborhood street low-lying vegetation and PPD, I 

found a clear negative relationship of individual residential low-lying vegetation and PPD, 

indicating that residential low-lying vegetation might have additional benefits on PPD 

with holding zip code average green space exposure remaining the same. Compared to 
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trees and grass, the low-lying vegetation surrounding home (e.g., streets close to home, 

well-maintained yard) may provide better visual effect in the landscape with their unique 

physical characteristics, such as form, texture and color. The variety of eye-level bush, 

shrubs, even flowers, could be essential to provide interest and aesthetic appeal to a 

street scene, which can help release negative affect and improve mental health. More 

appealing landscaping of residential yard could discourage criminal behavior and 

increase the sense of security and calm among residents (Troy et al., 2016). Hedge, a 

tightly planted cluster of tall shrubs, can help provide homeowner shade and privacy. 

Further research of green space types is warranted to better understand what aspects of 

green space matter to maternal mental health. 

The role of PA on the association of green space exposure and PPD was unclear. Two 

previous studies regarding green space and antenatal depression showed that PA may 

not (Nichani et al., 2017) or explain only a small portion (5.6% - 7.8%) (McEachan et al., 

2016) of the effect of satellite-based green space exposures on depression during 

pregnancy. Results from this study suggest statistically significant mediation effect of PA 

between street view green space and PPD ranged from 9.6% - 15.6%. Relatively larger 

contributions of PA were observed for tree canopy cover and PPD. The proportion of the 

total effect of neighborhood walkability on PPD explained by PA was found (5.3%). Thus, 

it can be expected that PA could be a pathway of green space-depression relationship, 

especially in areas with better built environment (e.g., street intersection, sidewalks) and 

greener streets. Different data sources and types of green space metrics might be 

differently associated with PA during pregnancy. For example, unlike the consistent 
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positive associations between PA and neighborhood street green space, higher NDVI and 

land-cover greenness may not increase PA during pregnancy; tree coverage and low-lying 

vegetation could promote PA during pregnancy, but not grass. Previous studies suggested 

that the physical activity levels of children and older adults was associated with the 

amount of space devoted to treed areas, not grass (Giles-Corti et al., 2005; Janssen & Rosu, 

2015). Even though well-maintained grass fields (e.g., parks or playgrounds) can promote 

some lawn sports and activities, this is less relevant to PA during pregnancy. This 

evidence may be one possible reason that previous satellite-based green space studies 

without considering green space types reported no or very weak associations between 

green space exposure and maternal mental health. As yet, there was little research 

regarding street green space, vegetation types, PA and PPD. Further studies are 

warranted to investigate the role of PA on the relationships between green space and 

maternal mental health using multiple green space metrics. 

A review study indicated that the associations of demographic factors with PPD are mixed 

and complex (Guintivano et al., 2018). In this study, higher incidence of PPD were 

observed among older mothers, African American or non-Hispanic white mothers, 

mothers with college education < 4 years, and mothers who live in middle- and high-

income neighborhoods. Overall, results from stratified models suggest that the protective 

associations of street green space with PPD were stronger for population subgroups who 

were already at greater risk for depression disorders, including older mothers, non-

Hispanic white mothers, and mothers with relatively higher education. Increasing 
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exposure to street green space targeting the vulnerable subgroups could help reduce the 

burden of PPD in southern California. 

The main strengths of this study include the use of street view-based green space data 

and vegetation types, as well as the comparison with the multiple green space indicators, 

including satellite-based metrics, parks, and walkability; data structures for both within- 

and between- effects of green space exposure; the large and diverse population from the 

KPSC pregnancy cohort; the high-quality clinical data from KPSC EHRs, especially PPD 

identification based on both clinical diagnosis and prescription rather than self-reported 

surveys or diagnostic codes; and comprehensive data that allowed us to test the 

mediation effect of physical activity and control for a wide range of potential covariates, 

including demographics, socioeconomic factors, individual lifestyles, and pregnancy 

comorbidities. 

However, certain limitations should be considered when interpreting the study findings. 

First, given the temporal variations of green space levels were not taken into account, 

potential exposure misclassifications may exist. For example, most street view images 

from Bing Maps were randomly captured in different dates between 2014 and 2015 

(99%). Thus, this database may not reflect seasonal or higher temporal resolution 

measurement, and I assumed the green space across the study region remained stable 

over the study period. Nevertheless, the variation of green space over seasons (Sun et al., 

2020) and years (Appendix 3.1) tends to be small. I also included year of birth in my 

analyses to control for potential temporal confounding. Second, although a number of 

green space indicators were applied to reflect different aspects of green space exposures, 
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perceived quality and use of green space, which might be more important than quantity 

(Feng & Astell-Burt, 2018), were not taken into account. Other potential confounders, 

such as psychiatric history and adverse life events, were unavailable in this analysis. 

Further, future research needs to consider physical activity in the postpartum period, 

which may have more immediate impacts on postpartum mental health compared to 

prenatal exercise. Finally, green space levels could vary in different regions, and attitudes 

of pregnant women toward physical activity could vary among cultures (Guelfi et al., 

2015). Thus, there is also a strong need for studies conducting in other geographical 

settings and populations. 

 

3.5 CONCLUSION 

This large study based on clinical data provides a unique understanding of the 

relationship between green space and PPD. I found that the main protective effects of 

green space on PPD were observed for neighborhood-level green space compared to 

individual-level green space. Street view-based total green space exposure were 

associated with a decreased risk of PPD in southern California, not satellite-based NDVI, 

land-cover green space, or proximity to park. In addition, physical activity could be 

considered as one of the plausible pathways of green space and depression. Protection 

and restoration of tree specifically, rather than low-lying vegetation or grass, may 

translate into a more pronounced reduction of PPD and optimize the potential benefits of 

green space exposure for promotion of physical activity and maternal mental health.  
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Chapter 4. Physiological and affective responses to green space virtual reality 

among pregnant women 

 

4.1 Objective of Present Study  

In this chapter, I aimed to examine physiological and affective responses to green space 

in pregnant women, using simulated green space exposure through VR. I hypothesized 

that 1) exposure to green space in a VR immersive environment would improve short-

term physiological and affective status on stress recovery among pregnant women; and 

2) different levels of VR green space environments (i.e., low, medium, high) would have 

different effects on physiological and psychological responses. 

 

4.2 METHODS 

Overview 

To examine the physiological and affective responses to different levels of urban green 

space and urban settings, 63 pregnant women were recruited for a laboratory experiment 

that lasted 60 minutes. Women first participated in the Trier Social Stress Test (TSST), a 

well-validated laboratory stress protocol (Kirschbaum et al., 1993), and were then 

randomly assigned to view one of three, 5-min, VR videos of an urban scene with different 

green space levels (i.e., low, moderate, and high). Stress responses to the TSST and VR 
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immersion were measured via changes in blood pressure (BP), heart rate (HR), skin 

conductance level (SCL), salivary alpha-amylase (sAA), salivary cortisol (SC), and affect. 

4.2.1 Procedures 

The study visits of pregnant women occurred between 8-14 weeks’ gestational age and 

included the TSST, serial physiological measurement (i.e., BP, HR, and SCL), saliva 

collection and questionnaire. All subjects participated in the experiment between 1:30 

p.m. and 5:30 p.m. to control for diurnal variations of cortisol secretion (Weitzman et al., 

1971). Study participants were instructed to avoid food intake for 2 hours before study 

onset. 

The timeline and experimental procedures are summarized in Figure 4.1. First, 

participants completed informed consent, and sat for 10 minutes to rest, while a 

researcher introduced the experimental procedure, devices and questionnaires. Then, 

participants wore the biomonitoring sensors to conduct Measurement 1 (T0, baseline), 

including BP, HR, and SCL, sAA, SC and survey (i.e., demographic and health condition 

data, the Perceived Stress Scale, and affect). Next, Following Measurement 1, women 

participated in the TSST to induce a moderate level of stress, and then immediately 

completed Measurement 2 (T1, immediately after TSST). Next, participants were 

randomly assigned to watch one of the three 5-min green space VR videos. During the 

“virtual exposure” part, the 360-degree videos were projected on the VR headset for 

participants to watch freely. Neither participants nor investigators knew which video the 

participants would be watching. This double-blind experimental approach eliminated 
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threats to internal validity that might have arisen from the unconscious behavior of the 

investigators or the desire to please the investigators on the part of the participants. 

Immediately after the VR immersive experience, the participants completed 

Measurement 3 (T7, +7 min after TSST/ immediately after the VR green space exposure). 

Finally, the sensors were removed and the participants were escorted to a waiting room 

where two additional saliva samples were collected for later cortisol assessment (15, and 

30 minutes after TSST). Taken together, the experiment lasted approximately 60 minutes. 

 

 

Figure 4.1 Timeline of experimental procedure. 

 

Measurement 1: (T0, baseline) BP, EEG, sAA, SC, and survey (basic information, health 

status, Perceived Stress Scale questionnaire, and PANAS); Measurement 2: (T1, 

immediately after TSST) BP, EEG, sAA, SC, and survey (PANAS); Measurement 3: (T7, +7 

min after TSST/ immediately after the VR green space exposure) BP, EEG, sAA, SC, and 

survey (PANAS, attitudes toward green space, and simulator sickness); T15 and T30: 

salivary cortisol; HR and SCL: real-time data throughout the experiment before the rest. 

* BP: blood pressure, EEG: electroencephalogram, sAA: salivary alpha-amylase, SC: 

salivary cortisol, PANAS: Positive and Negative Affect Scale, HR: heart rate, SCL: skin 

conductance level. 
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4.2.2 Study population 

From April to July in 2021, 63 healthy pregnant women were recruited from Beijing, 

China to participate in this study. To mitigate the influence of maternal hormone changes 

during pregnancy (Soma-Pillay et al., 2016), only individuals between 8-14 weeks’ 

gestational age were eligible. For each participant, I gathered demographic, behavioral, 

and health-related data, including age, household income, taking medication or treatment, 

smoking, drinking, sleep quality, and current stress level in the baseline survey. 

Individuals who were younger than 18 years old, carried more than one fetus, taking 

medicine (e.g., psychoactive, beta-blockers, glucocorticoids), with a medical history of 

chronic diseases (e.g., endocrine, cardiovascular, psychotic disorder, and others), and 

who have used tobacco or alcohol within 24 h prior to the experiment were excluded 

from the study. 

This study was approved by the Institutional Review Board of the Peking University and 

the University of California, Irvine. 

4.2.3 Virtual reality green space exposure 

To simulate virtual reality green space exposure in this laboratory experiment, I 

generated three 5-min 360-degree, three-dimensional (3D) VR videos of urban green 

environments. To create the videos, I first identified several streets and parks with 

varying levels of green areas in Beijing, China. At each site, I recorded the surrounding 

visual characteristics. To minimize the influence of other physical characteristics, such as 

building density, building quality, road surface, and general maintenance of the 
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neighborhood, I compared 8 videos of streets and picked 2 sites with similar physical 

characteristics as the low and moderate green space environment. One video of urban 

park was picked as the high green space environment. For each selected site, I repetitively 

filmed for 5 times to collect the smoothest shot without detectable friction or waggle and 

with the least changes in sunlight intensity. All videos were taken on sunny days without 

strong winds in the summer (July to August, 2020) between 10:00 a.m. and 3:30 p.m. to 

reduce different sun angles and shadows (Ulrich et al., 1991). The videos were presented 

with low volume and similar background sounds without environmental noises, since a 

soundless visual feature renders an environment more fearful and more stressful for the 

participants (Annerstedt et al., 2013). People, animals, or moving vehicles were not 

contained in the videos to limit confounding characteristic and minimize distractions. 

Three 5-min videos with low, moderate, and high level of urban green space exposure 

were created. Equal-area projection and Semantic Segmentation method was used on the 

panoramic photos to calculate the area occupied by green space (e.g., trees, shrubs, and 

grasses), then divided it by the total area in the image to obtain the green areas ratio 

(Zhang et al., 2021). In this study, the level of green space exposure was defined as Low: 

0%, urban street view without green space; Moderate: 12%, urban street view with green 

space; and High: 50%, open space with high green space level (e.g., urban park). 

Participants viewed the VR environments through a VR headset (iQIYI Qiyu 2Pro, iQIYI, 

Inc., Beijing, China). 
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Figure 4.2 Panoramic photos of the three VR environments, all located in Beijing: (a) High: 

50%, urban park; (b) Moderate: 12%, urban street view with green space; (c) Non-green 

space: 0%, urban street view without green space. 

 

4.2.4 Inducing stress 

The TSST was used to induce psychological stress in a laboratory setting (Kirschbaum et 

al., 1993). The TSST is a standardized laboratory stress protocol, which consists of a 

preparation period in silence, a public speech as a mock job interview, and a mental 

arithmetic task (each of 5 min duration) in front of three interviewers and a video camera. 

The TSST has been widely used to induce mental stress under controlled conditions 

(Kudielka & Wust, 2010; von Dawans et al., 2011), and has reliable effects to induce stress 

across various age groups (Dickerson & Kemeny, 2004). It has been used in stress 

research to induce moderate psychological stress in pregnant women (Deligiannidis et 

al., 2016; Kofman et al., 2019; Nierop et al., 2006). 
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4.2.5 Outcome measurements 

In order to assess the short-term physiological stress responses, I used immediate stress 

indicators, including BP, HR, and SCL in the experiment (Berto, 2014; Brown et al., 2013; 

Jiang et al., 2014; Klinkenberg et al., 2009; Yin et al., 2019; Yin et al., 2018). They were 

measured by two wearable biomonitoring sensors: Empatica E4 wristband (Empatica 

Inc., Boston, MA) and upper arm blood pressure monitor (HEM-7125J, 

Omron Healthcare (China) Co., Ltd, China). Blood pressure (in unit of mmHg) was 

measured 3 times (Measurement 1: T0, baseline; Measurement 2: T1, immediately after 

TSST; Measurement 3: T7, +7 min after TSST/ immediately after the VR green space 

exposure) during the experiment. The wristband collects data in real time, measuring the 

HR (beats per minute, bpm) and SCL [in unit of micro- Siemens (μS)] every second 

throughout the experiment. To represent the three stages of the experiment for real-time 

measurements (i.e., baseline, stressor, and recovery), the averages of HR and SCL were 

calculated internally at baseline (i.e., pre-stress, 5-min), TSST (15-min), and VR 

immersion (5-min), respectively. Furthermore, participants’ alpha-amylase (N=3) and 

cortisol (N=5) (Deligiannidis et al., 2016; Dickerson & Kemeny, 2004; Thoma et al., 2012) 

were obtained from salivary samples collected at Measurement 1-3, T15 and T30 min. 

Each participant chewed on an oral swab for approximately 45 seconds until the swab 

(Salivette, SARSTEDT AG & CO. KG, Germany) was saturated with saliva. 

In addition, I used the Positive and Negative Affect Scale (PANAS) (Watson et al., 1988) 

to measure self-reported affect three times during the experiment. The PANAS has been 

widely used as a self-reported measure of affect in both the community and clinical 
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contexts (Clark & Watson, 1991) and has been validated in several languages, including 

Chinese (Huang et al., 2003). It consists of 20 items describing different emotions and 

feelings. Using a 5-point Likert-type scale, participants were asked to indicate the extent 

to which they “feel this way right now”. The PANAS has two subscales, reflecting positive 

(i.e., attentive, active, alert, excited, enthusiastic, determined, inspired, proud, interested, 

and strong) and negative (i.e., hostile, irritable, ashamed, guilty, distressed, upset, scared, 

afraid, jittery, and nervous) emotions. Sum scores were used to create an overall score 

(range 10 to 50), as well as the positive and negative emotion subscale scores. Higher 

scores represent higher levels of positive/negative affect. The Perceived Stress Scale (10-

item) (Cohen et al., 1983) was used in the baseline survey for measuring the perception 

of stress during the last month before the experiment. In Measurement 3, I also surveyed 

participants’ attitudes toward green space and feelings of VR motion sickness, which may 

lead to potential bias in the physical and affective measurements. 

4.2.6 Statistical analysis 

Descriptive statistics were performed to describe demographic characteristics, 

physiological measurements and questionnaire data. Analyses of variance (ANOVA) was 

applied to test the effectiveness of randomization at baseline and after stressor. Required 

assumptions of ANOVA such as normality, sphericity, and equal-variance, were checked. 

In addition, SCL data was log transformed since they were right skewed. Paired t-test, or 

Wilcoxon signed-rank test was used to test the effectiveness of stressor to determine if 

participants’ stress levels immediately after the TSST (T1) were significantly higher than 

their baseline measures. 
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I used the pre-post recovery differences (time-point data: T1 vs. T7, real-time data: TSST 

vs. VR immersion) among physiological measurements, including BP, HR, SCL, salivary 

alpha-amylase, and salivary cortisol, as the dependent variables in a linear model to 

analyze the differences of pre-post changes in VR environments of middle and high green 

groups versus those in non-green group. The mixed model for repeated measures was 

applied for salivary cortisol levels. For self-reported affect variables, I further conducted 

exploratory factor analysis to determine the internal structure of a list of positive or 

negative affect variables. The exploratory factor analysis is a statistical technique that 

seeks to reduce the dimensionality of a large number of measured variables by 

categorizing them into groups (latent underlying factors) according to the correlations 

between the measured variables (Watson, 2017). Scree plot was used to determine the 

number of factors to retain in the exploratory factor analysis. If self-reported affect 

variables of the PANAS questionnaire are classified together into one or more common 

categories, it suggests that those affects arise from similar underlying processes. These 

variables can be combined into a group or a “factor” (i.e., the sum score of the specific 

items) and then be used in the linear model to analyze the effect of VR green space 

exposure on stress recovery. All hypothesis tests were two-sided and P values <0.05 were 

considered as statistically significant. All analyses were performed with SAS version 9.4 

(SAS Institute, Inc., Cary, NC). 
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4.3 RESULTS 

Demographics, baseline measures and stressor 

Table 4.1 presents the characteristic of the 63 participants at baseline. Participants had 

an average age of 32, with similar educational levels among three groups. Participants 

also reported similar scores for sleep quality and stress level. The average room 

temperature (25 ± 1°C) and relative humidity (40 ± 9%) indoors stayed consistent during 

the experimental periods. There were no statistically significant differences of 

demographics and indoor environmental quality among the three randomized groups, 

indicating the success of the randomization. No participant reported dislike of green 

space or severe motion sickness during VR immersion. 

 

Table 4.1 Characteristics of study participants (n = 63) at baseline of the experiment by three 

randomized groups with low, medium and high exposures to green space. 

 

SD, standard deviation. 

 

Baseline characteristics 
Green Space Environment 

High Middle Low 

Number of participants 21 21 21 

Maternal age, years, mean (SD) 31.8 (2.4) 31.8 (2.7) 31.7 (3.0) 

Maternal education, n (%) 

College or below 17 (81.0) 19 (90.5) 18 (85.7) 

Higher than College  4 (19.0) 2 (9.5) 3 (14.3) 

Gestational age, week 11.3 (2.2) 10.8 (1.7) 11.0 (2.1) 

Sleep quality, 0-4  

(0: lowest quality; 4: highest quality), mean 
(SD) 

2.0 (0.6) 2.0 (0.5) 2.0 (0.7) 

Self-reported stress level, 0-40  

(0: lowest stress; 40: highest stress), mean 
(SD) 

12.1 (5.7) 11.2 (5.4) 11.6 (6.7) 

Indoor environment quality, mean (SD) 

Temperature, °C 24.8 (0.9) 24.7 (0.9) 24.6 (0.9) 

Relative Humidity, % 39.5 (9.4) 40.2 (9.1) 41.0 (10.4) 
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Participants’ physiological and psychological measures among three groups at baseline, 

pre-recovery (i.e., post-stressor) and post-recovery are shown in Figure 4.3. I observed 

that participants’ physiological and affective stress levels increased significantly after the 

TSST, except DBP for the middle green space group. These results demonstrate that the 

TSST was an effective stressor for the participants. In addition, ANOVA results show no 

differences in effect sizes of the TSST between groups in BP, HR, SCL, salivary alpha-

amylase, salivary cortisol, and self-reported affect, suggesting that there were no 

significant differences in stress level after the TSST between the three groups. 

Different changes in stress indicators after VR immersion in different levels of green 

space exposure were observed. 

 

 

Figure 4.3 Average physiological and psychological measures at baseline, pre-recovery/post-

stressor and post-recovery period in three environments. 
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Effect of green space environments on pre-post changes of physiological measures 

In general, compared to the non-green environment (i.e., low group), participants 

experiencing green space environments during the recovery period had consistently 

greater decreases of systolic blood pressure (SBP), diastolic blood pressure (DBP), HR, 

SCL, salivary alpha-amylase, and salivary cortisol (Figure 4.4 and Table 4.2), especially 

for the high green space group. Specifically, high green space exposure was associated 

with 4.6 (95% CI: -8.5, -0.6) mmHg greater decrease in SBP as well as 1.2 (95% CI: -2.3, -

0.2) ng/ml greater decrease in sAA concentration, respectively. However, I did not find 

substantial differences for DBP, HR, SCL (T7) and salivary cortisol (T30) compared to the 

non-green environment. Green space exposure did not show a significant effect on 

salivary cortisol levels as well, when considering multiple time points of salivary cortisol 

after the VR immersive experience (i.e., T7, T15 and T30). 
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Table 4.2 Estimated differences in pre-post changes in physiological and psychological 

measures in green space environments versus non-green environment during the 5-min 

recovery period. 

 

Pre-post changes 

(95% confidence interval) 

High Middle 

Physiological measures   

Systolic Blood Pressure (mmHg) -4.57 (-8.51, -0.64) -0.61 (-4.60, 3.37) 

Diastolic Blood Pressure (mmHg) -1.86 (-4.41, 0.69) 0.24 (-2.31, 2.79) 

Heart Rate (1/min) -1.77 (-5.52, 1.98) -0.37 (-4.12, 3.39) 

Log (Skin Conductance Level) (µS) -0.20 (-0.67, 0.28) 0.12 (-0.35, 0.59) 

Salivary Alpha-Amylase (ng/ml) -1.22 (-2.26, -0.18) -0.57 (-1.61, 0.46) 

Salivary Cortisol (nmol/L) -3.13 (-15.76, 9.51) 4.20 (-8.28, 16.68) 

Positive and Negative Affect Scale (points)  

Overall positive affect 6.62 (0.29, 12.95) 5.67 (-0.66, 11.99) 

  Positive Factor 1 6.38 (0.96, 11.80) 4.24 (-1.18, 9.66) 

  Positive Factor 2 0.24 (-1.45, 1.92) 1.43 (-0.26, 3.11) 

Overall negative affect -3.29 (-8.36, 1.79) 0.90 (-4.17, 5.98) 

  Negative Factor 1 -2.62 (-5.19, -0.04) 0.62 (-2.07, 3.31) 

Negative Factor 2 -1.33 (-3.49, 0.82) -0.57 (-2.73, 1.59) 

  Negative Factor 3 0.67 (-0.90, 2.23) 0.86 (-0.70, 2.42) 

Note: Reference: low green space group; Positive Factor1 “Happiness”: excited, enthusiastic, 

determined, inspired, proud, interested, strong; Positive Factor2 “Attention”: attentive, active; 

Negative Factor1 “Anxiety”: afraid, scared, jittery, nervous; Negative Factor2 “Anger”: hostile, irritable, 

distressed, upset; Negative Factor3 “Shame”: ashamed, guilty. SCL data were log-transformed in the 

regression model. Significant results were bolded. 
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Figure 4.4 Estimated differences in pre-post changes in physiological measures in green 

space environments versus non-green environment during the 5-min recovery period. 

Note: SBP: Systolic blood pressure (mmHg); DBP: Diastolic blood pressure (mmHg); HR: Heart rate 

(bpm); SCL: Skin conductance level (µS); sAA: Salivary alpha-amylase (ng/ml); SC: Salivary cortisol 

(nmol/L). SCL data were log-transformed in the regression model. Error bars depict 95% confidence 

interval. 

 

 

Figure 4.5 Estimated differences in pre-post changes in psychological measures in green 

space environments versus non-green environment during the 5-min recovery period. 

Note: Positive Factor1 “Happiness”: excited, enthusiastic, determined, inspired, proud, interested, 

strong; Positive Factor2 “Attention”: attentive, active; Negative Factor1 “Anxiety”: afraid, scared, 

jittery, nervous; Negative Factor2 “Anger”: hostile, irritable, distressed, upset; Negative Factor3 

“Shame”: ashamed, guilty. Error bars depict 95% confidence interval. 
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Effect of green space environments on pre-post changes of affective responses 

According to the scree plot in the exploratory factor analysis, two factors from 10 items 

of the positive affect and three factors from 10 items of the negative affect were identified 

to sufficiently explain the sample correlations, respectively (Appendix 4.1). The variables 

“excited, enthusiastic, determined, inspired, proud, interested, strong” had the highest 

rotated loadings on “Positive Factor1- Happiness”, accounting for 75.6% of the variance. 

“Afraid, scared, jittery, nervous” had the highest loadings on “Negative Factor1 - Anxiety”, 

explaining 37.1% of the variance in the data. 

In general, participants reported higher overall positive scores after recovery compared 

to their scores before recovery (i.e., after stressor) in both high and middle green space 

groups. Compared to the change of positive scores in the low green space environment, 

participants in the high green space group had significant increase in overall positive 

score (6.6, 95% CI: 0.3, 13.0). Furthermore, the results from factor analysis show that 

participants were recovered from stress by feeling more positive emotions regarding 

happiness, but not the subscale of attention (Figure 4.5 and Appendix 4.1). 

For the negative affect scale, the difference of the overall negative score between green 

vs. non-green exposure groups was similar. However, the high green space group had a 

mean value of “Negative Factor1 - Anxiety” that was 2.6 points lower (95% CI: -5.2, -0.04) 

than that of the non-green exposure group, suggesting that high green space environment 

effectively relieved stress by reducing nervousness and fear. No substantial difference 

was found among the affect subscales of anger and shame between green space groups. 
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4.4 Discussion 

This study investigated the physiological and affective responses to green space exposure 

on stress recovery among 63 pregnant women. Participants were randomly assigned to 

explore one of three virtual urban scenes with different green space levels (Low: urban 

street view without green space; Middle: urban street view with a moderate level of green 

space; and High: urban park). Overall, these findings indicate that short-term exposure of 

pregnant women to VR green space environments had better post-stress restorative 

effects both physiologically and psychologically compared to those exposed to the non-

green space environment. Exposure to high green space environment in park-like setting 

had the strongest impacts on stress recovery in this study. 

For the general population, benefits of green spaces on stress reduction have been shown 

in previous VR-based studies. An experimental study in Canada found that 69 students 

who explored a virtual nature environment with dense vegetation had significantly 

improved self-reported affect and significantly lower skin conductance levels compared 

to those who explored a virtual urban or geometric environment (Valtchano & Ellard, 

2010). VR immersion in a park and forest environment in Sweden, but not an urban area 

without green space, was associated with significant stress reduction as indicated by 

reduced skin conductance levels (Hedblom et al., 2019). Another study of 100 healthy 

adults from Boston reported reduced blood pressure and anxiety among participants 
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viewing outdoor green space through VR versus those viewing a non-biophilic 

environment (Yin et al., 2020).  

Most existing experimental research involving responses to natural environments and 

VR studied college students or healthy adult populations. It cannot be assumed that 

similar effects would be seen in other populations, such as younger or older populations, 

clinical populations, or individuals with limited access to outdoor nature (Li et al., 2021). 

For pregnant women, maternal hormone activity and psychological changes during 

pregnancy may lead to different stress responses compared to the general population 

(Mastorakos & Ilias, 2003; Newham & Martin, 2013). To the best of our knowledge, no 

study has explored virtual green space effects on stress recovery among pregnant women 

who might benefit more from mental health promotion during pregnancy.  

Our results of the beneficial impacts of visual exposure to green space are partially 

consistent with previous findings in the general population, including improved blood 

pressure and self-reported affect. Importantly, I explored the research gap regarding 

affective responses to green space among pregnant women; the results indicate that 

exposure to high green space environment results in increased overall positive affect and 

decreased negative affect. Having lasting sad or anxious moods are major symptoms of 

depression, as well as perinatal depression. In this study, high green space exposure 

contributed to better stress recovery by increasing happiness and decreasing anxiety, 

suggesting significant acute improvement in depression-related affective responses in 

the short-term experiment setting. Future research is needed to investigate whether such 
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short-term impacts can lead to longer term improvement of affective responses during 

pregnancy. 

In terms of skin conductance level, electrodermal activity has largely been used to 

measure the impacts of environments on acute stress recovery (Frumkin et al., 2017). 

While we would expect a drop in arousal levels as the sympathetic nervous system 

recovers from the stressful task in nature environments (Hedblom et al., 2019; Jiang et 

al., 2014), other findings are inconsistent (Browning et al., 2019; Yin et al., 2020). In this 

study, no significant differences were observed for skin conductance levels between 

three green space environments. Gender difference might be one of the potential reasons 

that may partially explain the inconsistent results in terms of skin conductance levels. 

Green space may induce more pronounced recovery from a stressful event in males 

compared to females (Jiang et al., 2014). In addition, skin conductance levels did not 

recover back to baseline in all VR environments, suggesting that the sympathetic 

activation may need more time to completely recover (i.e., 5-min recovery period in this 

study). Furthermore, during the recovery phase, participants’ feelings of interest and 

engagement in green space environments may cause increased physiological arousal and 

support positive affect maintenance. On the contrary, reduction of physiological arousal 

may reflect negative affect, such as boredom and disengagement. Thus, a single metric of 

electrodermal activity might not be a good indicator of affective arousal and may produce 

mixed findings (Felnhofer et al., 2015). The link between arousal and emotional reaction 

to different VR environments, including subjective (e.g., self-reported affect) and 

objective (e.g., skin conductance), is still a conflicting theoretical debate. Further research 
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is needed to enhance our understanding of the link between electrodermal activity and 

VR green space exposure in a comprehensive discussion, such as designing longer 

recovery period and/or monitoring period, considering more emotional states, 

combining physiological measurements and subjective feelings, and using comparable 

technologies (e.g., standard questionnaire) to improve cross-study comparability. 

Both sAA and salivary cortisol serve as valid and reliable indicators of stress (Ali & Nater, 

2020). However, only few studies have used sAA (X. Wang et al., 2019) and salivary 

cortisol (Annerstedt et al., 2013; Jiang et al., 2014) to examine the associations between 

stress recovery and green space exposure after an acute stressor. In previous studies, 

post-recovery salivary cortisol changes were not observed (Annerstedt et al., 2013) or 

only observed for male, not for female participants (Jiang et al., 2014). Moreover, the 

study involving sAA only focused on forest environments rather than urban environment 

(X. Wang et al., 2019). In this study, I used both sAA and salivary cortisol and compared 

their responses. It is noteworthy that significant pre-post changes between the three 

green space environments were observed for sAA, but not for salivary cortisol. The 

different responses between sAA and salivary cortisol may be partly explained by the 

different biological systems of stress responses: 1) the sympathetic nervous system (part 

of the autonomic nervous system), which is activated immediately after stressor occurs, 

and 2) the HPA axis, which is activated minutes after certain types of stressors occur. In 

response to stress, sAA and salivary cortisol are produced respectively by the 

sympathetic nervous system and the HPA axis (Maruyama et al., 2012). The sAA is 

sensitive to momentary emotional arousal (Giesbrecht et al., 2013), which can reflect 
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acute stress challenge and short-term recovery, and be captured during a short time after 

the exposure. On the other hand, it appears as though the VR manipulation was too subtle 

to manipulate cortisol trajectories through HPA axis among pregnant women, and future 

research should test whether cortisol trajectories in non-pregnant women may be 

moderated by this intervention. In addition, the TSST elicits a prompt and high stress-

related cortisol increase. Subsequently, the relief in ending the stressful task may lead to 

a large cortisol drop for every participant; the magnitude of decrease may mask small 

differences in the change of cortisol levels due to different green space exposure 

(Annerstedt et al., 2013). Moreover, there is evidence suggesting that some of the health 

benefits of participation in restorative activities may not be immediate but can be delayed 

(Bershadsky et al., 2014). Future research regarding the stress response and green space 

exposure is necessary. 

Studies of urban green space are of interest for city planners aiming to create a safe and 

healthy living environment. To make the results more generalizable, the selected sites in 

the VR videos are all common environments in cities and parks. Results from this study 

suggest that, in comparison to non-green space environments or small green 

space features (e.g., street trees and roadside vegetation), open space with high green 

space levels (e.g., urban parks, community gardens, private yards) may lead to a more 

pronounced reduction of stress among pregnant women. A previous study focused on 

general population reported similar results that the VR photo of park and forest, but not 

the non-green urban street, provided significant stress reduction (Hedblom et al., 2019). 

In addition, the results showed that even a short immersion in VR green space 



 

78 
 

environment can be considered a potential surrogate for real nature exposure to ease 

stress and promote mental health during pregnancy, in particular when actual nature 

exposure may not be possible. 

This study has several strengths. First, the employment of 3D 360-degree VR video could 

provide a more immersive experience of exposure to a green space environment 

compared to traditional visual stimuli. Second, a wide range of physiological 

measurements and biomarkers in combination with psychological questionnaires was 

used in this study to comprehensively monitor participants’ physiological and affective 

stress responses. Furthermore, double-blinding and the randomization design minimized 

potential bias and confounding factors. Moreover, exploratory factor analysis was applied 

in the affective analysis to identify the hidden from high dimensional data with inter-

related affect variables, which provided more nuanced insights about emotional effects 

of green space on stress recovery. 

However, this study has limitations, which suggest avenues for further research. First, 

although VR technology provides the participants’ immersive experience of exposure to 

virtual urban scenes, it is not the same as the real world. Nevertheless, studies have 

shown that the physiological and cognitive responses are consistent between VR 

environments and real physical exposure (Browning et al., 2019; Yin et al., 2018). Future 

studies may use computer-generated scenarios (Yeo et al., 2020) or actual nature 

environments to induce a greater sense of presence. In addition, solely visual connection 

with the environment were presented in the VR simulations without considering 

auditory, olfactory, and their interactions, which may strengthen the overall effects due 



 

79 
 

to the potential multisensory benefits (Browning et al., 2019; Hedblom et al., 2019). As a 

counterpoint, however, using VR allowed us to isolate visual impacts from the mix of 

other sensory factors and study a specific pathway between green space and stress 

recovery. Moreover, the psychological state in pregnancy is not a stable construct, but is 

dynamic and fluctuates as gestation progresses (Newham & Martin, 2013). Future studies 

may explore the impact of green space on stress during late pregnancy rather than early 

pregnancy. Lastly, only three conditions of urban scenes in Beijing were included in this 

study: an urban street without green space, an urban street with moderate-level green 

space, and an urban park with high-level green space. Further studies may consider 

different dosages of urban green space as well as various kinds of landscapes in other 

regions. 

 

4.5 CONCLUSION 

In this study, I found that visual exposure to a green space environment in VR was 

associated with lower systolic blood pressure, reduced salivary alpha-amylase, improved 

positive affect and decreased negative affect compared to non-green space environment, 

suggesting that even short exposure to a green space environment resulted in both 

physiological and affective stress reduction among pregnant women. VR nature 

experiences, especially in parks with higher green space, could be an effective way to 

reduce stress and improve mental health and well-being during pregnancy. Urban 



 

80 
 

planners may consider that improved urban parks may optimize the benefits of green 

space to stress recovery during pregnancy. 
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Appendix 2.1 Summary statistics of green space indicators and socioeconomic factors. 

Exposures Mean SD Min 25th 50th 75th Max 

Tree, % 16.9 4.4 6.6 13.6 16.0 19.5 33.1 

Low-lying vegetation, % 4.6 1.4 2.2 3.7 4.3 5.1 12.7 

Grass, % 4.9 1.4 1.3 4.0 4.8 5.7 13.8 

Total green space, % 26.3 4.9 17.7 22.8 25.3 28.8 46.7 

NDVI 0.13 0.04 0.03 0.11 0.13 0.16 0.31 

Educational Attainment, % 24.3 17.9 0 8.0 21.5 38.2 74.8 

Linguistic Isolation, % 15.0 11.6 0 5.6 12.5 21.3 67.9 

Poverty, % 40.8 21.0 0 22.0 40.1 57.9 94.9 

Unemployment, % 10.3 4.7 0 7.2 9.7 12.8 100.0 

Housing Burden, % 23.3 9.6 2.4 16.2 22.5 29.8 67.2 

Population Characteristics Score, 0-10 5.8 2.1 0.3 4.2 6.1 7.5 9.7 

CalEnviroScreen3.0 score, 0-100 36.5 16.3 1.3 23.3 36.4 49.3 80.7 

Non-white population, % 71.4 26.6 0 48.9 81.0 95.2 100.0 

Sampling points per tract 103 231 0 28 63 115 5269 

SD, standard deviation. NDVI, normalized difference vegetation index. 

Educational Attainment: Percent of population over 25 with less than a high school education; 

Linguistic Isolation: Percent limited English speaking households; Poverty: Percent of population 

living below two times the federal poverty level; Unemployment: Percent of the population over the 

age of 16 that is unemployed and eligible for the labor force; Housing Burden: Percent housing 

burdened low income households. 
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Appendix 2.2 The urban/rural status, street network and the number of sampling points along 

the street per census tract, Los Angeles County. 

 

Urban areas: the rural-urban commuting area (RUCA) code = 1; Rural areas: RUCA code >1; Missing: 

RUCA code = 99. 
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Appendix 2.3 Popular Semantic segmentation models. 

Cityscapes 
2020 Rank 

Model/Method 
Cityscapes 
2020 mean 
IoU 

Year 
Type of 
Improveme
nt 

Description Advantages 

1 
Hierarchical Multi-
Scale Attention + 
HRNet-OCR [1] 

85.1% 2020 Mechanism 

A hierarchical attention mechanism by which the network 
learns to predict a relative weighting between adjacent 
scales to best combine predictions from multiple inference 
scales and get more refined segmentation results 

Objects of different sizes are inferenced 
by networks of different resolutions 

2/5 HRNetV2+OCR+ [2] 84.5% 2019 Architecture 

A high-resolution representation model with object-
contextual representation technique to enhance the 
semantic segmentation performance on high-resolution 
images 

Connect high-to-low resolution 
convolutions in parallel; Maintain high-
resolution representations through the 
whole process; Repeat fusions across 
resolutions to strengthen 
representations 

3 EfficientPS [3] 84.2% 2020 Architecture 

A panoptic segmentation model with: 

1. Backbone-network：EfficientNets 

2. 2-way Feature Pyramid Network 

3. semantic segmentation: Separable Convolution 

4. instance segmentation: Mask RCNN 

More Efficient; Better Performance; 
Panoptic Segmentation is a new trend 

4 Panoptic-DeepLab [4] 84.2% 2019 Architecture 

A panoptic segmentation model with: 

The semantic segmentation branch: DeepLab 

The instance segmentation branch: class-agnostic. 

bottom-up 

1-stage is faster than 2-stage; Bottom-
up instance segmentation branch; 
Panoptic Segmentation is a new trend 
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6 
Densely Connected 
Neural Architecture 
Search (DCNAS) [5] 

83.6% 2020 
Architecture 
Search 

The NAS approach is used to solve the search problem of 
network width, named DenseNAS: to construct a new 
intensively connected search space, and to design a super 
network as a continuous representation of the search 
space 

Automatically search for the best 
model fit for current dataset 

7 
DeepLabV3Plus + 
SDCNetAug [6] 

83.5% 2018 Architecture 
A novel boundary label relaxation technique that makes 
training robust to annotation noise and propagation 
artifacts along object boundaries 

Better classify the points at the 
boundary 

8 

Global Aggregation 
then Local 
Distribution 
(GALDNet) [7] 

83.3% 2019 Architecture 

A method to first use Global Aggregation and then Local 
Distribution, because traditional Global Aggregation is 
often dominated by features of large patterns and tends to 
oversmooth regions that contain small patterns. 

Better use global information 

9 
Split-Attention 
Networks (ResNeSt) 
[8] 

83.3% 2020 Architecture 

A modular Split-Attention block that enables attention 
across feature-map groups. By stacking these Split-
Attention blocks ResNet-style, we obtain a new ResNet 
variant which we call ResNeSt.  

A novel model for a wide range of 
application scenarios 

32  PSPNet [9] 81.2% 2017 Architecture 
A classical model based on the proposed Pyramid Pooling 
Module to aggregate contextual information at different 
scales 

Aggregate contextual information at 
different scales 

71 
Fully Convolutional 
Networks (FCN) [10] 

65.3% 2015 Architecture 

A classical model which replaces the fully connected layers 
in the traditional CNN network with convolution layers to 
obtain a 2-dimensional feature map, and followed by 
softmax to obtain the classification information of each 
pixel 

From Image Classification to Semantic 
Segmentation 

[1] Wang, J., Sun, K., Cheng, T., Cheng, T., jiang, B., Deng, C., . . . Xiao, B. (2020). Deep high-resolution representation learning for visual recognition. IEEE 

transactions on pattern analysis and machine intelligence.  

[2] Yuan, Y., Chen, X., & Wang, J. (2019). Object-contextual representations for semantic segmentation. arXiv: 1909.11065.  

[3] Mohan, R., & Valada, A. (2020). EfficientPS: Efficient Panoptic Segmentation. arXiv:2004.02307v2.  

[4] Cheng, B., Collins, M., Zhu, Y., Liu, T., Huang, T., Adam, H., & Chen, L. (2020). Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic 

Segmentation. arXiv:1911.10194v3.  



 

96 
 

[5] Zhang, X., Xu, H., Mo, H., Tan, J., Yang, C., & Ren, W. (2020). DCNAS: Densely Connected Neural Architecture Search for Semantic Image Segmentation. 

arXiv:2003.11883v1.  

[6] Zhu, Y., Sapra, K., Reda, F., Shih, K., Newsam, S., Tao, A., & Catanzaro, B. (2019). Improving Semantic Segmentation via Video Propagation and Label 

Relaxation. arXiv:1812.01593v3.  

[7] Li, X., Zhang, L., You, A., Yang, M., Yang, K., & Tong, Y. (2019). Global Aggregation then Local Distribution in Fully Convolutional Networks. 

arXiv:1909.07229v1.  

[8] Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., . . . Smola, A. (2020). ResNeSt: Split-Attention Networks. arXiv:2004.08955v1. 

[9] Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid Scene Parsing Network. arXiv:1612.01105v2.  

[10] Shelhamer, E., Long, J., & Darrell, T. (2016). Fully Convolutional Networks for Semantic Segmentation. arXiv:1605.06211v1. 
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Appendix 2.4 Model validation 

 

IoU, Intersection over union. 
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Appendix 2.5 Accuracy of each fold of HRNetV2+OCR+ model.  

 

 

IoU Tree Low-lying 
vegetation 

Grass Mean IoU 

Fold 1 96.4 80.6 95.1 89.4 

Fold 2 95.3 81.1 92.3 89.5 

Fold 3 93.9 83.2 94.9 90.7 

Fold 4 94.0 83.7 94.3 90.7 

Fold 5 95.6 87.3 92.6 91.8 

Fold 6 95.5 87.7 90.5 91.2 

Fold 7 96.4 85.0 89.7 90.4 

Fold 8 94.9 83.5 90.3 89.6 

Fold 9 96.4 86.3 90.5 91.0 

Fold 10 95.9 90.3 89.6 91.9 

Average 95.4 84.9 92.0 90.6 

IoU (%), Intersection over unions.
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Appendix 2.6 Associations between neighborhood socioeconomic status and green space in urban areas of Los Angeles County, census tracts. 

 
IQR Tree Low-lying vegetation Grass Total green space NDVI 

Socioeconomic status   
regression 
coefficient 

95% CI 
regression 
coefficient 

95% CI 
regression 
coefficient 

95% CI 
regression 
coefficient 

95% CI 
regression 
coefficient 

95% CI 

CalEnviroScreen 3.0 Score, 0-100 26.0 -2.31 (-2.69, -1.92) 0.07 (-0.05, 0.19) -0.43 (-0.56, -0.3) -2.67 (-3.08, -2.25) -0.023 (-0.026, -0.019) 

Population Characteristics Score, 0-
10 

3.3 -1.98 (-2.36, -1.6) -0.18 (-0.29, -0.06) -0.48 (-0.6, -0.35) -2.63 (-3.03, -2.23) -0.019 (-0.022, -0.015) 

Educational Attainment, % 30.2 -1.82 (-2.22, -1.42) -0.08 (-0.2, 0.04) -0.45 (-0.58, -0.32) -2.35 (-2.78, -1.93) -0.014 (-0.018, -0.01) 

Linguistic Isolation, % 15.7 -0.77 (-1.01, -0.52) -0.03 (-0.1, 0.05) -0.25 (-0.33, -0.17) -1.05 (-1.31, -0.79) -0.009 (-0.012, -0.007) 

Poverty, % 35.9 -1.90 (-2.23, -1.56) -0.03 (-0.13, 0.07) -0.51 (-0.62, -0.4) -2.44 (-2.79, -2.09) -0.018 (-0.02, -0.014) 

Unemployment, % 5.6 -0.16 (-0.31, -0.01) 0 (-0.04, 0.05) -0.01 (-0.06, 0.04) -0.17 (-0.33, -0.01) -0.001 (-0.002, 0) 

Housing Burden, % 13.6 -0.62 (-0.83, -0.4) -0.02 (-0.08, 0.05) -0.21 (-0.28, -0.14) -0.84 (-1.07, -0.62) -0.006 (-0.008, -0.004) 

Disadvantaged community, yes - -0.98 (-1.3, -0.66) -0.01 (-0.1, 0.09) -0.27 (-0.37, -0.17) -1.26 (-1.6, -0.92) -0.010 (-0.013, -0.007) 

Racial/ethnic minority groups, high - -0.91 (-1.32, -0.5) -0.11 (-0.23, 0.02) -0.23 (-0.37, -0.1) -1.25 (-1.69, -0.82) -0.006 (-0.01, -0.003) 

IQR, interquartile range; CI, confidence interval; NDVI, normalized difference vegetation index. 

All models adjusted for population density.
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Appendix 3.1 Summary statistics of green space indicators and physical activity levels. 

SD, standard deviation; NDVI, normalized difference vegetation index. 

  

Exposures Mean SD Min 25th 50th 75th Max N 

Individual-level green space exposure 

Street view green space 200m, % 

Total green space 25.28 5.04 12.79 21.71 24.19 27.70 64.41 412616 

Tree 15.62 5.13 2.44 12.03 14.77 18.37 47.33 412616 

Low-lying vegetation 4.36 1.63 0.35 3.22 4.08 5.18 22.11 412616 

Grass 5.30 1.79 0.10 4.03 5.08 6.32 23.09 412616 

Street view green space 500m, % 

Total green space 25.15 3.97 16.46 22.41 24.34 27.04 64.63 414302 

Tree 15.32 4.12 3.88 12.60 14.73 17.54 42.05 414302 

Low-lying vegetation 4.53 1.41 1.10 3.55 4.29 5.22 17.80 414302 

Grass 5.30 1.43 0.92 4.34 5.13 6.05 19.47 414302 

Green space indicators 

Mean annual NDVI 200m, (0-1) 0.16  0.04  0.03  0.13  0.16  0.19  0.48  411059 

Mean annual NDVI 500m (0-1) 0.16  0.04  0.03  0.14  0.16  0.19  0.51  412995 

Land-cover green space 200m, % 8.41 16.00 0.00 0.00 1.12 9.22 99.93 415020 

Land-cover green space 500m, % 12.24 17.47 0.00 1.07 4.75 15.99 99.97 415020 

Tree canopy cover 200m, % 2.03  2.61  0.00  0.33  1.15  2.68  39.17  414950 

Tree canopy cover 500m, % 2.00  2.27  0.00  0.50  1.28  2.64  35.66  414950 

Distance to the nearest park, km 0.58  0.48  0.00  0.25  0.47  0.77  9.24  415020 

Walkability score (block group, 0-20) 12.59 3.32 1.67 10.67 13.17 15.00 20.00 415020 

         

Zip code-level green space exposure 

Street view green space 200m, %         

Total green space 26.31  3.97  18.56  23.42  25.78  28.51  45.36  583 

Tree 16.57  4.02  7.43  13.71  16.05  19.12  31.41  583 

Low-lying vegetation 4.67  1.19  1.96  3.83  4.45  5.30  10.90  583 

Grass 5.06  1.23  1.52  4.18  4.97  5.74  10.33  583 

Street view green space 500m, %         

Total green space 26.23  3.90  19.25  23.34  25.65  28.43  44.65  584 

Tree 16.31  3.95  7.51  13.59  15.79  18.52  34.29  584 

Low-lying vegetation 4.83  1.16  2.63  3.94  4.63  5.50  9.86  584 

Grass 5.09  1.20  2.17  4.27  4.96  5.69  10.27  584 

Green space indicators         

Mean annual NDVI 200m, (0-1) 0.17  0.04  0.04  0.15  0.17  0.19  0.30  580 

Mean annual NDVI 500m (0-1) 0.17  0.04  0.04  0.15  0.17  0.19  0.32  581 

Land-cover green space 200m, % 10.33  14.04  0.00  1.71  5.21  12.63  99.93  584 

Land-cover green space 500m, % 14.12  16.07  0.00  3.17  8.35  18.60  99.97  584 

Tree canopy cover 200m, % 2.56  2.45  0.00  0.93  1.83  3.66  19.31  568 

Tree canopy cover 500m, % 2.57  2.43  0.00  0.95  1.85  3.52  18.08  568 

Distance to the nearest park, km 0.50 0.40  0.00  0.33 0.43  0.57  7.55  584 

Walkability score (block group, 0-20) 12.64  2.60  5.00  11.13  13.16  14.38  18.64  584 
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Appendix 3.2 Associations between residential green space and maternal postpartum depression 

among urban population. 

Postpartum Depression Model A Model B 

Exposures Between effect 

OR  95% CI 

Within effect 

OR  95% CI 

Between effect 

OR  95% CI 

Within effect 

OR  95% CI Street view green space 200m, %     

Total green space 0.960 (0.934, 0.987) 0.994 (0.983, 1.005) 0.956 (0.930, 0.982) 0.994 (0.982, 1.006) 

Tree 0.946 (0.921, 0.972) 1.001 (0.998, 1.003) 0.944 (0.919, 0.969) 1.000 (0.997, 1.003) 

Low-lying vegetation 1.011 (0.985, 1.037) 0.985 (0.974, 0.996) 1.012 (0.986, 1.038) 0.987 (0.976, 0.999) 

Grass 1.046 (1.021, 1.072) 0.990 (0.978, 1.003) 1.041 (1.016, 1.066) 0.995 (0.982, 1.008) 

Street view green space 500m, %     

Total green space 0.959 (0.932, 0.987) 0.992 (0.982, 1.003) 0.953 (0.926, 0.981) 0.994 (0.983, 1.005) 

Tree 0.947 (0.924, 0.972) 1.000 (0.989, 1.011) 0.945 (0.921, 0.969) 1.000 (0.988, 1.012) 

Low-lying vegetation 1.013 (0.986, 1.040) 0.987 (0.977, 0.998) 1.013 (0.986, 1.040) 0.989 (0.979, 0.999) 

Grass 1.047 (1.024, 1.070) 0. 992 (0.981 1.004) 1.042 (1.019, 1.065) 0. 995 (0.983 1.006) 

Green space indicators     

NDVI 200m, (0-1) 1.094 (1.067, 1.122) 0.987 (0.977, 0.998) 1.104 (1.077, 1.132) 0.990 (0.979, 1.001) 

NDVI 500m, (0-1) 1.090 (1.064, 1.117) 0.992 (0.980, 1.004) 1.101 (1.075, 1.129) 0.996 (0.983, 1.008) 

Land-cover green space 200m, % 1.041 (1.022, 1.060) 0.996 (0.992, 1.001) 1.038 (1.019, 1.057) 0.996 (0.992, 1.001) 

Land-cover green space 500m, % 1.056 (1.035, 1.078) 0.994 (0.988, 1.000) 1.052 (1.031, 1.074) 0.995 (0.989, 1.001) 

Tree canopy cover 200m, % 0.969 (0.945, 0.994) 0.995 (0.988, 1.002) 0.970 (0.946, 0.995) 0.995 (0.988, 1.002) 

Tree canopy cover 500m, % 0.963 (0.940, 0.986) 0.993 (0.987, 1.000) 0.964 (0.941, 0.987) 0.993 (0.986, 1.000) 

Proximity to the nearest park 0.989 (0.972, 1.006) 0.997 (0.987, 1.008) 0.994 (0.977, 1.012) 1.001 (0.989, 1.012) 

Park<500m, yes vs. no 1.000 (0.999, 1.000) 1.003 (0.985, 1.021) 1.000 (0.999, 1.000) 1.000 (0.981, 1.019) 

Walkability score 0.920 (0.897, 0.944) 1.020 (1.007, 1.033) 0.920 (0.896, 0.943) 1.016 (1.002, 1.030) 

Physical activity     

During entire pregnancy 0.975 (0.954, 0.997) 0.929 (0.917, 0.940) 0.972 (0.950, 0.993) 0.923 (0.910, 0.935) 

First trimester 0.995 (0.965, 1.026) 0.977 (0.964, 0.990) 0.992 (0.961, 1.023) 0.971 (0.957, 0.984) 

Second trimester 0.961 (0.937, 0.986) 0.944 (0.931, 0.957) 0.958 (0.934, 0.983) 0.939 (0.926, 0.953) 

Third trimester 0.964 (0.944, 0.985) 0.909 (0.897, 0.922) 0.962 (0.942, 0.983) 0.906 (0.893, 0.919) 

NDVI, normalized difference vegetation index. ORs and 95% CIs were calculated for per interquartile range 

(IQR) increment for green space indicators.  

Model A (within-between random effects models): Models adjusted for maternal age, race/ethnicity, 

educational level, and block group household income + maternal address ZIP code as a random effect.  

Model B: Model A + further adjusted for smoking during pregnancy, season of conception, year of infant 

birth, and insurance type. 
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Appendix 3.3 Adjusted odds ratios (ORs) and 95% confidence intervals (CI) of postpartum 

depression associated with street view based total green space (500 m) among population 

subgroups. 

Description  ORs per IQR air 

pollutant metrics 
95% CI p value for 

Cochrane's Q test 

Maternal age                                                                                                                  

 < 25 1.078 1.013 1.148 <0.001 

 25-34 0.961 0.930 0.992  

 ≥ 35 0.925 0.888 0.964  

Maternal race/ethnicity 

 African American 1.018 0.932 1.113 0.041 

 Asian 0.954 0.911 0.999  

 
Hispanic 0.997 0.959 1.036 

 

 
Non-Hispanic white 0.926 0.893 0.960 

 
 Multiple/other 0.985 0.922 1.052  

Maternal education 

 < College 1.003 0.959 1.049 0.028 

 ≥ College 0.944 0.916 0.974  

ORs and 95% CIs were calculated for per interquartile range (IQR) increment for green space indicators; 

Models adjusted for maternal age, race/ethnicity, educational level, and block group household income. 
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Appendix 3.4 Percent change and 95% confidence intervals of associations between green space and physical activity in specific period of 

pregnancy. 

Green space exposures During entire pregnancy First trimester Second trimester Third trimester 

 Percent change 95%CI Percent change 95%CI Percent change 95%CI Percent change 95%CI 

Street view green space 200m, %         

Total green space 1.00 (0.58, 1.42) 0.72 (0.34, 1.11) 0.90 (0.54, 1.25) 0.67 (0.30, 1.04) 

Tree 1.43 (1.03, 1.82) 0.82 (0.45, 1.18) 1.14 (0.81, 1.47) 1.04 (0.70, 1.39) 

Low-lying vegetation 3.54 (2.10, 4.98) 5.16 (3.88, 6.45) 3.56 (2.35, 4.76) 2.57 (1.30, 3.83) 

Grass -8.20 (-9.35, -7.05) -5.89 (-6.99, -4.80) -6.30 (-7.28, -5.32) -6.59 (-7.61, -5.58) 

Street view green space 500m, %         

Total green space 1.03 (0.59, 1.47) 0.79 (0.38, 1.19) 0.93 (0.55, 1.30) 0.65 (0.26, 1.04) 

Tree 1.49 (1.08, 1.90) 0.86 (0.48, 1.24) 1.17 (0.82, 1.52) 1.07 (0.71, 1.43) 

Low-lying vegetation 3.34 (1.90, 4.78) 5.02 (3.74, 6.30) 3.43 (2.23, 4.63) 2.34 (1.07, 3.60) 

Grass -8.42 (-9.69, -7.24) -5.82 (-6.95, -4.70) -6.30 (-7.31, -5.30) -6.75 (-7.79, -5.71) 

Green space indicators         

NDVI 200m, 0.1 0.37 (-0.12, 0.85) 1.03 (0.59, 1.47) 0.48 (0.06, 0.89) 0.29 (-0.13, 0.72) 

NDVI 500m, 0.1 0.51 (0.39, 0.98) 1.17 (0.74, 1.60) 0.63 (0.23, 1.04) 0.37 (-0.05, 0.79) 

Land-cover greenness 200m, % -0.30 (-0.43, -0.17) -0.07 (-0.20, 0.05) -0.18 (-0.30, -0.07) -0.29 (-0.41, -0.18) 

Land-cover greenness 500m, % -0.25 (-0.36, -0.14) -0.04 (-0.15, 0.06) -0.15 (-0.24, -0.06) -0.24 (-0.33, -0.14) 

Tree canopy cover 200m, % 2.57 (1.90, 3.24) 1.83 (1.20, 2.46) 2.12 (1.55, 2.69) 1.87 (1.28, 2.47) 

Tree canopy cover 500m, % 2.69 (2.02, 2.35) 1.92 (1.29, 2.55) 2.21 (1.64, 2.78) 1.94 (1.35, 2.53) 

Proximity to the nearest park, km 2.39 (1.89, 2.90) 2.32 (1.82, 2.81) 2.13 (1.69, 2.57) 2.23 (1.77, 2.69) 

Walkability score 2.48 (1.85, 3.10) 0.96 (0.36, 1.56) 1.95 (1,42, 2.49) 2.19 (1.64, 2.73) 

NDVI, normalized difference vegetation index. All models adjusted for maternal age, race/ethnicity, educational level, and block group household income.  

Unit: per 10 percent change in street view-based and land-cover green space, per 0.1 change in NDVI, per one unit change in park distance and walkability 

score.  
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Appendix 3.5 Proportions of the effects of green space exposure on postpartum depression due to 
mediation effects of physical activity during pregnancy. 
 

Green Space Indicators Percentage mediated by physical activity and 95% CI, % 

First trimester Second trimester Third trimester Entire pregnancy 

Street view green space 200m     

Total green space 2.6 (-7.8, 20.0) 8.4 (0.1, 30.0) 13.1 (7.4, 25.0) 11.7 (5.9, 33.0) 

Tree 1.8 (-3.2, 5.0) 7.6 (4.0, 15.0) 12.6 (7.2, 24.0) 10.0 (5.7, 18.0) 

Street view green space 500m     

Total green space -0.1 (-16.0, 15.0) 8.6 (1.6, 42.0) 11.7 (2.7, 25.0) 11.3 (3.3, 39.0) 

Tree 0.7 (-4.1, 5.0) 6.9 (2.1, 14.0) 12.6 (4.1, 24.0) 9.6 (5.6, 18.0) 

Tree canopy cover     

Tree canopy 200m 2.5 (0.0, 11.0) 12.9 (5.0, 43.0) 17.6 (6.5, 79.0) 15.6 (7.8, 84.0) 

Tree canopy 500m 2.4 (-0.5, 16.0) 10.8 (5.7, 43.0) 14.7 (7.7, 36.0) 12.4 (7.6, 35.0) 

Walkability score -0.2 (-2.7, 0.1) 4.1 (0.2, 9.0) 9.5 (5.1, 15.0) 5.3 (3.5, 8.0) 

Models adjusted for maternal age, race/ethnicity, educational level, block group household income, 
smoking during pregnancy, pre-pregnancy BMI and season of conception. 
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Appendix 4.1 Pattern matrix for Positive and Negative Affect Scale. 

 

Rotated Factor Pattern (Standardized Regression Coefficients) 
 

Variables Factor1 Factor2 Factor3 

Positive affect scale    

 Inspired 0.91124 -0.12198 - 

 Proud 0.90725 -0.10995 - 

 Strong 0.80152 0.09015 - 

 Excited 0.77466 0.12994 - 

 Interested 0.73239 0.06828 - 

 Enthusiastic 0.72812 0.15909 - 

 Determined 0.67571 0.16081 - 

 Attentive -0.00895 0.52332 - 

 Active 0.30868 0.49818 - 

 Alert -0.01822 0.15727 - 

 Variance Explained by Each Factor, % 75.6 24.4 - 

Negative affect scale 
   

 Scared 0.78183 0.08704 -0.04950 

 Jittery 0.71818 -0.04938 0.19774 

 Nervous 0.54014 0.04524 0.23550 

 Afraid 0.53957 0.03256 -0.00236 

 Irritable -0.12598 0.71313 0.03039 

 Hostile 0.27328 0.64531 -0.14064 

 Upset 0.18101 0.59222 0.10550 

 Distressed 0.16855 0.45297 0.33006 

 Guilty 0.00230 0.01175 0.73791 

 Ashamed 0.05603 -0.01608 0.76800 

 
Variance Explained by Each Factor, % 37.1 32.6 30.3 

Note: Loadings greater than .40 were bolded and included in the factor. 

 




