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Abstract

Normal eating behavior is coordinated by the tightly regulated balance between intestinal and 

extra-intestinal homeostatic and hedonic mechanisms. By contrast, food addiction represents a 

complex, maladaptive eating behavior that reflects alterations in brain–gut–microbiome (BGM) 

interactions and a shift of this balance towards hedonic mechanisms. Each component of the BGM 

axis has been implicated in the development of food addiction, with both brain to gut and gut to 

brain signaling playing a role. Early life influences can prime the infant gut microbiome and brain 

for food addiction, which might be further reinforced by increased antibiotic usage and dietary 

patterns throughout adulthood. The ubiquitous availability and marketing of inexpensive, highly 

palatable and calorie dense food can further shift this balance towards hedonic eating through both 

central (disruptions in dopaminergic signaling) and intestinal (vagal afferent function, metabolic 

toxaemia, systemic immune activation, changes to gut microbiome and metabolome) mechanisms. 

In this Review, we propose a systems biological model of BGM interactions, which incorporates 

published reports on food addiction, and provides novel insights into treatment targets aimed at 

each level of the BGM axis.

Introduction

The obesity epidemic continues to be a major public health problem both in the USA and 

globally.1,2 Obesity is defined as a body mass index (BMI) ≥30 kg/m2 and a BMI ≥40 kg/m2 

is considered extreme obesity, with overweight classified as 25–29.9 kg/m.1,2 The 

prevalence of obesity worldwide has tripled since 1975, with ~39% of the world’s adult 

population being overweight and 13% being obese in 2016.2 In the USA alone, the number 

of individuals with obesity continues to dramatically increase, with >35% of individuals 
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being overweight, >37% obese and 8% morbidly obese.2,3 Obesity is the biggest driver of 

preventable chronic diseases and healthcare costs in the USA, with current cost estimates 

ranging from $147–210 billion per year.4 Despite the magnitude of the problem and the 

associated healthcare costs, drug development efforts have largely failed and proposed 

treatments have had disappointing outcomes, with only modest reductions and frequent 

weight regain after successful weight loss.4,5

Obesity has a complex and multifactorial aetiology and the limited progress in obesity 

treatments can in large part be attributed to the failure to apply a systems biology-based 

approach to understand its pathophysiology and to develop individualized strategies to 

achieve sustained weight loss and prevention6,7 A growing body of largely preclinical 

studies support the concept of bidirectional signaling within the brain–gut–microbiome 

(BGM) axis in the pathophysiology of obesity, mediated by metabolic, endocrine, neural and 

immune system mediated mechanisms.8 Signaling from the brain through the autonomic 

nervous system (ANS) and the hypothalamic–pituitary–adrenal (HPA) axis influences many 

gastrointestinal processes, including motility and transit,9 fluid and mucus secretion,9 

immune activation, intestinal permeability,10 relative gut microbial abundances,11 as well 

gene expression patterns in certain pathogenic gut microorganisms.12 Changes in the gut 

luminal environment can affect gut microbial community composition and function.13,14 

Conversely, the gut microbiota can communicate with the brain via hundreds of metabolites,
15-17 which are sensed by specialized cells in the gut, including enteroendocrine cells, 

enterochromaffin cells and primary or secondary afferent nerve endings. Sensing of bacterial 

metabolites by these cells results in neural signaling to the brain, interactions with gut-based 

immune cells leading to local and systemic immune activation, or the metabolite might 

achieve sufficient concentrations in the circulation to directly access brain circuits by 

crossing the blood–brain barrier.18 Short-chain fatty acids (SCFAs), the main byproduct of 

microbial fermentation of dietary fiber, have emerged as key mediators of BGM signaling.19 

These saturated fatty acids can influence the central nervous system (CNS) through 

immune-,20 endocrine-,21 and vagal- pathways.22

The gut microbiome and bidirectional BGM interactions are programmed through influences 

during pregnancy and the first 1,000 days of life,23 and are subject to multiple perturbations 

from within the body (including from metabolism, gut microbiota interactions and energy 

expenditure) and from the environment (for example, via food, stress and medications) 

throughout life (Figure. 1). Perturbations at any level of the BGM system, resulting in 

compromised inhibitory mechanisms that normally regulate food intake, can bias ingestive 

behaviors towards predominantly hedonic-driven eating beahviours, cravings and 

overeating24-27. An extensive literature exists on the homeostatic regulation of food intake 

and maintenance of body weight via interactions between hypothalamic nuclei and 

orexogenic and anorexogenic gut hormones, in addition to chemical signals derived from 

adipose tissue, in particular leptin.28-30 However, it is ultimately the complex balance 

between gut-derived orexogenic (ghrelin, insulin) and anorexogenic signals (including 

cholecystokinin, neuropeptide Y (NPY) and glucagon-like peptide-1 (GLP1)), gut microbial 

metabolites (SCFAs and amino acid metabolites), stress mediators (corticotropin releasing 

factor (CRF)), and the motivational drive generated by the central reward system 
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(dopaminergic reward system) and prefrontal cortical inhibitory mechanisms that determine 

how much we eat.31-33

A particular type of eating behavior which has been referred to as food addiction, plays an 

important part in the pathophysiology of obesity.34,35 Food addiction is the continued 

consumption of highly palatable foods even after energy requirements have been met and 

despite known negative physical and psychological consequences in response to 

uncontrolled food ingestion.34,36 Similar to other forms of substance abuse, food addiction 

represents an addiction-like response to food (especially foods rich in sugar and fat) or the 

process of eating itself in susceptible individuals.37,38

Since it was first proposed by T. Randolph in 1956,39 there has been an ongoing controversy 

over the term of food addiction,40,41 despite strong arguments supporting shared underlying 

pathophysiology between drug and food addiction.33,42 On a behavioral level, individuals 

with food addiction as identified by the Yale Food Addiction Scale (YFAS)43 meet the 

diagnostic criteria for substance abuse disorder found in the Diagnostic and Statistical 

Manual of Mental Disorders44, which involves loss of control over eating, excessive time or 

focus on food, neglect of other activities and continuation of the behavior despite known 

negative consequences.45-47 An increasing number of research reports on the biological 

alterations in the extended reward network in both humans and rodents also point towards 

strong similarities in the mechanisms underlying substance use disorders and food addiction, 

including substantial commonalities between the neural substrates underlying the substance 

abuse and at least some forms of obesity that involve food addiction.31-33 For example, the 

biological similarities between individuals with obesity with food addition and individuals 

with drug addiction include, but are not limited to, changes in the dopaminergic pathways 

within the reward system, and in cortical performance monitoring, both of which are 

involved in processes associated with reward sensitivity, motivation, interoceptive 

awareness, stress reactivity and self-control.48-50 Despite these similarities, there are also 

clear differences. Although the development of predominantly hedonic driven eating 

behaviors involves food-induced alterations in multiple peripheral and central mechanisms 

of the BGM axis, drug addiction results from a direct effect of the drug on the brain.51,52 In 

addition, in contrast to the nearly universal development of addiction upon exposure to a 

drug, food addiction as assessed by the YFAS score is present in only a subgroup of 

individuals with obesity.46,53 On the basis of questionnaire-based surveys and by other 

methods of assessment, food addiction is present in 25–37% of individuals with obesity, 

reaching rates of up to 60% in those who are morbidly obese or in patients who undergo 

bariatric surgery.36,38,54-60 Food addiction is also highly associated with eating disorders 

such as bulimia nervosa and binge eating disorder.61,62

Previous work on obesity and food addiction crosses over multiple fields of research: 

neuroscience, gastroenterology, microbiology, endocrinology, immunology and many others. 

For example, the gut microbiome, intestinal signaling, extraintestinal signaling (visual, 

olfactory, food memories), early life programming of food preferences and many other 

factors can contribute to food addiction. Here, we review and build on past work to create a 

systems-based BGM model of obesity and food addiction. Systems biology is an 

interdisciplinary field of study that focuses on complex interactions within multiple 
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biological systems, rather than focusing on individual mechanisms. One of the aims of 

systems biology is to model and discover emergent properties of cells, tissues and organisms 

functioning as a system rather than as individual parts. We believe that such an 

interdisciplinary, system-based approach is able to create a more nuanced understanding of 

food addiction, as shown in Figure 1. In this Review, we summarize the physiology of food 

addiction in obesity as it relates to alterations within the brain and the gut microbiome. We 

will introduce key factors that influence the BGM axis such as diet, antibiotics, early life 

adversity, food cues and psychological stress, during the prenatal and postnatal period, and 

during adulthood. This Review also discusses several therapies aimed at food addiction in 

individuals with obesity, including those targeted at the gut, the microbiome and the brain, 

and highlights limitations and areas for future research in the field.

Ingestive behaviour physiology

The role of the gut microbiome

Ingestive behavior represents a delicate balance between homeostatic and hedonic regulatory 

mechanisms in the CNS, orchestrated by a number of gut peptides, neuronal impulses, 

endocrine signals and countless other influences, including signals generated by the gut 

microbiota (Figure 1).

BGM interactions involving gut peptides that regulate ingestive behavior have been the most 

extensively studied. The gastric hormone ghrelin has an important role in producing hunger 

and craving,63,64 perhaps through amplification of dopaminergic signaling mechanisms,65 

whereas the intestinal hormones GLP166 and peptide YY67 trigger satiety and associated 

behavioral changes. Increased production of microbiota-derived SCFAs can stimulate 

enteroendocrine cells to release GLP168 and peptide YY69, while decreasing the secretion of 

ghrelin.70

Insulin is another orexogenic hormone, as hyperinsulinaemia, regardless of plasma glucose 

levels, contributes to increased sensations of hunger and results in a heightened palatability 

of sucrose.71 Animal evidence suggests that disruptions of microbial SCFA metabolism can 

promote insulin resistance and hyperinsulinaemia,72 thereby potentially shifting the balance 

towards hedonic behaviors. For example, studies in mice have shown that increased 

production of acetate by an altered gut microbiota can lead to activation of the 

parasympathetic nervous system which in turn promotes increased glucose-stimulated 

insulin secretion and increased ghrelin secretion resulting in hyperphagia.73

Additionally, gut microbiota-derived secondary bile acids can regulate insulin sensitivity 

through signaling involving the nuclear farnesoid X receptor (FXR) and the G protein-

coupled receptor TGR5 (also known as G-protein coupled bile acid receptor 1 GBAR1).74 

Activation of intestinal FXR in a mouse model induces microbial production of the 

secondary bile acid lithocholic acid, driving TGR5 signaling and triggering GLP1 secretion 

from enteroendocrine L-cells.75 Exposure to oral broad-spectrum antibiotics (combination of 

ampicillin, vancomycin, neomycin sulfate, and metronidazole) successfully inhibited 

microbial lithocholic acid production and completely reversed improvements in insulin 

sensitivity.75 In a single blind randomized controlled trial of 20 individuals with obesity, 
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administration of an oral antibiotic (vancomycin) for just 1 week resulted in reduced 

microbial diversity (mainly affecting Firmicutes), with an associated drop in secondary bile 

acids as well as in insulin sensitivity.76

An example of microbial regulation of food preferences has been shown in a study 

demonstrating that fruit flies fed a diet deficient in essential amino acids show preferential 

intake of amino acid-rich foods.77 These preferences are, however, blunted by the presence 

of both Acetobacter pomorum and lactobacilli.77 Of note, neither Acetobacter pomorum nor 

lactobacilli were capable of modulating food intake individually, suggesting that these 

microorganisms must work together to influence host behavior.77 Although the mechanisms 

driving food seeking behaviors in this model remain unclear, microbial modulation of 

neuronal TOR signaling has been previously proposed as an important mediator of nutrient 

balance and growth in Drosophila.78,79 In fruit flies exposed to a nutrient scarce 

environment, Lactobacillus plantarum can promote protein assimilation from the diet, 

resulting in increased production of branched-chain amino acids.79 These amino acids 

activate central nervous system (CNS) TOR kinase activity, resulting in the release of 

insulin-like peptides.79

The role of the brain

Neuroimaging studies have improved our understanding of the role of the brain in ingestive 

behavior in both animals and more recently in humans, especially the interplay of various 

brain networks involved in homeostatic mechanisms versus food addiction (non-

homeostatic).50,80-82 The homeostatic component of food intake is comprised of hormonal 

regulators of hunger, satiety and adiposity levels.83,84 The hypothalamus is the primary brain 

area within the homeostatic system that regulates food ingestion and energy balance, and 

hence is often referred to as the ‘satiety centre’ or ‘feeding centre’ of the brain.85-87

Normal ingestive behavior is under the control of the extended reward network, which 

includes brain regions from the core reward network such as the nucleus accumbens, ventral 

tagmental area or substantia nigra, and are regulated by cognitive network regions such are 

the prefrontal cortex.88,89 The extended reward network is involved in the processing of 

rewarding stimuli and modulation of food-seeking behavior,90,91 inhibitory control,92 

cognitive performance monitoring,93,94 interoceptive and sensory awareness,88,95,96 and 

integrating salient information to make decisions regarding food intake.97-100 This 

processing includes brain regions concerned with interconnecting brain networks such as 

reward, salience, emotional regulation, the somatosensory system and cortical inhibition 

(prefrontal control) networks (Figure 2).31,33,90,99 The salience network is responsible for 

monitoring the homeostatic state of the body to make adaptive adjustments to real or 

expected disturbances in homeostasis through autonomic nervous system, as well as 

behavioral responses.98,101 In food addiction (as in substance abuse), the saliency of a 

specific type of reward (food or drug) becomes greater at the expense of other rewards.32,48 

The emotional regulation network is activated by stimuli threatening the homeostasis of the 

organism, and provides a rapid feedback inhibition of such activation via its connections 

with the salience network.89,102,103 Advanced analytical techniques such as brain network 

metrics based on graph theory, which measure the underlying architecture and flow of 
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communication between brain regions and networks, and multivariate machine learning 

methods that predict obesity have been applied to phenotype hedonic ingestion-related brain 

signatures, with a focus on alterations in the extended reward network.88,89,104-107

Homeostatic versus hedonic systems

Homeostatic system.—The hypothalamus acts as a hub integrating information from the 

external environment, such as food availability and stress, and from the internal milieu of the 

host to meet real or perceived nutrient needs.108,109 Lesions in the hypothalamus, in both 

humans and animals can lead to increases in appetite, food ingestion and weight gain.110,111 

Numerous studies have been directed at identifying the molecular mechanisms within the 

hypothalamus underlying these processes.85,108,112 For example, animal models have 

demonstrated that brief electrical stimulation of nuclei within the hypothalamus can cause 

the increased expression of genes related to Agouti-related protein (AGRP)–NPY–γ-

aminobutyric acid (GABA) signaling, which in turn can cause voracious food ingestion.
113,114 These targeted cells have, therefore, been referred to as ‘hunger neurons’.86,115 The 

hypothalamus has close interactions with corticolimbic and medullary pontine regions 

integrating sensory information mediated by vagal afferents, affective state and cognitive 

modulation to generate appropriate motor responses and adaptive eating behaviors.85

Hedonic system.—Individuals with obesity and with food addiction are more likely than 

individuals who are lean or obese without food addiction to display a heightened motivation 

to eat highly palatable foods, consume more calories from fat and protein, and have at least 

20% prevalence rates with comorbid conditions, such as depression, binge eating, and 

decreased quality of life functioning, beyond that observed with obesity alone.116-119 The 

closely regulated balance between hedonic and homeostatic aspects of ingestive behavior 

can be altered when normal inhibitory regulation of the reward system is compromised via 

decreased modulation or connectivity, resulting in overconsumption of food. There are 

similarities between food addiction and other addictive behaviors, as both reflect an 

imbalance in responses within the brain’s extended reward system to stimuli from the 

environment.33,120 In food addiction, such uncoupling can be the result of central as well as 

peripheral disturbances in brain–gut interactions, including diet-induced neuroplastic 

changes in the sensitivity of vagal afferent nerve terminals and of hypothalamic nuclei to 

satiety hormones,121-123 emotional state, and easy access to highly processed and palatable 

foods that all modify the rewarding properties of food, thereby leading to overconsumption.
32,48 Both human and animal studies have shown that increased cravings and food addiction 

behaviors result in increased conditioning and motivation to seek these highly palatable 

foods, and these behaviors are based on alterations of regions within the extended reward 

network.31,33,124,125

Evidence also exists suggesting that, similar to other addiction like behaviors, food addiction 

is associated with a reduced response of the reward network.126 For example, ingestion of 

rewarding foods or drugs leads to reduced dopamine signaling within the reward system in 

both individuals with obesity and those with drug addiction,127 suggesting that a reduction 

in dopamine signaling (by both the reduced release of dopamine and the downregulation of 

dopamine receptors) might contribute to the overconsumption and increased cravings of the 
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drug of choice.128-130 According to the dopamine deficiency hypothesis, reduced dopamine 

release in the striatum alters corticostriatal communication between the basal ganglia (core 

reward) and the extended reward system, resulting in compromised inhibition of 

connectivity in the reward regions.131 Reduced cortical inhibition of reward regions is also 

associated with greater cravings and reduced disinhibition scores.132-134According to this 

theory, hypo-dopaminergic function also leads to reduced levels of subjective well-being, as 

it is linked to dysregulation of other neurotransmitters such as 5-HT, enkephalins and 

GABA.131 To compensate for this dopamine deficiency, it has been suggested that affected 

individuals will engage in behaviors that stimulate the brain’s production and utilization of 

dopamine, such as by the overconsumption of highly palatable and rewarding foods,
131,135,136 increasing the risk of developing food addiction and obesity.137,138 Thus, a 

stronger stimulus (for example, increased food intake) is required to overcome the reduced 

responsiveness of the dopamine system, similar to mechanisms identified in disorders of 

addiction, and failure to achieve this goal is associated with food cravings and the 

engagement of the stress response.31,32,48,139,140 Stress induced eating usually depends on a 

number of factors such as the length of the stress, type of stressor, type of foods available, 

especially if calorie dense and highly palatable, length of time exposed to the food, and 

satiety and hunger levels.124 Studies have shown that during stress, increased cortisol levels 

could contribute to increased gluconeogenesis, an upregulation of corticotrophin releasing 

factor (CRF) in the amygdala and other limbic regions, and consequently the blunting of 

HPA axis function, which in turn leads to low dopamine and reward functioning commonly 

associated with food addiction.125 Stress has also been associated with increases in ghrelin 

and cortisol and related increases in craving and intake of highly palatable foods, which 

were higher in those with obesity and overweight than lean individuals.141 A study 

performed in obese rats demonstrates downregulation of striatal dopamine D2 receptors 

compared to lean rats, similar to what has been shown in previous studies of humans 

addicted to drugs.142,143 Furthermore, D2 receptor knock down mice rapidly develop 

compulsive-like food seeking behaviors when high-fat food is readily available.142

Even though dopamine has been the most thoroughly investigated signaling system in 

addictive behaviors, several neurotransmitters other than dopamine and neuropeptides are 

involved both in the homeostatic regulation of food intake (including orexin, leptin and 

ghrelin, corticotropin releasing factor) and have been implicated in the rewarding effects of 

food, cannabinoids, opioids and serotonin.48 Moreover, neurons in ventral tegmental area 

and/or nucleus accumbens express GLP1, ghrelin, leptin, insulin, orexin and melanocortin 

receptors, suggesting that these hormones or peptides can influence the rewarding responses 

to food.48 Rats that are fed a diet high in saturated fats and refined sugars for two months 

demonstrate reduced hippocampal brain-derived neurotrophic factor, with a concomitant 

reduction in synaptic plasticity.144

Food addiction pathological mechanisms

The first 1,000 days of life represent a crucial developmental period for the gut-associated 

immune system and the BGM axis.23,145,146 Preclinical models of myelination and brain 

development suggest that the early life microbiome regulates myelination of the prefrontal 

cortex147 and facilitates proper striatal synapse function.148 Additionally, commensal 
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microorganisms might also have a role in programming the HPA axis for stress responses,149 

a system implicated in obesity and food addiction behavior,150-153 whereby excess cortisol 

and related steroids, such as those from a disrupted of HPA axis, can drive adipogenesis154 

and increase food cravings.152 Early life exposure to different microorganisms, antibiotics, 

dietary factors and stress shape the relative abundances and richness of the gut microbiota, 

influence immune system and brain development, modulate microbial communication with 

the CNS and program maladaptive BGM interactions.8,155,156 Although these interactions 

and their roles in the development of obesity have been well described (Figure 3),8,155,156 

their links with maladaptive eating behaviors is incompletely understood.

Prenatal developmental influences

Maternal prenatal factors have been shown to influence development of the infant BGM 

axis, with evidence suggesting an important role of the prenatal maternal diet in influencing 

the neonate gut microbiome. For example, greater maternal consumption of dairy during 

pregnancy was positively associated with a greater relative abundance of members of the 

genus Clostridium in the faecal microbiome of 145 infants, adjusted for maternal BMI, 

feeding method and parity.157 Similarly, a maternal high-fat diet was associated with 

depletion of the genus Bacteroides in the neonatal gut microbiome, which persisted through 

4–6 weeks of age.158 These changes might be mediated indirectly by maternal dietary 

influences on the composition of breast milk, or directly from effects of the maternal diet on 

the fetal gut microbiome.157,158,159 Maternal psychosocial stress has been implicated in the 

development of an obese phenotype. For example, severe maternal stress due to bereavement 

in the prenatal period was associated with increased BMI in the male adult offspring in a 

study of 120,000 men, regardless of trimester that the bereavement occurred in.160 In mice, 

moderate maternal stress during pregnancy was found to influence postnatal brain 

development and gene expression in the paraventricular nucleus of the hypothalamus, the 

hypothalamic regulator of the HPA axis, ultimately resulting in deficits of neuroplasticity 

and central stress responsiveness. This effect was partially mediated by stress-induced 

alterations in the maternal vaginal microbiome.161 As maternal antibiotic use during the 

second or third trimester is associated with an increased offspring risk of obesity regardless 

of pre-gravid BMI in a study of 436 mother–child dyads,162 and the vaginal microbiota play 

an important part in shaping the infant microbiome, as demonstrated in a very well-

characterized group of 9 mothers and their 10 newborns,163 it is possible that changes in 

maternal vaginal microbial abundance associated with antibiotic exposure or diet during 

pregnancy might also increase the risk of obesity in the offspring.

Postnatal influences

Early diet.—The infant gut microbiota is sensitive to early life nutrition. Human breast 

milk contains >200 different human milk oligosaccharides (HMOs), a type of prebiotic that 

cannot be degraded by gut glycoside hydrolases or absorbed via intestinal membrane 

transporters, suggesting that their primary target is the infant’s gut microbiota.164 The 

limited small intestinal bioavailability of HMOs enables efficient delivery to the developing 

infant gut microbiota, most notably Bifidobacterium, which can degrade these sugars.164 

Exclusively breastfed infants show a more diverse Bifidobacterium microbiota (175 faecal 

samples from 7 infants) compared with exclusively formula-fed infants (154 faecal samples 
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from 7 infants), which might set the stage for future, beneficial BGM interactions165 given 

that a robust Bifidobacterium community has been shown to be protective against intestinal 

infections166 and associated with appropriate development of the infant immune system.167 

Limited data exist on the effect of combination feeding (breastmilk and formula) on the gut 

microbiome, despite how common it is.168 Bogen et al.,169 in an observational study of over 

70,000 infants, suggest that a longer duration of partial breastfeeding is necessary to yield a 

similar protective effect against obesity compared with exclusive breastfeeding; combination 

feeding for >26 weeks yielded a similar protective effect (odds ratio (OR) of developing 

obesity: 0.70; 95% CI: 0.61–0.81) as exclusive breastfeeding for 16–26 weeks (OR: 0.71; 

95% CI: 0.56–0.92).

The relative abundances of the infant gut microbiota and its associated microbial 

transcriptome change substantially once solid food is incorporated at around 9 months of 

age, including increased abundances of Bacteroidetes and elevated SCFA levels, as 

suggested by a high-quality, 2.5-year case study of 60 faecal samples from a single infant170. 

However, evidence has shown that the faecal microbiota profile assessed at 3 months of age 

(composed of primarily Bacteroidaceae, Bifidobacteriaceae, Enterobacteriaceae, 

Lachnospiraceae, Ruminococcaceae, and Veillonellaceae) is a more reliable predictor of 

future risk of being overweight compared to querying the microbiota profile at 12 months, as 

suggested by a study of 1,087 infants171 These findings are supported by a meta-analysis of 

>200,000 participants that found that breastfeeding was associated with a statistically 

significant reduced risk of obesity in children (pooled adjusted OR: 0.78; 95% CI: 0.74–

0.81), with a subset of studies even revealing a dose–response relationship between 

breastfeeding duration and a reduction in obesity risk.172

Highly processed foods, which are filled with large amounts of salt, sugar, fat and additives 

have become increasingly available in the developed world.173,174 A pattern of increased 

exposure and ingestion of such foods in childhood might program food preferences and 

increase the risk of the development of food addiction into adulthood.175 Additionally, the 

relentless marketing of such foods, starting in childhood, has contributed to the increased 

uncontrollable consumption and cravings of unhealthy foods, especially in children.176,177

Antibiotics.—An analysis of outpatient antibiotic prescription rates in 2010 found that 

>70% of prescriptions in the USA were written for antibiotics, with the highest prescribing 

rates for children under 10 years of age and with an average of three doses of antibiotics by 

the age of 2 years.178 In a USAcohort study of 333,353 children, antibiotic prescriptions 

were significantly associated with a diagnosis of childhood obesity (HR: 1.26; 95%CI: 1.23–

1.28).179 In a longitudinal study of 39 healthy children, the gut microbiota of antibiotic-

treated children was found to be less diverse at multiple phylogenetic levels, with some 

species even dominated by a single strain. However, the gut microbiome, largely appeared to 

return to baseline within 1 month of antibiotic exposure.180 In a Danish study examining 

over 28,000 mother–child dyads, early administration of antibiotics – within the first 6 

months of life – was associated with an increased risk of being overweight at a 7-year 

follow-up in children from normal weight, but not overweight, mothers; the gut microbiota 

of study participants were not examined in this study.181 Though it is difficult to draw 

definitive conclusions from natural history and cross sectional epidemiological studies, 
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numerous preclinical studies182-185 also support a negative effect of early life antibiotics on 

energy metabolism, the immune system and obesity. Mice that received a single dose of low-

dose penicillin at birth showed enhanced high-fat diet-induced obesity as adults; this 

phenotype could be successfully transferred to germ-free mice by the penicillin-selected 

microbiota.182 Another mouse study showed that a single early-life macrolide antibiotic 

course resulted in persistent perturbations to the gut microbiome (increased Akkermansia 
muciniphila attributed to reductions in competitor mucin-degrading bacteria) and the 

immune system (reduction in small intestinal CD4+ IL-17A+ lymphocytes, decreased 

intestinal IgA secretion).186 Collectively, these studies suggest that the antibiotic-altered 

microbiota, and not the antibiotic itself, has a causal role in driving obesogenic metabolic 

and immunological changes in mice. It remains to be determined if and how the antibiotic 

induced microbiome alterations can influence the brain and alter ingestive behaviors.

Early adversity.—A history of early adverse life events (EALs) such as natural disaster, 

parents divorcing, emotional or physical abuse, sickness or death of a family member, 

predisposes individuals to develop obesity and food addiction in adulthood, mainly through 

mechanisms associated with stress, inflammation, emotional perturbations, maladaptive 

coping responses and metabolic disturbances.187,188 Studies including a meta-analysis have 

demonstrated that trauma and abuse during the developmental period is significantly 

associated with greater odds of adulthood obesity and substance abuse (OR: 1.34, 95% CI: 

1.24–1.45, P<.001).189-191 Preclinical models of early adversity (maternal separation model) 

have observed that addictive behaviors can develop later in life, but these animal models 

require further investigation in humans, especially as the underlying mechansims are 

unknown and these animal studies are poor models of human behaviour.192 For example, 

rats exposed to limited nesting stress in the post-natal period had an immature HPA axis, 

which was associated with reduced gut microbiota diversity, with an especially notable 

reduction in bacteria capable of degrading fiber.193 Although the causal relationship between 

adversity during childhood and adult obesity is incompletely understood, it has been 

suggested that overconsumption of highly palatable foods even when hunger and satiation 

have been met are a possible coping mechanisms to deal with the increased stress 

responsiveness seen in individuals with a history of EALs.194-197 In a study of 186 men and 

women comparing healthy individuals with those with obesity, a history of EALs was 

associated with alterations in resting state functional connectivity, shown using MRI of brain 

regions in the extended reward network.198 These EAL-related alterations probably 

contributed to an increased probability of developing food addiction and obesity later in life. 

In a network analysis, sex-differences were also noted in the interactions between early life 

adversity, brain connectivity and food addiction, suggesting that the development of food 

addiction might be driven by different factors in men versus women.198 For example, 

compared to men, women show increased post-prandial activations in the brain’s reward 

regions, which might increase susceptibility to cravings for highly palatable foods and result 

in hyperphagia.199,200 Although the exact molecular mechanisms by which women, 

compared to men, experience this increased susceptibility remain unclear, results from a 

pilot study of 63 individuals with varying BMI levels suggest that EALs might contribute to 

the development of food addiction by interfering with interactions between the brain and gut 
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microbiome, specifically microbial tryptophan metabolism and reward brain regions such as 

the amygdala, anterior insula and nucleus accumbens.201

Adult environmental influences.

Several environmental factors might contribute to the pathophysiology of obesity by 

influencing BGM interactions in the adult. Below we discuss some of these environmental 

factors in detail.

Diet.—Cheap, highly processed and easily accessible high caloric and palatable foods are 

abundant in the developed world.202 Studies have shown that foods that are enhanced for 

taste and salience not only increase cravings and ingestion of these foods, but contextual 

factors such as stress can serve as conditional cues for future food intake and long-term 

weight gain.125,203,204 In fact, overconsumption of highly palatable foods, in particular those 

containing high levels of fat and sugar, reduces the rewarding thresholds of such foods when 

ingested, in relationship to reduced levels of dopamine and dopamine receptors in the brain, 

therefore requiring an increased intake of such foods to generate the same satisfaction.205,206 

Although long-term ingestion of such highly palatable foods has been shown to alter gut 

microbial diversity and relative abundances in humans, it is important to note that the adult 

microbiome is relatively resistant to short-term changes in diet, as suggested by a high-

quality study of 98 individuals.207,208

Food cues.—Studies have shown that portion sizes are directly related to a compromised 

ability to control food intake, an important feature of food addiction.209 Food labels and 

plate and utensil sizes can moderate the portion control effect by increasing food intake.210 

Although the exact mechanisms are unknown, these development and marketing driven 

food-related cues, which are ubiquitous in Western media and marketing, influence 

individuals with obesity to consume a greater number of calories than lean individuals.
211,212,213,214 Individuals with obesity have also reported an increased preference and 

craving for foods rich in fat and sugar, in a study of over 46,000 adults.215

Psychosocial stress.—Psychosocial stress can also stimulate ingestive behavior in the 

adult by increasing appetite, cravings and motivation to consume highly palatable foods, 

thereby contributing to stress-related weight gain in obesity.125,216,217 In individuals with 

obesity, strong associations have been shown between perceived stress and food addiction, 

snacking, cravings and abnormal eating patterns.124,218 For example, a study of 339 adults 

(mean BMI = 26.7 ± 5.4 kg/m2) demonstrated that chronic stress can influence levels of the 

orexogenic hormone insulin, as well as glucose and cortisol responses, which in turn can 

lead to increased food intake and weight gain.219 Paradoxically, although the ingestion of 

‘comfort foods’ high in fat and sugar can reduce subjectively perceived stress, various 

studies have shown that ingestion of such foods can also lead to increased autonomic 

responses, disrupt the HPA axis and increase cortisol and ghrelin levels, which have been 

associated with increased cravings and ingestive behaviors.132,220-222

In a mouse model, chronic psychosocial stress resulted in a global reduction in gut 

microbiota richness and diversity, including a reduction of the relative abundance of 
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Akkermansia223, which has been suggested to have beneficial effects within the context of 

human obesity and metabolic syndrome by previous investigations.224 These stress-induced 

perturbations were also associated with changes in the functional profile of the gut 

microbiome, with decreased synthesis and metabolism of SCFAs, tryptophan and tyrosine.
223 These changes might have been mediated, at least in part, by alterations in 

immunoregulatory signals, as these mice showed transient elevations in number of IL-10+ T 

regulatory (Treg) cells, which were suppressed over time.223

Amino acid metabolites.—Tryptophan and its metabolites – serotonin (5-HT), 

kynurenine and indole – have been implicated as important mediators of BGM interactions 

within the context of obesity and food addiction.225,226 5-HT, due in part to its diverse roles 

as a neurotransmitter in both the gastrointestinal tract (that is, in processes such as 

peristalsis, secretion and absorption) and the CNS (that is, in regulation of pain modulation, 

sleep and mood), is the most extensively studied of these metabolites.227 95% of the body’s 

5-HT is stored in gastrointestinal enterochromaffin cells (ECCs) and the gut microbiota, 

through the production of SCFAs and secondary bile acids, can regulate 5-HT synthesis and 

its release from ECCs.228-230 Human studies incorporating acute tryptophan depletion 

(typically involving providing individuals with a large protein load containing non-

tryptophan large neutral amino acids to saturate amino acid blood-brain barrier transporters, 

thereby limiting the transport of endogenous tryptophan), a validated method to transiently 

reduce peripheral and central 5-HT synthesis, underscore the effect of changes in 5-HT 

release on food preference.231 In a study of 55 women following acute tryptophan depletion, 

participants with overweight showed a statistically significant increase in sweet calorie 

intake and preference for sweet foods compared with a placebo intervention.232 By contrast, 

the lean group showed no differences, suggesting that individuals with overweight might be 

more susceptible to changes in tryptophan metabolism and 5-HT availability.232 Host and 

microorganisms participate in different aspects of tryptophan metabolism: although host 

cells have the major role in the kynurenine pathway, microbial cells are primarily involved in 

the indole pathway.233

Although 5-HT has been the most extensively studied tryptophan metabolite, the majority of 

tryptophan is converted by host cells to kynurenine.234 In the gastrointestinal tract, 

kynurenine is synthesized from tryptophan by the rate limiting enzyme indoleamine-2,3-

dioxygenase (IDO), which can be upregulated by inflammatory cytokines or downregulated 

by reactive oxygen species, such as hydrogen peroxide produced by intestinal Lactobacillus.
235,236 As both kynurenine and tryptophan compete to cross the blood–brain barrier through 

the same, easily saturated transporter, inflammation-associated or microbiota-associated 

changes in peripheral kynurenine concentrations might also influence central 5-HT levels.237 

Alternatively, increased flux through the kynurenine pathway can influence the brain 

through neuroactive downstream metabolites such as kynurenate and quinolinate, which 

function as an N-methyl-D-aspartate (NMDA) antagonist and an NMDA excitotoxin or 

neurotoxin, respectivly.235 The balance of tryptophan metabolism might be preferentially 

shunted towards the kynurenine pathway in individuals with obesity, as serum kynurenine, 

kynurenate and quinolinate levels show positive associations with BMI.238
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Another important group of tryptophan metabolites are the indoles. Most undigested dietary 

tryptophan in the gut lumen is converted exclusively by gut microorganisms to indole.239 In 

animal and human studies, indole has been shown to play an important part in modulating 

kynurenine synthesis7, strengthening the mucosal intestinal barrier,14 attenuating CNS 

inflammation,15 and modulating GLP1 secretion,240 all of which have been shown to be 

disrupted in states of obesity.238,241-243 One study investigating the role of stool indole 

metabolites in 63 healthy individuals found positive associations between indole, skatole and 

indoleacetic acid and food addiction behaviors, with regions of the extended reward network 

(nucleus accumbens, amygdala, and anterior insula) playing an important part in this 

interaction.201

Metabolic toxaemia.—In mouse models of obesity, a diet high in fat (60% lard) and low 

in dietary fibre has been implicated in the longterm disruptions in gut microbiota diversity,
244 while diets high in fibre result in positive alterations in ingestive behavior (decreased 

food intake, increased satiety)245. When dietary fiber is reduced or unavailable, certain gut 

microorganisms such as Akkermansia mucinophilia consume the glycans making up mucins 

in the mucus layer of the gut, thereby compromising intestinal barrier function.246 This 

phenomenon is referred to as increased ‘leakiness’ of the gut (Figure 4). Sonnenburg et al.
244 showed in mice that a low fibre diet results in a substantial loss of microbiota diversity 

and abundance, which was magnified in each successive generation, up to the fourth and 

final generation studied.244 Remarkably, supplementation with a high fibre diet alone was 

insufficient to normalize microbial diversity.244 Reduced intestinal barrier function results in 

increased access of membrane bound lipopolysaccharide (LPS) from Gram-positive 

microorganisms to TLR4 receptors on host epithelial and immune cells, contributing to 

inappropriate immune activation.247-250

The combination of a leaky gut and an overabundance of inflammatory bacterial products is 

thought to result in elevated plasma levels of LPS and proinflammatory cytokines, including 

IL-1β, IL-6 and TNF.251 Increased systemic immune activation can shift tryptophan 

metabolism towards the kynurenine pathway and away from 5-HT or indole synthesis, as 

described previously.252 This state of metabolic endotoxaemia has been shown to reduce 

central satiety mechanisms by influencing enteroendocrine secretion of the satiety hormones 

PYY, cholecystokinin and 5-HT253-255 and by reducing the expression of anorexigenic 

peptide receptors and leptin receptors on vagal afferents256 and in the hypothalamus, 

respectively.257 In this way, vagal afferent neurons in the presence of a high-fat diet remain 

in an orexigenic state, regardless of whether food was consumed, driving hyperphagia and 

obesity.258 In addition to changes in ingestive behavior, there are likely numerous other 

mechanisms contributing to high-fat diet-induced obesity, such as gut microbiota-driven 

remodeling of the intestinal transcriptome to favor an obesogenic signaling cascade.259

Although the gut microbiota has an important role in the generation of inflammatory 

mediators, it might also be protective against the development of metabolic endotoxaemia. 

For example, mice fed a high-fat diet that was supplemented with oligofructose, a prebiotic 

fiber that preferentially increases gut Bifidobacterium abundance, showed reduced 

endotoxaemia, decreased levels of plasma and adipose tissue proinflammatory cytokines, 

and improved glucose tolerance.260 In this study, no relationship was seen between 
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endotoxaemia and any other bacterial group except for Bifidobacterium.260 The 

translatability of these preclinical findings to human metabolic disease remains to be 

determined.

In summary, disruptions during both early life (prenatal influences, including maternal diet, 

antibiotic exposure and early adversity) and adulthood (diet and/or psychosocial stressors) 

can have a profound effect on the gut microbiome and the brain, setting the stage for food 

addiction. The associated changes in amino acid metabolism and metabolic toxaemia 

perpetuate these maladaptive changes at all levels of the BGM axis (Figure 1).

Clinical implications of food addiction

The proposed system biological model of altered BGM interactions resulting in maladaptive 

changes in ingestive behavior provides not only a plausible explanation for the refractory 

nature of obesity to many traditional therapeutic strategies, but also presents a rationale for 

several new therapeutic strategies (Figure 5, Box 1).

Gut-directed therapies

As the gut is the primary source of hunger and satiety signals that regulate homeostatic 

feeding behaviors, it is not surprising that several obesity treatments, including bariatric 

surgery, have aimed to modify these gut mechanisms. Most of the bariatric procedures result 

in satisfactory and sustained weight loss and prompt resolution of the metabolic syndrome, a 

substantial improvement over the transient and more modest effects seen with medical 

therapies.261,262 Bariatric surgery-related weight loss is multifactorial, with the most 

common procedures, Roux-en-Y gastric bypass (RYGB) and laparoscopic sleeve 

gastrectomy (LSG), resulting in hypophagia. This hypophagia is not only a consequence of a 

reduced gastric capacity but also of marked reductions in appetite, food preferences and food 

addiction,263-265 which predicted long-term weight loss outcomes.266-268 Evidence also 

exists for the role of bariatric surgery-induced weight loss driving remission of food 

addiction (as assessed by YFAS); one study of 14 patients with obesity and with food 

addiction prior to surgery demonstrated remission of food addiction in 93% following 

surgery-induced weight loss (P<0.001).269 The mechanisms behind the post-bariatric 

surgery reductions in food addiction scores and brain responses to highly palatable food 

cues, as suggested by the aforementioned small, pilot studies, are incompletely understood.
263,265 Both, RYGB and LSG result in increases in blood levels of anorexigenic gut peptides 

(GLP1, PYY) that, in part, mediate changes in appetite and food addiction after bariatric 

surgery.263,270-272 However, several other BGM pathways have also been implicated from 

both preclinical (mouse models) and clinical studies as possible explanations for these 

changes, including enhanced microbial production of polyamines and GABA, changes in 

bile acid profiles and FXR pathway signaling, and increased production of SCFAs.273-277 

Preliminary work in individuals with obesity undergoing bariatric surgery suggest that 

changes in gut microbiome composition and microbial metabolism of aromatic amino acids 

and glutamate were associated with reductions in appetite, food addiction and changes in 

food preferences, suggesting a possible causal role of these metabolites in behavioral 

responses.278-283 However, future studies are needed to confirm causality between gut 
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microbial metabolites and food addiction in humans. Another important consideration is the 

well-known reduction in systemic low-grade inflammation and endotoxaemia seen after 

bariatric surgery.284 As discussed earlier, this anti-inflammatory effect could increase 

hypothalamic sensitivity to satiety signals and to insulin, resulting in a shift towards more 

homeostatic regulation of ingestive behaviors.285-290 Some studies have suggested that 

because of the involvement of the brain’s reward system in both food addiction and 

addiction of other substances, bariatric surgery might increase alcohol use.291

Microbiome-directed therapies

Microbiome-directed therapies, including faecal microbiota transplantation (FMT), represent 

a novel therapeutic option for obesity and metabolic syndrome. Small clinical studies (one 

study had 18 individuals, 9 receiving autologous FMT and 9 receiving allogenic FMT from a 

lean donor, and a second study had 38 individuals, 12 receiving autologous FMT, 26 

receiving allogenic FMT from a lean donor) have shown that FMT from a lean donor 

resulted in an increase of butyrate-producing bacteria and improved insulin sensitivity in 

recipients with metabolic syndrome.292,293 The improved insulin sensitivity and associated 

changes in the faecal microbiome were not sustained at 18-week follow-up, suggesting a 

resilient faecal core microbiome.293 It remains unclear if FMT, when combined with 

lifestyle modification and brain-directed therapies, might result in longer-term success. 

Notably, lower recipient baseline faecal microbiota diversity was predictive of success of 

FMT.293 Ingestive behaviors were not assessed in those studies. It is well known that 

microbial products such as SCFAs modulate feeding behavior via central mechanisms.19 For 

example, the intake of a type of fiber that selectively increases gut microbial propionate 

production was associated with lowering the subjective appeal and the brain reward 

activation (as measured by brain MRI) to highly-palatable-food pictures in a study of 20 

healthy men without obesity.21 It is important to note, however, that FMT is not without 

risks, including the rare but well-documented risks of bacteraemia or sepsis, ileus, 

perforation and aspiration, in addition to the more common, transient gastrointestinal 

complaints such as abdominal pain or changes in bowel habit.294

Time restricted eating

Increased interest exists in the potential health benefits of different types of time-restricted 

feeding (TRF) on obesity, cardiovascular health and ageing, including intermittent feeding 

and the fasting mimicking diet.295-297 In mice, ad libitum exposure to a high-fat diet resulted 

in changes in circadian rhythms and feeding behaviors that led to increased energy intake 

and weight gain.298 These changes could be reversed by TRF.299 One study showed that 

individuals with overweight, but otherwise healthy, adhering to TRF with the assistance of a 

smartphone application significantly reduced their daily-energy intake, in part by reducing 

late-night intake of alcohol and snacks. This behavioral change resulted in sustained weight 

loss up to 1 year after the intervention.300 The role that the microbiome plays in mediating 

the effects of TRF in humans is not known. However, in animal and in humans, gut 

microbiota composition and function display oscillations during the day that are associated 

with the circadian rhythm of the host and are dictated by the host’s food intake patterns.301 

These oscillations in microbial metabolite production might have a major effect on the 

circadian epigenetic and transcriptional landscape of the gut and the liver, and eating 

Gupta et al. Page 15

Nat Rev Gastroenterol Hepatol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



behaviors leading to compromised oscillations have been associated with obesity and 

metabolic syndrome.302 There are other potential factors that might contribute to the benefits 

of TRF, including reduction of intake of snacks and calories, and changes in the gut 

microbial environment due to an increase in fasting associated patterns of motility and 

secretion.

Brain-directed therapies

Based on the premise that obesity is the result of an imbalance between energy intake and 

expenditure, for many years the dominant pharmacological approach to obesity was based 

on molecules that decrease appetite and/or stimulate energy expenditure.303-305 Of the 

medications now available for weight loss in the USA, some are aimed to decrease appetite 

by directly affecting the hypothalamus (phentermine, bupropion, naltrexone, or locarserin). 

Others are aimed to modulate reward circuits in the brain (naltrexone, bupropion, or 

topiramate), reducing the subjective pleasantness of palatable foods and compulsive food 

cravings, as well as decreasing the response to food cues at reward regions in the brain.
306-309 A dual effect, reducing appetite and reward-based eating, is achieved through the use 

of hormonal satiety signals, like GLP1 agonists (liraglutide or exenatide).278,310 Very little is 

known about the effect of these anti-obesity medications on the gut microbiota. A small 

study in 19 individuals with type 2 diabetes mellitus have shown that treatment with 

liraglutide for 42 days resulted in a statistically significant increase in relative abundance of 

the genus Akkermansia.311

Cognitive behavioral therapy (CBT) in individuals with obesity with food addiction aims to 

change specific thoughts, beliefs, and cognition directly related to the feelings and behaviors 

attributed to uncontrollable ingestive behaviors and cravings.312,313 Since CBT strengthens 

prefrontal control mechanisms,314-319 cognitive reappraisal and attention strategies through 

CBT are thought to strengthen the inhibitory control of the prefrontal regions on the 

extended reward networks by influencing appetitive motivation and reducing food addiction 

in individuals with obesity.320-323

Key open research questions and future directions

Considerable progress has been made in our understanding of changes in BGM interactions 

in food addiction and obesity; yet, the majority of studies have been performed in rodents 

and there are few longitudinal, mechanistic studies in humans that support the translational 

relevance of these findings, which would guide more effective therapies. There is currently 

no evidence in humans that food addiction is the result of an altered gut microbiome, or that 

food addiction is driven by particular gut microbial metabolites. Furthermore, given the 

complexity and bidirectional signaling within the BGM axis, it is unlikely that a single 

microbial metabolite could causally explain the behavioral changes. Considering the 

influence of early life experiences, environmental factors, stress, emotions, genetic factors, 

and dietary influences in humans, microbial influences might only explain a small 

component of the variance in the development of food addiction. Several approaches are 

necessary to move this field beyond the current reliance on largely associative studies in 

small populations. Microbiome characterization by shotgun metagenomics, 
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metatranscriptomics and proteomics studies in well phenotyped human populations 

combined with big data analysis will be required to identify a microbial signature of food 

addiction. At the same time, mechanistic studies using targeted interventions, which have 

been shown to be effective in reducing predominantly hedonic driven eating behaviors in 

humans, such as bariatric surgery, TRF or cognitive behavioral therapy are needed to probe 

for a causal role of the gut microbiome. Such human studies should be combined with 

reverse translational studies, evaluating the effect of faecal microbial transfer on rodent 

feeding behaviors and body weight.

Conclusions

Altered BGM interactions manifesting as dysregulated eating behavior and resulting in 

obesity, can best be understood as a complex, circular system that is stable and highly 

resistant to change (Figure 4). The close interactions between diet and gut microbial signals, 

the effect of these signals on satiety and inflammatory mediators from the gut, and their 

disruptive effect on homeostatic mechanisms in the brain, leads to a shift towards a greater 

influence of hedonic reward mechanisms and a reduction in inhibitory control. These 

changes in turn drive the preferred intake of high caloric foods reinforcing the gut dysbiosis 

(Figure 4). As traditional therapies aimed at individual aspects of this system, including 

most traditional dieting strategies, have failed, novel therapies must be based on a new 

understanding of the systems properties of BGM interactions (Figure 1). A combination of 

therapeutic approaches targeting different nodes of this system, and individualization of 

treatments based on differences in gut microbial composition and function are required to 

provide greater clinical benefits.
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Glossary

Systems biology:
An interdisciplinary field of study that focuses on complex interactions within multiple 

biological systems, rather than focusing on individual mechanisms.

Hedonic-driven eating behaviors:
Also known as ‘food addiction’, these behaviours correspond to the continued consumption 

of highly palatable foods even after energy requirements have been met.

Dopaminergic reward system:
Refers to the extensive network of neurons in the extended reward network that depend on 

dopamine as the primary neurotransmitter for reward-related processing.
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Extended reward network:
Used interchangeablely with ‘greater reward system’, this term describes brain regions 

concerned with interconnecting brain networks such as reward and salience networks, and is 

associated with processing of rewarding stimuli and modulation of food-seeking behaviors.

Neural substrates:
A brain region or network that is associated with a specific behavior.

Cortical performance monitoring:
Refers to processes associated with reward sensitivity, motivation, interoceptive awareness, 

stress reactivity and self-control.

Salience:
The salience brain network is responsible for monitoring the homeostatic state of the body to 

make adaptive adjustments to real or expected disturbances in homeostasis through the 

autonomic nervous system and behavioral responses.

Corticostriatal communication:
Refers to the extensive communication network between the brain’s cortex, which houses 

the extended reward network (including the frontal cortex and insula), and the striatum, 

which houses the core reword network (nucleus accumbens, basal ganglia).

Ventral tegmental area:
Key region of the midbrain that houses the dopaminergic cell bodies that project to all 

regions of the core and extended reward network.

Nucleus accumbens:
Region of the basal ganglia and a key hub for the core reward system, responsible for many 

dopaminergic processes, especially those related to pleasure, motivation, and aversion.

Prebiotic:
Refers to dietary fibre or other substrates that can only be digested by commensal gut 

microorganisms, thereby promoting gut microbiota diversity and health.

Maladaptive coping:
Behaviors that are used to cope with situations to alleviate stress or symptoms, but are not 

necessarily healthy and do not address the core cause of the stress.

Psychological stress:
Sufficient levels of stress orginating from the environment that can cause dyregulation of 

homeostatic responses to cause physical or psychological symptoms.

Perceived stress:
A measure of the degree to which events in an individual’s life are assessed as stressful. The 

most widely used scale for perceived stress is the Perceived Stress Scale.
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Box 1 ∣

Therapeutic targets within the brain gut microbiome axis for obesity

Brain Targets Approaches for Obesity Treatment

Cognitive Control • Cognitive behavioral therapy

Reward Processes

• Topiramate + Phentermine

• Bupropion + Naltrexone

• GLP-1 agonists (e.g. Liraglutide)

Homeostatic Control

• Serotonin modulators (e.g. Lorcaserin)

• Amphetamine class (e.g. Phentermine)

• GLP-1 agonists (e.g. Liraglutide)

• Leptin agonists

• Vagus nerve electrical modulation

Gut Remodeling

• Bariatric surgery (e.g. RYGB, LSG)

• Bariatric endoscopy (e.g. gastric balloons, gastric plication, gastric 
content aspiration)

Gut Absorption

• Lipase inhibitors (e.g. Orlistat)

• Mucosal barriers/ablation (e.g. duodenal sleeve)

Gut Microbiota

• Prebiotics (e.g. oligofructose, oligosacharides)

• Probiotics (e.g. Lactobacillus)

• Bariatric surgery

• Fecal transplant
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Key Points

• Food addiction refers to maladaptive ingestive behaviors resulting from a shift 

from primarily homeostatic to hedonic regulatory mechanisms of food intake; 

this shift reflects alterations at all levels of the brain–gut–microbiome (BGM) 

axis.

• Normal ingestive behavior is the result of the tightly regulated interplay 

between orexogenic and anorexogenic gut hormones, leptin signaling from 

adipose tissue, hypothalamic nuclei, the dopaminergic reward system and 

prefrontal inhibitory influences.

• In food addiction, a disinhibition of reward and anorexogenic mechanisms at 

all levels of the BGM axis results in unrestrained craving for food.

• Several adverse early life events, including nutrition, stress and antibiotic 

intake can influence the development of BGM interactions and of ingestive 

behavior.

• Lifelong dietary choices can modulate BGM Interactions and eating 

behaviors; for example, chronic ingestion of a typical Western diet can result 

in systemic low-grade immune system activation that can reduce feedback 

inhibitory mechanisms restraining food intake.

• Current pharmacological treatment options for food addition are limited, 

bariatric surgery is the only therapy providing long-term benefits, but novel 

treatment approaches (including time restricted eating and cognitive 

behavioral interventions) are being evaluated.
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Figure 1. Model of brain–gut–microbiome interactions in ingestive behavior.
In the periphery, gut-generated and vagally transmitted orexogenic and anorexogenic signals 

interact with specific nuclei in the hypothalamus in the homeostatic regulation of food 

intake. Food-related factors interact with gut microorganisms and gut microbial metabolites 

modulate the release of orexogenic and anorexogenic peptides from enteroendocrine cells in 

the distal small intestine, shifting the balance between anorexogenic and orexogenic 

signaling in the hypothalamus. In addition, gut microorganisms can signal to the brain via 

inflammatory mediators (such as lipopolysaccharides) and neuroactive metabolites (such as 

tryptophan metabolites). Centrally, interactions between several brain networks, including 

the prefrontal cortex, the dopaminergic reward system and the sensorimotor system underlie 

the hedonic regulation of food intake. Several environmental influences such as food 

advertisements, food cues engage the extended reward system which can override the 

homeostatic control mechanisms. Exposure to visual and sensory cues, as well as 

psychosocial stress play important role in this process. Blue boxes on the left represent 

different parts of the BGM axis. Light green boxes in the center show mechanisms involved 

in altered BGM interactions in food addiction. Upward arrows show upregulation, 
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downward arrows show downregulation. Modified with permission from Volkow et al. 

Biological Psychiatry 2013 EM: DONE
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Figure 2. Model of altered brain network interactions in food addiction.
Several brain networks interact in the regulation of ingestive behavior. In food addiction, 

increased engagement of the salience network by food cues engages the executive control 

network leading to increased attention to food, and the emotional arousal network. 

Insufficient inhibitory control of the reward and of the emotional arousal networks by the 

executive control network plays a key part in shifting the balance from predominantly 

homeostatic to hedonic and regulation of food intake. The salience network (aMCC, 

anterior mid cingulate cortex; aINS, anterior insula) responds according to the subjective 

salience of any interoceptive or exteroceptive stimulus reaching the brain, or to the 

expectation of such stimuli, and coordinates appropriate attentional, behavioral, affective and 

visceral autonomic responses to such stimuli. The executive control network (dlPFC, 

dorsolateral prefrontal cortex; vlPFC, ventrolateral prefrontal cortex; mPFC, medial 

prefrontal cortex; OFG, orbitofrontal gyrus) is activated during tasks involving executive 

functions such as attention, working memory, planning and response selection. Under 

normal circumstances, it exerts an inhibitory influence on the emotional arousal and the 

reward networks. The reward network (Nacc, nucleus accumbens; VTA-SN, ventral 

tegmental area – substantia nigra; CaN, caudate nucleus; Pal, pallidum) is a group of neural 

structures responsible for motivation, ‘wanting’ desire or craving for a reward. It is under 

inhibitory control by the executive control network. Its main neurotransmitter is dopamine. 

The sensorimotor network (Thal, thalamus; Put, putamen; pINS, posterior insula; S1/S2, 

primary/secondary sensory cortex; M1/M2, primary/secondary motor cortex) receives 

sensory input from the body, is important for awareness of body sensations and the 

generation of appropriate motor responses and behaviors.
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The Emotional arousal network (ACC, anterior cingulate cortex; Hipp, hippocampus; 

Amyg, amygdala; sgACC, subgenual anterior cingulate cortex) is activated by perceived or 

real perturbation of the organism’s homeostasis. Bidirectional arrows between brains depict 

reported bidirectional network interactions. Up and down arrows next to brains illustrate 

reported up and down regulation of the individual networks
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Figure 3. Mechanisms in the homeostatic and hedonic systems leading to food addiction.
a ∣ Diet-induced disinhibition of vagal and hypothalamic satiety mechanisms. A high fat, 

low fibre diet reduces the release of satiety hormones (GLP1, PYY, CCK) from 

enteroendocrine cells (EECs) in the gut by dietary fibre-derived short-chain fatty acids 

(SCFAs), leads to downregulation of receptors for satiety hormones molecules on vagal 

afferents innervating the EECs, and to a downregulation of the vagally-mediated satiety 

signaling to the arcuate nucleus of the hypothalamus (ARC). Hypothalamic receptors 

mediating the effect of other anorexigenic signals (leptin) reaching the ARC via the systemic 

circulation are also downregulated, resulting in an unrestrained effect of orexogenic signals 

(ghrelin, insulin, cortisol). Thus, chronic exposure to a high fat, low fibre diet downregulates 

the inhibitory mechanisms of homeostatic regulation of ingestive behaviors. b ∣ Diet-induced 

changes in the extended reward system. According to the dopamine deficiency hypothesis, a 

reduction of dopaminergic stimulation of neurons in the NAc as a result of reduced 

dopamine relase from the VTA, and a downregulation of dopamine receptors on NAc 

neurons, reduces the rewarding effects of ingested foods, and leads to craving and 

overconsumption of unhealthy food in an attempt to compensate for the reduced dopamine 

signaling. Chronic stress-induced CRF release and glucocorticoid levels also have an 

inhibitory effect on dopamine signaling. Up and downward arrows inside boxes illustrate 

reported up and downregulation of respective mechanisms.
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Figure 4. Interactions between food, gut microbiota and intestinal permeability in the regulation 
of ingestive behavior.
Left panel: A healthy diet (high in fibre, low in fat and sugar) is associated with a high 

diversity of the gut microbiota, including an abundance of taxa involved in stimulating 

mucus production in humans and animal models.323,324 The combination of an intact mucus 

layer and tight intestinal epithelium results in an intact gut barrier. Right panel: An 

unhealthy diet (high in fat, sugar and low in fiber) is associated with a reduced microbial 

diversity, reduction of mucus stimulating microorganisms, reduction in mucus layer 

thickness and an increase in epithelial leakiness. This process results in reduced intestinal 

barrier function (leaky gut) and activation of the gut associated immune system by microbial 

products such as lipopolysaccharide (LPS). The combination of a leaky gut and an 

overabundance of inflammatory bacterial products is thought to result in elevated plasma 

levels of LPS and proinflammatory cytokines. This state of metabolic endotoxaemia has 

been shown to reduce central satiety mechanisms by influencing enteroendocrine secretion 

of the satiety hormones PYY, cholecystokinin and serotonin (5-HT), and by reducing the 

expression of anorexigenic peptide receptors and leptin receptors on vagal afferents and in 

the hypothalamus, respectively, leading to a disinhibition of satiety mechanisms. Up and 

downward arrows inside boxes represent reported up and downregulation of mechanisms 

and of microbiome measures. Modified with permission from Cani & Everard. Mol. Nutr 

Food Res 60:58-66; 2016 OK, but would replace the last one with reduction of net 
mucus production
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Figure 5. Circular model of brain gut microbiome interactions in obesity and targets for 
intervention.
The interaction of genetic and epigenetic factors influences the balance between hedonic and 

homeostatic control of ingestive behavior, and the risk for the development of hedonic 

dominance. When exposed to ubiquitous food of high caloric density (fat, sugar) and low in 

fiber, predisposed individual will overconsume such foods, resulting in changes in the gut 

and the microbiome as shown in Fig. 3. The resulting change in gut to brain signaling can 

further compromises homeostatic regulation of food intake and reinforces the disinhibition 

of the reward system. Targets for intervention and therapeutic modalities include altered 

ingestive behavior (cognitive behavioral therapy, CBT; time restricted eating; dietary 

counseling), alterations of gut and microbiome (bariatric endoscopic and surgical treatment; 

faecal microbota transplantation (FMT); prebiotics and probiotics); altered gut to brain 

feedback (postbiotics such as butyrate, tryptophan derived compounds, including indoles, 

and other amino acid metabolites.) and altered reward system (centrally acting medications).
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