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LBNL-63109

Microbunching Instability in Single-Pass Systems
Using a Direct 2D Vlasov Solver

Marco Venturini∗
Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720

(Dated: November 6, 2007)

We apply a recently developed Vlasov solver to the study of the microbunching instability gener-
ated by shot noise in the beam delivery systems of x-ray Free Electron Lasers (FELs). We discuss
two lattices presently under consideration for the FEL FERMI project at Elettra and show that at
least one of the two lattices appears capable of delivering a beam with the desired quality in the
longitudinal phase space.

PACS numbers: 29.27.Bd, 41.60.Ap, 41.60.Cr, 52.65.Ff

I. INTRODUCTION

The microbunching instability in linacs can limit the
performance of single-pass x-ray FELs by significantly
degrading the beam quality [1]. The instability stems
from small irregularities in the longitudinal charge den-
sity, which can be amplified by self-field induced energy
variations when the beam travels through dispersive re-
gions. Accurate and efficient modelling of this instability
is important for linac design but is challenging because
of the high resolution needed to capture small fluctua-
tions in phase space. Macroparticle simulations are valu-
able but using a number of macroparticles significantly
smaller than the bunch population introduces spurious
noise that may overshadow the small fluctuations respon-
sible for the genuinely physical instability [22].

Immune to this problem direct methods [3–9] to solve
the Vlasov equation offer an interesting alternative. In
[10] we proposed a 2D Vlasov solver tailored to the spe-
cific features of beams (like a strong energy/position cor-
relation) in the delivery systems for x-ray FELs. Di-
rect methods are generally more computationally inten-
sive than macroparticle simulations but the strong depen-
dence of the computational load on the dimensionality of
the problem makes them particularly attractive for 2D
simulations.

Being 2D the solver we developed would seem to apply
only to beams with vanishing transverse emittance. At
first this would not appear to be a significant limitation as
the microbunching instability is essentially a longitudinal
phase-space phenomenon, where longitudinal charge den-
sity fluctuations give rise to electric self-field affecting the
beam energy through the longitudinal component. How-
ever, the longitudinal slippage, which is central to the
development of the instability, can be substantially af-
fected by a finite horizontal emittance. A realistic repre-
sentation of the beam dynamics should then include some
account of the horizontal degree of freedom. In [10] we
proposed a model for the smearing effect of a transverse
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emittance on the microbunching instability consisting of
a low-pass filter applied to the kernel for the evaluation
of the collective force. Effectively, this enables the mod-
elling of beams with finite transverse emittance by a 2D
solver. The generally good agreement found with the 4D
linear theory, in the regime where linear theory applies,
has encouraged us to pursue application of this solver to
the study of systems of practical interest.

The core of the paper (Sec. IV) is a discussion of
two linac designs proposed for the FERMI@Elettra FEL
[11] and their response to the microbunching instability
seeded by shot noise – the random charge density fluctu-
ations caused by the granularity of the elementary charge
and the most fundamental source of the microbunching
instability. Our main result is an estimate of the beam
(uncorrelated) energy spread at the exit of the linac show-
ing that at least one of the two lattices considered meets
the required max. 150 keV specification.

As for the rest of the paper, in Sec. II we summarize
the main aspects of the method introduced in [10] and
report on some features added to the solver, like the op-
tion to enforce periodic boundary conditions. In the same
section we also report testing of the 2D Vlasov solver by
comparison against the 4D linear theory. In Sec. III we
describe the model adopted to represent shot noise and,
finally, in the Appendix we show how the existing 4D
linear theory for the microbunching gain function was
extended to include acceleration.

II. OUTLINE OF THE 2D SOLVER AND
VALIDATION AGAINST LINEAR THEORY

The method proposed in [10] is based upon the re-
placement of the coordinate pair (z, E) with the pair
(ẑ = z, Ê = E − α), where the correlation function, or
energy “chirp”, α = α(ẑ, s) has been subtracted. Here
E and z denote the particle energy and the longitudinal
position relative to the reference orbit (z > 0 for particles
in the bunch head).

The method in [10] was developed with in mind the
possibility of representing the entire longitudinal phase
space of a beam. This may not be needed, though, if one
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is exclusively interested in the study of the microbunch-
ing instability. We can substantially reduce the com-
putation time by choosing to follow only the dynamics
of particles belonging to a window of length Lb = 2lb,
smaller than the bunch length. In practice, this can be
accomplished by imposing periodic boundary condition
in ẑ. The presence of the boundaries will not alter the
description of the beam dynamics significantly if Lb is
sufficiently larger than the characteristic length scale of
the microbunching instability.

In the calculations presented in this paper we always
enforce periodic-boundary conditions. The initial beam
density f(ẑ, Ê), is represented on a cartesian grid with
cell sizes ∆ẑ and ∆Ê spanning the region [−l

(0)
b , l

(0)
b ] ×

[−Ê
(0)
max, Ê

(0)
max], where Ê

(0)
max is chosen so that f(ẑ, Ê) is

negligible for |Ê| > Ê
(0)
max. The normalization is such

that Nbf(ẑ, Ê)∆ẑ∆Ê represents the number of electrons
contained in the cell ∆ẑ∆Ê centered at (ẑ, Ê), and Nb

is the total number of electrons contained in the region
spanned by the grid.

Propagation of the density function is done by inter-
leaving kicks under the collective force and advancements
carried out under the action of the external forces. At
each step the values of the density function off grid points
are determined by local interpolation using cubic poly-
nomials. During propagation the support of the beam is
adapted to follow compression in ẑ and dilation in Ê, i.e.
at current position s along the lattice the domain spanned
by the grid is [−lb, lb]×[Êmax, Êmax], with lb = l

(0)
b /C and

Êmax = CÊ
(0)
max, where C = C(s0, s) is the compression

factor from the start s0 to s.

A. Mapping under collective force

The mapping for collective kicks separated by ∆s is
given by

Ê′ = Ê + F (ẑ, s)∆s, (1)
ẑ′ = ẑ, (2)

where the collective force in frequency space is defined in
term of the impedance (per unit length) Ẑ(k) as

F (z, s) = −e2Nbβc
2π

Lb
×

∞∑
n=−∞

Ẑ(kn)ρ̃(kn, s)eiknze−k2
nσ2
⊥/2 (3)

and ρ̃(k) = (2π)−1
∫ lb
−lb

dze−ikzρ(z) is the Fourier integral
of the normalized charge density ρ(z) =

∫
dEf(z, E),

with normalization
∫ lb
−lb

dzρ(z) = 1, and kn = 2πn/Lb is
the wavenumber.

The smearing effect of a finite horizontal emittance is
modelled by the insertion of a low-pass filter e−k2

nσ2
⊥/2
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FIG. 1: Gain functions from the start of the linac through
the second bunch compressor (BC) for the Two-BC lattice
discussed in Sec.IV A. Good agreement is found between the
4D linear theory (solid lines) and the numerical solutions of
the Vlasov equations (dots). Three choices of initial beam un-
correlated rms energy spread are shown (the maximum gain
for the σE0 =10 keV case is about 450 and occurs at wave-
length λ ' 65 µm). Both space charge and CSR are included
in the calculation of the collective force.

[last term in Eq. (3)], where σ⊥ =
√

2εxH, yield-
ing a cut-off wavelength λc ' 2π

√
εxH. Here H =

γxD2+2αxDD′+βx(D′)2 is the dispersion invariant and
αx, βx, γx the familiar Twiss functions.

The only sources of collective effects considered for the
present study are coherent synchrotron radiation (CSR),
treated in the free-space model of Ref.’s [10, 12] (1D line
charge in uniform circular motion with no account of
transients), and space-charge. The model adopted for
the latter is given by [10, 15, 16]

Ẑ(k) =
iZ0

πγrb

1− xK1(x)
x

∣∣∣∣∣
x=krb/γ

, (4)

where K1(x) is the modified Bessel function and Z0 =
120π Ω, the vacuum impedance. This formula applies to
a bunch with transversally uniform density and circular
cross section of radius rb in free space and yields the
electric field on the beam axis. To model a transversally
gaussian beam with rms sizes σx and σy we set rb =
1.7(σx + σy)/2, as suggested in [15]. For a discussion of
the range of validity of this impedance see [17].

B. Mapping under external force

We assume ultrarelativistic motion and neglect any
slippage along the longitudinal coordinate not due to dis-
persive effects.

Propagation under external fields in a bending magnet
from location s to location s′ > s is provided by the
mapping
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FIG. 2: Gain function for the One-BC lattice (see Sec. IVB)
for two values of the beam initial uncorrelated energy spread.
The lighter dots represent the gain from the start of the linac
through the bunch compressor as calculated using the Vlasov
solver (the solid lines are from the 4D linear theory). The
darker dots represent the gain function beyond the bunch
compressor to the end of the linac (including the spreader).

ẑ′ =
ẑ

C(s, s′)
+

Ê

Er(s)
dR56(s, s′), (5)

Ê′ = Ê C(s, s′). (6)

where C(s, s′) = 1/[1 + h(s)dR56(s, s′)] is the compres-
sion that the beam undergoes from s to s′, dR56(s, s′) =
R56(s′) − R56(s) the increment of the R56 entry of the
transfer matrix describing slippage by off-momentum
particles. A linear energy/position correlation is as-
sumed, α(z, s) = zh(s)Er(s) + Er(s), where Er(s) is the
design beam energy.

In a bend the linear chirp evolves according to h(s′) =
h(s)/[1+h(s)dR56(s, s′)], while in an RF structure, where
the energy of the reference particle varies according to

Er(s′) = Er(s) + (s′ − s)
∆Ecav

Lcav
sin φs, (7)

α1(s) = h(s)Er(s) evolves as

α1(s′) = α1(s)− (s′ − s)
∆Ecav

Lcav

ωrf

c
cosφs. (8)

In the RF structures as well as in all other lattice ele-
ments, with the exception of bends, the dynamics in the
coordinates (ẑ, Ê) in the absence of collective effects is
simply the identity (ẑ′ = ẑ, Ê′ = Ê).

C. Validation against linear theory

We investigated the accuracy of our model for
emittance-induced smearing of microbunching (the low-
pass filter mentioned in Sec. II A) by comparing the
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FIG. 3: Gain functions from the start of the linac through the
second bunch compressor for the Two-BC lattice of Sec.IV A
with space charge turned off. The discrepancy between nu-
merical solutions (dots) and linear theory (lines) is noticeable
but still acceptable.

small-amplitude gain function calculated from the nu-
merical solution of the Vlasov equation and the 4D lin-
ear theory (see Appendix A). The gain function between
locations si and sf along the linac is defined as the ratio
(Af/Ai)/C(si, sf ), where Ai is the amplitude of a small
sinusoidal perturbation at si evolving into a perturbation
of amplitude Af at sf , and C(si, sf ) is the compression
factor. In [10] we reported good agreement for a sec-
tion of linac encompassing a single bunch compressor.
We have later verified that the agreement remains very
satisfactory through longer sections spanning two bunch
compressors. This is illustrated in Fig. 1, 2 and 3, refer-
ring the FERMI lattices that will be discussed in detail
in Sec. IV. A disagreement between numerical and linear
theory becomes noticeable (but is still acceptable) only
when collective effects outside the bunch compressors are
turned off, as in Fig. 3. Incidentally, notice the rela-
tive unimportance of CSR in comparison to space charge
(Fig. 3 vs. Fig. 1) and the considerable lower gains offered
by the One-BC lattice compared to the Two-BC lattice
(Fig. 2 vs. Fig. 1). Also, from these pictures one can
appreciate the beneficial effect of a larger beam energy
spread.

III. MODEL OF SHOT NOISE

Shot noise, caused by the granularity of the elemen-
tary electron charge is an unavoidable and the most fun-
damental source of undesired fluctuations. Other sources
(e.g. noise in the photo-gun laser) may be significant but
will not be considered in this study.

We model shot noise in the electron beam by applying a
random perturbation to a smooth density function f0

ij =
f0(zi, Ej) defined on the grid nodes (i, j) at the start of
the simulation. In the calculations for this paper f0(z,E)
is assumed to be uniform in z and gaussian in E.

Let Nij be the number of electrons occupying the area
∆z∆E of phase space centered on the grid node (zi, Ej).
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We regard Nij as a stochastic process [18] obeying the
Poisson statistics with average 〈Nij〉 = Nbf

0
ij∆z∆E and

variance 〈(Nij − 〈Nij〉)2〉1/2 = 〈Nij〉1/2. If Nij is suffi-
ciently large we can write

Nij = 〈Nij〉+ 〈Nij〉1/2ξij , (9)

where ξij is an uncorrelated, bivariate normal stochas-
tic process with zero average and variance equal to unity
〈ξ2

ij〉 = δij . Dividing both sides of the above equation by
Nb∆z∆E yields the following prescription for the per-
turbed beam density:

fij = f0
ij

(
1 +

ξij

〈Nij〉1/2

)
. (10)

We end this section with two observations. An obvi-
ous limitation in the above model is represented by the
use of a finite-density grid. While the power spectrum of
shot noise is uniform a finite grid cell size introduces a
natural high-frequency cut-off. Care are has to be taken
to make sure that the grid density can support the phys-
ically meaningful part of the spectrum of the perturba-
tion. Fortunately, very high frequency components of the
noise spectrum are not expected to undergo appreciable
magnification because of the presence of mixing mecha-
nisms smearing the microbunching (finite energy spread
and transverse emittance). Therefore, excluding the high
frequency part of the noise spectrum should have limited
consequences on the accuracy of the model.

A second observation concerns the potential problems
posed to the Vlasov solver by propagation of a non-
smooth density. A key element of a solver is an inter-
polation scheme to reconstruct the value of the density
function off-grid points after each time step. The inter-
polation algorithm (in our case using cubic polynomials
[10]) presupposes a certain smoothness of the underling
function in order for the interpolation errors to remain
bounded. Clearly the random perturbation we impose to
the initial density violates this smoothness assumption
and one may fear that it could result into an unaccept-
able error. A possible solution to this difficulty is to have
the noisy density function first defined on a coarser grid
and then extended to a denser grid by interpolation be-
fore starting propagation by the Vlasov solver. In our
code we implemented this option but have found that,
when applied, it did not affect the results significantly.

IV. APPLICATION TO FERMI@ELETTRA

We illustrate the application of our Vlasov solver to
the study of two lattice designs under consideration for
the FERMI project. FERMI is a tunable, soft x-ray,
seeded FEL 4th generation light source presently under
design at the Elettra laboratory in Trieste with a target
radiation wavelength in the 10-100 nm range [11].

Starting from a photo-injector, a 1.2 GeV linac will
feed a beam with assumed σE = 150 keV maximum un-
correlated energy spread and transverse (normalized) rms

emittance below 1.5 µm to two distinct undulator lines
A 0.8 kA peak current will be needed to meet the desired
brightness specifications.

Other important beam requirements (concerning for
example the linearity of the energy chirp) are not affected
by (or have any consequence on) microbunching and are
not of concern in our study.

The desired peak current will be achieved by using
bunch compressors to enhance the beam density by about
a factor 10. At this time two alternate lattices are being
considered employing one and two bunch compressors.
In either case it is anticipated that a laser heater will be
installed to increase the beam energy spread as a way
to control the microbunching instability [14, 15]. In our
simulations we have yet to implement a model for the
beam-laser interaction in the heater and the energy dis-
tribution of the initial beam is assumed to be gaussian.

In the simulations the beam is followed from the start
of the main linac at about 96 MeV beam energy. The
only collective effects considered are those relevant for
michrobunching, i.e. space charge and coherent syn-
chrotron radiation. We propagate the beam density func-
tion through the linac with exact account of the lin-
ear optics for determination of the transfer matrix and
local beam transverse sizes (needed for evaluating the
space-charge force). We assume that through the linac
the beam maintains a gaussian transverse density with
constant emittances. In the simulations discussed here
εx = εy = 1 µm, (normalized rms emittances).

The effect of RF wake fields is neglected. This does
not represent a serious omission as the spectrum of the
impedance for the RF structures is not expected to over-
lap significantly with the regions of the spectrum relevant
for the microbunching instability. However, RF wakes af-
fect the evolution of the beam energy chirp [19]. To com-
pensate for the absence of the RF wakes we adjusted the
RF cavities in the lattice so as to give the beam the z/E
correlation required to achieve the desired compression.

A. The Two-BC Lattice

A two bunch-compressor lattice represents the current
baseline for the FERMI project [20]. The section of the
linac considered in our simulations is approximatively
160 m long including the spreader (however, in the cal-
culation discussed here the bends in the spreader were
replaced by drifts). The two bunch compressors (which
we will refer to as BC1 and BC2) are placed at locations
along the linac where the beam energy is about 220 and
600 MeV respectively. They yield an overall 10.5 com-
pression factor partitioned about equally between the two
(3.5 and 3 respectively).

Snapshots of the longitudinal phase space (uncorre-
lated energy deviation vs. longitudinal position) at se-
lected locations along the lattice are shown in Fig. 4 and
Fig. 5 together with the normalized longitudinal density.
In this example the initial uncorrelated energy spread is
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FIG. 4: Phase space (top pictures) and normalized charge density (bottom pictures) at selected locations along the Two-BC
lattice. The phase-space pictures show only half of the z support for the beam density. The beam has an initial I=95.5 A peak
current (If=1 kA at the end of the linac), 96 MeV energy and σE0 = 13 keV rms energy spread.

σE0 = 13 keV and the final peak current If = 1 kA,
25% larger than the FERMI specifications.

The three sets of pictures in Fig. 4 are taken at the
start of the linac, exit of BC1, and at the entrance of
BC2. The random noise present in the initial distribu-
tion can be seen to have evolved into a ∼ 2% charge
density fluctuation by the exit of BC1. At this loca-
tion the energy modulation is still small compared to the
beam energy spread but it increases noticeably by the
time the beam enters BC2 (top-right picture). A cursory
inspection of this picture shows a dominant modulation
somewhat below λ ' 10 µm, consistent with a maximum
gain at wavelength λ ' 24 µm/3.5 = 7.1 µm indicated
by linear theory (see the gain function in Fig. 6). Notice
that between the two bunch compressors the charge den-
sity profile remains unchanged as the beam is “frozen”
outside the dispersive regions of the lattice.

The left phase-space picture of Fig. 5 at the exit of BC2
shows clear evidence of instability saturation (the folding
of the beam density in phase space). The instability sat-
uration leaves behind fairly large fluctuations (about 5%)
in the charge density, with a frequency spectrum roughly
delimited from above by the wavelength of the maximum
gain predicted by linear theory (λ ' 8µm). These rela-
tively large fluctuations remain unchanged to the end
of the linac, and result into additional space-charge in-
duced energy modulation. At the exit of BC2 where the
energy Er ' 600 MeV and the effective transverse ra-
dius is rb ' 200 µm the space charge impedance (per

unit length) at λ ' 8µm is about Ẑ ' 90 Ω/m. A rela-
tive modulation in the charge density of A = 0.05 results
into an energy change of the order ∆E[keV]/∆s[m] '
10−3 × AI[Ampere]Ẑ[Ω/m] ' 4.5 keV/m, which pro-
jected over the remaining 60 m of linac adds up to a
270 keV energy modulation. The amplitude of the ac-
tual energy modulation gained after BC2 as determined
from the simulations turns out to be a bit smaller, as the
doubling of the beam energy by the end of the linac tames
the effect of space charge (at the end of the linac where
Er = 1.2 GeV, ∆E[keV]/∆s[m] ' 1.4 keV/m), but can
be clearly seen in the phase space in the top-right picture
of Fig. 5. At the end of the linac the uncorrelated rms
energy spread averaged over z as determined from the
beam 2D distribution equals about 190 keV, or ∼ 50%
larger than the 136 keV= 10.5 × 13 keV beam energy
spread induced by compression alone (i.e. in the absence
of collective effects). About half of this incremental en-
ergy spread is accumulated in the linac section past BC2.

Such a large energy spread at extraction would not be
acceptable for FERMI. One might hope to reduce the
effect of the instability by further increasing the energy
spread σE0 at the start of the linac with a modified tun-
ing of the laser heater. However, because a lower bound
to the energy spread at extraction is the zero-current
limit σE = CσE0, it is clear that a compression factor
C ' 10.5 leaves limited room for maneuver. Indeed, the
systematic study of σE vs. σE0 reported in Fig. 7 shows
that for If = 1 kA, σE = 190 keV is close to the mini-
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FIG. 5: The phase space at the exit of BC2 in the Two-BC lattice shows evidence of instability saturation (top-left picture).
The rms energy spread at the end of the linac averaged over z is 186 keV, about 50% of which is accumulated after BC2.
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FIG. 6: Gain function from the start of the Two-BC lattice
through the first bunch compressor. The maximum occurs at
wavelength (before compression) λ ' 24 µm corresponding to
a compressed wavelength 24/3.5 µm ' 7.1 µm at the exit of
BC1.

mum attainable energy spread. Fig. 7 reports the average
energy spread at extraction from 10 different realizations
of random perturbation to the initial beam density mod-
elling shot noise. The error bars delimit the range of
the results. At the design peak current, If = 0.8 kA,
the minimum attainable energy spread is lower but still
above the 150 keV target value.
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FIG. 7: Average of uncorrelated rms energy spread at the exit
vs. rms energy spread at the entry of the linac for the Two-
BC lattice. The averages are over 10 random realizations of
the initial perturbation modeling shot noise. The error bars
span the result ranges. The black and red boxes correspond
to If = 1 kA and 0.8 kA (end of the linac) peak currents. The
dashed line is the expected rms energy spread in the absence
of collective effects (resulting from compression).

B. The One-BC lattice

In an attempt to reduce microbunching a second lattice
design has been proposed [20, 21] consisting of a single
bunch compressor providing at once the desired factor
∼ 10 compression. The version discussed in this Section
is about 200 m long and includes the small chicane for
laser heating (which was excluded in the lattice consid-
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FIG. 8: Phase space at selected locations along the One-BC lattice. The three observation points (from left to right) are at the
entrance and exit of the bunch compressor, and at the end of the linac. The initial beam rms energy spread is σE0 = 7 keV.
The rms energy spread at the end of the linac is 117 keV, the peak current If = 1 kA.

ered in IV A). The beam interacts with the laser in the
middle of the laser-heater chicane but in our simulations
the beam is assumed to have from the start the rms en-
ergy spread resulting from the interaction with the laser.
Also, in contrast to the simulations in IV A, the dipoles
in the spreader are treated as actual bending elements.

The single bunch compressor of this lattice is compa-
rable with BC1 of the Two-BC lattice of Sec. IVA and
provides only a slightly larger R56. The larger compres-
sion is therefore mostly due to a larger energy chirp. The
location of the bunch compressor within the linac and the
beam energy are also comparable to those of BC1.

Full compression of the beam early on in the linac
causes an unfavorable enhancement of the self-fields, as
they scale with the beam peak current. However, this is
abundantly compensated by a larger uncorrelated energy
spread experienced by the beam over a longer section of
the linac.

Evidence of the better standing of the One-BC lattice
is already apparent from the linear-theory gain curves of
Fig. 2. The linear gain is an order of magnitude smaller
than in the Two-BC lattice for comparable initial energy
spread (Fig. 2 vs. Fig. 1).

In Fig. 2 the additional gain experienced by mi-
crobunching past the bunch compressor (the darker vs.
the lighter dots) is due to the dispersive region of the
spreader. We should mention that care was taken to
minimize the variation of R56 through the spreader by
suitable setting of the spreader dipoles. In an earlier
version of this lattice, before such an optimization was

made, the gain function through the end of the machine
turned out to be considerably larger than in Fig. 2. (A
detailed discussion of the spreader design and its impact
on microbunching will be reported elsewhere.)

Phase-space snapshots are showed in Fig. 8 for the case
of a beam with If = 1 keV peak current and σE0 = 7 keV
initial energy spread (about half the energy spread used
for the calculations of Fig. 4 and 5). The final energy
spread is seen to remain below σE = 120 keV and the
charge density fluctuations at a modest 1% level. Also,
observe the absence of saturation (the energy modulation
in phase space remains ‘upright’, top-right picture).

The One-BC lattice generally more attractive behav-
ior is confirmed by the study of the rms uncorrelated
energy spread at extraction vs. the initial beam rms en-
ergy spread (Fig. 9) showing that energy spreads smaller
that 110 keV would be within reach at If = 0.8 kA. The
figure indicates an optimum tuning of the laser heating
in the neighborhood of 7-8 keV.

V. CONCLUSION

This paper contains the first attempt to apply direct
Vlasov solver methods to the study of the microbunching
instability in single-pass systems.

We have discussed two lattices proposed for the
FERMI project at Electra and limited our study to
consideration of the microbunching instability stemming
from shot noise. This is the most fundamental but not
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FIG. 9: Average of uncorrelated rms energy spread at the exit
vs. rms energy spread at the entry of the One-BC lattice. The
averages are over 30 realizations of shot noise. (See also the
caption of Fig. 7).

the only source of undesired charge density fluctuations,
and therefore our results should be interpreted as provid-
ing, within the limitations of our model, a lower bound
to quality degradation experienced by the beam. In the
current baseline lattice (with two bunch compressors), we
found that the microbunching instability from shot noise
alone would be sufficient to cause an energy spread at ex-
traction larger than the desired 150 keV. In contrast, the
one bunch-compressor lattice we have considered would
meet the required specifications and leave a comfortable
buffer provided that the laser heater be tuned to gener-
ate an initial energy spread of 7-8 keV. Additional studies
are needed to verify that the desired beam quality would
be maintained in the transverse phase space as well.

Because of a number of approximations involved in the
model (including a simplified treatment of the longitudi-
nal space charge) some caution should be exercised at
this time in assessing our results.

A validation of our solver against macroparticle simu-
lations is in our plans. We have yet to carry out a detailed
comparison. However, preliminary contacts with results
from IMPACT simulations using 1B macroparticles for
the FERMI Two-BC lattice are quite encouraging [2].
We should point out that a meaningful comparison with
simulations employing a limited number of macroparti-
cles could be made as well provided that in our Vlasov
solver the amplitude of the initial random perturbation
to the beam density be adjusted to reflect the shot noise
of the macroparticle distribution.

While we do not expect the level of accuracy of a 2D
Vlasov solver to be the same as that of multi-billion
macroparticle simulations in a full 6D phase space we
should emphasize that the value of our model is in its
simplicity and speed of execution [23], which should make
it a useful tool for optimization and comparative studies.

VI. ACKNOWLEDGMENTS

We would like to thank W. Fawley, R. Warnock, and in
particular A. Zholents for may fruitful discussions. Work

supported by Department of Energy Contract No. DE-
AC02-05CH11231.

APPENDIX A: LINEAR THEORY IN THE
PRESENCE OF ACCELERATION

The bunching function for a coasting beam with den-
sity function f(z) = (x, px, z, δ) in a 4D phase space is
defined as the Fourier integral

b(k, s) =
∫

e−ikzf(z, s)z. (A1)

In linear approximation a sinusoidal charge perturbation
of amplitude b(k0, s0) at s = s0 with wave number k0 will
evolve into a sinusoidal modulation of amplitude b(k, s)
and wavenumber k(s) = C(s0, s)k0 at s > s0, where
C(s0, s) the compression experienced by the beam from
s0 to s. A Volterra-type integral equation for b(k, s) was
derived in [12] (see also [13] whose notation we follow
more closely) in the absence of acceleration. In this Ap-
pendix we show how with few modifications the same
equation can be extended to include the more general
case with acceleration.

Consider the unperturbed dynamics (no collective ef-
fects) in terms of the horizontal coordinate x, the lon-
gitudinal position z and the energy deviation δ̂ = [E −
Er(s)]/E0 scaled with respect to the beam energy E0 =
Er(s0) at s = s0:

x′′ + r(s)x′ + kx(s)x =
δ̂

R(s)
E0

Er(s)
, (A2)

d

ds
δ̂ = −q(s)z,

dz

ds
= − x

R(s)
, (A3)

where r(s) = E−1
r (dEr/ds) is the (relative) energy gain

due to acceleration and q(s) = ∆Ecav
E0Lcav

ωrf

c cos φs, with
both r(s) and q(s) vanishing everywhere outside the RF
structures.

The motion in these coordinates is non-Hamiltonian.
However, it is well known that we can recover canonical
equations of motion if r(s) ¿ 1 by introducing the new
coordinate x̂ = x[E0/Er]−1/2. Upon inserting this ex-
pression into (A2-A3) and neglecting slow varying terms
we find

x̂′′ + kx(s)x̂ =
δ̂

R(s)

[
E0

Er(s)

]1/2

, (A4)

dδ̂

ds
= −q(s)z, (A5)

dz

ds
= − x̂

R(s)

[
E0

Er(s)

]1/2

. (A6)

Denote with R̂
s→s′

the transfer matrix yielding the
solutions of (A4-A6) in terms of the coordinates ẑ =
(x̂, p̂x = dx̂/ds, ẑ = z, δ̂).
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The transfer matrix has the general form

R̂
s→s′

=




R̂s→s′
11 R̂s→s′

12 0 R̂s→s′
16

R̂s→s′
21 R̂s→s′

22 0 R̂s→s′
26

R̂s→s′
51 R̂s→s′

52 R̂s→s′
55 R̂s→s′

56

0 0 0 R̂s→s′
66


 . (A7)

Written in terms of the new coordinates ẑ and trans-
fer matrix R̂ the integral equation for the bunch func-
tion is formally the same as in [12, 13]. The only dif-
ference is in the expression of the compression factor
C(s, s′) = 1/[R̂s→s′

55 +h(s)R̂s→s′
56 ], where in the case with

acceleration R̂s→s′
55 is in general different from unity.

Specifically, the above mentioned integral equation for
a beam matched to the lattice with horizontal gaussian
density, rms normalized emittance εx0, and gaussian en-
ergy distribution with rms spread σδ̂0 reads

b[k(s), s] = b0[k(s), s] +
∫ s

s0

K(τ, s)b[k(s), s]dτ (A8)

where the kernel K(τ, s) is defined by

K(τ, s) = ik(s)R̂τ→s
56

I(τ)
IA

Z[k(τ), τ ]
γ0

×

exp
(
−k2

0

2
U2σ2

δ̂0

)
exp

(
− k2

0εx0

2γ0βx0
T

)
,(A9)

with IA ' 17.045 kA (the Alfvén current),

U = U(s, τ) = C(s)R̂56(s)− C(τ)R̂56(τ), (A10)

and T = T (s, τ) = (βx0V − αx0W )2 + W 2. In turn,

V (s, τ) = C(s)R̂51(s)− C(τ)R̂51(τ), (A11)

W (s, τ) = C(s)R̂52(s)− C(τ)R̂52(τ). (A12)

In the above expressions we used the short-hand no-
tation R̂ij(s) = R̂s0→s

ij , and C(s) = C(s0, s). The beam
peak current I(s) and wave number k(s) at s scale ac-
cording to C(s): k(s) = C(s)k0 and I(s) = C(s)I0

where k0 and I0 are the values at the start of the linac.
The relativistic factor γ0 = γ(s0) and Twiss functions
αx0 = αx(s0), βx0 = βx(s0) are also understood to be
the values at s = s0.

Finally, the inhomogeneous term b0[k(s), s] in the RHS
of (A8) has the expression:

b0[k(s), s] = b0(k0, s0) exp

(
−

k2(s)R̂2
56(s)σ

2
δ̂0

2

)
×

exp
(
−k(s)2H(s)εx0

2γ(s)

)
. (A13)

The dispersion invariant H can be written as

H(s) =
γ(s)
γ0

[βx0R̂51(s)− αx0R̂52(s)]2 + R̂2
52(s)

βx0
. (A14)
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