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ABSTRACT 

In a paper published at the previous ICBGM conference, it was argued that having knowledge of the internal 

dynamics within the passenger's body could be attributed to their perception of ride comfort. Using the 

biomechanical model developed for this purpose, a novel, quantitative ride comfort metric is devised. Then 

the passenger model is exposed to the disturbance vibration coming in from a generic vehicle. A bond-

graph representation of a full-car model is developed and the complete system, including the passenger, the 

seat, and the vehicle body as well as wheels and unsprung masses, is simulated. The nonlinear system of 

equations is linearized and an observer-based state-variable-feedback controller is designed. It is shown 

that with 3 sensors collocated with 3 actuators for seat control positioned at the rest locations on the seat, 

ride comfort can be improved significantly while maintaining little power consumption. 

Keywords: Passenger Biomechanics, Ride Comfort, Bond Graph Modeling, Seat Control 

1. INTRODUCTION 

The concept of ride comfort in ground vehicles 

comfort is a major component in the development 

of vehicle dynamics. However, passenger comfort 

is conceptually a quality which cannot be directly 

measured. With the rise of autonomous vehicles 

and the competition for the market in the vehicle 

industry, passenger comfort is a vital concern for 

automotive manufacturers(Wang, Zhao et al. 

2020). Therefore, passenger comfort must 

somehow be quantified such that it could be 

integrated into a vehicle design. 

But how is that achieved? First one must notice 

that there are many qualitative factors that impact 

the perception of ride comfort, such as 

temperature, air quality, visual and auditory ques, 

and vibration(Da Silva 2002). Since this research 

is studying ride comfort from a mechanical 

engineering perspective, vibration is considered to 

be the sole agent responsible for ride comfort. 

To quantify ride comfort, one straight-forward 

way is to perform tests on human subjects. 

However, there are not many passenger-comfort 

experiments available in the literature, especially 

those which have well accounted for various ages, 

physiques, and other subject-dependent criteria. 

Due to the subjectivity of what everyone may 

experience in the test, it is rather difficult to come 

up with a unique measure of ride comfort using 

passenger test data. Wang et al.(Wang, Zhao et al. 

2020) stated that comfort can substantially 

enhance people’s acceptance of autonomous 

vehicles and argued that ride comfort is mostly 

associated with vehicle’s acceleration and that 

their comfort measure correlates most 

significantly with a linear combination of all four 

lateral/longitudinal acceleration/jerk signals. 

However, their comfort criterion has correlation 

discrepancies against gender and the direction of 

motion (longitudinal/lateral). Oborne(Oborne 

1976, Oborne 1977) published a critical 

assessment of the available experimental studies 

on passenger comfort with respect to vertical 

vibrations and argued that said experimental tests 

were inconclusive and that their results have 
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barely benefited the design engineers as their 

multiple conclusions do not comply with one 

another. For instance, they point out that the same 

vertical acceleration in magnitude and frequency 

(0.01g at 10 Hz) was perceived quite differently in 

the available ride comfort studies within the 

literature, ranging from “more than 

uncomfortable”(Jacklin 1936) to “Just above 

threshold”(Dieckmann 1958) and “almost very 

good”(Sperling and Betzhold 1957). 

Yang et al.(Yang, Ren et al. 2009) reviewed 

several published experiments on vibration 

comfort. In their rather extensive research, it was 

found that the available literature is discrepant 

when it comes to determining ride comfort levels. 

They argued that a peak acceleration value of 0.3 

𝑚/𝑠2  corresponded to conflicting indications of 

comfort amongst the various sources including 

“almost uncomfortable”(Reiher and Meister 

1932), “almost perceptible”(Fothergill and Griffin 

1977), “comfortable”(Oborne and Clarke 1974), 

“not uncomfortable”(Jones and DJ 1974, Sharma 

2016), and “very unsatisfactory”(Enders, 

Burkhard et al. 2019). 

Multiple studies, the most recognized of which 

being the ISO2631(ISO 1997), rely on the premise 

that acceleration is the proper measure of ride 

comfort where the smaller the acceleration, the 

more comfortable the ride. The ISO2631 is an ISO 

standard on human whole-body vibrations that 

chooses acceleration as the responsible agent for 

ride comfort and suggests frequency weighting 

filters for the acceleration signal in the vertical, 

lateral, and longitudinal directions to account for 

humans’ perception of vibration intensity. 

Afterwards, a net value of the filtered acceleration 

signal is calculated and cross-referenced with the 

ranges given by ISO2631 for thresholds of 

comfort(ISO 1997). 

The US Army Tank Automotive Center conducted 

an experiment led by Pradko and Lee in 1966 

where in a passenger test, they urged that the 

passengers’ perception of ride comfort did not 

correlate well with  acceleration data, whereas it 

agreed rather promisingly with data for “Average 
Absorbed Power”, a quantity that is proportional 

to the square of the acceleration signal (similar to 

a power spectral density) with a proportionality 

constant that is only frequency-dependent and is 

constant for any individual frequency(Pradko and 

Lee 1966). This research culminated in an 

industrial standard known as Adjusted Absorbed 

Power or AAP which states that a ride is 

comfortable as long as the adjusted absorbed 

power remains below 6 Watts. Besides ISO2631 

and AAP, other industry-adopted ride comfort 

standards include the acceleration-based VDI-

2057 from Germany(VDI 2002), and the 

acceleration-based BS-6841 from the UK(BSI 

1987). In a study to investigate the applicability of 

the four aforementioned established industrial 

standards to ride comfort in off-road vehicles, 

Els(Els 2005) argued that while the four ride 

comfort standards had similar predictions for 

conservative ride conditions and that they agreed 

on the trend that higher acceleration exacerbates 

the perception of ride comfort, they did not agree 

on ride comfort thresholds, as a ride scenario could 

be perceived as comfortable according to one 

standard and uncomfortable according to another. 

Amongst Els’ findings was another keen 

observation: their study shows that ride comfort is 

subjective, as the same ride had been perceived 

differently among people who had different 

occupations, such that the managers had rarely 

found a ride comfortable whereas soldiers rarely 

found one uncomfortable. 

Judging from the aforementioned studies and how 

their introduced metrics for passenger comfort are 

in partial defiance of one another, it can be 

concluded that a universal ride comfort index does 

not yet exist and that currently established indices 

are prone to subjective discrepancies.  

Much like cold being merely the absence of heat, 

comfort seems to virtually be the lack of 

discomfort. If the human body undergoes 

vibrations which would make it feel 

uncomfortable, that will have to be felt as the result 

of a nervous connection transmitting signals of 

pain/discomfort. Since the body’s musculoskeletal 

system (the body’s internal mechanical domain) is 

essentially responsible for “taking in” and 

“feeling” said input motions to the body, any 

motion-induced discomfort must correspond to a 

nervous signal coming from the musculoskeletal 

system. And those nerves in turn are associated 

with “changes” within the musculoskeletal system 

which are in fact the body’s internal dynamics. 

The author hereby claims that knowledge of the 

internal dynamics of the body in response to the 
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disturbance input vibrations correlates with the 

nervous signals which “feel” the input motion and 

therefore constitute one’s perception of 

comfort/discomfort. Hence, it is proposed that 

through modeling the body’s internal dynamics in 

response to the input motions from a vehicle, one 

could determine whether said ride is comfortable 

or not. The author hypothesizes that if the body’s 

internal mechanics are adequately modeled, one 

can correlate its response to input vibration with 

feelings of discomfort. If motions from the internal 

dynamics model exceed their respective 

comfortable range of motion, this will signify 

discomfort. In other words, one could describe a 

most comfortable ride as one that during which the 

least amount of internal motion/reaction is induced 

within the human body; and that the higher the 

levels of internal motion/reaction, the higher the 

discomfort. 

To address the lack of a ubiquitous ride comfort 

index, a quantitative ride comfort metric will be 

developed that can estimate the effect of input 

vibrations on the passenger’s body and make a 

comfort inference according to its internal, 

dynamic response. Should such a metric be 

available, one can associate controllable vehicle 

outputs with ride comfort and develop vehicle 

control algorithms accordingly or design vehicle 

systems to achieve maximum ride comfort. This 

provides the motivation for developing a 

biomechanical model of a vehicle’s passenger. 

This model should be sufficiently sophisticated to 

include the necessary degrees of freedom while 

still not being too complicated to prevent intuition. 

Henceforth this proposed biomechanical model 

will be known as the Passenger Model. A 

subsequent vehicle model will be built and the 

passenger model will be subjected to vibrations 

coming in from a vehicle model as it traverses a 

random road. A novel ride comfort metric will be 

devised according to passenger biomechanics and 

finally, a controller will be designed which will 

optimize the introduced ride comfort metric. 

 

2. MODELING 

The modeling effort includes the development of 

the passenger model, the vehicle model, the ride 

comfort metric, and the controller design. 

 

2.1. PASSENGER MODEL 

The passenger model has been developed in a 

previous study with the aid of bond graphs (Akbari 

and Margolis 2021, Akbari and Margolis 2024). 

Fig.1 shows a schematic of the passenger model. 

 

 

Figure 1. Schematic of the passenger model 

With the passenger model at hand, a vehicle model 

is required to calculate the input vibrations from 

the vehicle to the passenger model. 

 

2.2. VEHICLE MODEL 

A full-car model is developed using bond graphs. 

Fig. 2 displays a schematic of the vehicle model. 
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Figure 2. The full car model 

The employed vehicle model belongs to a 4-corner 

vehicle with suspension units in each corner and 

with front and rear anti-roll bars. The inputs to the 

vehicle model are the front steered wheels’ angle 

and the road input below each corner. The bond 

graph for the vehicle model excluding the anti-roll 

bars is given in Fig.3. 

 

Figure 3. Full car model bond graph 

The anti-roll bar has not been given in the vehicle 

bond graph for better spacing. Fig.4 and Fig.5 give 

the anti-roll bar schematic and bond graph. 

 

Figure 4. Anti-roll bar schematic 

 

 

Figure 5. Front Anti-roll bar bond graph  

With the bond graphs at hand, the equations of 

motion can be derived in a state-space where the 

state variables are the momenta associated with 

inertia elements and displacements associated with 

spring elements. 

 

The translational equations of motion for the 

sprung mass are given as follows: 

 

𝑝̇𝑈 = 𝑀𝑈̇ = −𝑀𝑊𝜔𝑝 + 𝑀𝑉𝜔𝑦 + (𝐹𝑥𝑅𝑓
+ 𝐹𝑥𝐿𝑓

) cos 𝛿

− (𝐹𝑦𝑅𝑓
+ 𝐹𝑦𝐿𝑓

) sin 𝛿 + 𝐹𝑥𝑅𝑟
+ 𝐹𝑥𝐿𝑟

 

(1) 

𝑝̇𝑉 = 𝑀𝑉̇ = −𝑀𝑈𝜔𝑦 + 𝑀𝑊𝜔𝑟 + (𝐹𝑦𝑅𝑓
+ 𝐹𝑦𝐿𝑓

) cos 𝛿

+ (𝐹𝑥𝑅𝑓
+ 𝐹𝑥𝐿𝑓

) sin 𝛿 + 𝐹𝑦𝑅𝑟
+ 𝐹𝑦𝐿𝑟

 

(2) 

𝑝̇𝑊 = 𝑚𝑠𝑊̇ = −𝑚𝑠𝑉𝜔𝑟 + 𝑚𝑠𝑈𝜔𝑝 − 𝑚𝑠𝑔 + 𝐹𝑠𝑅𝑓
+ 𝐹𝑠𝐿𝑓

+ 𝐹𝑠𝑅𝑟
+ 𝐹𝑠𝐿𝑟

 

(3) 

Where  𝑝𝑈 , 𝑝𝑉 , 𝑝𝑊  are the longitudinal, lateral, 

and vertical translational momenta of the sprung 

mass, respectively.  
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The Rotational momentum equations of motion 

for the sprung mass are: 

 

𝑝̇𝑟 = 𝐽𝑟𝜔̇𝑟 = 𝐽𝑝𝜔𝑝𝜔𝑦 − 𝐽𝑦𝜔𝑦𝜔𝑝

+ ℎ((𝐹𝑦𝑅𝑓
+ 𝐹𝑦𝐿𝑓

) cos 𝛿

+ (𝐹𝑥𝑅𝑓
+ 𝐹𝑥𝐿𝑓

) sin 𝛿 + 𝐹𝑦𝑅𝑟
+ 𝐹𝑦𝐿𝑟

)

+
𝑤

2
(−𝐹𝑠𝑅𝑓

+ 𝐹𝑠𝐿𝑓
− 𝐹𝑠𝑅𝑟

+ 𝐹𝑠𝐿𝑟
)

− 2𝑤 (𝐹𝜏𝑓
+ 𝐹𝜏𝑟

) + (𝜏𝑡𝑅𝑓
+ 𝜏𝑡𝐿𝑓

) sin 𝛿 

(4) 

𝑝̇𝑝 = 𝐽𝑝𝜔̇𝑝 = 𝐽𝑦𝜔𝑦𝜔𝑟 − 𝐽𝑟𝜔𝑟𝜔𝑦 + 𝑏(𝐹𝑠𝑅𝑟
+ 𝐹𝑠𝐿𝑟

)

− 𝑎 (𝐹𝑠𝑅𝑓
+ 𝐹𝑠𝐿𝑓

)

− (𝜏𝑡𝑅𝑓
+ 𝜏𝑡𝐿𝑓

) cos 𝛿 − (𝜏𝑡𝑅𝑟
+ 𝜏𝑡𝐿𝑟

)

+ ℎ ((𝐹𝑦𝑅𝑓
+ 𝐹𝑦𝐿𝑓

) sin 𝛿

− (𝐹𝑥𝑅𝑓
+ 𝐹𝑥𝐿𝑓

) cos 𝛿 − (𝐹𝑥𝑅𝑟
+ 𝐹𝑥𝐿𝑟

)) 

(5) 

𝑝̇𝑦 = 𝐽𝑦𝜔̇𝑦 = 𝐽𝑟𝜔𝑟𝜔𝑝 − 𝐽𝑝𝜔𝑝𝜔𝑟

+ 𝑎 ((𝐹𝑦𝑅𝑓
+ 𝐹𝑦𝐿𝑓

) 𝑐𝑜𝑠 𝛿

+ (𝐹𝑥𝑅𝑓
+ 𝐹𝑥𝐿𝑓

) 𝑠𝑖𝑛 𝛿) − 𝑏(𝐹𝑦𝑅𝑟
+ 𝐹𝑦𝐿𝑟

)

+
𝑤

2
((𝐹𝑥𝑅𝑓

− 𝐹𝑥𝐿𝑓
) 𝑐𝑜𝑠 𝛿

+ (𝐹𝑦𝐿𝑓
− 𝐹𝑦𝑅𝑓

) 𝑠𝑖𝑛 𝛿 + (𝐹𝑥𝑅𝑟
− 𝐹𝑥𝐿𝑟

)) 

(6) 

Where  𝑝𝑟 , 𝑝𝑝 , 𝑝𝑦  are the roll, pitch, and yaw 

angular momenta of the sprung mass. 

Here in the equations of motion for the vehicle 

body, the Rf, Lf, Rr, Lr subscripts stand for right 

front, left front, right rear, and left rear, pertaining 

to each individual corner. Also Fx and Fy are 

longitudinal and lateral forces that come from a 

Dugoff tire model. Here 𝛿  is the front steered 

wheels angle, J is the moment of inertia with 

subscripts r, p, and y pertaining to roll, pitch, and 

yaw directions. M is the total vehicle mass, ms is 

the sprung mass, and Fs are suspension forces 

pertaining to each corner. The vehicle body spatial 

velocities include U, V, W being the longitudinal, 

lateral, and vertical center of gravity velocities 

with 𝜔𝑟 , 𝜔𝑝, 𝜔𝑦  being the roll, pitch, and yaw 

angular velocities around the vehicle’s principal 

axes. 

 

The vehicle model has been validated for random 

road input generation, vertical dynamics, and 

horizontal dynamics, respectively against 

ISO8608(Múčka 2017), Margolis et al.(Margolis 

and Nobles 1991), and CARSIM, which is a 

commercially established vehicle dynamics 

simulation software. 

 

2.3. RIDE COMFORT METRIC 

With both passenger model and vehicle model 

having been developed, we can now proceed to 

devise the novel, quantitative ride comfort metric. 

Decades-long studies have shown that back pain 

and discomfort is mostly associated with the lower 

lumbar spine(Katz 2006). In particular, the L5S1 

and L4L5 discs are susceptible to the highest 

levels of trauma. Therefore, the said two joints are 

selected and their deviation from their most 

comfortable state, i.e. their static equilibrium, is 

considered as a discomfort index. As the passenger 

model is within a gravity field, every compliance 

element that has been modeled as a spring has a 

non-zero initial displacement value. The non-

dimensional deviations from said initial 

displacements for the L5S1 and L4L5 joints are 

introduced as follows: 

𝑞∗ =
𝑞 − 𝑞0

𝑞0
   ;    𝑞

= {𝑞𝑎𝐿5𝑆1
, 𝑞𝑠𝐿5𝑆1

, 𝑞𝑟𝐿5𝑆1
, 𝑞𝑎𝐿4𝐿5

, 𝑞𝑠𝐿4𝐿5
, 𝑞𝑟𝐿4𝐿5

} 

(7) 

 

Here the a, s, and r subscripts denote axial, shear, 

and rotary displacements within the joints of 

interest. 

 

The square of these non-displacement deviations 

is considered as a ride-discomfort measure. The 

next step is to calculate one combined ride-

discomfort index using a weighted sum, as the 

contribution of each deviation to the total 

discomfort metric could be different. 

To come up with individual weighting factors, 

non-dimensional energies were defined as the time 

integral of the square of the magnitude of the 

displacement deviation. Parseval’s Theorem for 
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Fourier Transforms indicates an equivalence 

between time-domain and frequency domain for 

said energy signals. 

𝐸𝑖
∗ = ∫|𝑞𝑖

∗(𝑡)|2𝑑𝑡

∞

−∞

=
1

2𝜋
∫|𝑄𝑖

∗(𝜔)|2𝑑𝜔

∞

−∞

 

(8) 

 

These 𝐸𝑖
∗energy signals were calculated for each 

direction. The simulation was run 100 times and 

the energies were normalized by their minimum 

value each time with the quotient being considered 

as the weighting factor for that particular direction. 

𝐸∗ = ⋃𝐸𝑖
∗

9

𝑖=1

     ;       𝑤𝑖 =
𝐸𝑖

∗

min (𝐸∗)
 

(9) 

 

It was found that the calculated weighting factors 

had a negligible standard deviation amidst the 100 

runs and therefore the calculated weights could be 

employed in constructing the total cost function. 

Now everything is ready to define the ride-comfort 

metric as follows. 

𝐴. 𝑅. 𝐶 = ∫ ∑𝑤𝑖𝑞𝑖
∗2

6

𝑖=1

𝑑𝑡

∞

0

 

(10) 

Where ARC stands for (First Author’s initials) 

Ride Comfort, and the proposed ride comfort 

index will be henceforth known as the ARC. 

Building on the original hypothesis, a ride which 

corresponds to the smallest possible ARC would 

be most comfortable. The ARC is technically a 

measure of discomfort and therefore the lower the 

ARC, the more comfortable the ride. It is essential 

to address that the ARC is the integral of an always 

positive signal and therefore it ever increases and 

an appropriate controller would mitigate this 

increase as much as possible. 

The expanded form of the ARC is given as 

follows. 

𝐴. 𝑅. 𝐶 = ∫ {(𝑞∗
𝑎𝐿5𝑆1

)
2
+ 2.06 (𝑞∗

𝑠𝐿5𝑆1
)
2
+ 2.33 (𝑞∗

𝑟𝐿5𝑆1
)
2

∞

0

+ 1.27 (𝑞∗
𝑎𝐿4𝐿5

)
2
+ 8.30 (𝑞∗

𝑠𝐿4𝐿5
)
2

+ 5(𝑞∗
𝑟𝐿4𝐿5

)
2
} 𝑑𝑡 

(11) 

 

2.4. CONTROLLER DESIGN 

The proposed control strategy for optimizing 

passenger ride comfort in a moving vehicle is to 

control the seats instead of the entire suspension. 

Fig.6 gives a schematic of the seat control and 

actuator locations. Three force actuators are 

assumed to have been placed in those locations 

where the seat passively exerts force on the 

passenger body, next to the passive springs and 

dampers already in place, namely being in the 

seat’s hip cushion, lumbar backrest, and thoracic 

backrest. 

Given that the equations of motion are given in a 

state-space, a state-variable feedback control 

strategy seems appropriate. In order for such 

strategy to work, the state variables are required. 

Since there is no direct access to the state 

variables, an observer is required which could 

estimate the state variables from certain sensor 

outputs. For the observing sensors, it is assumed 

that displacement sensors are placed right next to 

the actuators, a control/estimation technique 

known as colocation.  

 

 

Figure 6. Schematic of actuator/sensor location 

and control/estimation strategy 
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For the next step, the original, nonlinear system of 

equations are linearized around their equilibrium 

position. Fig.7 shows a comparison of the response 

of the original nonlinear system and the linearized 

system to a random road input for two of the main 

signals employed to construct the ARC cost 

function. 

 

Figure 7. Comparison of the linearized system to 

the original nonlinear system 

As is noticed in Fig.7, the linearized system tracks 

the response of the original, nonlinear system with 

high accuracy. Therefore, the linearized model can 

be trusted in designing a controller and an 

observer. 

A Linear Quadratic cost function has been 

proposed and a Linear Quadratic Regulator (LQR) 

is used for the control of the 3 actuators. The LQR 

algorithm gives the state-gain matrix K such that 

when multiplied by the state vector yields 

commands to the actuators that will minimize the 

quadratic cost function (Lancaster and Rodman 

1995). The quadratic cost function is given as 

follows. 

𝐽 = ∫(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 + 2𝑥𝑇𝑁𝑢)𝑑𝑡

∞

0

 

𝑢⃗ = −𝐾𝑥  →  𝐽𝑚𝑖𝑛 

(12) 

Here J is the total cost function, Q and R are 

weighting matrices for the states and inputs, 

respectively, and N is a weighting matrix for any 

non-linear cross term in the cost function that 

might include the product of a state and an input. 

Once the gain matrix K is found, assuming one has 

access to the states, then −𝐾𝑥  input will ensure the 

cost function would arrive at a global minimum. 

The cost function is re-written in terms of ARC 

and the specified inputs. 

𝐽 = ∫ {∑𝑄𝑖𝑞𝑖
∗2

6

𝑖=1

+ 𝑅1𝐹𝑐𝐻

2 + 𝑅2𝐹𝑐𝐿

2 + 𝑅3𝐹𝑐𝑇

2} 𝑑𝑡 =

∞

0

𝐴𝑅𝐶

+ ∫(𝑅1𝐹𝑐𝐻

2 + 𝑅2𝐹𝑐𝐿

2 + 𝑅3𝐹𝑐𝑇

2)𝑑𝑡

∞

0

 

(13) 

The 𝑄𝑖  weights are selected to match the found 

weightings for the ARC and the 𝑅𝑖  weights are 

selected such that ARC is minimized while not 

consuming excessive energy. 

Once the LQR design is complete, the observer 

will be designed using a Kalman Filter(Welch 

2020). With the estimated states at hand, the state-

space equations for the aggregated system 

become: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢   ,      𝑦 = 𝐶𝑥   ,     𝑢 = −𝐾𝑥 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐿(𝑦 − 𝑦̂)   ,     𝑦̂ = 𝐶𝑥      ,    𝑢 = −𝐾𝑥 

(14) 

Here A and B are the same system matrices from 

the linearization, C is the matrix that associates the 

sensor outputs with the system states, and L is the 

observer gain matrix which determines the 

performance of the estimator to be designed, i.e., 

how fast can the observed 𝑥̂ states track the actual 

𝑥 states. Fig.8 shows how the observer tracks the 

states once a non-zero initial condition is forced 

upon the system. 

 

Figure 8. Checking the observer performance for 

four arbitrary states 

It can be seen in Fig.8 that the observer manages 

to track the states adequately after half a second. 

Therefore, the observer can be trusted to provide 
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the state-variables for the state-variable feedback 

control. 

 

3. RESULTS AND DISCUSSION 

Once the observer-based controller is put in place, 

its performance in mitigating the ARC cost 

function can be assessed. Fig. 9 shows the 

performance of the controlled system against the 

passive system for the ARC cost function. 

 

Figure 9. Comparison of the controlled system’s 

performance against the passive system 

It can be noticed in Fig.9 that the controller has 

managed to reduce the ARC by almost 60% which 

shows that the controller has mitigated the internal 

dynamic deviations of the passenger model and 

therefore enhanced ride comfort by 60%. 

The next step is to check the amount of the 

required power and force for the actuators which 

are shown in Fig. 10. 

 

Figure 10. Input power and force requirements 

for the actuators 

It can be seen in Fig.10 that both the power 

consumption and the force input requirements for 

the actuators are reasonable. 

To ensure the controller’s performance, the system 

is also exposed to a large transient input such as a 

rough bump like the one shown in Fig.11. 

 

Figure 11. Profile of a large transient bump input 

 

Figure 12. Heave acceleration and tire normal 

force in response to going over the harsh bump 

Fig.12 shows that once the vehicle traverses the 

large bump, the tires momentarily lose contact 

with the ground and excessive heave accelerations 

are experienced. 

 

Again, the controller’s performance was assessed 

against the large bump input. Fig. 13 gives the 

ARC cost function for the controlled system vs the 

passive system as the vehicle goes over the harsh 

bump. 
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Figure 13. Controller performance in mitigating 

the ARC over a bump 

It can be noticed in Fig.13 that the controller has 

performed against transient, sudden inputs just as 

well as steady, random inputs. 

The power consumption and force requirements 

for traversing the bump in given in Fig.14 

 

Figure 14. Power and force requirements for the 

controlled system when traversing a bump 

Fig. 14 shows that while power/force requirements 

for the controller when traversing a harsh bump 

are larger than when going over a random road, 

they are still reasonable. 

4. CONCLUSION 

In order to come up with a quantitative, non-

subjective ride comfort metric, one was devised as 

a comfort cost function according to passenger 

biomechanics which came off of a nonlinear 

planar analytical model of a vehicle’s passenger. 

To mitigate the cost function known as the ARC,  

the non-linear passenger model was linearized, 

and an observer-based state variable feedback 

controller was designed to reduce the ARC which 

corroborates with better ride comfort. It was 

gathered that the controller can reduce the ARC by 

60% when going over a random road without 

consuming excessive power or force. If exposed to 

extreme road inputs such as a rough bump, it was 

observed that the controller can still reduce the 

ARC by 50%, despite requiring more power and 

force. 
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