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Article

ADHD is a developmental disorder characterized by  
inattention, hyperactive or impulsive behavior, or varying 
combinations of these symptom domains (American 
Psychiatric Association, 2013; Bell, 2011). ADHD is clini-
cally heterogeneous, likely due to multiple etiologic path-
ways, and high rates of psychiatric comorbidity are 
common. Estimates suggest that 33% to 50% of children 
with ADHD exhibit deficits in executive functioning (EF), 
such as working memory, response inhibition, planning, 
and vigilance (Biederman et al., 2004; Loo et al., 2007; 
Nigg et al., 2005). EFs are significantly associated with 
ADHD severity and may play an essential role in explain-
ing the intra-individual differences in symptoms and 
symptom improvement in ADHD (Willcutt et al., 2005). 
Previous studies have found that EF is an important mod-
erator for behavioral and stimulant medication treatment 
outcomes, highlighting the practical importance of under-
standing EF in the ADHD population (Fosco et al., 2021; 
Ramos-Galarza & Pérez-Salas, 2021).

Alpha Modulation in ADHD and the Putative 
Role of EF as a Mediator

The alpha frequency band (8–12 Hz), a brain oscillation 
measured using electroencephalography (EEG), is strongly 
associated with top-down EF (Foxe & Snyder, 2011; 
Klimesch et al., 2011; Mathewson et al., 2011). Studies 
have found that when participants are asked to do attention 
or working memory tasks, alpha oscillations block task-
irrelevant pathways in the brain by selectively inhibiting 
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specific brain regions (Jensen & Mazaheri, 2010). Given 
the link between EF and ADHD, there are numerous stud-
ies that have investigated differences between alpha modu-
lation in the ADHD and typically developing (TD) children 
(Cañigueral et al., 2022; Guo et al., 2022; Jensen & 
Mazaheri, 2010; Lenartowicz et al., 2019). In general, 
these studies have demonstrated that modulation of alpha 
oscillations during working memory trials is weaker in the 
ADHD group in comparison to the TD controls. For exam-
ple, a study by Lenartowicz et al. (2014) found robust 
group differences in the modulation of alpha-band power 
during the encoding and retrieval phases of a spatial work-
ing memory task between TD controls and children with 
ADHD. Differences in alpha event-related decrease (ERD) 
between an ADHD sample and typically developing con-
trols are not exclusive to children and are also found across 
the age span (Fosco et al., 2021; Michelini et al., 2022; 
Ramos-Galarza & Pérez-Salas, 2021). Overall, weaker 
alpha power modulation in ADHD samples is consistent 
with an altered neurocognitive system contributing to dif-
ficulties in attentional shifting and engagement during 
stimulus processing (Herrmann & Knight, 2001). The dor-
sal attention network constitutes one core element of this 
neurocognitive system that directly affects EF performance 
(Szczepanski et al., 2013).

Although prior studies have established a significant 
relation between EF and alpha modulation in both ADHD 
and TD samples, no study has yet examined how alpha 
power and EF interact with the individual symptoms of 
ADHD. Mental disorders, such as ADHD, can be concep-
tualized as networks of individual symptoms influencing 
each other (Borsboom & Cramer, 2013; McNally, 2016; 
van Borkulo et al., 2015). Conceptualizing ADHD as a net-
work of symptoms and examining the effect of alpha power 
and EF on the symptom network can highlight probable 
pathophysiological pathways and contribute to targeted 
symptom-specific intervention efforts. The first goal of the 
current study is to examine the associations among the 18 
DSM-5 individual ADHD symptoms and the relative con-
tributions of each individual symptom in the ADHD symp-
tom network. Our second goal is to integrate brain markers 
of attention and EF measures into the ADHD network of 
symptoms and explore which symptoms of ADHD are 
most associated with alpha ERD and EF.

A robust statistical framework for understanding rela-
tionships and interactions between symptoms of mental dis-
orders and related covariates is network analysis (NA; e.g., 
Borsboom & Cramer, 2013; McNally, 2016). The network 
theory conceptualizes mental disorders as systems of caus-
ally connected symptoms instead of effects of a latent dis-
order (Borsboom & Cramer, 2013). Network analysis refers 
to a toolbox of statistical approaches (Freichel, 2023) that 
identify conditional pairwise associations among all vari-
ables included in the network. A main advantage of using 

network analysis in this study is that we can visualize the 
multivariate correlational structure between ADHD symp-
toms, EF, and alpha modulation; and examine which vari-
ables may significantly influence all other variables in the 
network. Network analysis is in line with our purpose of 
exploring individual ADHD symptoms instead of sum 
scores. Prior studies focusing on the relationship between 
ADHD and neurocognitive markers, conceptualize ADHD 
as a categorical construct with symptoms of inattention and 
hyperactivity-impulsivity. However, our study aims to iden-
tify associations with individual ADHD symptoms that are 
typically hidden in categorical diagnoses or sum-score anal-
yses. This symptom-specific approach is congruent with 
current efforts in the domain of precision psychiatry to 
identify unique ADHD features that can be used to person-
alize treatment and diagnosis (Buitelaar et al., 2022).

Network Analysis Studies on ADHD

To the best of our knowledge, only a handful of studies 
examined networks of ADHD symptomatology. These 
studies have primarily highlighted the differences across 
ages in the structure of symptom networks and the hetero-
geneity of ADHD. Martel et al. (2016) found that ADHD 
symptoms change with development, although symptoms 
such as “often easily distracted” and “difficulty sustaining 
attention” remained central across ages. Silk et al. (2019) 
used network analysis for ADHD symptoms for participants 
with ADHD and controls (aged 6–8 years). Their results 
highlighted the relative importance of the “motoric”-type 
symptoms in the hyperactive symptom domain.

The current study aims to first construct a network 
analysis for the symptoms of ADHD that will replicate 
prior reports. Second, in an exploratory fashion, we aim to 
integrate EF and alpha ERD, a neurophysiological feature 
of selective visual attention, into the ADHD symptom 
network.

Methods

Participants

The sample consists of 828 children (n = 660 ADHD, n = 168 
TD controls) aged 6 to 18 years old who were recruited to 
participate in two ADHD research studies. Both samples 
were combined, and comparable measures were harmo-
nized. One sample was from the baseline visit (i.e., before 
medications were started) of a clinical trial of ADHD medi-
cations (Loo et al., 2016), and the other sample was recruited 
to participate in a family study on the genetics of ADHD 
(Loo et al., 2010). The samples did not overlap (respective 
n = 421 and 407), and a more detailed description of the 
clinical and sociodemographic characteristics of the two 
samples can be found elsewhere (Loo et al., 2010, 2016). 



Vera et al. 1359

A mixed sample, including individuals with and without an 
ADHD diagnosis, was deemed suitable for two reasons: 
First, it provided the necessary variability across all mea-
sured variables, essential for estimating symptom network 
models. Secondly, our study aimed to explore the continuous 
associations between varying levels of ADHD symptom-
atology, executive functioning, and alpha ERD. Participants 
were recruited from the community through targeted adver-
tisements (newspapers, television, radio, posters), primary 
care doctors, and local schools in the area. Participants were 
then briefed on the study requirements and received verbal 
and written consent forms approved by the local institutional 
review board. Loo et al. (2018) report a complete description 
of study protocols.

Procedure

All participants were evaluated for ADHD (any subtype) 
and other childhood psychiatric disorders based on Kiddie-
Schedule for Affective Disorders and Schizophrenia-PL 
(K-SADS-PL; Kaufman et al., 1997) and a clinical inter-
view. Subjects were excluded if they showed any neurologi-
cal disorder, head injury resulting in a concussion, diagnosis 
of schizophrenia or autism, or estimated Full-Scale IQ <70. 
Subjects were asked to refrain from taking ADHD medica-
tions for 24 hours before their visit.

Measures

Clinical Measures. ADHD symptoms were measured with 
the parent-rated Strengths and Weaknesses of ADHD 
symptoms and Normal Behavior scale (SWAN) and the 
Swanson, Nolan, and Pelham (SNAP) rating scale, depend-
ing on the study. The SNAP and SWAN scales were harmo-
nized to integrate both study samples (see Supplemental 
Table 1). SNAP responses are on a 4-point scale (0 = not at 
all to 3 = very much), while SWAN scores are on a 7-point 
scale (0 = far above average to 6 = far below average) (Swan-
son et al., 2012). To harmonize the two scales, we converted 
all SNAP scores to the SWAN metric (from 0 to 3, 1 to 4, 2 
to 5, and 3 to 6). The final symptom scale for the network 
analysis is a 7-point scale where 0 means that the partici-
pant does exceptionally well in a behavior and a score of 6 
means that the behavior is problematic. For more informa-
tion on the harmonization of both scales, see Supplemental 
Information Section S1. The Child Behavior Checklist 
(CBCL 6-18; (Achenbach & Edelbrock, 1991; Achenbach 
et al., 2001) is a widely used parent-completed behavior rat-
ing scale that assesses a wide range of behaviors. Partici-
pants’ IQ was derived with the vocabulary and block design 
subtests of the age-appropriate Wechsler intelligence scale 
(WISC/WAIS; Wechsler, 1999).

Executive Functioning Latent Construct. Because the sample 
for this analysis comes from two different studies, where 

each study used different psychometric tools to measure EF, 
we used the integrative data analysis (IDA) framework to 
harmonize the two study’s EF measures and then we created 
a latent score for EF. IDA is an analytic tool that allows 
researchers to combine raw data across independent studies 
in a way that controls for differences across studies and pro-
vides more accurate measurement of the latent construct 
(Hussong et al., 2013). The EF construct was composed of 
seven measures across both studies, which includes the 
Trail Making Test, the Stroop Color and Word Tests, and the 
WISC/WAIS digit span subtest. Only raw scores from these 
scales were used to create the EF factor score. Higher scores 
in this construct reflect better EF (see Supplemental Infor-
mation for more details on the harmonization procedure). 
The analysis were conducted using Mplus 8 (Muthén & 
Muthén, 2012) and R (Team, 2019).

EEG Recording. EEG was recorded using 40 Ag/AgCl elec-
trodes, and linked ears were used as a reference. Further 
details on the EEG measurement are provided in (Loo et al., 
2018). We used independent component analysis (ICA, 
Jung et al., 2000) to retrieve meaningful independent com-
ponents (ICs) that reflect brain activity in midoccipital and 
midfrontal regions. We divided post-stimulus event-related 
power by a baseline (i.e., pre-stimulus window), which was 
subsequently log-transformed to decibel units. The baseline 
time period used was −600 to −100 ms. We extracted occip-
ital alpha event-related power and then averaged across  
the alpha spectrum (8–12 Hz) during the encoding phase of 
the Sternberg spatial working memory task (0–2 seconds). 
Lower alpha values signify stronger (i.e., more negative) 
alpha ERD. For a more detailed reference for the processing 
steps, please see Lenartowicz et al. (2014). Participants per-
formed a Sternberg spatial working memory (WM) task 
while EEG data were collected (Sternberg, 1966). Each trial 
began with a fixation cross shown for 0.5 seconds, then yel-
low dots appeared on the screen for 2 seconds, and partici-
pants were instructed to remember their location (encoding 
phase). Working memory load was manipulated through the 
number of dots shown (1, 3, 5, and 7), with more dots 
expected to increase working memory demands (“load”). 
Next, during the maintenance phase, a black screen was 
shown for 3 seconds and this was followed by a single-dot 
probe stimulus (3 seconds). Using a button press (left or 
right arrow key), participants were instructed to indicate 
whether the probe stimulus was in the same location as one 
of the encoding stimuli (retrieval phase).

Data Analysis

The data analyses included two steps. First, we identified 
the symptoms that are most influential in the symptom net-
work constellation. We extracted indices of the symptom 
importance, also called centrality indices, in the estimated 
symptom networks for the entire sample and separately in 
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the networks for both groups, ADHD and typical develop-
ing (TD) groups. Second, we expanded upon the symptom 
networks by integrating measures of both EF and EEG 
alpha-ERD which are described in Supplemental Figures 2 
and 3.

Network Estimation. We estimated four separate network 
structures that contained the following nodes: (1) All 18 
ADHD symptoms (see Table 1), (2) inattention symptoms 
and occipital alpha power and EF, (3) hyperactivity-impul-
sivity symptoms and occipital alpha power and EF, (4)  
all ADHD symptoms, occipital alpha power, and EF. All  
networks were estimated on the entire sample (N = 828). 
The networks were estimated using the bootnet package 
(Epskamp & Fried, 2015) that implements the “EBICglasso” 
algorithm. Following visual inspection (see Supplemental 
Figure 4), we treated the symptoms as continuous variables. 
The network structure represents regularized partial correla-
tions with an edge (edge weights = regularized/shrunk partial 
correlations) representing the association between two nodes 
after controlling for all other information in the network. 
Due to the large number of associations in a network and the 
potential for overfitting the “EBICglasso” algorithm is used. 
EBICglasso uses the least absolute shrinkage and selection 
operator (LASSO) regularization method to penalize the 
coefficients and avoid overfit and false-positive findings in 
the networks. To enforce higher specificity, thresholding in 
the EBIC computation was used. We set the EBIC tuning 
parameter to 0.5 to remove non-significant edges and avoid 
spurious edges. This conservative tuning parameter was 
considered appropriate as it errs on the side of caution 
(Epskamp & Fried, 2018).

To examine the robustness and accuracy of the estimated 
edge weights and centrality/clustering indices, we used a 
case-dropping bootstrapping technique (1,000 boots), 
which iteratively drops an increasing proportion of observa-
tions and examines the correlation of the original estimates 
to those of the subsets (Epskamp et al., 2018). The correla-
tion-stability (CS) coefficient (Epskamp et al., 2018) 
describes the results of the bootstraps, specifically the pro-
portion of data that can be dropped to retain a correlation of 
.7 with the estimated centrality coefficients (with 95% 
uncertainty).

All network structures were visualized using the qgraph 
package (Epskamp et al., 2012). The network visualizations 
include the symptoms as nodes that are connected through 
lines (edges), that represent their regularized partial correla-
tions. The thickness of the edges represents the strength of 
association, and the color of the edges describes the sign of 
the relationship (i.e., positive in blue and negative in red). 
All analysis scripts can be accessed through the Open 
Science Framework (tinyurl.com/nv4hdpwk).

Centrality and Clustering Indices. To quantify the relative 
importance of nodes in the network, we examined the con-
nectedness and topology of symptoms in the network. We 
estimated strength centrality—commonly used centrality 
metric that describes the sum of all associations of a given 
symptom to all other nodes (Opsahl et al., 2010), thus 
describing the degree to which that node is implicated in 
the network. For instance, a node with a high strength cen-
trality shows strong connectivity to all other nodes, and 
thus the node plays a significant role in the network. We 
refrained from estimating other popular characteristics of 
node importance, including betweenness and closeness, 
due to their potentially limited reliability in cross-sectional 
networks (Bringmann et al., 2019). To quantify the degree 
to which nodes act as bridges (“bridge symptoms”) between 
different communities of nodes, we estimated a measure of 
bridge (strength) centrality using the networktools package 
(Jones, 2018). Bridge centrality is defined as the sum of 
edge weights between a node and other nodes from a sepa-
rate community.

Results

Participant Characteristics

All participants were between 6 and 18 years old and pre-
dominantly male (see Table 1). The ADHD and control 
groups significantly differed in gender (χ2(1) = 4.892, 
p = .027). There were no significant group differences 
with respect to age (df = 826, p = .3612, t = 0.914) and IQ 
(p = .1744, t = 1.359); however, individuals in the ADHD 
group reported more internalizing (t = −9.099, p < .001) 
and externalizing (t = −11.472, p < .001) problems.

Table 1. Demographic and Clinical Characteristics of Our Sample.

Control (N = 168) ADHD (N = 660) Full sample (N = 828)

Sex
 Female 53 (31%) 146 (22%) 199 (23%)
 Male 115 (69%) 515 (78%) 630 (77%)
Participant age (in years) 10.095 (2.752) 9.871 (2.859) 9.917 (2.838)
CBCL internalizing symptoms Mean (SD) 46.337 (10.053) 57.229 (10.073) 54.711 (11.057)
CBCL externalizing symptoms Mean (SD) 46.467 (9.137) 60.186 (10.316) 57.015 (11.595)
Estimated Full scale IQ standard score Mean (SD) 108.246 (13.542) 106.462 (15.515) 106.825 (15.144)
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Symptom Networks and Centrality Measures

The estimated ADHD symptom network model for the 
entire sample is shown in Figure 1. The nodes represent the 
18 ADHD symptoms, and they are colored according to the 
corresponding subscale (blue = hyperactivity-impulsivity, 
orange = inattention). The ADHD symptoms in the net-
works clearly separate and cluster into the inattentive and 
hyperactivity/impulsivity subscales. The hyperactivity/
impulsivity symptoms appear to be more strongly intercon-
nected with two separate clusters that represent verbal 
(e.g., items blurts, interrupt, turn, talks) and motoric (i.e., 
items motor, seat, runs, fidget) behaviors. Importantly, it 
appears that restless behavior (i.e., fidget, seat, interrupt) 
acts as a bridge between inattention and hyperactivity/
impulsivity symptoms. This visual inspection is consistent 
with estimates of bridge centrality shown in Supplemental 
Figure 1. All edge weights of the networks are also pro-
vided in Supplemental Tables 3 to 6.

The derived centrality measures from the symptom net-
work are presented in Figure 2. Consistent with our visual 
inspection of Figure 1, several nodes show high strength 
centrality. Sustained attention (susatt) and difficulties orga-
nizing tasks (org) are the most central inattentive symptoms. 

Restless-motoric behavior (e.g., motor, seat) is most central 
to the hyperactive-impulsive symptom domain, while symp-
toms “blurts,” “interrupt,” and “turn” were also central. In 
general, hyperactive-impulsive symptoms show on average 
a stronger influence or connection to the wider network 
(strength centrality) than inattentive symptoms (hyperactiv-
ity-impulsivity: M = 0.24, SE = 0.20; inattention: M = −0.24, 
SE = 0.26).

Integrating Alpha Oscillations and Executive 
Functioning into Symptom Networks

To examine how power in the alpha EEG frequency band 
(8–12 Hz) and EF interact with the inattention and hyper-
activity-impulsivity symptom structure of ADHD, we inte-
grated additional markers of the EF construct and occipital 
EEG alpha power as nodes in the network. We were inter-
ested in determining which attention and hyperactive-
impulsive symptoms are most influenced by alpha and EF. 
Figure 3 shows EF and alpha as nodes in a joint symptom-
brain-control network. The EF node is negatively associ-
ated with alpha and acts as a bridge node connecting alpha 
to hyperactivity-impulsivity symptoms, specifically motoric 

Figure 1. ADHD symptom network in entire sample.
Note. Nodes are colored according to the domain that they belong to (orange = inattention, blue = hyperactivity-impulsivity). The thickness of the edges 
denotes the strength of association, and the color of the edges describes the direction of association (blue = positive, red = negative).
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Figure 3. Joint symptom—EF—alpha network.
Note. Higher symptom scores indicate stronger symptom severity/impairments. Lower alpha values signify stronger alpha ERD.

Figure 2. Strength centrality measures for the symptom network in the entire sample.
Note. Standardized z-scores strength centrality estimates are shown. Higher scores represent higher centrality estimates and greater importance in the 
network.
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symptoms (i.e., runs, seat). Although the effect of the rela-
tionships between alpha and ADHD symptoms are small, 
they have adequate power due to the large sample size and 
they reflect actual underlying correlations (see Supplemental 
Material 4).

The network with EF, alpha, inattentive, and hyperac-
tive-impulsive symptoms shown in Figure 3 demonstrates 
that EF is a bridge component connecting alpha power and 
the hyperactivity/impulsivity and inattention symptoms. 
Additional robustness analyses using network comparison 
tests revealed that the network structure was independent of 
age and sex (see Supplemental Material 6). One of the dis-
advantages of including the complete ADHD symptom 
scale is that any small to moderate effect is opaqued by the 
strong correlation between ADHD symptoms, and we lose 
some of the insights that are gained when separating by 
ADHD subscales. This problem is particularly pertinent 
when aiming to uncover cross-modal links that are typically 
weaker (Blanken et al., 2021; Freichel et al., 2023). We 
therefore estimated separate networks for the inattention 
and hyperactivity-impulsivity subscales—see Supplemental 
Material 7. These analyses replicate the findings (1. EF as a 
bridge node, 2. associations between symptoms runs, seat, 
and EF) shown in the entire ADHD symptom network.

Robustness and Network Stability Analysis

We used case-dropping bootstrap (dropping rows from the 
data) to examine the robustness and accuracy of the esti-
mated edge weights and centrality indices from all the pre-
vious networks. A case-dropping bootstrapping analysis 
(1,000 bootstraps) revealed high stability of both edge 
weights and strength centrality estimates. See Supplemental 
Figures 2 and 3 for visualizations of the stability estimates 
for the symptom network estimated for the entire sample. 
All CS coefficients can be found in Supplemental Table 7 in 
the Supplement Material 6. It is recommended that the CS 
coefficient should be above 0.25 (Hevey, 2018), thus indi-
cating sufficient robustness and stability.. An exploratory 
sensitivity analysis (see Supplemental Material 6) using age 
groups based on median split showed no significant differ-
ences in the global ADHD symptom network structure 
(p = .428, M = 0.201) or global network strength (p = .831, 
S = 0.042).

Discussion

Our study extends previous ADHD symptom network stud-
ies in five ways: (1) we constructed ADHD networks based 
on continuous ratings of the 18 ADHD symptoms from the 
SWAN rather than dichotomous ratings of the DSM crite-
rion symptoms; (2) our sample consisted of a wide age 
range of participants from 6 to 18 years old, ADHD and 
controls; (3) through data harmonization, we constructed 

one of the largest samples to date of children with ADHD 
and non-ADHD (control) participants, which is relevant 
given the heterogeneity of symptoms in this population 
(Loo et al., 2018); (4) we presented the first study to inte-
grate brain markers of attention, and EF measures into a 
symptom network model to examine the complex inter-
actions with ADHD symptomatology.

The first goal of our study was to estimate a network con-
stellation for ADHD symptoms. Overall, the ADHD symp-
tom network in Figure 1 shows that the restless-motoric 
behavior (i.e., fidget),”interrupt,” “sustain attention,” and 
“listening” symptoms are important bridges between the 
inattentive and hyperactive/impulsive domains. We refer to 
these group of symptoms as bridge symptoms because they 
connect the two ADHD domains. Bridge symptoms have 
been associated with a higher risk for simultaneous impair-
ment in both symptom domains (Jones et al., 2021; Kaiser 
et al., 2021). These critical symptoms may also be consid-
ered early warning signals and potential targets for interven-
tion efforts (Jones et al., 2021). However, there is mixed 
evidence on the clinical utility of central symptoms when 
they are derived from cross-sectional network analyses 
(Bringmann et al., 2019; Rodebaugh et al., 2018; Spiller 
et al., 2020). For instance, McNally (2021) describes that 
central symptoms (in cross-sectional data) may act as either 
the origin or the recipient of activation, making it challeng-
ing to interpret them as treatment targets.

Figure 1 also demonstrates that symptoms of sustained 
attention, difficulty organizing tasks, talks excessively, 
and fidgeting were most central to the network. These 
group symptoms high on centrality exert a strong influ-
ence on the presence of other ADHD symptoms, and they 
may be possibly represent targets for treatment as they 
offer a high prognostic utility (Elliott et al., 2020). In gen-
eral, we found restless-motoric behavior and sustained 
attention to be highly important in the ADHD symptom 
network, our findings are consistent with Silk et al. (2019) 
and Martel et al. (2016).

A novel contribution of our study is the simultaneous 
integration of EF and occipital alpha power into the symp-
tom networks of ADHD. Existing studies that integrate 
measure of EF in symptom networks (Karalunas et al., 
2021) exist, however, to the best of our knowledge, this is 
the first study to integrate cognitive and neural markers  
into networks of ADHD behaviors. We examined the role  
of behavioral measures of EF in the symptom network.  
We examined each symptom domain separately before esti-
mating a network with all symptoms, which allowed us to 
highlight any small effects of the brain-behavior correlates 
that might otherwise be opaque by the strong correlation 
between symptoms. The network in Figure 3 shows that 
alpha enters the attention-related symptom network through 
EF, which closely relates to one key symptom (listen). 
Previous ADHD research in listening ability has highlighted 
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the correlation between low EF and listening difficulties 
before. For example, McInnes et al. (2003) demonstrated 
that listening skills were significantly correlated with both 
verbal and spatial working memory, and parent–teacher  
ratings of inattention and hyperactivity/impulsivity. This 
link between EF and listening is expected given that listen-
ing to directions requires several executive functions such 
as self-control, sustained attention, and inhibition.

The network in Supplemental Figure 3 shows the rela-
tionship between the EF construct, alpha ERD, and the 
hyperactive/impulsive symptom network. In this network, 
the same pattern is replicated, where alpha ERD enters the 
symptom network through EF. Supplemental Figure 1 also 
shows that two hyperactive/impulsive key symptoms (runs 
and leaves seat) are bridge symptoms to the hyperactive/
impulsive symptom network. We investigated the role of 
age considering its association with the developmental 
decline in the importance of hyperactivity over time (Hart 
et al., 1995). However, after controlling for age, we still 
observed a link between EF and the two bridge symptoms 
(runs and leaves seat).

Caveats and Conclusion

The findings of our present study should be interpreted in 
light of several limitations. First, we used a composite mea-
sure of EF that may reflect a variety of different processes, 
including inhibition, working memory, attentional shifting, 
and updating. Thus, different facets of EF may show dis-
tinct interaction patterns with alpha ERD and ADHD symp-
toms. In contrast, the assessment of ADHD symptoms 
relied on parent reports that may naturally be biased toward 
hyperactive and impulsive symptoms, which are easily 
observable and tend to be more impairing than inattentive 
symptoms. Another concern is that our sample was predom-
inantly male. Previous research on gender differences in 
ADHD has shown that females, on average, show greater 
improvements in EF over time, which are associated with 
declines in ADHD symptoms (Miller et al., 2013). More 
research is needed to understand gender differences in the 
ADHD symptom network, and which specific symptoms 
are most influenced by EF improvements. Lastly, to inte-
grate data from two different studies, we harmonized the 
SWAN and SNAP scales (see Supplemental Material 1). 
This process of combining information from scales with 
distinct psychometric properties likely introduced measure-
ment errors and skewed distributions that may have biased 
our results. For instance, the SNAP-derived scores only 
represent the lower end of the SWAN scale, leading to a 
positive skew in the harmonized dataset. The effect of 
skewness on network estimation remains poorly understood 
(Fried et al., 2015), and thus, it may have impacted the 
accuracy (i.e., specificity and sensitivity) of the present 

edges. A potential consequence of the limited variability 
may be the underestimation of cross-construct connections 
(i.e., between alpha, executive functions, and ADHD 
symptoms).

In general, follow-up studies should aim to investigate 
ADHD symptom networks in a longitudinal framework to 
learn more about how improvements as EF and alpha mod-
ulation may change the symptoms network across different 
age stages from early childhood to adulthood. Analyses 
using longitudinal data could further disentangle temporal 
(directed time effects), contemporaneous (associations at 
one-time point), and between subjects’ effects (Epskamp, 
2020) in the network structure, and provide greater insight 
into the heterogeneity of ADHD. Moreover, idiographic 
network analytical approaches may help identify person-
specific treatment targets that may potentially be leveraged in 
clinical practice. Future studies should also investigate the 
association between other frequency bands delta (1–4 Hz), 
theta (4–8 Hz), beta (13–30 Hz), and gamma (>30 Hz) and 
specific ADHD symptoms. Our study extended existing 
findings on networks of ADHD by integrating EF and alpha 
oscillatory activity. The complex interactions within ADHD 
symptoms and between symptoms and EF suggest that (1) 
EF functions as a bridge node connecting alpha ERD and 
the ADHD symptom network, and (2) motoric-type symp-
toms and EF deficits may constitute important nodes in the 
interplay between behavior/symptoms, cognition, and neu-
rophysiological markers of ADHD.
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