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Abstract
The present study investigated online neural indices of
statistical learning of silent speech. Adult participants were
exposed to naturally mouthed, silent syllable streams in an
artificial language in two conditions. In one condition, 12
syllables occurred randomly, and in the other condition the
syllables were structured into four syllable triplets, i.e.
statistical words. In the recorded EEG signal, phase
synchronisation in neural oscillations was assessed at the rate
of syllables and at the rate of words occurring in the exposure
streams. Largest phase synchronisation was detected for the
word rate during exposure to the structured stream.
Moreover, the neural synchronisation to word rate increased
throughout the exposure within the structured stream. In a
behavioural post-test, however, no learning effects were
detected. The EEG results demonstrate sensitivity to
statistical regularities in viewed silent speech. These findings
indicate that statistical learning in speech and language can
be effectively measured online even in the absence of
auditory cues.
Keywords: statistical learning; speech processing; silent
speech; visual speech; neural tracking.

Introduction
Segmenting words from continuous speech is one of the key
abilities that language learners need to acquire in order to
master the ambient language. Unlike in writing, in spoken
language words are rarely bounded by pauses (Cole,
Jakimik, and Cooper, 1980). Instead, word boundaries in
continuous speech are cued mainly by prosodic information
and/or sequential probability cues. Since the seminal study
by Saffran, Aslin, and Newport (1996), it has been
repeatedly demonstrated that infants as well as adults track
the statistical cues to detect where words begin and end,
although with varying success (see Christiansen, 2019; and
Frost, Armstrong and, Christiansen, 2019, for review). It has
been suggested that even when the speech signal contains
prosodic cues to word boundaries, such as word stress
placement or word-final lengthening, the statistical
information might still be needed (at least) for (some types
of) learners to successfully segment words (Saffran et al.,
1996a). Statistical learning (SL) thus appears to be a key
mechanism in information processing and can be understood
as unintentional adaptation to the regularities in the
environment (Frost et al., 2019).
SL is not limited only to language, nor to the auditory

modality. There is numerous evidence suggesting that SL is
to a certain extent available to learners across modalities and

domains, and perhaps even across species (Fiser & Aslin,
2001; Lu & Vicario, 2014). Modified versions of Saffran et
al.’s embedded pattern paradigm have been used to
investigate SL in the auditory and the visual domain, often
using shapes as a non-linguistic substitute for linguistic
segments. Fiser et al. (2001) demonstrated that replacing
artificial word structures with fixed combinations of
non-linguistic shapes can yield a similar effect. In their
study, passive viewing of complex visual scenes of 12
shapes arranged on a grid resulted in statistical learning in
the form of learned single-shaped frequency, absolute shape
positions, and shape-pair arrangement statistics, similar to
artificial word structures. Similarly, Kirkham, Slemmer, and
Johnson (2002) demonstrated that when exposed to
statistically predictable patterns, specifically a fixed
sequence of coloured shapes, infants habituate and show
greater response to novel sequences violating the statistical
pattern.
In speech and language, statistical learning is traditionally

tested using an exposure-posttest design. Participants are
typically exposed to one of two continuous streams of
syllables: one stream is structured into repeating trisyllabic
words, and the other is unstructured with syllables occurring
in a random order (Aslin, Saffran, and Newport, 1998;
Batterink et al., 2015; Batterink & Paller, 2017; Choi et al.,
2020; Saffran et al., 1996a; Saffran, Newport, and Aslin,
1996). In the structured syllable stream, the only cue to the
word boundaries are the transitional probabilities (TPs)
between syllables. The TPs are higher between syllables that
occur within words than between syllables that occur across
word boundaries. After several minutes of exposure,
participants are tested on whether they recognize the
exposed statistical words (i.e. the word-like units defined by
TPs in the structured stream). The test is usually a
forced-choice identification task (or a looking paradigm
with infants) with only a few trials, in which participants are
presented with syllable strings (statistical words from the
exposure, part-words, or non-word foils) and have to
respond whether they recognize them from the exposure
phase (or, rate their familiarity on a likert scale). But what if
participants fail to recognize the statistical words over
nonwords (i.e. the statistically unrelated foils) in the few
posttest trials? Does it mean that they did not track the
statistics in the exposure stream?
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A recent study suggests the effectiveness of statistical
learning, at least in adults, is influenced by native-language
phonotactic constraints. Dal Ben, Souza, and Hay (2021)
reviewed the statistical learning literature and pointed out
that in many prior designs, some stimulus items had more
native-like phonotactic probabilities than others, and might
thus have served as anchors, bootstrapping statistical
learning effects. Using an empirical test, the authors
demonstrated that learning effects are indeed larger in
syllable streams that contain phonotactically plausible
anchors over those that do not. Yet, the question remains
whether such a native-language driven, anchoring effect,
applies only at the level of behavioural, voluntary word
decision task, or whether it also affects the preattentive
processing of novel syllable streams. Besides the
above-described, native-language specific, and perhaps
somewhat automatic effect of native phonotactics,
performance in statistical learning post-test tasks may be
affected by fatigue, lack of attention, or cognitive load
associated with having been exposed to rather unnaturally
sounding syllable streams.
In order to test the effects of statistical learning directly,

without the biases associated with behavioural decisions and
task complexity, researchers have come up with methods
that can assess statistical learning online, during the
exposure phase. In the auditory domain, Buiatti, Peña, and
Dehaene-Lambertz (2009) used electroencephalography
(EEG) to monitor the learning process during continuous
auditory speech, by assessing the correlation between the
elicited steady-state response at the word rate and
behavioural detection of words (see also Abla, Katahira, and
Okanoya, 2008, for an event-related potential, ERP, study
on statistical learning in adults). Kabdebon et al. (2015)
showed that phase-locking of the neural activity to the
artificial speech stream at syllable and word frequencies can
be used to test statistical learning in 8-month old infants.
Batterink and Paller (2017) used a similar phase-locking
paradigm to further assess statistical learning online,
throughout exposure to auditorily presented syllable
streams. They showed that a measure of phase-locking, the
intertrial phase coherence, (ITPC), also referred to as
phase-locking value, indexes the brain's tracking of syllables
and words, and reflects learning effects online throughout
exposure (Batterink & Paller, 2017).
ITPC offers means to quantify the synchronisation of the

intrinsic neural oscillations to the external stimulus, such as
speech, over several trials. During exposure to (quasi)
rhythmic stimuli, neural oscillations temporally align to the
periodic or quasi-periodic properties of the stimulus, and
phase-reset with the prominent points in the signal (Giraud
& Poeppel, 2012; Obleser & Kayser, 2019). In speech, the
quasi-periodicity stems from fluctuating linguistic units,
most prominently syllables and words, which are tracked
simultaneously by neural oscillations at distinct
hierarchically organised frequency bands. Apart from other
domain-general functions, the frequency bands retain certain
specific linguistic functions. The delta band (1-4 Hz)

corresponds to speech processing at the word rate, theta
band (4-8 Hz) to the syllabic rate, and the gamma band (>
30 Hz) to semantic, syntactic and phonological integration
(Tune & Obleser, 2022). The closer the intertrial phase
coherence (ITPC) value to 1, the more synchronised, or
phase-locked the neural activity.
Neural evidence of SL in the visual domain is provided

e.g. by the ERP study of Abla & Okanoya who showed that
fixed visual shape triplets were detected by adults in a
continuous stream of shapes based on statistical cues only,
as demonstrated by elicited larger N400 amplitude at the
triplet onset (Abla & Okanoya., 2009). Jost et al. further
demonstrated in their ERP study, that after a sufficient
exposure to the statistical probabilities of consecutive
coloured circles, both adults and children show larger P300
values to highly predictable items (Jost et al., 2015).
The visual modality is exploited to a various extent during

speech processing by both hearing and hearing-impaired
individuals. Visual cues can immensely improve
comprehension, e.g. in a noisy environment (Chládková et
al., 2021; Basu Mallick, Magnotti, & Beauchamp, 2015;
McGurk & McDonald, 1976). Still, to our knowledge,
statistical learning has not yet been tested on spoken visual
stimuli. Yet, testing whether SL operates on visual speech
alone is needed to better understand the processes
underlying the perception, learning, and comprehension of
speech in naturalistic – i.e. varying – environments where
auditory cues may not always be available as well as in
individuals with varying visual-auditory capacities. It has
been demonstrated that observing visual speech evokes a
similar neural response as listening to auditory speech
(Calvert et al., 1997; Hall, Fussell, & Summerfield, 2005;
MacSweeney et al., 2000; Park et al., 2016) and is processed
differently than non-linguistic lip movements (Calvert et al.,
1997, Muthukumaraswamy et al., 2006). Studies
investigating the processing of visual speech predominantly
focused on processing of existing languages (Bourguignon
et al., 2020, Crosse et al., 2015) providing the observer with
important context cues, or on the activated brain areas
(Muthukumaraswamy et al., 2006, Bourguignon et al.,
2020) rather than on the process of perception and
segmentation itself.
The present study investigates whether there is evidence

of gradual learning of word structures in visual artificial
speech in the absence of auditory cues and their possible
bootstrapping effect. To this end, we assessed the
synchronisation of the neural oscillations to silent visual
speech in hearing adults, similarly to what Batterink and
Paller (2017) did for auditory speech. In line with Batterink
and Paller's (2017) findings for auditory speech, we
predicted that the phase-locked neural activity at the word,
or syllable triplet, rate of our silent-speech exposure
materials will be greater in the structured stream of visual
artificial speech than in the random stream with no
underlying structure. We further predicted that the
sensitivity to the trisyllabic structure will increase during the
exposure as a result of statistical learning and will be greater
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in the structured speech stream. This paper reports an
experiment in which SL in silent speech was assessed in
adults with normal hearing. It is a part of a larger study
comparing SL in silent speech in hearing, hard-of-hearing
and deaf adults, which will be reported elsewhere.

Method

Participants
16 adult participants (n=16, 14 women, mean age=29 y,
SD=9.41) with normal hearing and no significant prior
knowledge of any sign language were included in the
present study. All participants reported normal or corrected
to normal vision, no neurological or psychiatric disorders,
and were not taking any medication or substances affecting
the nervous system. Furthermore, there was no evidence of
dyslexia or familial risk of dyslexia in any of the
participants included in the study. The native language of all
participants was Czech. The experiment was approved by
the ethics committee of the Institute of Psychology, Czech
Academy of Sciences..

Stimuli
For the purposes of the present study, we adapted the
stimulus materials used in previous studies on statistical
learning in auditory speech (Batterink & Paller, 2017;
Podlipský et al., 2022). The syllable set was minimally
altered to achieve a visually distinguishable syllable and
word sets. Sets of consonants which cannot be visually
sufficiently distinguished, such as /m/ and /b/, were avoided.
The resulting syllable material consisted of 12 CV syllables,
namely pa, be, ku, da, fo, pi, ti, bu, fe, go, la, tu. In the
structured stream the 12 syllables were arranged into
trisyllabic sequences pabeku, dafopi, tibufe, golatu, which
were presented in pseudorandom order with no pauses that
would indicate a boundary between the triplets. Boundaries
between the words were cued solely by transitional
probabilities between the syllables, the TPs were 1 for
syllables within a triplet, and 0.33 for syllables across
triplets. The random stream consisted of the same 12 CV
syllables in a pseudorandom order (with occasional
occurrences of mispronounced syllables). The order of the
syllables in the random stream could not be predicted based
on the transitional probabilities or any other cues.
The stimuli were presented in a video-only format

showing the head and part of the upper body of a speaker
silently mouthing the syllables. The stimuli were recorded
by a young woman, a native speaker of Czech who read the
syllable streams from a computer stream while listening to a
metronome (at the rate of 200 bpm corresponding to a
3.3-Hz syllable rate). The speaker was instructed to read the
presented stimuli set with natural articulation and in
alignment with the rhythm set by a metronome. Parts in
which the speaker stumbled or paused were extracted
offline. The audio track was subsequently removed from the
recordings.

Procedure

Exposure Phase In the exposure task, participants were
presented with videos of the structured and the random
stream, with the order of conditions counterbalanced across
participants. Each condition consisted of 6 minutes of
continuous visual speech stream divided into 3-minute
blocks separated by a short break. A post-exposure word
recognition and rating task was always administered
immediately after the structured condition. Participants were
instructed to attend to the silent video and focus on the
speaker’s mouth. During the brief break between the blocks,
participants were advised to close their eyes or change the
centre of their visual focus to avoid strained eyes. The two
conditions were separated by a longer 4-minute break (in
case of structured condition first, the break followed after
the word recognition task), during which the participants
were instructed to disassemble and reassemble a wooden
puzzle to further rest their eyes from viewing the computer
screen and to keep them alert.

Post-exposure Task The post-exposure task tested
participants' word recognition accuracy and collected word
rating scores. In the post-test, participants were presented
with video clips of the same speaker as in the exposure
materials. On each trial they saw a video of a silently
mouthed trisyllabic statistical word that repeatedly appeared
in the structured stream, or a trisyllabic non-word sequence
that did not appear in the exposure stream. Prior to viewing
the video clips, participants were instructed via a prompt on
the screen to indicate for each clip whether the speaker has
said it before or not. The word recognition task consisted of
12 trials.

EEG Recording During the exposure phase, EEG was
recorded at a sampling rate of 200 Hz from 19 scalp
electrodes attached to an electrode cap (with an additional
FCz channel serving as an online reference). Additional five
electrodes were placed on the participant’s nose, on the
outer canthus of the right eye, under the right eye, and on
the mastoid bones behind the right and the left ear.
Recordings were made with the TruScan software (Deymed
diagnostic s.r.o.).

Analysis
The EEG data analyses follow the procedures reported by
Batterink and Paller (2017), with a few adaptations (e.g. in
the time-locking syllable used for the EEG epoching, in us
non-transforming ITPC values to logarithms).

EEG Data Analysis The EEG data analysis was carried out
in Matlab (version R2023a, The MathWorks Inc., 2022)
using the EEGLAB toolbox (Delorme & Makeig, 2004).
The EEG data was band-pass filtered from 0.1 Hz to 30 Hz
and epoched into 10.8-sec long segments relative to the
onset of each word in the structured condition, and to every
first syllable of a syllable triplet in the random condition.
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Epochs containing large artefacts (exceeding absolute
amplitude of 350 µV) were removed. Further analyses were
done for seven channels: three posterior/occipital channels,
Pz, O1, O2, and four temporal channels, T3, T4, T5, T6, as
previous literature suggests these areas may most strongly
reflect statistical regularity learning in the visual speech
domain (Capek et al., 2008; MacSweeney et al., 2002).
Inter-trial phase coherence (ITPC) was computed using a

continuous Morlet wavelet transform in 200 sliding
windows across the 10.8-s epoch. The transform was run for
0.1-Hz frequency bins from 0.2 to 20.2 Hz, with 1 cycle at
the lowest frequency and increasing by a factor of 0.5 for
the higher frequency bins (with 25.5 cycles at the highest
frequency). Per-participant average ITPC values at 3.3 Hz
and at 1.1 Hz, corresponding to the syllable and word rates,
respectively, were then extracted for further analyses.
We further computed the word learning index (WLI),

quantified as the ITPC at the word frequency divided by the
ITPC at the syllable frequency. A WLI value larger than 1
would indicate more robust tracking of words over syllables,
and vice versa for WLI below 1. Also, the higher the WLI
the higher the neural sensitivity to tracking words over
syllables.

Behavioural Data Analysis Data from the post-exposure
rating task were used to compute each participant’s word
recognition accuracy. The recognition accuracy was
computed as the percentage of trials in which the participant
correctly recognized a statistical word or correctly rejected a
nonword.

Statistical Analysis The ITPC and the WLI were analysed
with linear mixed-effects models using the package lme4
(Bates et al., 2015) in R (version 4.3.1, R Core Team, 2021).
In all models, fixed factors were estimated with sum-to-zero
coded contrasts.
In the model for ITPC, the fixed factors were condition

(random vs structured), chunking rate (syllable vs word),
block (1st vs 2nd), and their interaction; a random intercept
for participant was included (including also a random
intercept for channel lead to a singular fit). In the model for
WLI, the fixed factors were condition (random vs
structured) and block (1st vs 2nd), and their interaction;
per-participant and per-channel random intercepts were
estimated. For pairwise comparisons, package ggeffects
(Lüdecke, 2018) was used to estimate means and confidence
intervals.
Behavioural rating accuracy scores were analysed using a

one-sample t-test against chance level, i.e. against μ = 0.5.

Results
The ITPC model detected a significant main effect of

condition, a main effect of block, a non-significant
interaction of condition and block, and a significant triple
interaction of condition, block, and chunking rate. This
triple interaction is visualised in Figure 2 (left). Pairwise
comparisons show that ITPC to words in the second block

of structured condition was larger than ITPC for all other
factor levels. The WLI model yielded a significant
interaction of condition and block. Pairwise comparisons
reveal that in the structured condition WLI was greater in
the second than in the first exposure block, and that the WLI
in the second exposure block of the structure condition was
also larger than the WLI in either block of the random
condition; see Figure 2 (right). The results of WLI are in
line with the effects seen for ITPC for the two different
chunking rates.
The grand average ITPC per condition, per chunking rate,

and per exposure block is plotted in Figure 1. The
fixed-effect model summaries are shown in Table 1 and 2.

Table 1: ITPC fixed-effect model summary.

Est SE df t p

(Intercept) 0.08 0.004 15 17.96 <.001

condition
(-rnd+str)

0.002 0.001 873 2.466 .014

chunking
(-syl+wd)

0.001 0.001 873 1.293 .196

block(-1+2) 0.003 0.001 873 2.746 .006

cond:chunk 0.002 0.001 873 1.926 .054

cond:block 0.002 0.001 873 0.151 .880

chunk:block 0.002 0.001 873 1.631 .103

condition:chu
nking:block

0.003 0.001 873 2.636 .009

Table 2: WLI fixed-effect model summary.

Est SE df t p

(Intercept) 1.126 0.052 13.3 21.527 <.001

condition
(-rnd+str)

0.027 0.026 423 1.020 .308

block(-1+2) 0.046 0.026 423 1.729 .085

cond:block 0.058 0.026 423 2.196 .029

A t-test on the rating accuracy data did not detect a
difference from the chance level (x = 44.75, 95% c.i. =
37.07–52.43, t = -1.457, df = 15, p = 0.166).
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Figure 1: ITPC values in the first and the second exposure block of each condition, averaged across the 7 analysed channels
(Pz, O1, O2, T3, T4, T5, T6) and across epochs.

Figure 2: Left: Estimated ITPC per condition, exposure block, and chunking rate. Right: Estimated WLI per condition and
exposure block (means and 95% confidence intervals).
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Discussion
The present study investigated the online process of
statistical learning (SL) in visual silent speech processing.
Statistical learning is a mechanism that aids humans (and
some nonhuman animals) uncover regularities and
perceptually organise their environment. It has been shown
to apply across modalities and domains, including spoken
language (e.g. Aslin, et al., 1998; Batterink et al., 2015;
Batterink & Paller, 2017; Choi et al., 2020; Fiser & Aslin,
2001; Handel & Buffardi, 1969; Lu & Vicario, 2014;
Saffran et al., 1996a; Saffran et al, 1996b; Turk-Browne et
al., 2009). In language development, it has been taken as
one of the main mechanisms that children have available
early and by which they figure out the word forms in their
native language, the phonotactic patterning as well as
sentence structures (Marcus et al., 1999; Saffran et al.,
1996a). While statistical learning is a powerful mechanism
allowing parsing the continuous auditory speech into words,
it is unclear whether or to what extent it applies to speech
without auditory cues, i.e. silent speech.

We tested whether adult brains exploit the statistical
regularities in speech devoid of the audio signal, namely, in
visual silent speech. We adapted the auditory speech SL
design of Batterink and Paller (2017) for the visual modality
and employed the EEG, which offers a real-time depiction
of the gradual learning process that may take place during
exposure to the novel artificial language. We hypothesised
that statistical regularities in visual silent speech will elicit
similar learning mechanisms reported for auditory speech
and will enable parsing and segmentation into the
underlying units. The present results showed that the ITPC
at the word frequency increased significantly in the second
block of the structured condition. Moreover, we found a
greater WLI value in the structured stream compared to the
random stream which indicates a higher sensitivity to the
underlying trisyllabic structure in the structured condition.
WLI significantly increased over the course of the first and
second block in the structured condition which indicates that
the sensitivity to the underlying structures increases with
exposure as a result of the gradual process of statistical
learning. This indicates that the statistics underlying the
structured syllable stream have been detected and gradually
acquired (at least at the preattentive level of processing),
thus supporting our prediction of statistical learning in
visual speech. Statistical learning appears to be a vital
mechanism underlying speech perception regardless of its
modality.
Despite the evidence of successful SL in the structured

condition demonstrated by the ITPC and WLI values
recorded with the EEG, the post-exposure behavioural
word-recognition task did not reveal any effects of learning.
The present results indicate that statistical learning occurs in
artificial visual speech as demonstrated by the online
monitoring of SL, despite there being no effect of SL shown
in the post-exposure word-recognition task. This finding
suggests that the brain is able to synchronise to speech and

discover the underlying statistical patterns in it almost
instantly within several minutes even in the absence of
auditory cues. It thus remains to be shown what kind of
exposure or how much input is needed for the adapted
neural processing of word structures in novel (silent) speech
to be reflected in behaviour.
The results support the idea that the effects of statistical

learning might not be automatically reflected in
post-exposure behavioural tasks perhaps due to cognitive
limitations or inadequateness of the testing methods, at least
for a certain type of input. Using neuroimaging methods to
monitor statistical learning online might provide valuable
new insights into the availability of learning mechanisms
across input modalities and populations.
Although our results show significantly larger effects of

learning in the structured condition compared to the random
condition at the neural level, we cannot clearly pinpoint how
and when the effects are reflected in behaviour. However,
neuroimaging research shows that higher language
proficiency leads to stronger neural phase-locking to the
speech input, namely to the frequency of the salient
linguistic units, such as words and intonational phrases,
increasing the success rate of comprehension (Ding et al.,
2016; Peelle & Davis, 2012). Successful neural tracking of
speech is thus likely to be a prerequisite of effective
language learning.
Since familiarity with the input immensely affects the

process of learning, it is possible that one’s primary or
native modality might affect not only the detecting of the
underlying structures but also their successful storing in the
memory. Experiments investigating this effect in
hearing-impaired and deaf adults are currently underway.
Our preliminary results show that hearing-impaired
participants perform better in the post-exposure
word-recognition task, suggesting that familiarity with the
input’s modality might affect the success rate of storing the
resulting statistical items or might decrease the time needed
for a successful storing.
As noted in the Methods, during the recording of the

stimuli, the speaker mispronounced several syllables in both
streams. Due to its statistical nature, all mispronunciations
had to be removed from the structured stream but some
were kept in the random stream since frequent cuts would
be more disrupting than the occasional mispronunciations.
The unbalanced amount of mispronunciations between
conditions might have affected the result. Recording of the
individual syllables and their subsequent combination into a
stream might solve this issue, but would yield
unnaturally-looking visual speech. In the present study,
rather than having a fully controlled but unnaturally looking
concatenation of individual syllables, we opted for natural
syllable streams albeit with cuts or occasional
mispronunciations. For the future comparison across
populations differing in hearing status and primary modality
of communication, the potential additional modulating
factor should not be problematic since the stimulus
materials will be identical for all the tested groups.
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