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Abstract

Causal inference methods for continuous exposures

by

Iván Leonardo Dı́az Muñoz

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Chair

This dissertation is concerned with the definition and optimal estimation of causal parameters
in semiparametric models, focusing on parameters that measure the causal effect of a continuous
exposure. It is divided in six self-contained chapters.

In chapter 1 we present a histogram-like estimator of a conditional density that uses super
learner cross-validation to estimate the histogram probabilities, as well as the optimal number and
position of the bins. The conditional density of the exposure given the confounders is the continu-
ous analogous of the propensity score for binary exposures, whose consistent estimation is critical
in causal inference problems. The proposed estimator is an alternative to kernel density estima-
tors when the dimension of the problem is large. We demonstrate its applicability to estimation of
Marginal Structural Model (MSM) parameters in which an initial estimator of the treatment mech-
anism is needed. MSM estimation based on the proposed density estimator results in less biased
estimates, when compared to estimates based on a misspecified parametric model.

Estimating the causal effect of an intervention on a population typically involves defining pa-
rameters in a nonparametric structural equation model in which the treatment or exposure is deter-
ministically assigned in a static or dynamic way. In chapters 2 and 3 we present two examples of
the methodology of stochastic interventions, in which we define new causal parameters that take
into account the fact that intervention policies can result in stochastically assigned exposures. In
chapter 2 we present a parameter that measures the effect of a population intervention in which
the exposure distribution is shifted. In chapter 3 we present a parameter measuring the effect of a
truncation in the exposure distribution. The statistical parameters that identify the causal param-
eters of interest are established. Inverse probability of treatment weighting (IPTW), augmented
IPTW (A-IPTW), and targeted maximum likelihood estimators (TMLE) are developed. Simula-
tion studies are performed to demonstrate the properties of these estimators, which include the
double robustness and efficiency of the A-IPTW and the TMLE, and application examples are
presented.

Chapter 4 deals with estimation of the causal dose-response curve. In a non parametric model,
if the treatment is continuous, the dose-response curve is not a pathwise differentiable parame-
ter, and no

√
n−consistent estimator is available. However, the risk of a candidate algorithm for
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estimation of the dose-response curve is a pathwise differentiable parameter, whose consistent
and efficient estimation is possible. In this work, we review the cross-validated augmented inverse
probability of treatment weighted estimator (CV A-IPTW) of the risk, and present a cross validated
targeted minimum loss based estimator (CV-TMLE) counterpart. These estimators are proven con-
sistent an efficient under certain consistency and regularity conditions on the initial estimators of
the outcome and treatment mechanism. We also present a methodology that uses these estimated
risks to select among a library of candidate algorithms. These selectors are proven optimal in the
sense that they are asymptotically equivalent to the oracle selector under certain consistency con-
ditions on the estimators of the treatment and outcome mechanisms. Because the CV-TMLE is
a substitution estimator, it is more robust than the CV-AIPTW against empirical violations of the
positivity assumption. This and other small sample size differences between the CV-TMLE and
the CV-A-IPTW are explored in a simulation study.

Finally, In chapter 5 we present an application of some of the methods developed in this dis-
sertation, related to prediction and variable importance (VIM) methods for longitudinal data sets
containing both continuous and binary exposures subject to missingness. We demonstrate the use
of these methods for prognosis of medical outcomes of severe trauma patients, a field in which cur-
rent medical practice involves rules of thumb and scoring methods that only use a few variables and
ignore the dynamic and high-dimensional nature of trauma recovery. Well principled prediction
and VIM methods can thus provide a tool to make care decisions informed by the high-dimensional
patients physiological and clinical history. Our VIM parameters can be causally interpreted (under
causal and statistical assumptions) as the expected outcome under time-specific clinical interven-
tions. The results of the analysis show effects whose size and significance would have been not
been found using a naive parametric approach, as well as improvements of up to 0.07 in the AU-
ROC.
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Chapter 1

Conditional density estimation

Conditional probability estimation is one of the most important problems in statistics, as a param-
eter of interest itself, or as a nuisance parameter that must be estimated, for example in causal
inference and missing data problems. The conditional density of a continuous exposure given the
covariates is the equivalent of the propensity score for binary outcomes, which has historically
played a central role in the estimation of causal effects in observational studies (see e.g., Rosen-
baum and Rubin, 1983; R. Mansson, 2007). Therefore, it is not surprising that estimation of causal
parameters for continuous exposures requires the specification of an initial estimator of the expo-
sure mechanism. Two examples of causal parameters for continuous treatments that require the
specification of an initial estimator for the conditional density of the exposure given the covariates
are given by marginal structural models (Robins, Hernan, and Brumback, 2000; Neugebauer and
van der Laan, 2007) and causal parameters corresponding to stochastic interventions (Dı́az and van
der Laan, 2011a). In this chapter we develop a machine learning estimator of a conditional density
that can be used to estimate the exposure mechanism, and demonstrate its use in the estimation
of MSM parameters. This estimator will be a critical input for most of the methods for causal
inference presented in the following chapters.

Analogously to the case of the propensity score for binary outcomes, the consistency of the
initial estimator of the exposure mechanism usually determines the consistency of the estimator of
the causal parameters of interest. Therefore, the development of tools that provide consistent esti-
mators of the exposure mechanism is of particular interest to the causal inference and biostatistics
research community.

Parametric models such as generalized linear models intend to estimate the conditional den-
sity of a variable given a set of predictors by assuming a functional form that is known up to a
finite-dimensional vector of real parameters. If the assumptions made about the functional form
of the conditional density reflect characteristics of the true data generating mechanism, maximum
likelihood methods usually yield consistent and efficient estimators of the parameters of the model
and consequently of the conditional density (van der Vaart, 1998). However, it is common to find
applications in fields such as epidemiology and social studies in which little information about
the true data generating mechanism is known, and the researcher does not have enough scientific
knowledge to assume a functional form for the conditional density. For such cases, non paramet-
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ric estimators such as kernel density estimators, which do not assume a pre-specified functional
form have been proposed. Kernel estimation was introduced by Rosenblatt (1969), and has been
extensively studied in the statistics literature since then. As a remarkable property, under certain
conditions on the true density, the univariate kernel density estimator has been proven to have mean
integrated square (MISE) error of order n−4/5, which is only n−1/5 times larger than the MISE of a
correctly specified MLE in a parametric parametric model (van der Vaart, 1998). A comprehensive
description of univariate and multivariate kernel density estimators and their statistical properties
can be found in Wand and Jones (1995) and Scott (1992). The multivariate kernel density estimator
can be used to find estimates of the joint densities involved in the definition of the conditional den-
sity and compute a plug-in estimator. Nevertheless, unless the number of covariates is very small
(Wand and Jones (1995) suggest less than 6) or the sample size is extremely large, these estimators
suffer from the curse of dimensionality, and the resulting estimates are highly biased. This is an
important issue in causal inference, since the number of confounders is often large.

Cross validation selection from a library of candidates of estimators has been proven to have
optimal properties in terms of the risk of the resulting estimator (van der Vaart, Dudoit, and van
der Laan, 2006). In particular, the super learner (van der Laan, Polley, and Hubbard, 2007) is a
machine learning technique that uses cross-validated risks to choose an optimal estimator among
a library defined by the convex hull of a user-supplied list of estimators. Simulations and analytic
results about the super learner can be found in van der Laan, Dudoit, and Keles (2004) and van
der Laan and Dudoit (2003). One of its most important theoretical properties is that its solution
converges to the oracle estimator (i.e., the candidate in the library that minimizes the loss function
with respect to the true probability distribution).

In section 1.1 we propose a conditional density estimator that starts with a list of histogram-like
density estimators indexed by the number of bins, their position, and the choice of an estimator
for the histogram probabilities, and then uses the super learner to find the optimal estimator in the
library given by the convex hull of this list of candidate estimators. We use the super learner itself
to estimate the histogram probabilities of each of the estimators in the initial list.

A review of marginal structural models as described by Neugebauer and van der Laan (2007) is
provided in section 1.2, as well as three MSM estimators that require an initial estimator of the ex-
posure mechanism. The performance of our method in the context of MSM estimation is assessed
through a simulation study in which the three estimators described in section 1.2 are computed un-
der three different estimators of the exposure mechanism: a correctly specified parametric model,
an incorrectly specified parametric model and our super learner based estimator. The results of
this simulation are presented in section 4.4, and section 1.4 includes an application example of
in which the causal effect of physical activity on all cause mortality is defined through an MSM.
Finally, section 3.5 provides some concluding remarks and directions of future research.

1.1 Density estimator
Let A be a random variable representing an exposure of interest, and let W be a random vector
containing a set of covariates confounding the causal relationship between A and an outcome Y . We
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are interested in finding an estimator of the exposure mechanism g0(A|W ) (i.e., the true conditional
density function of A given W ). Such estimator will be used in the next sections to compute
different estimators of causal effects defined by marginal structural models.

As explained in the introduction, we will use the super learner to choose a convex combination
of estimators among a library of candidates consisting of histogram density estimators defined
by hazard functions. In the following subsections we will define the super learner, the candidate
estimators in the library, and present the cross validated estimator of the conditional density.

Super learner
Consider the usual setting in which we observe n identically distributed copies Oi, i = 1, . . . ,n of
the random variable O = (W,A,Y )∼ P0. Super learner deals with estimation of parameters ψ0(O)
defined as the minimizer of a loss function L(O,ψ) over some parameter space Ψ. This is ψ0 =
argminψ∈Ψ E0L(O,ψ). For example, regression (ψ0(O) = E0(Y |A,W )) and conditional density
estimation (ψ0(O) = g0(A|W )) problems can be formulated in this way by using loss functions
L(O,ψ) = {Y −ψ(A,W )}2 and L(O,ψ) =− log{ψ(A,W )}, respectively.

An estimator Ψ̂ of ψ0 can be seen as a mapping that takes the empirical distribution Pn and
maps it into an estimate. Ψ̂(Pn) is then the estimator based on the entire sample, and its risk can be
computed as

R(Ψ̂,P0) =
∫

L{o,Ψ̂(Pn)}dP0(o).

The true risk of an estimator depends on P0, and is therefore an unknown quantity that needs to
be estimated. A first option is to use a plug-in estimator in which Pn is used instead of P0. If the
space Ψ is very large, this plug-in estimator of the risk will favor estimators Ψ̂ that over-fit the
data. Instead, super learner provides an algorithm that uses a v-fold cross validated risk estimate
to choose the best estimator of ψ0.

Let s ∈ {1, . . . ,S} index a random sample split into a validation sample V (s)⊂ {1, . . . ,n} and a
training sample T (s) = {V (s)}c. Here we note that the union of the validation samples equals the
total sample: ∪S

s=1V (s) = {1, . . . ,n}, and the validations samples are disjoint: V (s1)∩V (s2) = /0
for s1 6= s2. Let PT (s) be the empirical distribution of the training sample s. The cross validated
estimator of the risk is given by the following expression, in which the parameter is estimated on a
training set and the risk is estimated in the corresponding validation set:

1
S

S

∑
s=1

R{Ψ̂(PT (s)),PV (n)}=
1
S

S

∑
s=1

∫
L{o,Ψ̂(PT (s))}dPV (s)(o). (1.1)

Assume that we have a list of candidate estimators Ψ̂ j : j ∈ J. The discrete super learner is defined
as the estimator in this list for which the cross validated risk in (1.1) is the smallest. Consider now
a library of candidate estimators given by all possible convex linear combinations of the candidates
Ψ̂ j. It can be shown (van der Laan, Polley, and Hubbard, 2007) that the candidate in this library
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with the smallest cross validated risk is be given by

Ψ̂(Pn)(O) = ∑
j∈J

β jΨ̂ j(Pn)(O),

where

β = (β1, . . . ,βJ) = argmin
β

1
S

S

∑
s=1

1
ns

∑
i∈V (s)

L

{
Oi, ∑

j∈J
β jΨ̂ j(PT (s))

}
, (1.2)

subject to ∑
j∈J

β j = 1 and β j ≥ 0 for all j ∈ J. Here ns denotes the size of the validation sample s.

Candidates
Consider a sequence of values α0, . . . ,αk that span the range of A and define k bins. Every candidate
in our library of conditional density estimators of g0(A|W ) is given by the following expression:

gn,α(Pn)(a|W ) =
Prn(A ∈ [αt−1,αt)|W )

αt−αt−1
, for αt−1 ≤ a < αt , (1.3)

where we note that the choice of the values αt (t = 0, . . . ,k) implies defining the number and
position of the bins. Here Prn denotes an estimator of the true probability Pr(A ∈ [αt−1,αt)|W )
obtained through a hazard specification and use of a model for binary variables in a pooled repeated
measures dataset, as explained below. Note that we consider the estimator in (1.3) as a mapping
that takes the empirical distribution Pn and maps it into an estimate of the conditional density of
A given W , this notation will be helpful later in the section when we define the cross-validated
estimator. Note also that

Pr(A ∈ [αt−1,αt)|W ) = Pr(A ∈ [αt−1,αt)|A≥ αt−1,W )×
t−1

∏
j=1
{1−Pr(A ∈ [α j−1,α j)|A≥ α j−1,W )}.

The likelihood for model (1.3) is now proportional to

n

∏
i=1

Pr(Ai ∈ [αt−1,αt)|W ) =
n

∏
i=1

[
t−1

∏
j=1

{
1−Pr(Ai ∈ [α j−1,α j)|Ai ≥ α j−1,Wi)

}]
×

Pr(Ai ∈ [αt−1,αt)|Ai ≥ αt−1,Wi),

which corresponds to the likelihood of a binary variable in a repeated measures data set in which
the observation of subject i is repeated as many times as intervals [αt−1,αt) are before the interval
to which Ai belongs, and the binary variables indicating Ai ∈ [αt−1,αt) are recorded. Possible
estimators for the probabilities

Pr(A ∈ [αt−1,αt)|A≥ αt−1,W ) (1.4)
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include the following logistic model with only main terms:

logit{Pr(A ∈ [αt−1,αt)|A≥ αt−1,W )}=
k

∑
j=1

γ jI[α j−1,∞)(A)+
p

∑
l=1

θlWl, (1.5)

where we assume the dimension of W is p, and I[α j−1,∞)(A) denotes an indicator of A ∈ [α j−1,∞).
Another candidate might be given by a logistic model including double interaction terms. In gen-
eral, any estimator that has the potential of providing an accurate representation of the underlying
true data generating mechanism can be postulated as a candidate for estimation of (1.4), including
a super learner algorithm that takes all available candidate estimators and finds an optimal convex
combination of them. Each candidate estimator in (1.3) is now indexed by choice of the values αt
and choice of an algorithm for estimating (1.4).

The only detail missing in order to completely define a library of estimators is a clever way
to choose the most convenient locations for the bins (for fixed k), which will be determined by a
parameter c defined below.

Denby and Mallows (2009) describe the histogram as a graphical descriptive tool in which the
location of the bins can be characterized by considering a set of parallel lines cutting the graph
of the empirical distribution function (ecdf). Specifically, given a number of bins k, the equal-
area histogram can be regarded as a tool in which the ecdf graph is cut by k+ 1 equally spaced
lines parallel to the x axis, whereas the usual equal-bin-width histogram corresponds to drawing
the same lines parallel to the y axis. In both cases, the location of the cutoff points for the bins
is defined by the x values of the points in which the lines cut the ecdf. As pointed out by the
authors, the equal-area histogram is able to discover spikes in the density, but it oversmooths in the
tails and is not able to show individual outliers. On the other hand, the equal-bin-width histogram
oversmooths in regions of high density and does not respond well to spikes in the data, but is a
very useful tool for identifying outliers and describing the tails of the density.

As an alternative to find a compromise between these two approaches, the authors propose
a new histogram in which the ecdf is cut by lines x+ cy = bh, b = 1, . . . ,k + 1; where c and h
are parameters defining the slope and the distance between lines, respectively. The parameter h
identifies the number of bins k. The authors note that c = 0 gives the usual histogram, whereas
c→ ∞ corresponds to the equal-area histogram.

We now define our library of candidate estimators for the conditional density as a collection
of estimators in (1.1) by defining values of the vector α through different choices of c and k,
and defining an estimator for the probabilities in (1.4). The use of this approach will result in
estimators that are able to identify regions of high density as well as provide a good description
of the tails and outliers of the density. For the sake of simplicity, we will only consider one
candidate for estimation of (1.4): the super learner itself with candidates that may include, for
example, the logistic model in (1.5). Since the choice of each α only depends on c and k, the
candidate estimators gn,α in (1.3) will now be denoted by gn, j, where j ∈ J is an index identifying
a combination of c and k.
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Cross validation
Consider the cross validation scheme presented in section 1.1. We define our estimator of the
conditional density of A given W as

gn(A|W ) = ∑
j∈J

β jgn, j(A|W ),

where

β = (β1, . . . ,βJ) = argmax
β

1
S

S

∑
s=1

1
ns

∑
i∈V (s)

log ∑
j∈J

β j gn, j(PT (s))(Ai|Wi), (1.6)

subject to ∑
j∈J

β j = 1 and β j ≥ 0 for all j ∈ J.

van der Laan, Dudoit, and Keles (2004) proof that this likelihood based cross-validated esti-
mator is asymptotically optimal in the sense that it performs as well as the oracle selector as the
sample size increases. Our library of estimators includes all the estimators given by convex com-
binations of gn, j(A|W ) for j ∈ J, and the oracle selector is given by the candidate estimator in
the library that minimizes the Kullback-Leibler divergence with respect to the true data-generating
distribution

The minimization in (1.6) is carried out by using the augmented Lagrange multiplier method
as implemented in the R function solnp() (Ghalanos and Theussl, 2010). Technical details about
the implementation of this method can be found in Yinyu (1987).

1.2 Marginal structural model estimation
In this section we provide a brief review of the MSM methodology and describe three of the MSM
estimators available in the literature. A complete review of MSM methodology can be found in
the works of Robins, Hernan, and Brumback (2000), Bryan, Yu, and van der Laan (2003) and
Neugebauer and van der Laan (2007).

The consistency of the MSM estimators presented in this section will be used in section 4.4 to
assess the performance of the density estimator proposed in section 1.1 when it is used to estimate
the exposure mechanism g0.

Consider an experiment in which an exposure variable A, a continuous or binary outcome Y and
a set of covariates W are measured for n randomly sampled subjects. Let O = (W,A,Y ) represent a
random variable with distribution P0, and O1, . . . ,On represent n i.i.d. observations of O. Assume
that the following structural causal model (Pearl, 2000) holds:

W = fW (UW )

A = fA(W,UA) (1.7)
Y = fY (A,W,UY ),
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where UW , UA and UY are exogenous random variables such that UA ⊥UY holds, and either UW ⊥
UY or UW ⊥UA holds (randomization assumption). The true distribution P0 of O can be factorized
as

P0(O) = P0(Y |A,W )P0(A|W )P0(W ), (1.8)

where we denote g0(A|W ) ≡ P0(A|W ), Q̄0(A,W ) ≡ E0(Y |A,W ), QW,0(W ) ≡ P0(W ), and P f =∫
f dP for a function f of O. Causal inference parameters are usually defined in terms of the

distribution of the counterfactual outcome Ya that one would obtain in a controlled experiment in
which the equation corresponding to A in (3.1) is removed from the SCM and the treatment A is
set to be equal to some pre-specified value a deterministically.

Denote m(a) = EYa, the parameter of interest is:

γ0 = arg min
γ∈B⊂Rd

∫
A

L{m(a),mγ(a)}h(a) dµ(a), (1.9)

where A is the support of A, h(a) is a stabilizing weight function, L is a loss function that describes
the loss obtained by approximating the true causal curve m(a) with mγ(a), and µ is an appropriate
measure (i.e., the Lebesgue or the counting measure). If L{m(a),mγ(a)} is a convex function
of γ , the parameter can also be defined as the value γ0 = (γ01, . . . ,γ0d)

′ that solves the system of
equations ∫

A

∂

∂γ j
L{m(a),mγ(a)}h(a) dµ(a) = 0; j = 1, . . . ,d.

The most intuitive loss function to use is

L{m(a),mγ(a)}= {m(a)−mγ(a)}2 (1.10)
∂

∂γ j
L{m(a),mγ(a)}=−2{m(a)−mγ(a)}

∂mγ(a)
∂γ j

,

since it defines the function mγ as the closest to m in an L2 sense. Another option for binary
outcomes, or outcomes bounded between zero and one is

L{m(a),mγ(a)}=−m(a) log{mγ(a)}−{1−m(a)} log{1−mγ(a)}
∂

∂γ j
L{m(a),mγ(a)}=−

m(a)−mγ(a)
mγ(a){1−mγ(a)}

∂mγ(a)
∂γ j

.

In this paper we focus in the estimation of parameters defined in terms of (1.10), but similar calcu-
lations can be made for other parameters defined by different loss functions.

Since m(a) is identified as a function of the distribution of the observed data by E(Q̄0(a,W )),
the parameter of interest is identified as the value γ0 that solves∫

A

∂

∂γ j
L{E(Q̄0(a,W )),mγ(a)}h(a) dµ(a) = 0; j = 1, . . . ,d. (1.11)
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Estimators
In this section we describe three possible estimators for the parameter γ0 of a MSM defined in
the previous section. The first estimator is an Inverse Probability of Treatment Weighted (IPTW)
estimator which requires a consistent estimator of the exposure mechanism in order to be consis-
tent. The second estimator is an augmented IPTW that solves the efficient influence curve equation
and requires initial estimators of Q̄0 and g0, it is consistent if either of them is consistent, and it
is efficient if both are consistent. The third estimator is a targeted maximum likelihood estimator
(TMLE) that has the same properties as the A-IPTW, plus additional advantages that include being
a substitution estimator and not having multiple solutions.

IPTW

The IPTW estimating function is defined as DIPTW (O|g) = {DIPTW j(O|g)}d
j=1, where

DIPTW j(O|g,γ) = {Y −mγ(A)}
h(A)

g(A|W )

∂mγ(A)
∂γ j

,

and the IPTW estimator is defined as the vector γn,1 that solves the IPTW estimating equations
n

∑
i=1

DIPTW j(O|g,γ) = 0; j = 1, . . . ,d.

The IPTW is an asymptotically linear estimator with influence function DIPTW j, therefore the
variable

√
n(γn,1, j− γ0 j) converges in distribution to a random variable distributed as

N{0,P0D2
IPTW j( · |g0,γ0)},

whose variance can be estimated by PnD2
IPTW j( · |g0

n,γn,1), where Pn denotes the empirical mea-
sure. van der Laan and Robins (2003) prove that this variance estimator is conservative. We will
use notation DIPTW (O) or DIPTW (O|g,γ) depending on whether it is necessary to emphasize the
dependence on g and γ .

Augmented IPTW

The efficient influence curve D(O) of (1.9) in the non-parametric model can be found through the
IPTW estimating function DIPTW (O) as

D(O) = DIPTW (O)−Π(DIPTW (O)|TCAR),

where DIPTW (O) = {DIPTW j(O)}d
j=1, and Π(DIPTW (O)|TCAR) is the projection of DIPTW (O) into

the space TCAR = {s(A,W ) : E{s(A,W )|W}= 0}, defined component-wise. Formally,

Π(DIPTW j(O)|TCAR) =E{DIPTW j(O)|A,W}−E{DIPTW j(O)|W}

={Q̄(A,W )−mγ(A)}
h(A)

g(A|W )

∂mγ(A)
∂γ j

−
∫

A
{Q̄(a,W )−mγ(a)}

∂mγ(a)
∂γ j

h(a) dµ(a).
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Thus, the efficient influence curve is given by D(O|Q̄,g,γ) = {D j(O|Q̄,g,γ)}d
j=1, where

D j(O|Q̄,g,γ) = {Y − Q̄(A,W ))} h(A)
g(A|W )

∂mγ(A)
∂γ j

+∫
A
{Q̄(a,W )−mγ(a)}

∂mγ(a)
∂γ j

h(a) dµ(a), (1.12)

and the augmented IPTW estimator is defined as the value γn,2 that solves the augmented IPTW
estimating equations

n

∑
i=1

D j(Oi|Q̄,g,γ) = 0; j = 1, . . . ,d.

The A-IPTW is also asymptotically linear with influence curve D j(O|Q̄0,g0,γ0). The variable√
n(γn,2, j− γ0 j) converges in law to a random variable with distribution N{0,P0D2

j(·|Q̄0,g0,γ0)},
whose variance can be estimated as PnD2

j( · |Q̄0
n,g

0
n,γn,2). van der Laan and Robins (2003) (sec-

tions 2.3.7 and 2.7.1) show that inference based on this variance estimator is valid only if g0
n is

consistent, providing exact inference when Q̄0
n is consistent, and conservative inference when Q̄0

n
is inconsistent.

Note that the efficient influence curve can be decomposed into three components corresponding
to the orthogonal decomposition of the tangent space implied by the factorization (3.2) as:

D j(O) = D j1(O)+D j2(O)+D j3(O),

where

D j1(O) = D j(O)−E{D j(O)|A,W}= {Y − Q̄(A,W )} h(A)
g(A|W )

∂mγ(A)
∂γ j

,

D j2(O) = E{D j(O)|A,W}−E{D j(O)|W}= 0, (1.13)

D j3(O) = E{D j(O)|W}−E{D j(O)}=
∫
A
{Q̄(a,W )−mγ(a)}

∂mγ(a)
∂γ j

h(a) dµ(a).

Targeted maximum likelihood estimator

In order to define a targeted maximum likelihood estimator for γ0, we need first to define three
elements: (1) A loss function L(Q) for the relevant part of the likelihood required to evaluate γ0,
which in this case is Q = (Q̄,QW ). This function must satisfy Q0 = argminQ EP0L(Q)(O), where
Q0 denotes the true value of Q; (2) An initial estimator Q0

n of Q0; (3) A parametric fluctuation Q(ε)
through Q0

n such that the linear span of d
dε

L{Q(ε)}|ε=0 contains all the components of the efficient
influence curve D(O) defined in (2.5). These three elements are defined below:

Loss Function
As loss function for Q, we will consider L(Q)=LY (Q̄)+LW (QW ), where LY (Q̄)=Y log{Q̄(A,W )}+
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(1−Y ) log{1− Q̄(A,W )} and LW (QW ) =− logQW (W ). It can be easily verified that this function
satisfies Q0 = argminQ EP0L(Q)(O).

Parametric Fluctuation
Given an initial estimator Q0

n of Q0, with components (Q̄0
n,Q

0
W,n). We define the fluctuation of Q0

n
as follows:

Q1
W,n(δ )(W ) =

{
1+

d

∑
j=1

δ jZ j(W )

}
Q,

W,n0

logit Q̄1
n(ε)(A,W ) = logit Q̄0

n(A,W )+
d

∑
j=1

ε jH0
j (A,W ),

where Z j(W ) = D j3(O), and

H j(A,W ) =
h(A)

g(A|W )

∂mγ(A)
∂γ j

.

First of all, note that the MLE of δ is zero. Standard logistic regression software can be used to find
the MLE εn of ε , and the TMLE as defined by van der Laan and Rubin (2006) is found in the first it-
eration. From these definitions it follows that D j(O)∈< ∂

∂ε
L{Q(ε,δ )}|ε=0+

∂

∂δ
L{Q(ε,δ )}|δ=0 >

j = 1, . . . ,d, where < ·> denotes linear span.

Initial Estimators
The empirical distribution of W is used as initial estimator of QW,0.

Targeted Maximum Likelihood Estimator
The TMLE of γ0 is now defined as the value γn,3 that solves the equations∫

A

∂

∂γ j
L{EQW,nQ̄1

n(εn)(a,W ),mγ(a)}h(a) dµ(a) = 0; j = 1, . . . ,d. (1.14)

The variance of γn,3, j can be estimated by PnD2
j( · |Q̄1

n,g
0
n,γn,3), which like the augmented IPTW

variance estimator is consistent only if both g0
n and Q1

n are consistent, is conservative if g0
n is

consistent but Q1
n is not, and is inconsistent in any other case.

1.3 Simulation
Consider the following data generating process

W1 ∼Uni f{0,1}.
W2 ∼ Ber{0.7}.

A∼ Gamma{(.3+3log(W1 +1)+2.2exp(W1)W2)
−1,1}.

Y ∼ Ber{expit(−1+ .05A− .02AW2 + .2A tan(W 2
1 )− .02W1W2 + .1AW1W2)}.
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We are interested in estimating the parameter defined in (1.9) with

mγ(a) =
1

1+ exp(−γ0− γ1a)
, (1.15)

and h(a) equal to the marginal density of A. Note that the efficient influence curve calculations
made in the previous sections remain valid in this case, and that estimators of g0 and QW,0 define an
estimator of h. The true value of the parameter for this data generating distribution is γ0

0 =−1.0067
and γ1

0 = 0.1520. Figure 2.1 presents the true counterfactual expectation m(a) as well as the true
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Figure 1.1: (a) True counterfactual expectation and true MSM curve. (b) Marginal density of A.

MSM curve mγ0(a). Since the definition of the MSM parameter involves weighting by the marginal
density of A, the approximation of mγ0 to m is almost perfect in areas of high density, at the cost of
a poor approximation in the areas in which A has low density.

In order to explore the stability of the estimators described in the previous section when the
conditional density estimator of section 1.1 is used as initial estimator for the treatment mech-
anism, a simulation study was performed. Three different initial estimators were used for the
treatment mechanism: (a) correctly specified parametric model, (b) normal linear model with just
linear terms, and (c) histogram-like cross-validated estimator of section 1.1; and two different ini-
tial estimators were considered for the expectation of Y given A and W : (1) correctly specified
parametric model, and (2) logistic regression with only linear terms. The choice of the misspecifi-
cation of the models performed in (b) and (2) comes from usual practice in parametric modeling in
epidemiology, in which for the sake of ease of interpretation and calculation, linear models without
interactions are usually assumed.
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The prohibitive computational cost of the cross-validation procedure resulting in the proposed
conditional density estimator restrained us from using Monte Carlo simulation to asses the proper-
ties of the MSM estimator. Instead, we drew a sample of size 10.000 from the true data generating
mechanism, and computed the exposure mechanism estimate as well as the three estimates. Fig-
ure 1.2 shows the estimates and true value of the conditional densities for two given profiles,
obtained by using a list of candidates estimators in (1.3) defined by all combination of values
k = 5,7,9,11,13 and c = 800,500,300,100,50,10,0.5,0.01. From this graph we can see that this
estimator is very close to the true data exposure mechanism, which is a surprising fact given that it
does not use any knowledge about the true density or the true parametric model.
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Figure 1.2: (a) Estimated and true density for profile W1 = 0.09, W2 = 1. (b) Estimated and true
density for profile W1 = 0.99, W2 = 1.

Table 1.1 shows the three MSM estimates for model (1.15) along with their standard errors.
Given the large sample size, a direct comparison of the estimates with the true value of the param-
eters provides an approximation to their bias. It is known that (up to positivity assumptions) the
TMLE and the A-IPTW are double robust in the sense that they are unbiased if at least one of the
initial estimators is consistent. The IPTW requires consistency of the estimator for the treatment
mechanism in order to be unbiased.

Misspecification of the parametric model for the treatment mechanism caused a large amount
of finite sample bias in the IPTW and A-IPTW estimates, both when the model for Q̄0 is correctly
and incorrectly specified. The TMLE, although also biased, remains closer to the true value of the
parameter in both cases. The estimates obtained using the histogram-like cross-validated density
estimator are as close to the true value of the parameter as the estimates obtained by using a
correctly specified model for g0, showing that this estimator is preferable to parametric models,
unless the true model is known to the researcher.
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(a) (b) (c)
γ0 γ1 γ0 γ1 γ0 γ1

(1)

IPTW
-1.0342 0.1171 -1.5406 0.3634 -1.0076 0.1055
(0.0011) (0.0016) (0.0015) (0.0049) (0.0010) (0.0014)

A-IPTW
-1.0194 0.1159 -0.7556 -0.2522 -1.0127 0.1210
(0.0012) (0.0017) (0.0012) (0.0024) (0.0010) (0.0014)

TMLE
-1.0912 0.1471 -0.9814 0.0935 -1.0073 0.1076
(0.0011) (0.0017) (0.0015) (0.0046) (0.0010) (0.0014)

(2)

IPTW
-1.0342 0.1171 -1.5406 0.3634 -1.0076 0.1055
(0.0011) (0.0016) (0.0015) (0.0049) (0.0010) (0.0014)

A-IPTW
-1.0165 0.1040 -0.7945 -0.2118 -1.0064 0.0979
(0.0012) (0.0016) (0.0012) (0.0025) (0.0010) (0.0014)

TMLE
-1.0915 0.1434 -0.9764 0.0656 -1.0141 0.1142
(0.0011) (0.0016) (0.0014) (0.0044) (0.0010) (0.0014)

Table 1.1: Parameter estimates for different initial estimators. (a) correctly specified parametric
model for g0, (b) normal linear model for g0 with only linear terms, (c) histogram-like cross-
validated estimator of g0; (1) correctly specified parametric model for Q̄0, (2) logistic regression
with just linear terms for Q̄0. Standard errors in parentheses.

1.4 Application
With the objective of demonstrating the use of the exposure mechanism estimator provided in
section 1.1, we revisit the problem analyzed by Bembom and van der Laan (2007) and Dı́az and
van der Laan (2011a) of assessing the extent to which physical activity in the elderly is associated
with reductions in cardiovascular morbidity and mortality, and improvement in, or prevention of
metabolic abnormalities. Tager, Hollenberg, and Satariano (1998) followed a group of people
over 55 years of age living around Sonoma, CA, over a time period of about ten years as part of a
longitudinal study of physical activity and fitness (Study of Physical Performance and Age Related
Changes in Sonomans - SPPARCS). The goal in analyzing the data that were collected as part of
this study is to examine the effect of baseline vigorous LTPA (Leisure Time Physical Activity) on
subsequent five-year all-cause mortality.

We use the same measure of LTPA used by Bembom and van der Laan (2007), which is a con-
tinuous score based on the number of hours that the participants were engaged in vigorous physical
activities such as jogging, swimming, bicycling on hills, or racquetball in the last seven days, and
the standard intensity values in metabolic equivalents (MET: Metabolic Equivalent of Task) of
such activities, where one MET is approximately equal to the oxygen consumption required for
sitting quietly. The primary confounding factors that we adjust for are described in Table 2.4. Age
and gender are natural confounders, and the rest of the variables intend to account for the subject’s
underlying level of general health. Of the 2092 subjects enrolled in the SPPARCS study, 40 were
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missing information in at least one of this variables; our analysis is based on the remaining 2052
subjects.

Variable Description

Gender
Female
Male

Age Age in years

Health

Self-rated health status:
Excellent
Fair
Poor

NRB Score of self-reported physical functioning rescaled between 0
and 1

Card Previous occurrence of any of the following cardiac events:
Angina, myocardial infarction, congestive heart failure, coronary
by-pass surgery, and coronary angioplasty

Chron Presence of any of the following chronic health conditions:
stroke, cancer, liver disease, kidney disease, Parkinson’s disease,
and diabetes mellitus

Smoking
Never smoked
Current smoker
Ex-smoker

Decline Activity decline compared to 5 or 10 years earlier

Table 1.2: Confounders.

In the sequel of this section, the vector containing the confounders will be denoted by W ,
the continuous MET score by A, and the indicator of five-year all-cause mortality by Y . We are
interested in summarizing the causal relationship between LTPA and all cause mortality based on
the MSM provided in (1.15) through estimation of the parameters involved.

Figure 2.1 shows two contrasting estimated densities gn(A|W ) for different profiles W , in which
a subject with better general health status is more likely to have higher levels of physical activity.
As pointed out before, this methodology allows the detection of high density areas in the exposure
mechanism, like the one detected at zero in Figure 1.3 (a). This spike appears because this is a
“zero-inflated” exposure, in which a large proportion of the population do not practice any amount
of physical activity.

As initial estimator of Q̄0 we also used the super learner (van der Laan, Polley, and Hubbard,
2007). Table 2.5 shows the candidates used, their cross-validated risks, and their coefficients in the
final super learner predictor. In order to get a consistent estimator of Q̄0 the library of candidate
estimators should be as large as possible. Since this is an illustrating example, we allow ourselves
to use this small library. Table 1.4 shows the three estimated values for each of the two param-
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Figure 1.3: Estimated conditional density of A given the profiles: (a) age = 77, gender = female,
health = fair, nrb = 0.9, card = no, smoke = ex-smoker, decline = yes, chron = yes; and (b) age
= 71, gender = male, health = good, nrb = 0.88, card = no, smoke = never smoked, decline = no,
chron = no

Cross-validated Risk Coef.
GLM main effects 0.1079 0.0000
GLM main eff. and two way interactions 0.1143 0.0835
GAM degree 2 0.1073 0.0000
GAM degree 3 0.1071 0.9165
Bayes GLM main effects 0.1078 0.0000

Table 1.3: Super learner output for estimation of Q̄0.

eters defined by the MSM in (1.15). Computation of these estimates required (as explained in
section 1.2) an initial estimator of the exposure mechanism. The simulation in section 4.4 showed
that misspecification of a parametric model for the exposure mechanism can lead to a substantial
amount of bias in the MSM estimates, and that the use of the density estimator presented in section
1.1 is preferred when the true exposure mechanism is unknown. Although the three estimators for
γ1 differ in magnitude, all of them agree that there is a small protective effect of physical activity
on all cause mortality, although that effect is not statistically significant, which does not mean that
it is not relevant.
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IPTW A-IPTW TMLE

γ0
-1.7484 -1.6365 -1.5893
(0.4274) (0.2650) (0.1311)

γ1
0.0042 0.0026 0.0013

(0.0022) (0.0015) (0.0011)

Table 1.4: Estimates of the MSM parameters (1.2) for the phisycal activity data.

1.5 Conclusion
In this chapter we develop a conditional density estimator based on a convex linear combination
of candidate histogram estimators indexed by the position and location of the bins, in which the
histogram probabilities are estimated by using the super learner. We develop and use this esti-
mator in the context of estimation of causal MSM parameters. An application in the context of
stochastic intervention parameters can be found in Dı́az and van der Laan (2011a). Even though
these applications are both related to estimation of causal effects, the conditional density estima-
tion technique here described is of general applicability, and can also be used as a general machine
learning technique for estimation of conditional densities.

Since the estimator proposed is computationally very intense, exhaustive simulations studying
its statistical properties as a density estimator imply prohibitive simulation times. However, a small
simulation study was performed to show that MSM parameter estimation based on our estimator is
preferable to MSM estimation based on a misspecified parametric model. This implies that unless
the true exposure generation mechanism is known, the use of our estimator as initial estimator of
the exposure mechanism should be preferred.

Finally, the simulation study also showed that for a very large sample size the estimated ex-
posure mechanism is very close to the true exposure mechanism. Such feature of this particular
simulation suggests an interesting line of future research in which the analytic conditions under
which our estimator is consistent or equipped with an oracle inequality can be established.
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Chapter 2

Stochastic interventions: shifting the
exposure mechanism

Most causal inference problems are addressed by defining parameters of the distribution of the
counterfactual outcome that one would obtain in a controlled experiment in which an exposure
variable A is set to some pre-specified value a deterministically. A widely used example of this
framework is the causal effect for a binary treatment, in which the expectation of the outcome
in a hypothetical world in which everybody receives treatment is compared with its counterpart
in a world in which nobody does. Other common way of addressing causal problems consists
in considering parameters that reflect the difference between the distribution of a counterfactual
outcome in such hypothetical intervened world and the distribution of the actual outcome; these
parameters are often referred to as population intervention parameters (Hubbard and van der Laan,
2005).

In order to estimate such exposure-specific counterfactual parameters from observational data,
one has to assume that all subjects in the population have a positive probability of receiving the ex-
posure level a under consideration. This assumption is often referred to as experimental treatment
assignment (ETA), or positivity assumption and can be highly unrealistic in most cases. Addition-
ally, when the exposure of interest is not a variable that can be directly manipulated (e.g., social
or behavioral phenomena), any policy intervention targeting a change in the exposure distribution
will result in a population whose exposure is stochastic rather than deterministic, and the causal
effect as described in the previous paragraph loses its appeal as a measure of the gain obtained by
implementing such a policy.

An example that illustrates these ideas is presented in section 2.5. These data were collected
by Tager, Hollenberg, and Satariano (1998) and analyzed by Bembom and van der Laan (2007)
with the main goal of assessing the effect of vigorous physical activity on mortality in the elderly.
Firstly, as argued by Bembom and van der Laan (2007), ETA assumptions as needed to identify the
causal effect of a static treatment are quite unrealistic since health problems are expected to prevent
an important proportion of the population from high levels of physical activity. Secondly, it is clear
that it is not possible to put in practice a policy in which every subject is enforced to a physical
activity level dictated by a deterministic rule. Therefore, any intervention on the population that
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targets changes in physical activity level will induce a random post-intervention exposure. These
and other reasons why deterministic interventions are not always the best approach to estimate
causal effects are discussed in Korb et al. (2004) and Eberhardt and Scheines (2006). Korb et
al. (2004) define an intervention on a variable A in a causal model as an action that intends to
change the distribution of A. This general definition includes as special cases static and dynamic
deterministic interventions (through degenerate distributions), but it also allows the definition of
the causal effect in terms of a non degenerate distribution, as exploited in this article.

In our example, the question of whether higher levels of leisure-time physical activity (LTPA)
cause a reduction in mortality rates in the elderly can be better addressed by considering the effect
of a policy that aims to cause an increase in the mean of LTPA, possibly depending on covari-
ates such as health status or socioeconomic level. As we will see in section 2.1, this problem
corresponds to considering the effect of an intervention that shifts the location of the treatment
mechanism. We focus the discussion on the definition and estimation of the effect of this specific
type of interventions.

Despite the previous considerations, current developments and applications have almost exclu-
sively focused on deterministic interventions. Among the few works using stochastic interventions
figure Cain et al. (2010), who used a stochastic intervention in the context of comparing dynamic
treatment regimes with a grace period; and Taubman et al. (2009a), who considered an intervention
in the BMI defined by a truncation of the original exposure distribution.

Other type of stochastic interventions of interest arises in applications in which the interest
relies in estimating the effect of a policy that enforces the exposure level below a certain threshold.
Such policies can modify the distribution of the exposure in various ways. For example, if a
policy that constrains air pollution emissions below a cutoff point is put in place, it is reasonable
to think that the probability mass associated with values above that cutoff in the original exposure
mechanism will be relocated around the cutoff after the intervention. This is because under such a
policy, high-polluting companies will not have any incentive to go below the enforced cutoff point.

Alternative threshold-like interventions can lead to a truncated version of the original density,
relocating the mass above the threshold across all values of the exposure distribution below the
threshold (as opposed to relocating it in the cutoff point). In fact, as proven by Stitelman, Hubbard,
and Jewell (2010b), the intervention obtained by considering a dichotomous version of a contin-
uous treatment and defining a usual static intervention (e.g., the BMI intervention in Taubman
et al. (2009a)), corresponds to a stochastic intervention on the original continuous treatment that
truncates its density below the value defining the dichotomization.

Our major goal is to introduce stochastic intervention causal parameters as a way of measuring
the effect that certain policies have on the outcome of interest. As we will see, estimation of the
these parameters requires weaker assumptions than estimation of other causal parameters (e.g.,
MSM), relaxing assumptions about positivity and consistency of the initial estimators, and thus
providing a more flexible way of estimating causal effects. We will start in section 2.1 by defining
the parameter of interest, in section 2.2 we present its efficient influence curve, and discuss the
double robustness of estimators that solve the efficient influence curve equation. This section
also provides the tools for defining the targeted maximum likelihood estimators in section 3.3. In
section 2.4 we present a simulation study demonstrating consistency and efficiency properties of
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the estimators, and in section 2.5 we present an application example.

2.1 Data and parameter of interest
Consider an experiment in which an exposure variable A, a continuous or binary outcome Y and a
set of covariates W are measured for n randomly sampled subjects. Let O = (W,A,Y ) represent a
random variable with distribution P0, and O1, . . . ,On represent n i.i.d. observations of O. Assume
that the following NPSEM holds:

W = fW (UW ); A = fA(W,UA); Y = fY (A,W,UY ), (2.1)

where UW , UA and UY are exogenous random variables such that UA⊥⊥UY holds, and either
UW⊥⊥UY or UW⊥⊥UA holds (randomization assumption). The true distribution P0 of O can be
factorized as

P0(O) = P0(Y |A,W )P0(A|W )P0(W ),

where we denote g0(A|W ) ≡ P0(A|W ), Q̄0(A,W ) ≡ E0(Y |A,W ), QW,0(W ) ≡ P0(W ), and P f =∫
f dP for a given function f .

Counterfactual outcomes under stochastic interventions are denoted by YPδ
, and are defined

as the outcome of a causal model in which the equation in the NPSEM (3.1) corresponding to
A is removed, and A is set equal to a with probability Pδ (g0)(A = a|W ). The latter is called the
intervention distribution, which we allow to depend on the true exposure mechanism g0. Any
stochastic intervention of interest can be defined in this way, and in this chapter we focus the
discussion on the intervention distribution:

Pδ (g0)(A = a|W ) = g0(a−δ (W )|W ), (2.2)

for a known function δ (W ). This is a shifted version of the current treatment mechanism, where the
shifting value is allowed to vary across strata defined by the covariates. As discussed in section 2.5,
one can be interested in the effect of a policy that encourages people to exercise more, leading to
a population where the distribution of physical activity is shifted according to certain health and
socioeconomic variables. As implicitly stated in (2.2), we will assume that the functional form of
the exposure mechanism induced by the intervention differs from the original exposure mechanism
only through its conditional expectation given the covariates.

Identification
Let APδ

denote the exposure variable under the intervened system (i.e., APδ
is distributed according

to Pδ (g)). We have that

P(YPδ
= y) = ∑

a∈A
∑

w∈W
P(YPδ

= y|APδ
= a,W = w)Pδ (g)(A = a|W = w)P(W = w),

where A and W are the support of A and W respectively. From the NPSEM (3.1) we have that
P(YPδ

= y|APδ
= a,W = w) = P(Ya = y|APδ

= a,W = w), where Ya is the counterfactual outcome
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when the exposure is set to level a with probability one. Note also that the usual randomization
assumption A⊥⊥Ya|W implies APδ

⊥⊥Ya|W , and therefore P(Ya = y|APδ
= a,W = w) = P(Ya =

y|W =w). Under the consistency assumption (A= a implies Ya =Y ) the latter quantity is identified
by P(Y = y|A = a,W = w). Our counterfactual distribution can be written as

P(YPδ
= y) = ∑

a∈A
∑

w∈W
P(Y = y|A = a,W = w)Pδ (g)(A = a|W = w)P(W = w).

We define the parameter of interest as a mapping Ψ : M → R that takes an element in a statis-
tical model M and maps it into a number in the reals. The true value of the parameter is given by
the mapping evaluated at the true distribution P0 ∈M , and is denoted by ψ0 = Ψ(P0). Our causal
and statistical parameter of interest is then given by

E(YPδ
) = Ψ(P) = ∑

A∈A
∑

W∈W
Q̄(A,W )Pδ (g)(A|W )QW (W ). (2.3)

Note that this parameter depends only on Q = (Q̄,g,QW ). Therefore, in an abuse of notation, we
will use the expressions Ψ(Q) and Ψ(P) interchangeably.

2.2 Efficient influence curve
In this section we derive the efficient influence curve for the parameter in (2.3) when Pδ (g0) is
given by (2.2), which can be writen as

Ψ(P) = ∑
A∈A

∑
W∈W

Q̄(A,W )g(A−δ (W )|W )QW (W ) = EP{Q̄(A+δ (W ),W )}. (2.4)

The last equality can be checked by changing the index in the summation to A−δ (W ). Equation
(2.4) corresponds exactly with computing the marginal mean of Y from the joint distribution of
(W,A,Y ) with A replaced by A+δ (W ). Note also that if δ (W ) = 0, equation (2.4) is equal to the
expectation of Y under P.

The efficient influence curve is a key element in semi-parametric efficient estimation, since
it defines the linear approximation of any efficient and regular asymptotically linear estimator,
and therefore provides an asymptotic bound for the variance of all regular asymptotically linear
estimators (Bickel et al., 1997).

Result 1. The efficient influence curve of (2.4) is

D(P)(O) =
g(A−δ (W )|W )

g(A|W )
{Y − Q̄(A,W )}+ Q̄(A+δ (W ),W )−Ψ(P). (2.5)

Since this influence curve as well as the parameter of interest depend only on Q, we will also
use the notations D(P)(O) and D(Q)(O) interchangeably.
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Proof First of all, notice that the nonparametric estimator of ψ0 is given by

Ψ̂(Pn) = ∑
y∈Y

∑
a∈A

∑
w∈W

yPn(y|a,w)Pn(a−δ (w)|w)Pn(w)

= ∑
y∈Y

∑
a∈A

∑
w∈W

y
Pn fy,a,w

Pn fa,w
Pn fa−δ (w),w, (2.6)

where Pn = 1
n ∑

n
i=1 δoi is the empirical measure, fy,a,w = I(Y = y,A = a,W = w), fa,w = I(A =

a,W = w) , fa−δ (w),w = I(A = a−δ (w),W = w), and I(·) denotes the indicator function. Here P f
denotes

∫
f dP.

Recall that the efficient influence curve in a non-parametric model corresponds with the influ-
ence curve of the non-parametric estimator. This is true because the influence curve of any regular
estimator is also a gradient, and a non-parametric model has only one gradient. Rose and van der
Laan (2011) show that if Ψ̂(Pn) is a substitution estimator such that ψ0 = Ψ̂(P0), and Ψ̂(Pn) can be
written as Ψ̂∗(Pn f : f ∈F ) for some class of functions F and some mapping Ψ∗, the influence
curve of Ψ̂(Pn) is equal to

IC(P0)(O) = ∑
f∈F

dΨ̂∗(P0)

dP0 f
{ f (O)−P0 f}.

Applying this result to (2.6) with F = { fy,a,w, fa,w, fa−δ (w),w} gives the desired result.

This efficient influence curve can be decomposed in three parts corresponding to the orthogonal
decomposition of the tangent space implied by the factorization of the likelihood:

D1(P)(O) =
g(A−δ (W )|W )

g(A|W )
{Y − Q̄(A,W )}

D2(P)(O) = Q̄(A+δ (W ),W )−EP{Q̄(A+δ (W ),W )|W} (2.7)
D3(P)(O) = EP{Q̄(A+δ (W ),W )|W}−Ψ(P).

This decomposition of the score is going to be useful later on during the construction of a
targeted maximum likelihood estimator of ψ0. The following result provides the conditions under
which an estimator that solves the efficient influence curve equation is consistent.

Result 2. Let D(O|ψ0, Q̄,g) be the estimating function implied by the efficient influence curve
D(P)(O):

D(O|ψ0, Q̄,g) =
g(A−δ (W )|W )

g(A|W )
{Y − Q̄(A,W )}+ Q̄(A+δ (W ),W )−ψ0,

let w(g)(a,w) = g(a− δ (w)|w)/g(a|w), and let supa∈A w(g0)(a,W ) < ∞,− a.e. We have that
EP0D(O|ψ0, Q̄,g) = 0 if either g is such that w(g) = w(g0), or Q̄ = Q̄0
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Proof Conditioning first on (A,W ) and then on W we get

EP0D(O|ψ0, Q̄,g) = EP0

[
∑

a∈A

g0(a|W )

g(a|W )
g(a−δ (W )|W ){Q̄0(a,W )− Q̄(a,W )}

]

+EP0

[
∑

a∈A
g0(a−δ (W )|W )Q̄(a,W )

]
−EP0

[
∑

a∈A
g0(a−δ (W )|W )Q̄0(a,W )

]
,

which completes the proof.

As a consequence of result 2, under regularity conditions stated in theorem 1 of van der Laan
and Rubin (2006), a substitution estimator of Ψ(P0) that solves the efficient influence curve equa-
tion PnD( · |ψ0, Q̄,g) will be consistent if either one of w(g0) and Q0 is estimated consistently, and
it will be efficient if and only if both w(g0) and Q0 are estimated consistently. We only rely on
consistent estimation of the weight function w(g0). This consistency can be easier to obtain than
consistent estimation of the density g0, which is required for double robustness of parameters in
marginal structural models (Neugebauer and van der Laan, 2007). Since Ψ(P) depends on both Q̄
and g, double robustness is a very unexpected result. Some intuition about it is provided by the
definition of the parameter in (2.4): if Q̄0 is known, a consistent estimator can always be obtained
by computing the empirical mean of Q̄0(A+ δ (W ),W ); if the weight function w(g0) is known, a
consistent estimate of ψ0 would be given by a weighted average of Y with weights w(g0)(A,W ).

Positivity assumption
Alternatives to definition and estimation of causal effects in the context of continuous or categorical
multilevel treatments are given by marginal structural models (MSM) and parameters like the ones
presented in Petersen et al. (2010). One of the assumptions required to estimate those parameters
(the positivity assumption) is given by

sup
a∈A

h(a)
g0(a|W )

< ∞,− a.e.,

for a user-specified weight function h. The function h(a) = 1 is commonly used, since it implies
giving equal weights to all the possible treatment values.

From the formula of the efficient influence curve, the positivity assumption needed to identify
and estimate our parameter of interest is given by

sup
a∈A

g0(a−δ (W )|W )

g0(a|W )
< ∞,− a.e. (2.8)

Suppose infa∈A g0(a|W ) > ε for some small ε . Since the function δ is user-given, we can try to
define it in a way so that it is useful to answer the causal question of interest, and yet it does not
produce unstable weights. As a result, the positivity assumption as needed to estimate our parame-
ter of interest is more easily achievable than the positivity assumption as required to estimate other
causal parameters for continuous exposures.
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2.3 Estimators
In this section we present three possible estimators for the parameter of interest. The TMLE and
the A-IPTW estimators solve the efficient influence curve equation, and therefore, from result 2,
are consistent estimators if either one of Q0(A,W ) and g0(A|W ) is estimated consistently. They are
efficient if and only if both of these quantities are estimated consistently. The IPTW is inefficient,
and will be consistent only if the estimator of g0(A|W ) is consistent. The TMLE is expected to
perform better than the A-IPTW if the positivity assumption is violated, which will be the case
if the causal question of interest requires the use of a function δ that produces unstable weights
in (2.8). The TMLE is also a better alternative than the A-IPTW when the efficient estimating
equation has multiple solutions, or its solution goes out of the natural bounds for the parameter of
interest.

The estimators presented in this section require initial estimates of Q̄0(A,W ) and g0(A|W ),
which can be obtained through machine learning techniques, parametric or semi-parametric mod-
els. The consistency of these initial estimators will determine the consistency and efficiency of the
estimators of ψ0, as discussed previously. Parametric models are commonly used for the sole sake
of their nice analytical properties, but they encode assumptions about the distribution of the data
that are not legitimate knowledge about the phenomenon under study and usually cause a large
amount of bias in the estimated parameter. As an alternative, we recommend the use of machine
learning techniques such as the super learner (van der Laan, Polley, and Hubbard, 2007). Super
learner is a methodology that uses cross-validated risks to find an optimal estimator among a li-
brary defined by the convex hull of a user-supplied list of candidate estimators. One of its most
important theoretical properties is that its solution converges to the oracle estimator (i.e., the candi-
date in the library that minimizes the loss function with respect to the true probability distribution).
Proofs and simulations regarding these and other asymptotic properties of the super learner can be
found in van der Laan, Dudoit, and Keles (2004) and van der Laan and Dudoit (2003).

Influence curve based variance estimators are provided for these three estimators. Consistency
of the variance estimators also depends on the consistency of the initial estimates of Q̄0 and g0.
These dependency can be avoided at the cost of computational time and effort by using boot-
strapped estimates of the variance.

IPTW
Given an estimator g0

n of the exposure density, the IPTW estimator of ψ0 is defined as

ψn,1 =
1
n

n

∑
i=1

g0
n(Ai−δ (Wi)|Wi)

g0
n(Ai|Wi)

Yi.

The IPTW is an asymptotically linear estimator with influence curve

DIPTW (O|ψ0,g0) =
g0(A−δ (W )|W )

g0(A|W )
Y −ψ0,
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therefore the variable
√

n(ψn,1−ψ0) converges in distribution to N{0,P0D2
IPTW (g0)}, whose vari-

ance can be estimated by PnD2
IPTW ( · |ψn,1,g0

n). This variance estimator is conservative, as proved
in van der Laan and Robins (2003) and corroborated in the simulation section.

Augmented IPTW
The augmented IPTW is the value ψn,2 that solves the equation ∑

n
i=1 D(Oi|ψ0, Q̄0

n,g
0
n) = 0, for

initial estimates Q̄0
n and g0

n of Q̄0 and g0.

ψn,2 =
1
n

n

∑
i=1

g0
n(Ai−δ |Wi)

g0
n(Ai|Wi)

{Yi− Q̄0
n(Ai,Wi)}+ Q̄0

n(Ai +δ (Wi),Wi).

If the estimators Q̄0
n and g0

n are consistent, the A-IPTW is an asymptotically linear estimator with
influence curve D(O|ψ0, Q̄0,g0). As in the case of the IPTW, the variable

√
n(ψn,2−ψ0) converges

in law to a random variable with distribution N{0,P0D2(·|ψ0, Q̄0,g0)}, whose variance can be
estimated as PnD2( · |ψn,2, Q̄0

n,g
0
n). van der Laan and Robins (2003) (sections 2.3.7 and 2.7.1)

show that inference based on this variance estimator is valid only if g0
n is consistent, providing

exact inference when Q̄0
n is consistent, and conservative inference when Q̄0

n is inconsistent.

Targeted maximum likelihood estimator
Targeted maximum likelihood estimation (van der Laan and Rubin, 2006) is a loss-based semi-
parametric estimation method that yields a substitution estimator of a target parameter of the prob-
ability distribution of the data that solves the efficient influence curve estimating equation, and
thereby yields a double robust locally efficient estimator of the parameter of interest, under regu-
larity conditions.

In order to define a targeted maximum likelihood estimator for ψ0, we need first to define three
elements: (1) A loss function L(Q) for the relevant part of the likelihood required to evaluate Ψ(P),
which in this case is Q = (Q̄,g,QW ). This function must satisfy Q0 = argminQ EP0L(Q)(O), where
Q0 denotes the true value of Q; (2) An initial estimator Q0

n of Q0; (3) A parametric fluctuation Q(ε)
through Q0

n such that the linear span of d
dε

L{Q(ε)}|ε=0 contains the efficient influence curve D(P)
defined in (2.5). These elements are defined below:

Loss Function
As loss function for Q, we will use L(Q) = LY (Q̄)+ LA(g)+ LW (QW ), where for continuous Y
we set LY (Q̄) = {Y − Q̄(A,W )}2, for binary Y we set LY (Q̄) = Y log{Q̄(A,W )}+(1−Y ) log{1−
Q̄(A,W )}, LA(g) =− logg(A|W ), and LW (QW ) =− logQW (W ). It can be easily verified that this
function satisfies Q0 = argminQ EP0L(Q)(O).

Parametric Fluctuation
Given an estimator Qk

n of Q0, with components (Q̄k
n,g

k
n,Q

k
W,n), we define the (k+1)th fluctuation
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of Qk
n as follows:

Q̄k+1
n (ε1)(A,W ) = Q̄k

n(A,W )+ ε1Hk
1(A,W )

gk+1
n (ε1)(A|W ) =

exp{ε1Hk
2(A,W )}gk

n(A|W )∫
A exp{ε1Hk

2(A,W )}gk
n(A|W )

Qk+1
W,n (ε2)(W ) =

exp{ε2Hk
3(W )}Qk

W,n(W )∫
W exp{ε2Hk

3(W )}Qk
W,n(W )

,

where Hk
1(A,W ) = gk

n(A−δ (W )|W )/gk
n(A|W ), Hk

2(A,W ) = D2(Pk)(O) and H3(W ) = D3(Pk)(O),
with D2 and D3 defined as in (2.7). We define these fluctuations using a two-dimensional ε with
two different parameters ε1 and ε2. It is theoretically correct to define these fluctuations using any
dimension for ε , as long as the condition D(P) ∈< d

dε
L{Q(ε)}|ε=0 > is satisfied, where < · >

denotes linear span. The convenience of the particular choice made here will be clear once the
TMLE is defined.

Targeted Maximum Likelihood Estimator
The TMLE is defined by the following iterative process:

1. Initialize k = 0.

2. Estimate ε as εk
n = argminε PnL{Qk

n(ε)}.

3. Compute Qk+1
n = Qk

n(ε
k
n).

4. Update k = k+1 and iterate steps 2 through 4 until convergence (i.e., until εk
n = 0)

First of all, note that the value of ε2 that minimizes the part of the loss function corresponding
to the marginal distribution of W in the first step (i.e., −Pn logQ1

W,n(ε2)) is ε1
2 = 0. Therefore, the

iterative estimation of ε only involves the estimation of ε1. The kth step estimation of ε1 is obtained
by minimizing Pn[LY{Q̄k

n(ε1)}+LA{gk
n(ε1)}], which implies solving the estimating equation

Sk(ε1) =
n

∑
i=1

[
Yi−{Q̄k

n(Ai,Wi)+ ε1Hk
1(Oi)}

]
Hk

1(Oi)+D2(Pk
n )(Oi)−

∑
A∈A

D2(Pk
n )(Oi) exp{ε1D2(Pk

n )(Oi)} gk
n(Ai|Wi)

∑
A∈A

exp{ε1D2(Pk
n )(Oi)} gk

n(Ai|Wi)
(2.9)

where
D2(Pk

n )(O) = Qk
n(A+δ (W ),W )− ∑

A∈A
Qk

n(A+δ (Wi),Wi)gk
n(A|Wi).

The TMLE of ψ0 is defined as ψn,3 ≡ limk→∞ Ψ(Pk
n ), assuming this limit exists. In practice, the

iteration process is carried out until convergence in the values of εk
n is achieved, and an estimator
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Q∗n is obtained. The variance of ψn,3 can be estimated by PnD2( · |ψn,3, Q̄∗n,g
∗
n), which like the aug-

mented IPTW variance estimator is consistent only if both g∗n and Q∗n are consistent, is conservative
if g∗n is consistent but Q∗n is not, and is inconsistent in any other case.

2.4 Simulation study
In order to provide an example of the finite sample properties of the estimators discussed in section
2.3, a simulation study was performed. We focus on just one data generating distribution, which
provides a limited but useful situation to demonstrate our claims about consistency and efficiency.

W1 ∼U{0,1}
W2 ∼ Ber{0.7}

A|W1,W2 ∼ Poisson{exp(3+ .3log(W1)− .2exp(W1)W2)}
Y |A,W1,W2 ∼ N{1+ .5A− .2AW2 +2A tan(W 2

1 )−2W1W2 +AW1W2, 1}.

Assuming that we are interested in estimating the effect of a constant shift of δ (W1,W2) = 2, the
true parameter value for this data generating distribution is ψ0 = 22.95, and the efficiency bound
equals {VarP0D(P0)(O)}1/2 = 17.81.

For sample sizes n = 50,100,200 and 500, we simulated 2000 samples from the previous data
generating distribution, and estimated ψ0 using the three estimators proposed in the previous sec-
tion. As initial estimators of Q̄0(A,W ) and g0(A|W ) we considered four cases: 1) correctly spec-
ified model for both Q̄0(A,W ) and g0(A|W ), 2) incorrectly specified model for Q̄0(A,W ) but cor-
rectly specified for g0(A|W ), 3) correctly specified model for Q̄0(A,W ) but incorrectly specified
for g0(A|W ), and 4) incorrectly specified model for both Q̄0(A,W ) and g0(A|W ); where misspeci-
fication of the models was performed by considering the correct distribution and link function but
only main terms in the linear predictor.

TML estimation of ψ0 was performed using the R tmle.shift() function presented in ap-
pendix A.1. The average and variance of the estimates across the 2000 samples was computed as
an approximation to the expectation and variance of the estimator (Table 2.1), respectively.

The results in Table 2.1 confirm the double robustness of the TMLE and A-IPTW, which had
been proven analytically in result 2. The TMLE and A-IPTW are unbiased even for small sample
sizes, whereas the IPTW needs larger sample sizes to achieve unbiasedness.

Regarding the variance of the estimators, Table 2.2 shows that the IPTW estimator is inefficient,
and its influence-curve-based variance estimator is very conservative. The variances of the TMLE
and A-IPTW are approximately equal to the efficiency bound if the models for Q̄0 and g0 are
correctly specified, although the same equality is observed if only Q̄0

n is misspecified. This is
because, as stated in result 2, we only need consistent estimation of the weights w(g0)(A,W ), which
can be obtained through a possibly misspecified estimator of g0. On the other hand, the variance
of these estimators is considerably affected by misspecification of the model for Q̄0 (models 3 and
4), even if g0

n is correctly specified.
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n Model TMLE IPTW A-IPTW

50

1 22.99 22.66 22.99
2 22.99 22.49 22.99
3 22.88 22.66 22.91
4 22.01 22.49 22.04

100

1 22.95 22.81 22.95
2 22.96 22.61 22.95
3 22.89 22.81 22.92
4 21.97 22.61 22.00

200

1 22.99 22.89 22.99
2 22.99 22.68 22.99
3 22.94 22.89 22.96
4 21.99 22.68 22.02

500

1 22.97 22.93 22.97
2 22.97 22.71 22.97
3 22.93 22.93 22.96
4 21.97 22.71 22.00

Table 2.1: Expectation of the estimators for different sample sizes and model specifications. True
value is 22.95.

The fact that influence curve based variance estimators of the TMLE and A-IPTW are consis-
tent even for misspecified g0

n can be taken to be a coincidence associated with this particular data
simulating scheme. As explained in section 2.3, this type of consistency does not hold in general.

Since all estimators considered are asymptotically linear, 95% normal-based confidence in-
tervals can be computed. Their coverage probabilities are presented in Table (2.3). The conser-
vativeness of the IPTW can also be appreciated here. The consistent TMLE and A-IPTW based
confidence intervals have perfect asymptotic coverage probability. Intervals associated to incon-
sistent estimators (model 4) have, as expected, confidence levels below the nominal value. In this
simulation we do not observe significant differences between the TMLE and the A-IPTW.

2.5 Application
With the objective of illustrating the procedure described in the previous sections, we revisit the
problem analyzed by Bembom and van der Laan (2007) of assessing the extent to which physi-
cal activity in the elderly is associated with reductions in cardiovascular morbidity and mortality,
and improvement in, or prevention of metabolic abnormalities. Tager, Hollenberg, and Satariano
(1998) followed a group of people over 55 years of age living around Sonoma, CA, over a time
period of about ten years as part of a longitudinal study of physical activity and fitness (Study of
Physical Performance and Age Related Changes in Sonomans - SPPARCS). The goal in analyzing
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n Model TMLE IPTW A-IPTW

50

1 17.94 (17.66) 20.33 (26.80) 17.94 (17.66)
2 17.94 (17.67) 19.16 (25.03) 17.94 (17.66)
3 18.92 (17.81) 20.33 (26.80) 18.94 (18.08)
4 18.21 (18.07) 19.16 (25.03) 18.25 (17.77)

100

1 17.93 (17.74) 20.36 (27.63) 17.93 (17.74)
2 17.93 (17.75) 19.04 (25.72) 17.93 (17.75)
3 18.96 (18.14) 20.36 (27.63) 18.98 (18.45)
4 18.34 (18.37) 19.04 (25.72) 18.35 (18.06)

200

1 17.77 (17.77) 20.17 (28.00) 17.77 (17.77)
2 17.77 (17.78) 18.93 (25.97) 17.77 (17.77)
3 18.62 (18.35) 20.17 (28.00) 18.64 (18.68)
4 17.98 (18.57) 18.93 (25.97) 18.00 (18.24)

500

1 17.38 (17.79) 20.40 (28.37) 17.39 (17.79)
2 17.38 (17.80) 18.94 (26.24) 17.39 (17.80)
3 18.50 (18.49) 20.40 (28.37) 18.52 (18.84)
4 17.74 (18.71) 18.94 (26.24) 17.76 (18.36)

Table 2.2: Standard error of the estimator (times
√

n). Expectation of the influence curve based
estimator of the variance (times

√
n) in parentheses. Efficiency bound is 17.81

the data that were collected as part of this study is to examine the effect of baseline vigorous LTPA
(Leisure Time Physical Activity) on subsequent five-year all-cause mortality.

In this chapter, we use the same measure of LTPA used by Bembom and van der Laan (2007),
which is a continuous score based on the number of hours that the participants were engaged in
vigorous physical activities such as jogging, swimming, bicycling on hills, or racquetball in the last
seven days, and the standard intensity values in metabolic equivalents (MET: Metabolic Equivalent
of Task) of such activities, where one MET is approximately equal to the oxygen consumption
required for sitting quietly.

The primary confounding factors that we adjust for are described in Table 2.4. Age and gender
are natural confounders, and the rest of the variables intend to account for the subject’s underlying
level of general health. Of the 2092 subjects enrolled in the SPPARCS study, 40 were missing
information in at least one of this variables; our analysis is based on the remaining 2052 subjects.

In the sequel of this section, the vector containing the confounders will be denoted by W , the
continuous MET score by A, and the indicator of five-year all-cause mortality by Y . We are inter-
ested in estimating the effect of a policy that will produce an increase of 12 METs (corresponding,
for instance, to bicycling during three hours at less than 10mph per week) in the average of the
conditional distribution physical activity, given the covariates. Note that our intervention could
also be defined by using different values of MET in each strata defined by the covariates W .

Initial estimators of the conditional density g0(A|W ) and the conditional expectation Q̄0(A,W )
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n Model TMLE IPTW A-IPTW

50

1 0.93 0.97 0.93
2 0.93 0.96 0.93
3 0.92 0.97 0.92
4 0.90 0.96 0.89

100

1 0.94 0.98 0.94
2 0.94 0.98 0.94
3 0.93 0.98 0.94
4 0.89 0.98 0.89

200

1 0.95 0.98 0.95
2 0.95 0.97 0.95
3 0.94 0.98 0.95
4 0.87 0.97 0.87

500

1 0.95 0.99 0.95
2 0.95 0.98 0.95
3 0.94 0.99 0.95
4 0.78 0.98 0.78

Table 2.3: Coverage probability of normal based confidence intervals.

are presented below.

Initial estimator of g0

For the estimation of the density g0(A|W ), we consider the estimator presented in chapter 1. We
now provide a summary of the rationale behind this estimator. Consider k+1 values α0,α1, . . . ,αk
spanning the range of the data and defining k bins. Now, consider the following class of histogram-
like candidate estimators of the conditional density g0(A|W )

gn,α(A = a|W ) =
Prn{A ∈ [αm−1,αm)|W}

αm−αm−1
, for αm−1 ≤ a < αm−1,

where the choice of the α values and the number of bins index the candidates in the class. The
probabilities in the numerator are estimated through the super learner. The final estimator of the
density consists of a convex combination of these estimators that minimizes the cross-validated
empirical risk.

As an example, Figure 2.1 shows two contrasting estimated densities gn(A|W ) for different
profiles W , in which a subject with better general health status is more likely to have higher levels
of physical activity. As pointed out in chapter 1, this methodology allows the detection of high
density areas in the exposure mechanism, like the one detected at zero in Figure 2.1 (a). This spike
appears because this is a “zero-inflated” exposure, in which a large proportion of the population do
not practice any amount of physical activity.
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Variable Description

Gender
Female
Male

Age Age in years

Health

Self-rated health status:
Excellent
Fair
Poor

NRB Score of self-reported physical functioning rescaled between 0 and 1
Card Previous occurrence of any of the following cardiac events: Angina, myocar-

dial infarction, congestive heart failure, coronary by-pass surgery, and coro-
nary angioplasty

Chron Presence of any of the following chronic health conditions: stroke, cancer,
liver disease, kidney disease, Parkinson’s disease, and diabetes mellitus

Smoking
Never smoked
Current smoker
Ex-smoker

Decline Activity decline compared to 5 or 10 years earlier

Table 2.4: Confounders.

Initial estimator of Q̄0

For the initial estimator of Q̄0 we used the super learner (van der Laan, Polley, and Hubbard,
2007). Table 2.5 shows the candidates used, their cross-validated risks, and their coefficients in the
final super learner predictor. In order to get a consistent estimator of Q̄0 the library of candidate
estimators should be as large as possible. Since this is an illustrating example, we allow ourselves
to use this small library.

Cross-validated Risk Coef.
GLM main effects 0.1079 0.0000
GLM main eff. and two way interactions 0.1143 0.0835
GAM degree 2 0.1073 0.0000
GAM degree 3 0.1071 0.9165
Bayes GLM main effects 0.1078 0.0000

Table 2.5: Super learner output for estimation of Q̄0.
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Figure 2.1: Estimated conditional density of A given the profiles: (a) age = 77, gender = female,
health = fair, nrb = 0.9, card = no, smoke = ex-smoker, decline = yes, chron = yes; and (b) age
= 71, gender = male, health = good, nrb = 0.88, card = no, smoke = never smoked, decline = no,
chron = no

Estimators of ψ0

Table 2.6 shows the three estimates of ψ0 with their standard errors, as described in section 2.3.
As an example, the TML estimated value of ψn,3 = 0.16 indicates that if a policy that increases the
average leisure time physical activity by the equivalent of 12 METs is implemented, the estimated
risk of death in the intervened population will be 16%.

If the objective is to perform a comparison with the current risk of death, we can define a
population intervention parameter ψ1

0 as

ψ
1
0 = ψ0−EP0(Y ).

This is a parameter that compares the expected risk of death in the intervened population with the
current risk of death, and therefore describes the gain obtained by carrying out the intervention
of interest. For a given estimator ψn of ψ0, an asymptotically linear estimator of ψ1

0 is given by
ψ1

n = ψn− Ȳ . Its influence curve can be computed as D1(P)(O) = D(P)(O)−{Y −EP(Y )}, and
its variance is estimated through the sample variance of D1(P)(O). Here D(P)(O) is the influence
curve of each of the estimators defined in section 2.3. The estimates of ψ1

0 and their standard
errors are presented in table 2.6. Confidence intervals and p-values for hypothesis testing can be
computed based on the normal approximations for asymptotically linear estimators described in
section 2.3. In light of the results from the simulation section and the theoretical properties of the
estimators, we rely on the TMLE and A-IPTW to measure the effect of the intervention of interest.
The estimated value of ψ1

n means that if a policy increasing the average time of physical activity by
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TMLE A-IPTW IPTW
ψ0 0.1600(0.0104) 0.1599(0.0105) 0.1454(0.0135)
ψ1

0 −0.0179(0.0071) −0.0179(0.0071) −0.0324(0.0117)

Table 2.6: Estimates of ψ0.

the equivalent of 12 METs (corresponding, for instance, to bicycling during three hours per week
at less than 10mph) is put in place, the risk of all-cause mortality in the elderly would be reduced
by 1.79%. These results are consistent with the findings of Bembom and van der Laan (2007).

2.6 Discussion
In this chapter we define a new parameter measuring the causal effect of a population intervention
that (as opposed to most of the parameters presented in the literature) accounts for the fact that in
most cases the post-intervention exposure continues to be a random variable. We argue that this
parameter makes more intuitive sense when the objective is to assess the causal effect of policies
intending to modify an exposure variable that cannot be directly intervened upon. For example, as
argued in Bembom and van der Laan (2007), it makes little sense to assess the effect of a realistic
policy in terms of a static intervention in which every subject in a population of elderly people is
required to increase his level of physical activity to the maximum, or even to a level defined by
a deterministic function of the covariates. Such interventions are never possible due to particular
health conditions, physical functioning constraints, or simple inability to enforce every subject to
comply with the treatment level dictated by the intervention. Hence, deterministic interventions
do not provide an accurate tool to measure the causal effect of a realistic policy that renders a
stochastic exposure.

Another appealing feature of the framework presented in this chapter is that it provides a natural
way of defining and estimating causal effects for continuous variables, or discrete variables with
more than two levels, which are currently defined through the specification of a working MSM
(Neugebauer and van der Laan, 2007). The positivity assumption required to estimate our proposed
causal parameter can be made weaker than the positivity assumption required to estimate MSM
parameters.

Three estimators of the parameter were proposed, two of which are double robust to misspec-
ification of the models for the treatment mechanism g0 and the conditional expectation Q̄0, even
when the parameter depends on these two quantities. This double robustness property is proven
analytically, and corroborated in a simulation study.
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Chapter 3

Stochastic interventions: truncating the
exposure mechanism

Current approaches to causal inference (Rubin, 1974; Rubin, 1978; Pearl, 2000; Pearl, 2009) de-
fine causal parameters as functions of the distribution of random variables generated by a system
in which the stochastic nature of a set of variables is intervened on, leading to changes in the
stochastic nature of the variables that depend causally on them. Such interventions may be defined
in various ways: static, dynamic or stochastic. A static intervention is one in which the treatment is
set to a given fixed value deterministically, while a dynamic intervention allows such value to de-
pend on variables that precede it causally. Static interventions have also been called deterministic
(Korb et al., 2004) or atomic (Pearl, 2000).

In spite of their wide use, deterministic interventions (whether static or dynamic) do not provide
an appropriate framework to answer causal questions about phenomena that are not subject to direct
intervention. Feasible interventions often interact with other factors (e.g., a medication has impact
in several organs), fail to put the exposure of interest into a deterministic state (e.g., it is unrealistic
to set an individuals’ exercising regime according to a deterministic function), or are the result of
implementing policies that target stochastic changes in the behavior of a population (e.g., the use
of mass media messages advertising condom use as a means of prevention of HIV infection is a
deterministic treatment at the community level that renders a stochastic one at the individual level,
because each individual will react stochastically to the intervention depending upon exogenous
observed or non observed factors (McAlister, 1991)).

In general (Korb et al., 2004), an intervention can be simply defined as an external manipulation
of a causal system, whether that manipulation is deterministic or stochastic. A static intervention
corresponds to an alteration of the causal system in which the density of the exposure is changed
to a degenerate one. One can also intervene in the exposure by changing its density in any arbitrary
way, which leads to a natural generalization of the counterfactual framework of Rubin (1978). This
general approach is perhaps of more interest from a policy making standpoint: if the counterfactual
distribution of the exposure reflects the expected changes induced by a hypothetical intervention
policy, the intervened model contains all the information about the causal effect of the intervention
in the distribution of the outcome.
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Stochastic interventions also provide a new, natural way of non-parametrically defining causal
parameters for any type of exposure (e.g., continuous ones), regardless of its support and dominat-
ing measure. Thus far this was only possible through the use of misspecified parametric models
or the use of marginal structural models (Neugebauer and van der Laan, 2007). Some advantages
of stochastic interventions with respect to marginal structural models include weakening the pos-
itivity assumption and robustness with respect to misspecification of the model for the treatment
mechanism.

Because stochastic interventions generalize static and dynamic interventions, and since sev-
eral intervention policies are not representable in terms of either static or dynamic interventions,
the development of methods for identification and estimation of parameters defined in terms of
stochastic interventions is of main interest to the causal inference research community.

Among the few works dealing with the mathematical formalization of stochastic interventions
figure Didelez, Dawid, and Geneletti (2006) and Dawid and Didelez (2010), who provide a sys-
tematic and comprehensive discussion of identification of parameters of stochastic, dynamic and
static interventions, studying them from a decision-theoretic viewpoint, exploiting representations
of causal systems in terms of regime indicators and influence diagrams, and presenting a paral-
lel between their theory and existing theory for dynamic, non-stochastic regimes. Tian (2008)
shows that the identification of sequential intervention, whether stochastic or not, can be reduced
to identification of a specific set of sequential static interventions, for which there are complete
identifications algorithms available in the literature. It is therefore no surprise that identification of
our parameter in section 3.1 requires no further assumptions than those required for identification
of a static intervention.

Stochastic interventions arise in applications either inspired by a deterministic intervention, or
because they are of interest in themselves. The most popular example of the former situation is
given by the definition of natural direct effects, in which the effect of A on Y is confounded by
W and mediated by a variable Z. If A and Z are binary, one can define the counterfactual Y1,Z0

(Robins and Greenland, 1992; Pearl, 2001; Zheng and van der Laan, 2011b; Hafeman and Van-
derWeele, 2011) as the outcome under a model in which A has been set to a = 1 with probability
one, and the distribution of Z has been changed to that of Z0, the latter being the counterfactual
of Z obtained when A is set to a = 0 with probability one. This setting provides an example in
which the intervention of interest is performed in two nodes, using a static intervention for A, and
a stochastic intervention for Z. Didelez, Dawid, and Geneletti (2006) and Robins and Richardson
(2010) discuss in detail the case in which several direct and indirect effects are defined and studied
in the context of stochastic interventions. Taubman et al. (2009b) considered an intervention in the
BMI defined by a truncation of the original exposure distribution, which, contrary to the truncation
that we will use in this chapter, relocates the mass originally located above the threshold across
all the values below the threshold. As explained by Stitelman, Hubbard, and Jewell (2010b), such
intervention is usually the result of dichotomizing a continous variable and considering a static
intervention in the dichotomous version of the treatment variable. This dichotomization represents
current common practice, in section 3.2 we will discuss the differences with the approach presented
in this chapter. Cain et al. (2010) briefly discuss a stochastic intervention in the context of com-
paring dynamic treatment regimes for HIV infected patients. The regimes they discuss are of the
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type “initiate treatment within m months after the recorded CD4 cell count first falls below x”, and
they are interested in an atomic intervention in the CD4 cell count X , and a discrete uniform {0,m}
post-intervention distribution for the number of months before treatment M. Such intervention is
discussed in more detail by Young et al. (2011).

Among the applications in which stochastic interventions arise as an interest in themselves, in
chapter 2 we considered the effect of an intervention in a population of people over 55 years of
age that aimed to change the distribution of the amount of energy spent in leisure time physical
activity on all cause mortality. In the present chapter we will analyze the effect of an intervention
that intends to reduce air pollution levels below a certain threshold, but allows a stochastic distri-
bution of air pollutants below such threshold. The claims about identifiability and properties of the
estimators presented in this chapter are valid only for this stochastic intervention, although they
can be generalized to a broader class of interventions.

Consistent and efficient estimation of statistical parameters in semi parametric models has been
studied by Bickel et al. (1997), van der Laan and Robins (2003), Rose and van der Laan (2011),
and Tsiatis (2006), among others. In particular, Rose and van der Laan (2011) provide a very
valuable link between efficient estimation theory in semiparametric models and causal inference,
empowering researchers with tools to define a causal parameter of interest, truthfully propose a
model for the distribution of the data, and compute an efficient, targeted estimate of the parameter
of interest under that model. By a truthful definition of the statistical model we mean that the start
point is a completely non parametric model, that can only be reduced in size if real knowledge
about the distribution of the data is obtained. Parametric and other assumptions often made for the
sake of computational convenience are not allowed: they do not represent knowledge about the
phenomena under study and therefore result in biased estimates.

In this chapter we will demonstrate the use of stochastic interventions to assess the effect of
a (hypothetical) law that enforces pollution levels below a certain cutoff point. For estimation of
causal effects we use efficiency theory in semiparametric models, and in particular the targeted
minimum loss based estimation road map as described by Rose and van der Laan (2011)

The chapter is organized as follows. In section 3.1 we define the observed and counterfactual
data, as well as the causal and statistical parameter and its efficient influence function. In sec-
tion 3.2 we discuss how this problem would be tackled with existing methods, and argue that the
conclussions of such methods are misleading. In section 3.3 we present three estimators of the
statistical parameter of interested: an inverse probability of treatment weighted estimator (IPTW),
an augmented IPTW that solves the efficient influence curve equation, and a targeted minimum
loss based estimator (TMLE). section 3.4 provides an extension to longitudinal data settings and
illustrates its use to measure the effect of NO2 concentrations in the air on asthma symptoms in
children between 6 and 11 years of age. Finally, section 3.5 provides some concluding remarks
and directions of future research.
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3.1 Observed data, counterfactuals and parameter of interest

Causal and statistical models
Consider an experiment in which an exposure variable A, a continuous or binary outcome Y and a
set of covariates W are measured for n randomly sampled subjects, and the outcome is measured
subject to an indicator of missingness denoted by C. Let O = (W,A,C,CY ) represent a random
variable with distribution P0, and O1, . . . ,On represent n i.i.d. observations of O. Assume that the
following non parametric structural equation model Pearl, 2000, NPSEM holds:

W = fW (UW ); A = fA(W,UA); C = fC(A,W,UC); CY =C fY (A,W,UY ), (3.1)

where UW , UA, UC and UY are exogenous random variables assumed to satisfy the randomization
assumption (UC,UA)⊥⊥UY |W . The true distribution of O can be factorized as

P0(O) = P0(W )P0(A|W )P0(C|A,W ){P0(Y |A,W,C)}C{I(CY = 0)}1−C, (3.2)

and we denote g0(A|W )≡P0(A|W ), φ0(A,W )≡P0(C = 1|A,W ), and Q̄0(A,W,C)≡E0(Y |A,W,C).
In the next subsections we will use this data structure to define a causal and statistical parameter

of interest, find its efficient influence curve (Bickel et al., 1997; van der Laan and Robins, 2003),
and establish the asymptotic properties of estimators that solve the efficient curve equation.

Causal and statistical parameters
Assume that the interest of the researcher relies in estimating the effect of a policy that will cause a
truncation on the exposure, relocating the probability mass originally located above certain thresh-
old δ2 in an interval (δ1,δ2), where δ1 = δ2− ε for some small ε . Formally put within the causal
framework of Pearl (2000), such policy can be described by considering the modified system

W = fW (UW ); APδ
= T (gI){ fA(W,UA),W}; CPδ

= 1; YPδ ,1 = fY (APδ
,W,UY ), (3.3)

where gI denotes a user-given (but possibly unknown, e.g. one could set gI = g0) conditional
distribution of A given W ,

T (gI)(A,W ) =

G−1
I {G0(A)} if A < δ1

G−1
I

{
GI(A|W )−GI(δ1|W )

K(gI)(W )
+GI(δ1|W )

∣∣∣∣W} if A≥ δ1,
(3.4)

and GI denotes the distribution function corresponding to gI . The distribution of APδ
is given by

Pδ (gI)(APδ
= a|W ) =


gI(a|W ) if a < δ1

gI(a|W )K(gI)(W ) if δ1 ≤ a≤ δ2

0 otherwise ,

(3.5)
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where

K(g)(W ) =
1−G{δ1|W}
G{δ1,δ2|W}

,

and in an abuse of notation G{δ1,δ2|W} ≡
∫

δ1≤a≤δ2
g(a|W )dµ(a). This intervention has two con-

sequences on the distribution of the exposure: (1) it changes the distribution of values of A below
δ1 from g0 to gI; and (2) it relocates the values of A above δ1 between δ1 and δ2 according to
distribution (3.5). As special case we will consider the case gI = g0, which is of particular interest
when we weant to assess the effect of policies that enforce the value of certain exposure below a
pre-specified level. In such cases the distribution of the set of individuals that already comply with
the enforced cut-off is expected to remain unchanged, making consequence (1) void.

Under the randomization assumption, the expectation of the outcome YPδ ,1 is identified as a
function of the observed data generating mechanism P0 as

Ψ(P0) = E(YPδ ,1) = EgI ,QW

{
Q̄0(A,W,1)×M(gI)(A,W )

}
, (3.6)

where M(g)(A,W ) = Iδ1(A)+ Iδ1,δ2(A)×K(g)(W ), Iδ1(A) = I(A < δ1) and Iδ1,δ2(A) = I(δ1 ≤ A≤
δ2). This identification result follows from the following argument. The usual consistency assump-
tion (A= a,C = 1)⇒Ya,1 =Y implies (APδ

= a,C = 1)⇒YPδ ,1 =Ya,1, therefore P(YPδ ,1 = y|APδ
=

a,C = 1,W =w)=P(Ya,1 = y|APδ
= a,C = 1,W =w). It is easy to verify that (UA,UC)⊥⊥UY |W im-

plies (APδ
,C)⊥⊥Ya,c|W for all a, c. Thus P(Ya,1 = y|APδ

= a,C = 1,W = w) = P(Ya,1 = y|W = w),
which from standard arguments for identification of static interventions (see for example Pearl
(2000)) can be shown to be identified by P(Y = y|A = a,C = 1,W = w). This result can also be de-
rived using the “G-recursion” formula, presented by Dawid and Didelez (2010), which generalizes
the G-computation formula for dynamic regimes of Robins (1986). It can also be shown that the
assumptions stated here are equivalent to the assumption of “simple stability” as defined by Dawid
and Didelez (2010), which generalizes the (sequential) randomization assumption to the case of
stochastic interventions.

The parameter in (3.6) is a weighted mean of Q̄0(A,W,1) (with respect to the joint distribution
of A and W ), in which values of Q̄0(A,W,1) for which A < δ1 receive weight one, values for which
δ1 ≤ A≤ δ2 receive weight K(gI)(W ), and values for which A > δ2 receive weight 0. This makes
intuitive sense; if the portion of the population whose exposure is originally above δ2 is relocated
in exposure levels in [δ1,δ2], the expected outcome of individuals in [δ1,δ2] should be reweighed
by K(gI)(W ), and the portion above δ2 should be reweighed by zero, given that no portion of the
population will fall in that region after the intervention.

As a consequence of the formal equivalence between the counterfactual and the non-parametric
structural equation model frameworks (Pearl, 2000, section 7.4.4.), all the results presented in this
chapter can be derived under either paradigm. Furthermore, parameter (3.6) is a purely statistical
parameter defined as the expectation of the outcome under a different distribution of A given W , and
can therefore be of interest in itself, without any underlying causal assumption or interpretation.
In the following subsections we deal with estimation of (3.6) under a non-parametric model.
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Efficient influence curve
The efficient influence curve is a key element in semi-parametric efficient estimation, since it de-
fines the linear approximation of any efficient and regular asymptotically linear estimator, and
therefore provides an asymptotic bound for the variance of all regular asymptotically linear esti-
mators (Bickel et al., 1997). We limit the discussion to efficient estimation of parameter (3.6) when
gI = g0; the case of a user given function gI is easier and can be studied using similar arguments.

Result 3. The efficient influence curve of parameter (3.6) when gI = g0 is given by

D(P0)(O) =
C

φ0(A,W )
M(g0)(A,W ){Y − Q̄0(A,W,1)} (3.7)

+0 (3.8)

+M(g0)(A,W )

{
Q0(A,W,1)−

EP0{Q̄0(A,W,1)Iδ1,δ2(A)|W}
G0{δ1,δ2|W}

}
+

EP0{Q̄0(A,W,1)Iδ1,δ2(A)|W}
G0{δ1,δ2|W}

−EP0{Q̄0(A,W,1)M(g0)(A,W )|W} (3.9)

+EP0{Q̄0(A,W,1)M(g0)(A,W )|W}−Ψ(P0), (3.10)

where the terms (3.7)-(3.10) are denoted by D1(P0), D2(P0), D3(P0), and D4(P0); respectively,
and correspond to the orthogonal decomposition of the efficient influence curve implied by the
factorization of the likelihood in (3.2).

This decomposition of the score is going to be useful later on during the construction of a
targeted maximum likelihood estimator of ψ0, to define the correct parametric fluctuations. The
following result provides the conditions under which an estimator that solves the efficient influence
curve equation is consistent.

Result 4. Let D(O|Q̄,g,φ ,ψ0) be the estimating equation implied by the efficient influence function
of result 3:

D(O|Q̄,g,φ ,ψ0) =
C

φ(A,W )
M(g)(A,W )

{
Y − Q̄(A,W,1)

}
+M(g)(A,W )×{

Q̄(A,W,1)−
EP{Q̄(A,W,1)Iδ1,δ2(A)|W}

G{δ1,δ2|W}

}
+

EP{Q̄(A,W,1)Iδ1,δ2(A)|W}
G{δ1,δ2|W}

−ψ0. (3.11)

We have that EP0D(O|Q̄,g,φ ,ψ0) = 0 if and only if K(g) = K(g0) and either Q̄ = Q̄0 or φ = φ0.

As a consequence of result 4, a substitution estimator of Ψ(P0) that solves the efficient influence
curve equation will be consistent if and only if K(g0) and either Q̄0 or φ0 are estimated consistently,
and it will be efficient if and only if all of the estimators for K(g0), Q̄0 and φ0 are consistent. The
robustness of this estimating equation is then tied to robustness of the estimator for K(g0). This
consistency condition on the initial estimator gn is weaker than the conditions needed for other
methods for continuous exposures (e.g., the marginal structural models of Neugebauer and van der
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Laan (2007)); we only need an estimator gn that is consistent in the sense that K(gn)→ K(g0),
which is much weaker than the condition of gn→ g0 required for marginal structural models. This
is because K(g0) only depends on the conditional probabilities G{δ1|W} and G{δ1,δ2|W}, which
can be consistently estimated by a misspecified estimator of the density.

An additional advantage with respect to marginal structural models and other methods for
continuous variables (Petersen et al., 2010) is given by the positivity assumption needed to identify
and estimate the parameter of interest. The positivity assumption required to estimate marginal
structural models is

sup
a∈A

h(a)
g0(a|W )

< ∞,− a.e.,

for a user-specified weight function h. The function h(a) = 1 is commonly used, since it implies
giving equal weights to all the possible treatment values. The positivity assumption needed to
identify and estimate our parameter of interest is given by

G0{δ1,δ2|W}> 0,− a.e.,

which is a condition that depends on the choice of the interval (δ1,δ2) and its probability under
G0, and is thus more likely to be true than positivity of the density g0 for all the values a ∈A .

3.2 Common practice
An alternative formulation of the causal problem of assessing the effect of a truncation in the
exposure, which is the current standard in applications of causal inference methods (e.g., Brotman
et al., 2008; Bryan, Yu, and van der Laan, 2004; Joffe et al., 2004; Tager et al., 2004), is given by
the use of a dichotomous version A∗ = I(A < δ2) of the continuous treatment variable. The effect
of a truncation of A is evaluated in terms of the static intervention A∗ = 1, and the parameter is
defined as E{E(Y |A∗ = 1,W )}, which corresponds (as proven by Stitelman, Hubbard, and Jewell,
2010b) with a stochastic intervention on A in which g0 is changed to

Pδ (g0)(APδ
= a|W ) =

{
g0(a|W )/G{δ2|W} if a < δ2

0 otherwise ,
, (3.12)

which is equal to (3.5) only if G{δ1|W} = 0. This means that E{E(Y |A∗ = 1,W )} measures
the effect of a policy that will cause a truncation in the exposure, but will relocate the mass of
the non-compliers (i.e., G{δ2|W}) across all the values below δ2. As a consequence, the two
parameters assess policies with different hypothetical effects on the density of the exposure; it is
the researcher’s responsibility to judge which option is a more likely post-intervention distribution
for the policy that is being evaluated.

For instance, in section 3.4 we estimate the effect of a policy that enforces pollutant levels
below a predefined threshold. Under such a policy, individuals polluting above the threshold will
only have an incentive to reduce their pollution levels to a value that is in accordance with the pol-
icy, having no further incentive to go below the enforced cut-off point once they have reached it.



CHAPTER 3. STOCHASTIC INTERVENTIONS: TRUNCATING THE EXPOSURE
MECHANISM 40

Therefore, the most likely post intervention distribution for this policy is one that locates the prob-
ability mass associated to the non-compliers around the cut-off point, i.e., intervention (3.5). The
use of intervention (3.12) in this example could lead to misleading conclusions. As an example,
consider the following data generating mechanism

W1 ∼U{0,1}; W2 ∼ Ber{0.7}; W3 ∼ N{W1, .25exp(2W1)}
A∼ Beta{S1(W ),S2(W )}

Q̄(A,W ) = expit{1+W1 +1.5A+2AW1 + .5AW2−2W1W2 + .2W1W3},

where we consider four different values for S1 and S2: (1) S1(W ) = S2(W ) = S(W ), (2) S1(W ) =
S(W ) and S2(W ) = expit{S(W )}, (3) S1(W ) = expit{S(W )} and S2(W ) = S(W ); and (4) S1(W ) =
expit{S(W )} and S2(W ) = expit{S(W )}; for S(W ) = 2.5 + .6W1 + .3W2W3 − .2W1W3 − .1(1−
W2)W3. This four scenarios provide four different shapes of the beta distribution: (1) symmet-
ric bell-shaped, (2) skewed to the left, (3) skewed to the right; and (4) symmetric U-shaped. For
these four scenarios, table 4.4 shows the parameter E(YPδ

−Y ) under interventions (3.5) and (3.12)
for (δ1,δ2) = (0.8,0.9), providing a situation in which the conclusions obtained from the two anal-

Intervention (1) (2) (3) (4)
(3.5) -0.0001 -0.0001 -0.0019 -0.0009

(3.12) -0.0009 -0.0002 -0.0112 -0.0111

Table 3.1: Parameter values under different scenarios.

ysis are very different. In this example the two effects are fairly similar when G{δ2|W} ≈ 1, i.e.,
models (1) and (2). The use of the standard practice of dichotomizing the exposure would lead to
misleading results, particularly for models (3) and (4).

3.3 Estimators

Initial estimators
In this section we present three estimators for the parameter defined in (3.6). The TMLE and the
A-IPTW estimators solve the efficient influence curve equation and inherit the properties derived
from result 4. The IPTW is inefficient, and will be consistent only if the estimator of φ0 is con-
sistent. The TMLE is expected to perform better than the A-IPTW if the positivity assumption
supa∈A φ0(A,W )> 0,− a.e. is violated.The finite sample properties of these estimators have been
studied elsewhere (e.g., Porter et al., 2011; Rose and van der Laan, 2011).

The estimators presented in this section require initial estimates of Q̄0, g0 and φ0, which can be
obtained through machine learning techniques, parametric or semi-parametric models. The con-
sistency of these initial estimators will determine the consistency and efficiency of the estimators
of ψ0, as discussed previously. Parametric models are commonly used for the sole sake of their
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convenient analytical properties, but they encode assumptions on the distribution of the data that
are not legitimate knowledge about the phenomenon under study and usually cause a large amount
of bias in the estimated parameter. As an alternative, we recommend the use of machine learning
techniques such as the super learner (van der Laan, Polley, and Hubbard, 2007). Super learner is
a methodology that uses cross-validated risks to find an optimal estimator among a library defined
by the convex hull of a user-supplied list of candidate estimators. One of its most important the-
oretical properties is that its solution converges to the oracle estimator (i.e., the candidate in the
library that minimizes the loss function with respect to the true probability distribution). Proofs
and simulations regarding these and other asymptotic properties of the super learner can be found
in van der Laan, Dudoit, and Keles (2004) and van der Laan and Dudoit (2003). We will assume
that g0 is estimated consistently in the sense that K(gn)→ K(g0).

Influence curve based variance estimators are provided for these three estimators. Consis-
tency of the variance estimators also depends on the consistency of the initial estimators of Q̄0,
and φ0. These dependency can be avoided at the cost of computational time and effort by using
bootstrapped estimates of the variance.

IPTW
Given an estimator g0

n of the exposure density g0, and an estimator φ 0
n of the missing mechanism,

the IPTW estimator of ψ0 is defined as

ψn,1 =
1
n

n

∑
i=1

Ci

φ 0
n (Ai,Wi)

M(g0
n)(Ai,Wi)Yi.

The IPTW is an asymptotically linear estimator with influence curve

DIPTW (O|g0,φ0,ψ0) =
C

φ0(A,W )
M(g0)(A,W )Y −ψ0,

therefore the variable
√

n(ψn,1−ψ0) converges in distribution to N(0,P0D2
IPTW (g0)), whose vari-

ance can be estimated as the empirical variance of D2
IPTW (O|g0

n,φ
0
n ,ψn,1). This is a conservative

estimator of the variance of the IPTW, as proven in van der Laan and Robins (2003).

Augmented IPTW
The augmented IPTW is the value ψn,2 that solves the equation ∑

n
i=1 D(Oi|Q̄0

n,g
0
n,φ

0
n ,ψ0) = 0, for

initial estimates Q̄0
n, g0

n and φ 0
n of Q̄0, g0 and φ0.

ψn,2 =
1
n

n

∑
i=1

[
Ci

φ 0
n (Ai,Wi)

M(g0
n)(Ai,Wi)

{
Yi− Q̄0

n(Ai,Wi,1)
}
+M(g0

n)(Ai,Wi)×{
Q̄0

n(Ai,Wi,1)−
Eg0

n
{Q̄0

n(A,W,1)Iδ1,δ2(A)|Wi}
G0

n{δ1,δ2|Wi}

}
+

Eg0
n
{Q̄(A,W,1)Iδ1,δ2(A)|Wi}

G0
n{δ1,δ2|Wi}

]
. (3.13)
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If the initial estimators are consistent, the A-IPTW is an asymptotically linear estimator with influ-
ence curve D(O|Q̄0,g0,φ0,ψ0). As in the case of the IPTW, the variable

√
n(ψn,2−ψ0) converges

in law to a random variable with distribution N{0,P0D2(·|Q̄0,g0,φ0,ψ0,)}, whose variance can
be estimated as the empirical variance of D2(O|Q̄0

n,g
0
n,φ

0
n ,ψn,2). Rose and van der Laan (2011,

Appendix 18) show that inference based on this variance estimator is valid only if φ 0
n is consistent,

providing exact inference when Q̄0
n is consistent, and conservative inference when Q̄0

n is inconsis-
tent.

Targeted maximum likelihood estimator
Targeted maximum likelihood estimation van der Laan and Rubin (2006) is a loss-based semipara-
metric estimation method that yields a substitution estimator of a target parameter of the probability
distribution of the data that solves the efficient influence curve estimating equation, and thereby
yields a double robust locally efficient estimator of the parameter of interest, under regularity con-
ditions.

In order to define a targeted maximum likelihood estimator for ψ0, we need first to define three
elements: (1) A loss function L(Q) for the relevant part of the likelihood required to evaluate Ψ(P),
which in this case is Q = (Q̄,g,QW ). This function must satisfy Q0 = argminQ EP0L(Q)(O), where
Q0 denotes the true value of Q; (2) An initial estimator Q0

n of Q0; (3) A parametric fluctuation Q(ε)
through Q0

n such that the linear span of d
dε

L{Q(ε)}|ε=0 contains the efficient influence curve D(P)
defined in result (3). These elements are defined below:

Loss Function
As loss function for Q, we will consider L(Q) = LY (Q̄)+ LA(g)+ LW (QW ), where for continu-
ous Y we set LY (Q̄) = {Y − Q̄(A,W,C)}2, for binary Y we set LY (Q̄) = Y log{Q̄(A,W,C)}+(1−
Y ) log{1− Q̄(A,W,C)}, LA(g) =− logg(A|W ), and LW (QW ) =− logQW (W ). It can be easily ver-
ified that this function satisfies Q0 = argminQ EP0L(Q)(O).

Parametric Fluctuation
Given an initial estimator Qk

n of Q0, with components (Q̄k
n,g

k
n,Q

k
W,n), and an initial estimator φ 0

n of
φ0, we define the (k+1)th fluctuation of Qk

n as follows:

m{Q̄k+1
n (ε1)(A,W )}= m{Q̄k

n(A,W )}+ ε1Hk
1(A,W )

gk+1
n (ε1)(A|W ) ∝ exp{ε1Hk

3(A,W )}gk
n(A|W )

Qk+1
W,n (ε2)(W ) ∝ exp{ε2Hk

4(W )}Qk
W,n(W ),

where

Hk
1(A,W ) =

C
φ 0

n (A,W )
M(gk

n)(A,W ), Hk
3(A,W ) = D3(Pk)(O), and H4(W ) = D4(Pk)(O),

with D3 and D4 defined as in result 3, and m is the identity or logit function depending on whether
the outcome is continuous or binary. Note that this fluctuation satisfies the condition D(P) ∈<
d

dε
L{Q(ε)}|ε=0 >, which is a key element of targeted minimum loss based estimation.
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Targeted Maximum Likelihood Estimator
The TMLE is defined by the following iterative process:

1. Initialize k = 0.

2. Estimate ε as εk
n = argminε PnL{Qk

n(ε)}.

3. Compute Qk+1
n = Qk

n(ε
k
n).

4. Update k = k+1 and iterate steps 2 through 4 until convergence (i.e., until εk
n = 0)

First of all, note that the value of ε2 that minimizes the part of the loss function corresponding
to the marginal distribution of W in the first step (i.e., −Pn logQ1

W,n(ε2)) is ε1
2 = 0. Therefore, the

iterative estimation of ε only involves the estimation of ε1. The kth step estimation of ε1 is obtained
by numerically minimizing Pn(LY (Q̄k

n(ε1))+LA(gk
n(ε1))).

The TMLE of ψ0 is defined as ψn,3 ≡ limk→∞ Ψ(Pk
n ), assuming this limit exists. In prac-

tice, the iteration process is carried out until convergence in the values of εk is achieved, and an
estimator Q∗n is obtained. The variance of ψn,3 can be estimated by the empirical variance of
D2(O|Q̄∗n,g∗n,φ 0

n ,ψn,3), which is a consistent estimator only if both φ 0
n and Q̄∗n are consistent, is

conservative if φ 0
n is consistent but Q̄∗n is not, and is inconsistent in any other case.

3.4 Extension to longitudinal data and application

Longitudinal interventions
Assume now that the observed data structure is the same presented in section 3.1, but now we
have repeated measures in the sense that for each subject the observed variables were recorded
at time points t = 1, . . . ,T . That is, the observed data in this case can be described as a vector
O = (Wt ,At ,Ct ,CtYt : t = 1, . . . ,T ) = (Ot : t = 1, . . . ,T ). We can now define a time specific coun-
terfactual outcome given by Yt,Pt,δ , where the stochastic intervention of interest is performed by
changing each time-specific exposure mechanism gt,0 to Pt,δ , with Pt,δ analogous to Pδ in (3.5).
The parameter of interest can be defined now as a causal effect based on a marginal structural
model (MSM, Neugebauer and van der Laan, 2007) with only intercept:

β0 = argmin
β

T

∑
t=1
{E0(Yt,Pt,δ )−mβ (t)}2w(t),

where we set mβ (t) = β , and w(t) is a weight function initially set to 1/T . For this case (usually
called intercept only model), our parameter of interest reduces to

β0 =
T

∑
t=1

w(t)E0(Yt,Pδ
), (3.14)
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which is the weighted average of the time specific causal effects. This parameter provides a mea-
sure of the overall effect of a policy when applied repetitively at every time point. Parameters
given by more complex marginal structural models motivated by different research questions can
also be defined by an appropriate MSM, for example the expectation of the counterfactual outcome
at the last time point in the study, which will provide a measure of the final effect of implementing
a given policy during T units of time, or an MSM that takes measures the possible trend in the
expectation of the counterfactual outcome.

The efficient influence curve of parameter (3.14) is given by the weighted average of the time
point specific influence curves:

Dβ (O|Q̄,g,φ ,β0) =
T

∑
t=1

w(t)D(Ot |Q̄t ,gt ,φt ,ψt,0), (3.15)

where D is defined in (3.11) and Q̄t ,gt ,φt and ψt,0 denote the conditional expectation of the out-
come, exposure mechanism, missingness mechanism and expectation of the counterfactual out-
come for each time specific data structure. Estimators that solve the efficient influence curve
equation

n

∑
i=1

T

∑
t=1

w(t)D(Oit |Q̄t ,gt ,φt ,ψt,0), (3.16)

inherit the consistency and efficiency properties of estimators mentioned in result 4, where the
consistency conditions are now replaced by consistency in the estimation of all the time specific
mechanisms Q̄t,0,gt,0 and φt,0. To estimate each of these initial parameters we can choose to fit
different estimators for each time point, or we can also choose to do smoothing over t, by including
it as a covariate in each of the conditional expectations and probabilities involved.

Estimation of the parameter in (3.14) can now be performed by applying the estimators pre-
sented in section 3.3 to a pooled dataset in which time has been added as a covariate and each row
corresponds to a specific subject time point combination. The IPTW estimator, for example, would
now be given by

ψn,1 =
1

nT

n

∑
i=1

T

∑
t=1

Cit

φ 0
n,t(Ait ,Wit)

M(g0
n,t)(Ait ,Wit)Yit ,

and the augmented IPTW by

ψn,2 =
1

nT

n

∑
i=1

T

∑
i=1

[
Cit

φ 0
n (Ait ,Wit)

M(g0
n,t)(Ait ,Wit)

{
Yit − Q̄0

n,t(Ait ,Wit ,1)
}
+M(g0

n,t)(Ait ,Wit)×{
Q̄0

n,t(Ait ,Wit ,1)−
Eg0

n,t
{Q̄0

n,t(A,W,1)Iδ1,δ2(A)|Wit}
G0

n,t{Iδ1,δ2(A)|Wit}

}
+

Eg0
n,t
{Q̄(A,W,1)Iδ1,δ2(A)|Wit}
G0

n,t{Iδ1,δ2(A)|Wit}

]
, (3.17)
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which can be seen to solve equation (3.16). The TML estimator is defined analogous to the
definition given in the previous section, with Q̄k

n, Hk
1 , φ k

n , Hk
3 , Qk

W , and Hk
4 replaced by their t-

specific counterparts. However, the same parameters ε1 and ε2 are used to fluctuate all these
t-specific estimates. Estimation of ε in step 2 of the iterative process that defines the TMLE is
performed now with respect to the empirical distribution PnT given by the pooled dataset, and the
estimating equation in result (4) is replaced by its counterpart summing also over t and with t-
specific estimated values of Q̄k

n, Hk
1 , φ k

n , Hk
3 , Qk

W , and Hk
4 . The estimators of the variance of these

estimators presented in the previous section can also be adapted to these longitudinal estimators.
Remarks about consistency of the variance estimators of section 3.3 carry on to these variance
estimators.

Application
In this section we present the results of applying the method for longitudinal data described in the
previous section to assess the effect of a program that constrains air pollution levels on wheezing
in children with asthma. These data were originally analyzed by Mann et al. (2010) as part of the
Fresno Asthmatic Childrens Environment Study (FACES). In the original chapter whose objective
was to evaluate whether exposure to ambient pollution is associated with increased respiratory
symptoms, wheeze was found to be associated with short-terms exposures to NO2 with an odds
ratio of 1.10 (C.I. (1.02, 1.20)) for a 8.7 parts per billion increase. The data consisted of a sample
of 315 children between 6 and 11 years of age who have active asthma. Reports of morning wheeze
were collected for 14 days, up to three times a year, from December 2000 through March 2005,
which lead to approximately 12 data panels for each child. For a comprehensive description of the
study, the interested reader is referred to the original chapter.

We are interested in investigating the effect of NO2 concentrations measured 24 hours before
each visit on the current presence of wheezing. The confounders we considered (i.e., W variables)
are: gender, age, race, height, low birth weight, born prematurely, atopy, presence of eczema,
rhinitis, mother smoked during pregnancy, whether child was ever breastfed, presence of asthma in
father and mother, no smoking policy in the house, anyone smokes in the house, relative humidity,
temperature, season of the year, whether the house is rented or owned and income.

We estimated the effect of a policy that enforces NO2 levels below 28.15 ppb. We assume that
such intervention will produce a change in the population distribution of the exposure correspond-
ing to a relocation of the probability mass originally above 28.15 ppb between 26.05 and 28.15
ppb in the intervened population. The values 28.15 and 26.05 ppb correspond with the 85th and
80th percentile of the distribution of NO2, respectively.

If the objective is to perform a comparison of the prevalence of wheezing in the hypothetical
intervened population with the prevalence in the current population, we can define a population
intervention parameter ψ1

0 as ψ1
0 = ψ0− µ0, where µ0 = EP0(Y ). This parameter compares the

expectation of the outcome under the policy of interest with its current expectation, and therefore
provides a measure of the gain obtained by implementing the policy.

Since we observed a coarsened version of Y , we cannot use the empirical mean as an estimator
of µ0. Because estimation of this expectation is equivalent to estimation of the expectation of the
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outcome under the intervention C = 1, we suggest the use of the TMLE for static interventions as
described in Rose and van der Laan (2011, chapter 4). Such estimator also utilizes initial estimators
of φ0(A,W ) and Q̄0(A,W,C), and is double robust under misspecification of either model. For
further details about the properties and implementation the TMLE for µ0, the reader is referred to
the original sources.

For a given estimator ψn of ψ0, and an asymptotically linear estimator µn of EP0(Y ) with
influence curve Dµ(P), an asymptotically linear estimator of ψ1

0 is given by ψ1
n = ψn− µn. Its

influence curve can be computed as Dψ1(P)(O) = Dψ(P)(O)−Dµ(P)(O), and its variance can
be estimated through the sample variance of Dψ1(P)(O). Here Dψ(P)(O) represents the influence
curve of each of the estimators defined in section 3.3. The estimates of ψ1

0 and their standard
errors are presented in Table 3.2. Confidence intervals and p-values for hypothesis testing can be

Table 3.2: Estimates of ψ1
0 and ψ0 (in %).

TMLE A-IPTW IPTW
ψ1

0 0.50 (0.40) 0.15 (0.89) 0.99 (1.04)
ψ0 13.53 (0.56) 13.17 (0.99) 14.63 (1.14)

computed based on the normal approximations for asymptotically linear estimators described in
section 3.3. In light of the theoretical properties of these estimators, we rely on the TMLE and A-
IPTW to measure the effect of the intervention of interest. The estimated value of ψ1

n means that
under a policy that enforces places with NO2 levels above 28.15 to decrease their levels to some
value in the interval (26.05,28.15), the prevalence of wheezing in children with asthma between 6
and 11 years of age would be reduced by 0.50%. However, our estimated effect is not significant
at a 95% confidence level, which does not mean that the effect is inexistent or epidemiologically
irrelevant.

3.5 Conclusion
In this chapter we propose a specific type of causal parameter defined by a stochastic intervention
in terms of a truncation of the original distribution of the exposure. We present an application
example in which the effect of a potential policy enforcing pollution levels under certain threshold
is measured. Our approach allows the estimation of the effect of potential policies that result in
stochastic interventions (for example because they fail to put every subject in a predefined exposure
level). We argue that our parameter makes more sense from a policy– and decision–making point
of view as compared to current practice.

The stochastic interventions framework allowed us to naturally define an effect for a continuous
exposure, which is a topic that has received little attention in the causal inference literature. As-
sumptions like the positivity assumption and the consistency of an initial estimator for the exposure
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mechanism are weakened as compared to those required for estimating other causal parameters for
continuous or categorical exposures. Two consistent and efficient estimators for the parameter of
interest were proposed, and their use was illustrated with an example.
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Chapter 4

Data adaptive estimation of the causal dose
response curve

Estimating the causal effect of an exposure A on an outcome Y when the relation between them is
confounded by a set of covariates is a very common problem in causal inference, of high relevance
for applications in epidemiology, medical, and social research, among other fields.

Causal effects in this setting are defined as parameters of the distribution of the counterfactual
outcome (see, for example Rubin, 1974; Pearl, 2000) Ya that would have been observed if, possibly
contrary to the fact, the subject would have received level a of the exposure. Computation of causal
parameters involves expectations with respect to the distribution of the stochastic process that one
would have observed if, for each subject, all the counterfactual outcomes were observed. Since
the observed data contains only one of the counterfactuals, namely Y = YA, additional untestable
assumptions are needed in order to identify parameters of the counterfactual process distribution
as parameters of the observed data distribution. These assumptions are usually described in terms
of the so-called no unmeasured confounders assumption, a particular case of the coarsening at
random assumption, which roughly states that the censoring or exposure processes cannot depend
on unobserved covariates that are also related to the outcome.

In spite of the large number of causal inference problems that are inherently defined in terms of
exposures of continuous nature, most of the attention in the field of causal inference has focused in
the definition and estimation of parameters for binary treatments, in which it is natural to compare
the counterfactual outcome under two possible exposure levels. Estimation of causal parameters
for binary exposures has been widely studied (e.g., Rubin, 1978; Rosenbaum and Rubin, 1983;
Robins, 1986; van der Laan and Robins, 2003; Rubin, 2006; R. Mansson, 2007; Rose and van der
Laan, 2011). The main reason why consistent and efficient estimators of the causal dose response
curve (CDRC) for continuous treatments in the nonparametric model have not yet been developed
is that it is not a pathwise differentiable parameter (see Bickel et al., 1997, chapter 3, 5), and
therefore cannot be estimated at a consistency rate of n−1/2. Examples of pathwise differentiable
parameters that measure the causal effect of a continuous exposure on an outcome of interest are
given by the parameters defined in chapter 2 and 3. These approaches make use of stochastic
interventions (Korb et al., 2004; Didelez, Dawid, and Geneletti, 2006; Dawid and Didelez, 2010)
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as a means to define a counterfactual outcome in a post-intervened world, which compared to the
expectation of the actual outcome defines the causal effect of an intervention.

The most widely known method for estimation of the CDRC for continuous exposures is the
so called marginal structural model (MSM) framework, which was first proposed by Robins, Her-
nan, and Brumback (2000), and whose validity relies on the correct specification of a parametric
model for the CDRC. Neugebauer and van der Laan (2007) generalize this setting to avoid de-
pendence on the correct specification of a parametric model by defining the parameter of interest
as the projection of the true CDRC on the space of functions defined by the parameterization im-
plied by the MSM, providing robustness against misspecification of the parametric MSM. Their
work also includes identification results for this projection parameter, as well as IPTW, G-Comp
and augmented IPTW double robust estimators. Marginal structural models represent only a pro-
visional solution to the problem, because in many instances the interest relies on estimating the
actual CDRC and not its projection on some parametric space of functions.

An alternative and widely used method for estimating non pathwise differentiable parameters
is the selection of the best performing candidate among a list of algorithm estimators, where per-
formance is defined in terms of the cross-validated risk. Formal analytical asymptotic arguments
backing the use of cross-validation as an estimator selection tool were first given by van der Laan
and Dudoit (2003); van der Vaart (2003); van der Laan, Dudoit, and Keles (2004), among others.
The main result of these works is a finite sample size inequality that bounds the risk of the cross-
validation selector by the risk of the oracle selector (the selector based on the true distribution),
which is in turn used to establish, under certain conditions, the asymptotic equivalence between
the cross-validation and the oracle selectors. These results are later explored in specific contexts
by Dudoit and van der Laan (2005); van der Laan, Dudoit, and van der Vaart (2006), among oth-
ers. Of special interest is the work of van der Vaart, Dudoit, and van der Laan (2006), in which
the cross-validation oracle inequalities are extended to candidate libraries with a continuous index
set and unbounded loss functions. van der Laan, Dudoit, and van der Vaart (2006) demonstrates
that this oracle property for cross-validation combined with the right library of estimators results
in a minimal adaptive optimal estimator. van der Laan, Polley, and Hubbard (2007) use these
optimality results in order to define the super learner prediction algorithm, implemented in the
SuperLearner R library. van der Laan and Petersen (2012) describe a general methodology in
which the CV-A-IPTW estimators of the risk are replaced by CV-TMLE estimators.

For the particular case of the CDRC, van der Laan and Dudoit (2003, pag. 52) proof that under
convergence of the initial estimators, the candidate selector based on the cross validated A-IPTW
risk is asymptotically equivalent to the oracle selector. Since A-IPTW estimators are not substi-
tution estimators, they can fall outside the parameter space, and are very sensitive to violations of
the positivity assumption. Violations to the positivity assumption are very likely to occur when
working with continuous exposures, since the exposure mechanism is now a conditional density.

The main contribution of this chapter is to present a cross validated targeted minimum loss
based estimator of the risk of a CDRC candidate estimator that is endowed with an oracle inequality
analogue to that of the A-IPTW. The CV-TMLE we propose is more robust to empirical violations
of the positivity assumption, and it is a substitution estimator, which guarantees estimates that
are within the bounds of the parameter space. These two estimators have also been proven to be
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asymptotically linear with influence function equal to the efficient influence function, under certain
conditions, which implies that they are consistent and efficient estimators of the risk.

The chapter is organized as follows. In section 4.1 we formally describe the inference problem,
define the loss and risk functions, and present the efficient influence function of the parameter of
interest. In order to first introduce relevant concepts, in section 4.1 we present four estimators (G-
comp, IPTW, A-IPTW, TMLE) of the risk when the candidate estimators of the CDRC are assumed
fixed functions. In section 4.1 we generalize these estimators to the case when the candidates are
estimated from the sample, and present the corresponding cross-validated versions of the A-IPTW
and TMLE. In section 4.2 we present a theorem describing the conditions under which the CV-
TML estimator of the risk is an asymptotically linear estimator, the conditions under which it
is consistent and efficient, as well as a discussion on the estimation of its variance. section 4.3
presents the main contribution of this chapter; an oracle inequality for the selector based on the
CV-TML estimator of the risk, and the conditions under which it is asymptotically equivalent to the
oracle selector. Finally, in section 4.4 we use Monte Carlo simulation to compare the performance
of CV-TMLE and CV-A-IPTW selectors and estimators of the risk in finite sample sizes.

4.1 Definition and estimation of the risk of an estimator of the
CDRC

Consider an experiment in which an exposure variable A, a continuous or binary outcome Y and
a set of covariates W are measured for n randomly sampled subjects. Let O = (W,A,Y ) represent
a random variable with distribution P0, and O1, . . . ,On represent n i.i.d. observations of O. The
range of W , A and Y will be denoted by W , A and Y , respectively. Assume that the following
non-parametric structural equation model (NPSEM) holds:

W = fW (UW ); A = fA(W,UA); Y = fY (A,W,UY ), (4.1)

where UW , UA and UY are exogenous random variables such that UA⊥⊥UY holds, and either
UW⊥⊥UY or UW⊥⊥UA holds (randomization assumption). The true distribution P0 of O can be
factorized as

P0(O) = P0(Y |A,W )P0(A|W )P0(W ),

where we denote g0(A|W )≡P0(A|W ), Q̄1,0(A,W )≡E0(Y |A,W ), Q̄2,0(A,W )≡E0(Y 2|A,W ), QW,0(W )≡
P0(W ), and P f =

∫
f dP for a given function f . For a given value a ∈A , the counterfactual of Y

is defined as the value Ya = fY (a,W,UY ), the counterfactual process of Y is given by (Ya : a ∈A ),
and the full data is denoted by X = {W,(Ya : a ∈A )} ∼ F0.

In this chapter we will discuss the estimation of the causal dose-response curve within strata of
the covariates Z ⊂W , given by the expression

Ψ
f (F0)(a,Z) = EF0(Ya|Z) = argmin

ψ
R f (ψ,F0), (4.2)

where R f (ψ,F0)=F0L f (ψ), L f (ψ)(X)=
∫
A {Ya−ψ(a,Z)}2h(a,Z)dµ(a), the superscript f stands

for full data, and h is a non-negative function such that
∫

hdµ = 1. The second equality in (4.2) is
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true because EF0(Ya|Z) is the projection of Ya into the space of functions of Z, and F0L f (ψ) is the
integral over A of the squared norm of Ya−ψ(a,Z). The randomization assumption implies that
Ya⊥⊥A|W , which allows identification of the full data parameter (4.2) in terms of a function of the
observed data distribution as the mapping

Ψ(P)(a,Z) = EP{Q̄(a,W )|Z}, (4.3)

where we denote ψ0 = Ψ(P0). If A is continuous, Ψ(P) is not a pathwise differentiable param-
eter in the non parametric model, and

√
n−consistent estimation is not possible (Bickel et al.,

1997, chapter 3, 5). However, the risk of a given candidate value ψk, is a pathwise differentiable
parameter for which it is possible to find regular asymptotically linear estimators.

Following the ideas of Wang, Bembom, and van der Laan (2006), consider a list of candidates
values ψk : k = 1, . . . ,Kn for ψ

f
0 . Throughout the chapter we will make a distinction between

candidate values (denoted ψk) and candidate estimators (denoted Ψ̂k), where the difference is that
the former are given functions, whereas the latter are functions of (a,Z) estimated from the sample.

If the full data X were observed, a general selection procedure would involve computing
R f (ψk,F0) : k = 1, . . . ,Kn, and estimating ψ

f
0 based on ψk0 , where k0 = argmink R f (ψk,F0). Of

course this optimization procedure cannot be carried out as described previously, because: 1) only
a coarsened version of X denoted by O is observed, 2) the distribution P0 of O is unknown, and 3)
in most cases we have a list of candidate estimators Ψ̂k, as opposed to a list of candidate values ψk,
which arises the issue of over-fitting.

In order to overcome these obstacles one needs to:

1. Find a mapping R(ψ, ·) : M →R that identifies R f , i.e., a mapping such that R(ψ,P0) equals
R f (ψ,F0), under certain assumptions. It is common that R(ψ,P) = PLΓ(P)(·,ψ) for a loss
function LΓ(P) that is now indexed by a nuisance parameter Γ : M →Fγ .

2. If P0 is known, the value R(ψ,P0) suffices to find a selector among the Kn candidate values.
However, since P0 is unknown, we now need to estimate R(ψ,P0). At this point it is worth to
note that even though Ψ(P) is not a pathwise differentiable parameter, the mapping R(ψ, ·)
is pathwise differentiable, and can therefore be

√
n-consistently estimated under regularity

conditions.

3. If candidate values are not available it is necessary to estimate the risk of candidate estimators
Ψ̂k that are trained in the sample, which makes necessary the use of cross-validated versions
of these estimators.

In the remaining of this section we will discuss the identification of R f . The risk of a candidate ψ

is given by R f (ψ,F) = FL f (ψ), and is identified as a function of the observed data distribution by

R(ψ,P) = EPLQ̄(P)(O,ψ), (4.4)
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where

LQ̄(O,ψ) =
∫
A

EP{(Y −ψ(a,Z))2|A = a,W}h(a,Z)dµ(a).

=
∫
A
{Q̄2(a,W )−2Q̄1(a,W )ψ(a,Z)+ [ψ(a,Z)]2}h(a,Z)dµ(a), (4.5)

given the randomization assumption and the positivity assumption

sup
a∈A

h(a,Z)
g0(a,W )

< ∞, QW,0−a.e. (4.6)

Note that the loss function that defines the risk is not unique, since the loss functions

Lg(O,ψ) =
(Y −ψ(A,Z))2

g(A,W )
h(A,Z), (4.7)

LQ̄,g(O,ψ) =
h(A,Z)
g(A,W )

[
{Y 2− Q̄2(A,W )}−2ψ(A,Z){Y − Q̄1(A,W )}

]
+∫

A
{Q̄2(a,W )−2ψ(a,Z)Q̄1(a,W )+ψ

2(a,Z)}h(a,Z)dµ(a) (4.8)

lead to the same definition of the risk. Loss functions (4.5) and (4.7) come from more intuitive
definitions of the risk, whereas the loss function (4.8) comes from efficient estimation theory, and
is closely related to the efficient influence function of R(ψ,P). This fact is exploited by Wang,
Bembom, and van der Laan (2006) in order to define estimators of the risk as a cross-validated
average of estimators of these loss functions. We will work towards the definition of a CV-TMLE
analogue of those estimators, and present similar results to those obtained by van der Laan and
Dudoit (2003) in terms of an oracle inequality, as well as the conditions under which the estimator
of the risk is asymptotically linear.

The loss function (4.8), referred to as the double robust loss function, defines the efficient
influence function of parameter R(ψ) and plays a very important role in double robust and efficient
estimation of R(ψ), as explained in the next section.

Parameter (4.4) is a pathwise differentiable parameter, for which consistent asymptotically
linear estimators can be found. Note that R(ψ,P), as defined in (4.4), depends on P only through
Q = (Q̄,QW ), where Q̄ = (Q̄1, Q̄2). In an abuse of notation, we will use R(ψ,P) and R(ψ,Q)
indistinctly, and the true value R(ψ,Q0) will be denoted by R0(ψ). We will also use the notations
R(ψ,Q) and R(ψ)(Q) indistinctly. In section 4.1 we will focus on the estimation of the risk
when the candidates are given values. Given candidate values constitute a situation that is not
very common in research problems, but provides an easy way to introduce the estimators that are
going to be developed in section 4.1, in which we will generalize these estimators to the case of a
candidate estimated from the sample. Cross validation will be used as a tool to avoid over-fitting,
and will lead to an oracle inequality presented in section 4.3.

The efficient influence function of the risk R(ψ,Q) is given by the expression

D(Q,g,ψ)(O) = LQ̄,g(O,ψ)−R(ψ,Q), (4.9)

with LQ̄,g defined in (4.8).
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Estimators of the risk of a candidate parameter value
In this section we exploit the definitions of the risk in terms of loss functions given in the previous
section in order to define various estimators of the risk. As we will see, the definitions of the risk
through the different loss functions previously described lead to the definition of G-comp, IPTW
and A-IPTW estimators. We will also use the efficient influence function of R(ψ,P) in order to
define a targeted maximum likelihood estimator of R0(ψ). The A-IPTW loss function is closely
related to the efficient influence curve of R(ψ,P), which results in the consistency and efficiency
of the A-IPTW and TMLE. Analytical properties of these estimators has been discussed elsewhere
(van der Laan and Robins, 2003; van der Laan and Rubin, 2006; Rose and van der Laan, 2011).

We will assume that ψ is a given function of a and Z in the sense that it is not estimated from the
sample. Such scenario is attainable, for example, in situations in which a pilot study is conducted
in order to postulate candidate estimators with the objective of assessing their performance with
data from a posterior study.

Let ˆ̄Q = ( ˆ̄Q1,
ˆ̄Q2) and ĝ be initial estimators of Q̄0 = (Q̄1,0, Q̄2,0) and g0, respectively. These

estimators will be denoted ˆ̄Q or ˆ̄Q(P), depending on whether it is necessary to emphazise their
dependence on the empirical distribution

P=
1
n

n

∑
i=1

δOi

with δx denoting a Dirac delta with a point mass at x.

G-comp, IPTW and A-IPTW estimators

The equivalent definitions of the risk through G-comp, IPTW and A-IPTW loss functions allow
the straightforward definition of three estimators of the risk of a candidate value, given by:

R̂G(ψ) =
1
n

n

∑
i=1

L ˆ̄Q(Oi,ψ), R̂I(ψ) =
1
n

n

∑
i=1

Lĝ(Oi,ψ), and R̂DR(ψ) =
1
n

n

∑
i=1

L ˆ̄Q,ĝ(Oi,ψ),

which can be seen as solutions in R of the corresponding estimating equations PDI(·|ĝ,ψ,R) = 0,
PDG(·| ˆ̄Q,ψ,R) = 0, and PDDR(·| ˆ̄Q, ĝ,ψ,R) = 0, where

DI(O|g,ψ,R) =Lg(O,ψ)−R

DG(O|Q̄,ψ,R) =LQ̄(O,ψ)−R

DDR(O|Q̄,g,ψ,R) =LQ̄.g(O,ψ)−R.

According to theorem 5.11 of van der Vaart (2002), if Lĝ falls in a Glivenko-Cantelli class {Lg : g∈
G } with probability tending to one, and P0(Lĝ−Lg0)

2→ 0, then the IPTW estimator is consistent
for R0(ψ). Under an appropriate Donsker condition and consistency of ĝ, the IPTW estimator is
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also asymptotically linear with influence function DI(O|g0,ψ,R0), as explained in theorem 6.18
of van der Vaart (2002) and the theorems of chapter 2 of van der Laan and Robins (2003). As
a consequence, it is an inefficient estimator of the risk R0(ψ), and its variance can be estimated
with the empirical variance of DI(O|ĝ,ψ,R0). Equivalent statements are also true for the G-comp
estimator.

Following similar arguments, the A-IPTW estimator is double robust in the sense that it is
consistent if either of ˆ̄Q or ĝ is consistent. It is also efficient if both ˆ̄Q and ĝ are consistent. Even
though the A-IPTW represents an important improvement with respect to the G-comp or the IPTW,
it suffers from some of the drawbacks inherited from the estimating equation methodology. One
of the most important problems of such methodology is the possibility of solutions out of the
parameter space, or very unstable estimators if the positivity assumption is practically violated.
For this reason we prefer estimators that are substitution estimators, i.e., estimators that are the
result of applying the map R(ψ) to a certain estimated distribution P∗ ∈M . As we will see, the
TMLE is such a substitution estimator.

Targeted minimum loss based estimator

For a review on TMLE and its properties we refer the interested reader to Rose and van der Laan
(2011). TML estimation requires the specification of three components: a valid loss function for the
relevant part of the likelihood, a parametric submodel whose generalized score equals the efficient
influence function, and initial estimators of the relevant parts of the likelihood.

We will assume that Y is binary, or that P(Y ∈ [a,b]) = 1 for known values a and b, in which
case we can work with Y ∗ = (Y − a)/(b− a) and interpret the results accordingly. Consider the
loss functions −L j{(Q̄ j)(O)} = Y j log Q̄ j(A,W )+ {1−Y j} log{1− Q̄ j(A,W )}; j = 1,2, for Q̄ j,
and the parametric fluctuations given by logit Q̄ j(ε j) = logit Q̄ j + ε jH j(ψ,g), where

H1(ψ,g)(A,W ) =−2ψ(A,Z)
h(a,Z)
ĝ(A,W )

,

H2(ψ,g)(A,W ) =
h(a,Z)
ĝ(A,W )

.

Note that these loss functions are not related to those in (4.5), (4.7) or (4.8). The generalized scores
are equal to

d
dε1

L1{Q̄1(ε1),O}|ε1=0 =−2
ψ(A,Z)h(A,Z)

ĝ(A,W )
{Y − Q̄1(A,W )}

d
dε2

L2{Q̄2(ε2),O}|ε2=0 =
h(A,Z)
ĝ(A,W )

{Y 2− Q̄2(A,W )},

corresponding with the first two parts of the efficient influence curve presented in (4.9). The
marginal distribution of W is estimated with the empirical distribution QW (P) of W1, . . . ,Wn. It can
be shown that QW (P) solves LQ̄(ψ)−EQW LQ̄(ψ) (the third part of the efficient influence curve
equation) at any Q̄.
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For initial estimators ˆ̄Q and ĝ, the first step TMLE of Q̄0 is given by ˆ̄Q∗j =
ˆ̄Q j(ε̂ j), where

ε̂ j = argmin
ε

PL j{ ˆ̄Q j(ε)}. (4.10)

The TMLE of R0(ψ) is now defined as the plug-in estimator R̂(Ψ̂k) ≡ R(ψ)(Q̂∗), where Q̂∗ =
( ˆ̄Q∗1,

ˆ̄Q∗2,QW (P)).
Under certain conditions explained in detail in Rose and van der Laan, 2011, Appendix A.18, if

Q̄0 and g0 are consistently estimated, this TMLE of R0(ψ) is asymptotically linear with influence
curve D(O|Q̄0,g0,R0(ψ)), which means that it is consistent and efficient. If ĝ is consistent but ˆ̄Q∗

is not, the TMLE is consistent but inefficient, and its variance can be conservatively estimated by

σ̂
2 =

1
n2

n

∑
i=1
{DDR(Oi|Q̄∗, ĝ, R̂(Ψ̂k))}2.

If one uses data-adaptive estimators in ˆ̄Q and ĝ, it is often appropriate to replace the estimate of
the variance by a cross-validated estimator.

The conditions needed for asymptotic linearity of the TMLE (see Rose and van der Laan, 2011,
Appendix 18) include a Donsker condition on the class of functions that contains the estimated
efficient influence function D. Such Donsker conditions impose certain restrictions on the type
of algorithms that can be used for estimation of Q̄0 and g0, forcing the user to find a trade off
between obtaining the best possible prediction algorithms and not using algorithms that are too
data-adaptive, because data-adaptive algorithms might lead to estimators that do not belong to a
Donsker class (e.g., random forest).

The cross-validated TMLE, whose theoretical properties are discussed in Zheng and van der
Laan (2011a), provides a template for the joint use of cross-validation and TMLE methodology
that avoids Donsker conditions and therefore allows the use of very data-adaptive techniques in
order to find consistent estimators of Q̄0 and g0. An additional advantage of CV-TMLE in this
setting is that it allows us to have a valid estimator of the risk of an estimated CDRC, solving the
issue of over-fitting through the use of cross-validation.

Estimators of the risk of a candidate estimator
The previous section provided an algorithm to estimate the risk of a candidate value for the causal
dose-response curve, when the value is given and not estimated from the sample. That scenario
is very rare in real data applications, and it is very common that the CDRC candidates have to be
estimated from the sample as well. In such situations, if the algorithms Ψ̂k are trained in the whole
sample, the use of the estimators of the risk presented in the previous sections would lead to the
selection of the candidates that overfit the data.

van der Laan and Dudoit (2003), van der Vaart (2003); van der Laan, Dudoit, and Keles (2004),
among others, show that cross-validation is a powerful tool for estimating the risk of a candidate
estimator of a non pathwise differentiable parameter, and show that such cross-validation based
selection endows the selector with an oracle inequality that translates into asymptotic optimality.
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Assume now that Ψ̂k is a mapping that maps elements in a non parametric statistical model into
a space of functions of a and Z (Ψ̂k : M →H ). An estimate of ψ0 = Ψ(P0) is now seen as such
map evaluated in the empirical distribution of O1, . . . ,On, i.e., Ψ̂k(P).

Consider the following cross-validation scheme. Let a random variable S taking values in
{0,1}n index a random sample split into a validation sample VS = {i ∈ {1, . . . ,n} : Si = 1} and a
training sample TS = {VS}c, where S has a uniform distribution over a given set {s1, . . . ,sm} such
that ∑ j si, j > 1 for all i = 1, . . . ,m. Here we note that the union of the validation samples equals the
total sample: ∪SVS = {1, . . . ,n}, and the validations samples are disjoint: Vs1 ∩Vs2 = /0 for s1 6= s2.
Denote PTS and PVS the empirical distributions of a training and validation sample, respectively.
For a function g{TS,VS}, we denote ESg(T,V ) = 1

m ∑
m
j=1 g{Ts j ,Vs j}.

Since Ψ̂k(P) is now a value that depends on the sample, it does not make sense to talk about
a parameter R{Ψ̂k(P),Q0}, because it does not agree with the formal definition of a parame-
ter. Nonetheless, in an abuse of language we will talk about “estimation” of the “parameter”
ESR{Ψ̂k(PT ),Q0}, which we call the conditional (on the sample) risk of Ψ̂k.

Cross validated augmented IPTW
This estimator is also discussed by Wang, Bembom, and van der Laan (2006), and is given by the
solution of the cross-validated version of the A-IPTW estimating equation, given by

ESPV L ˆ̄Q(PT ),ĝ(PT )
{Ψ̂k(PT )}.

This estimator is asymptotically linear under the conditions presented in van der Laan and Dudoit
(2003). An oracle inequality for the selector based on the A-IPTW risk estimator is also proved in
the original paper.

Cross validated TMLE
The cross-validated targeted maximum likelihood estimator was introduced by Zheng and van der
Laan (2010) as an alternative to the TMLE that avoids the Donsker conditions on the efficient
influence curve (discussed in section 4.1). Donsker conditions on the class of functions generated
by the estimated efficient function D represent an important limitation to the kind of algorithms that
can be used in the initial estimators of Q̄0 and g0: very data adaptive techniques will give as a result
functions that do not belong to a Donsker class. As discussed in section 4.1, the consistency and
efficiency of the risk estimator depend on the consistency of the initial estimator of Q̄0 and g0. It
is common practice in statistics to assume parametric models in order to estimate these quantities.
Such parametric models are often chosen ad-hoc, based on arbitrary preferences of the researcher,
and do not encode legitimate knowledge about the data generating process. Thus, we avoid such
parametric assumptions, and prefer to use data-adaptive techniques to find the algorithm that best
approximates Q̄0 and g0.

As we will see in the next section, the use of cross-validation also equips the CV-TML selector
with an oracle inequality, meaning that such selector performs asymptotically as well as a selector
in which the risk is computed based on the true (unknown) probability distribution.
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Zheng and van der Laan (2010) present two types of CV-TML estimators: one for a general
parameter, and a specific CV-TMLE for the case in which Q can be partitioned as (Q1,Q2) and the
mapping that defines the parameter is linear in Q1. As discussed in section 4.1, the risk R(ψ,P) of
a given candidate depends on P only through Q(P) = {Q̄(P),QW (P)}, and it can be easily verified
that R(ψ,Q) is linear in QW .

The construction of a CV-TML estimator requires the specification of the same three compo-
nents discussed in section 4.1: a logistic loss function, a logistic parametric fluctuation, and an
initial estimator of Q. For each S, let

logit Q̄ j,k(PTS)(ε j,k) = logit Q̄ j(PTS)+ ε j,kH j{Ψ̂k(PTS), ĝ(PTS)},

where H j; j = 1,2 were defined in section 4.1. This is the same fluctuation considered before,
but defined only based on the training sample. With this modification, the CV-TMLE is defined
analogous to the regular TMLE. Let

ε̂ j,k = argmin
ε

ESPV L j{ ˆ̄Q j,k(PT )(ε)}; j = 1,2, (4.11)

and for each S define the updates

ˆ̄Q∗j,k(PTS) =
ˆ̄Q j(PTS)(ε̂ j,k); j = 1,2, (4.12)

which results in the plug-in estimator of the oracle risk

R̂(Ψ̂k) = ESR{Ψ̂k(PT ),
ˆ̄Q∗k(PT ),QW (PV )}=

1
m ∑

s∈{s1,...,sm}

1
ns

∑
i∈Vs

∫
A

{
ˆ̄Q∗2,k(PTs)(a,Wi)−2 ˆ̄Q∗1,k(PTs)(a,Wi)Ψ̂k(PTs)(a,Zi)+

[Ψ̂k(PTs)(a,Zi)]
2
}

h(a,Zi)dµ(a), (4.13)

where ˆ̄Q∗k(PTS) = { ˆ̄Q∗1,k(PTS),
ˆ̄Q∗2,k(PTS)}, QW (PVS) denotes the empirical distribution of W in the

validation sample S, and ns denotes the size of VS.
For a definition of the CV-TMLE for general parameters the interested reader is referred to

the original article. In the next sections we will present the asymptotic linearity of the previous
estimator, as well as an oracle inequality for the selector based on it.

4.2 Asymptotic linearity of CV-TML estimator of the risk
In this section we present a theorem establishing asymptotic linearity of the CV-TML estimator of
the risk. This theorem is analogue to the theorems presented in Zheng and van der Laan (2010),
and its proof uses the same ideas presented in that paper.

An analogue version of this theorem for the CV-A-IPTW is presented in van der Laan and
Dudoit (2003). The CV-TMLE is expected to perform better than the CV-A-IPTW in finite sample
sizes, in which practical positivity violations are often present and lead to CV-A-IPTW estimators
that are either very unstable or provide solutions out of the range of the parameter of interest.
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Theorem 1 (Asymptotic linearity). Define

R̂0(Ψ̂k) = ESR{Ψ̂k(PT ),Q0} and R̂(Ψ̂k) = ESR{Ψ̂k(PT ),
ˆ̄Q∗k(PT ),QW (PV )}

with R{ψ,Q}=QW LQ̄(ψ). For a function f (PTS) of O, define the norm || f (PT )||0,S =
√

ESP0 f (PT )2h.
Assume:

1. There exist constants δ1 > 0 and δ2 > 0 such that P(ĝ(P)(A|W ) > δ1) = 1 and g0(a|w) >
δ2 ∀ a,w.

2. ||ĝ(PT )−g0||20,S = oP(1/
√

n)

3. ˆ̄Q∗1(PTS),
ˆ̄Q∗2(PTS) and Ψ̂k(PTS) converge to some fixed ˆ̄Q∗1(P0),

ˆ̄Q∗2(P0) and Ψ̂k(P0) in the
sense that

||ĝ(PT )−g0||0,S|| ˆ̄Q∗2(PT )− ˆ̄Q∗2(P0)||0,S = oP(1/
√

n)

||ĝ(PT )−g0||0,S|| ˆ̄Q∗1(PT )− ˆ̄Q∗1(P0)||0,S = oP(1/
√

n)

||ĝ(PT )−g0||0,S||Ψ̂k(PT )− Ψ̂k(P0)||0,S = oP(1/
√

n)

4. For some mean zero function ICg(P0) ∈ L2
0(P0), we have

P0
g0− ĝ(P)

g2
0

h
[
{Q̄2,0− ˆ̄Q∗2(P0)}−2hψ0{Q̄1,0− ˆ̄Q∗1(P0)}

]
=

(P−P0)ICg(P0)+oP(1/
√

n),

Then we have that

R̂(Ψ̂k)− R̂0(Ψ̂k) = (P−P0)
[
D{ ˆ̄Qk̄(P0),QW,0,g0,ψ0}+ ICg(P0)

]
+oP(1/

√
n),

for D{Q̄,QW ,g,ψ}= LQ̄,g(ψ)−QW LQ̄ the efficient influence function of R{ψ,Q(P)}.

The proof of this theorem is presented in appendix B.1. Next we will discuss the plausibility
and implications of the assumptions of theorem 1.

Discussion on the assumptions of theorem 1

1. This assumption is a natural assumption, equivalent to the positivity assumption for binary
treatments, and needed to identify and also needed to estimate the risk using IPTW or A-
IPTW estimators.
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2. This is a very important assumption stating that ĝ is a consistent estimator of g0. It is re-
quired that the rate of convergence is n−1/4 or faster. This condition is automatically true in
randomized control trials (RCT), in which the treatment mechanism is known. It is also true
if g is known to belong to a parametric model, and in semi parametric models that assume
enough smoothness of g0. If g0 is completely unknown, it is important to use aggressive data
adaptive estimation techniques such as the super learner (van der Laan, Polley, and Hubbard,
2007) to find an estimator ĝ that is more likely to satisfy this assumption.

3. This assumption states that the updated estimator ˆ̄Q∗1 converges to some unspecified limit at a
certain rate. It is worth to note that such limit is not assumed to be Q̄1,0, the only requirement
is convergence to some value at a certain rate that depends on the rate of convergence of ĝ to
g0. The desired rate of convergence can be achieved if, for example, ĝ is

√
n-consistent (i.e.,√

n||ĝ(PT )−g0||0,S = OP(1)) and ˆ̄Q∗1(PTS) converges to ˆ̄Q∗1(P0) at any rate (i.e., || ˆ̄Q∗1(PT )−
ˆ̄Q∗1(P0)||0,S = oP(1)). The same is true for ˆ̄Q∗2 and Ψ̂k.

4. In an RCT, in which g0 is known, one could set ĝ(P) = g0 and this condition would be triv-
ially satisfied. On the other hand, since cross-validation allows for the use of very aggressive
techniques for estimation of Q̄0, we could have that ˆ̄Q∗(P0) = Q̄0, and the condition would
also be satisfied.

In other cases, this assumption seems to be conflicting with assumption 2. If the treatment
mechanism is completely unknown, it is necessary to use very aggressive data adaptive tech-
niques to find estimators that satisfy assumption 2. The use of such estimators will usually
lead to estimates of g0 that do not provide the asymptotic linearity needed in 4. Likewise,
the use of an inconsistent estimator that satisfies this condition (e.g., a parametric model)
will violate assumption 2. In that case, it is necessary to rely on the consistency of ˆ̄Q∗(P) in
the sense that ˆ̄Q∗(P0) = Q̄0, in which case assumption 4 will be trivially satisfied. This con-
dition seems to suggest that the initial estimator ĝ must also be fluctuated to target a smooth
functional of g0. This is a direction of future research, beyond the scope of this article.

As opposed to the regular TMLE or A-IPTW, in which the Donsker conditions on D limit
the use of very aggressive techniques for estimation of Q̄0, the use of cross-validation allows
us to implement any type of algorithm, which in turn makes consistency of ˆ̄Q∗(P) a very
sensible assumption. We encourage the use of super learning for estimation of both Q̄0 and
g0. Super learner is a methodology that uses cross-validated risks to find an optimal estimator
among a library defined by the convex hull of a user-supplied list of candidate estimators.
One of its most important theoretical properties is that its solution converges to the oracle
estimator (i.e., the candidate in the library that minimizes the loss function with respect to the
true probability distribution). Proofs and simulations regarding these and other asymptotic
properties of the super learner can be found in van der Laan, Dudoit, and Keles (2004) and
van der Laan and Dudoit (2003).
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4.3 Asymptotic optimality of the CDRC estimate selector
based on CV-TMLE risk

If the objective is to choose the best candidate among a list of candidate estimators Ψ̂k : k =
1, . . . ,Kn, it suffices to construct a ranking based on the pseudo-risk

R†(ψ)(Q̄1,QW ) = EQW

∫
A

ψ(a,Z){ψ(a,Z)−2Q̄1(a,W )}h(a,Z)dµ(a).

which has the advantage that Q̄2,0 does not need to be estimated, providing additional robustness
of the candidate selector. In an abuse of notation R† and Q̄1 will also be denoted by R and Q̄
whenever the difference is clear from the context. Estimation of this pseudo-risk can be carried out
in a similar fashion to estimation of the full risk presented in the previous section, with efficient
influence function given by

D†(Q,g,ψ)(O) =−2
h(A,Z)ψ(A,Z)

g(A,W )
{Y − Q̄1(A,W )}+∫

A
ψ(a,Z){ψ(a,Z)−2Q̄1(a,W )}h(a,Z)dµ(a)−R(ψ)(Q̄1,QW ), (4.14)

which results in a CV-TMLE defined as

R̂(Ψ̂k)≡ ESR{Ψ̂k(PT ),
ˆ̄Q∗(PT ),QW (PV )}

with ˆ̄Q∗(PTS) exactly as in (4.12). We will discuss now asymptotic optimality of the selector based
on the CV-TMLE. Assume that we have a list of candidate estimators for the CDRC given by
Ψ̂k; k = 1, . . .Kn. Each of these algorithms is viewed as a map Ψ̂k : M → F , where F is the
space of functions of a and Z. Define the CV-TMLE selector as

k̂ = arg min
k=1,...,Kn

R̂(Ψ̂k),

and the oracle selector as
k̃ = arg min

k=1,...,Kn
R̂0(Ψ̂k),

with R̂0(Ψ̂k) = ESR{Ψ̂k(PT ),Q0}. The following theorem proves that these two selectors are
asymptotically equivalent under certain consistency conditions of the initial estimator of g0.

Theorem 2 (Oracle inequality). For each k, define

ε̂k = arg min
ε∈B⊂R

ESPV L{ ˆ̄Qk(PT )(ε)}

where |B|= nc for finite c,

−L(Q̄)(O) = Y log{Q̄(A,W )}+(1−Y ) log{1− Q̄(A,W )},
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and

logit Q̄k(PTS)(ε) = logit Q̄(PTS)−2ε
hΨ̂k(PTS)

ĝ(PTS)
.

Let ˆ̄Q∗k(PTS) =
ˆ̄Q(PTS)(ε̂k) be the CV-TMLE targeted towards estimation of the true conditional

risk
R̂0(Ψ̂k) = ESR{Ψ̂k(PT ),Q0}.

Assume that h/ĝ, h/g0 Ψ̂k, ψ0, Q̄0, and ˆ̄Q have supremum norm smaller than a constant C < ∞

with probability 1. Let Mn be the total number of possible points for (k,εk) across k = 1, . . . ,Kn, so
that Mn ≤ ncKn. Define R̂(Ψ̂k,ψ0)≡ R̂(Ψ̂k)− R̂(ψ0) and R̂0(Ψ̂k,ψ0)≡ R̂0(Ψ̂k)−R0(ψ0), where

R̂(Ψ̂k) = ESR{Ψ̂k(PT ),
ˆ̄Q∗k(PT ),QW (PV )}

is the TMLE of R̂0(Ψ̂k). The expression an . bn means that an ≤ cbn for a constant c. For a
function f (PTS) of O, define the norm || f (PT )||0,S =

√
ESP0 f (PT )2h. We have for each δ > 0,

there exists a c(M,δ )< ∞ so that√
ER̂0(Ψ̂k̂,ψ0)−

√
(1+2δ )ER̂0(Ψ̂k̃,ψ0).

√
c(M,δ )

1+ logMn

n

+

√
(1+δ )E||ĝ(PT )−g0||0,S

1+ logMn√
n

+(1+δ )E||ĝ(PT )−g0||0,SE|| ˆ̄Q∗k̄(PT )− Q̄0||0,S
+(1+δ )E||(ĝ(PT )−g0)(

ˆ̄Q∗0(PT )− Q̄0)||0,S,

where ˆ̄Q∗0 is the CV-TMLE of Q̄0 obtained when the target parameter is R(ψ0), and k̄ is either k̂
or k̃, whichever gives the worst bound.

A proof of this theorem is provided in appendix B.2. The use of a grid of size nc for constant
c when estimating εk does not represent a limitation of the result of the theorem, since the result
without the grid will be similar up to a term OP(1/

√
n) that does not affect the asymptotic behavior

of the CV-TMLE selector. However, a grid of size nc allows the proof presented in appendix B.2.
The following corollary provides the conditions under which the CV-TMLE selector is asymp-

totically equivalent to the oracle selector.
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Corollary 1 (Asymptotic optimality). In addition to the conditions of theorem 2, assume that
1+ logMn

n
1

ER̂0(Ψ̂k̃,ψ0)
→ 0 as n→ ∞

1+ logMn√
n

E||ĝ(PT )−g0||0,S
ER̂0(Ψ̂k̃,ψ0)

→ 0 as n→ ∞

E2||ĝ(PT )−g0||0,SE2|| ˆ̄Q∗k̄(PT )− Q̄0||0,S
ER̂0(Ψ̂k̃,ψ0)

→ 0 as n→ ∞

E2||(ĝ(PT )−g0)(
ˆ̄Q∗0(PT )− Q̄0)||0,S

ER̂0(Ψ̂k̃,ψ0)
→ 0 as n→ ∞.

then
ER̂0(Ψ̂k̂,ψ0)

ER̂0(Ψk̃,ψ0)
→ 1 as n→ ∞.

Since

ER̂0(Ψ̂k̃,ψ0) = E
∫ ∫

(Ψ̂k̃(PT )−ψ0)
2dµ dQW,0 = E||(Ψ̂k̃(PT )−ψ0)/

√
g0||20,S,

the convergences assumed in corollary 1 are expected to hold, for example, if ĝ converges to g0 at
a rate faster than Ψ̂ converges to ψ0.

In the following section we will show the results of a simulation study in which the finite
sample size properties of the CV-TMLE based selector of their risk are explored for a specific data
generation process.

4.4 Simulation
In order to explore some of the finite sample size properties of the risk estimators and the selectors
based on them, we performed a Monte Carlo simulation. We generated 500 samples of sizes 100,
500, and 1000 from the following data generating process:

W1 ∼U{0,1}
W2 ∼ Ber{0.7}
W3 ∼ N{W1,0.25× exp(2W1)}

A∼ Beta{ν(W )µ(W ),ν(W )[1−µ(W )]}
Y ∼ Ber{Q0(A,W )},

where

ν(W ) =exp{1+2W1 expit(W3)}
µ(W ) =expit{.03− .8log(1+W2)+ .9exp(W1)W2− .4arctan(W3 +2)W2W1}

Q̄0(A,W ) =expit{−2+1.5A+5A3−2.5W1 + .5AW2− log(A)W1W2 + .5A3/4W1W3}.
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Under this parameterization E(A|W ) = µ(W ). We considered four candidates algorithms given
by marginal structural models (MSM) of the form logitΨp(a) = mp(a,β ), where mp is a polyno-
mial of degree p = 1, . . . ,4 on a with coefficients β j : j = 0, . . . , p. The coefficients β j were esti-
mated with IPTW estimators as presented by Robins, Hernan, and Brumback (2000) and Neuge-
bauer and van der Laan (2007). The true value of ψ0(a) = E{Q̄0(a,W )} was computed from this
data generating distribution by drawing a sample of size 100.000 and, for each a, computing the
empirical mean of Q̄0(a,W ). All the simulations were performed assuming the true parametric
model for the outcome and treatment mechanism were known. Figure 4.1 presents the true dose-
response curve, as well as the expectation of the candidate estimators across the 500 samples.
From this graph, we can see that among the candidates chosen, a polynomial of degree 2 seems
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Figure 4.1: True ψ0(a) and expectations of the four candidate estimators of degree p

to provide the closest approximation to the true dose-response curve without over-fitting the data.
Table 4.1 shows the expectation of the random variable R̂(Ψp)− R̂0(Ψp), which from theorem 1
should approach zero as the sample size increases. As we can see, that is not the case for the
CV-A-IPTW estimator with sample size 100 due to the presence of empirical violations of the pos-
itivity assumption that cause very small treatment weights and therefore very unstable, non-regular
estimates. However, that problem seems to be fixed asymptotically, since for large sample sizes
empirical violations of the positivity assumption are less likely to occur.

Table 4.2 shows the proportion of estimates that fell outside the interval (−10,10) or fell out
of the parameter space. The interval (−10,10) was chosen arbitrarily, and represents inadmissi-
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Risk Candidate n
Estimator Degree 100 500 1000

CV-A-IPTW

1 -1.1436 0.0067 0.0048
2 -1.1716 -0.0061 0.0042
3 -1.0788 -0.0054 0.0043
4 -1.0194 -0.0053 0.0032

CV-TMLE

1 0.0063 0.0054 0.0046
2 0.0085 0.0054 0.0041
3 0.0091 0.0059 0.0043
4 0.0094 0.0058 0.0042

Table 4.1: Expectation of R̂(Ψp)− R̂0(Ψp) across 500 simulated samples.

Outliers Out of bounds
Risk Candidate n

Estimator Degree 100 500 1000 100 500 1000

CV-A-IPTW

1 0.0098 0.0000 0.0000 0.0547 0.0020 0.0020
2 0.0078 0.0000 0.0000 0.0527 0.0020 0.0020
3 0.0098 0.0000 0.0000 0.0488 0.0020 0.0020
4 0.0098 0.0000 0.0000 0.0508 0.0020 0.0020

Table 4.2: Proportion of estimates outliers (< −10 or > 10) and proportion of estimates out of
bounds (< 0 or > 1).

ble bounds for an estimator of a parameter that ranges in the interval (0,1). Since the TMLE is
a substitution estimator, it all the estimates fell within the parameter space, and are thus not pre-
sented. Due to practical violations of the positivity assumption previously mentioned, an important
proportion (around 5%) of the A-IPTW estimates fell outside the parameter space for sample size
100.

Table 4.3 contains the expected values of R̂(Ψp)− R̂0(Ψp) across 500 simulated samples once
the estimates that fell outside the interval (0,1) were removed. In this case, the expectation of
the A-IPTW based estimator of the risk is much closer to what is expected theoretically and had
already been achieved by the TML estimator.

Finally, table 4.4 shows the proportion of times that a given candidate is chosen according
to the A-IPTW, TMLE, and the oracle selector. As we can see, both the A-IPTW and the TMLE
based selectors perform similar to the oracle selector, particularly as the sample size increases, thus
showing no apparent advantage (at least for this particular data generating mechanism) of either
method when evaluated as a candidate selector procedure.
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Risk Candidate n
Estimator Degree 100 500 1000

CV-A-IPTW

1 0.0034 0.0064 0.0048
2 -0.0076 -0.0062 0.0042
3 -0.0083 -0.0054 0.0043
4 -0.0083 -0.0055 0.0032

CV-TMLE

1 0.0063 0.0054 0.0046
2 0.0085 0.0054 0.0041
3 0.0091 0.0059 0.0043
4 0.0094 0.0058 0.0042

Table 4.3: Expectation of R̂(Ψp)− R̂0(Ψp) across 500 simulated samples after removing estimates
out of bounds.

n
p 100 500 1000

TMLE A-IPTW Oracle TMLE A-IPTW Oracle TMLE A-IPTW Oracle
1 0.37 0.24 0.39 0.11 0.08 0.05 0.03 0.05 0.00
2 0.44 0.48 0.54 0.63 0.60 0.74 0.59 0.59 0.74
3 0.11 0.17 0.06 0.14 0.20 0.17 0.24 0.21 0.20
4 0.07 0.11 0.01 0.12 0.12 0.04 0.14 0.15 0.06

Table 4.4: Proportion of times that a given candidate is chosen according to each risk estimator.
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Chapter 5

Application to prognosis and variable
importance in severe trauma patients

A primary goal in evidence-based medicine is to design prognosis tools that take into account a
possibly large set of measured characteristics in order to predict a patient’s most likely medical
outcome. An equally important goal is to establish which of those measured characteristics is de-
cisive in the development of the predicted outcome. In the statistics literature these two goals have
been called prediction and variable importance analysis, respectively. In addition to understand-
ing the underlying biological mechanisms related to positive medical outcomes, the joint use of
these tools can help doctors devise the optimal treatment plan according to the specific character-
istics of the subject, simultaneously taking into account hundreds of variables collected for each
patient. Despite the current ability to measure a patient’s clinical history in detail, medical practice
still involves care decisions based on physician’s experience and rules of thumb that use only a few
variables and therefore fail to take into consideration the possible intricate relations between all the
measured underlying factors that determine a patient’s health status. In the last years researchers
in the fields of biostatistics and bioinformatics have become increasingly more interested in devel-
oping mathematical and computational tools that help make optimal care decisions based on all
the collected information about a patient’s health status and history. Because of the large number
of variables and the complexity of the relations between them, prediction and variable importance
would be impossible to achieve without the use of complex statistical algorithms accompanied by
powerful computers able to carry out a large number of computations in large data sets within
reasonable time frames that help doctors make the right treatment decisions in a timely fashion.

From a technical and practical point of view prediction and variable importance are different
goals whose optimal achievement requires the use of different tools. The objective in prediction is
to specify a well defined algorithm that is capable of doing accurate predictions, where accuracy
can be defined in a variety ways. For prediction it is only relevant whether the prediction algorithm
is accurate or not, it is unnecessary and sometimes inappropriate (e.g., with non-probabilistic pre-
dictors) to use the intermediate calculations of the prediction algorithm to find statistical or causal
relations between the variables involved. On the other hand, variable importance (VIM) methods
are aimed to measure the degree to which changes in the prediction are caused by changes in each
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of the predictor variables. VIM methods often provide a ranking of the most likely causes of a
the predicted outcome, and are intended to supply doctors with tools for making optimal treatment
decisions. This difference between prediction and VIM has two main consequences. First, VIM
problems are of a causal nature, whereas prediction problems are merely associational. Second,
in order to help the decision making process, VIM parameters must be as informative as possible,
having an interpretation in terms of the expected change in the outcome under a pool of possible
interventions. As explained below, a meaningful interpretation can only be obtained through an
intelligible characterization of VIM as a statistical (or causal) parameter defined as a mapping from
a honest, tenable statistical model into an Euclidean space.

Current practice in biostatistics and bioinformatics involves the use of machine learning al-
gorithms for prediction and the posterior computation of VIM quantities based on its output and
intermediate calculations (see e.g., Breiman, 2001; Olden and Jackson, 2002; Olden, Joy, and
Death, 2004; Strobl et al., 2007, for discussions on random forests and neural networks variable
importance). Because these measures are defined in terms of an algorithm that was targeted to
perform well at prediction, they result in variable importance measures that can seldom be con-
sidered estimates of a well defined causal or statistical parameter. As an example, consider the
case of regression and classification trees (e.g., random forests), where the VIM for a variable X is
defined as the difference between prediction error when X is perturbed versus the prediction error
otherwise (Breiman, 2001; Ishwaran, 2007). The relevance of this quantity as a measure of VIM
is unclear because: 1) it does not represent a statistical or causal parameter, 2) it does not have an
interpretation in terms of the mechanistic process that generates the data, and 3) its interpretation
may be difficult to communicate to the public, even the public trained in statistics. As an example
of the technical difficulties arising from this practice, Strobl et al. (2007) discuss the “bias” of
random forest VIM measures, missing the fact that bias can only be defined in terms of a target
statistical parameter, which is never specified in random forest VIM analysis. Additionally, no
formal inference (p-values) methods exist for regression and classification trees based VIM.

Furthermore, an algorithm designed to perform well at prediction is not guaranteed to also
do a good job at estimating VIM measures, because good performance is defined differently for
each goal. Performance in prediction is typically assessed through quantities like the area under
the ROC, the false positive rate, or the expected risk of a sensible loss function. Performance in
estimation of Euclidean parameters is assessed in terms of statistical properties like consistency
and efficiency (related to bias and variance). Prediction algorithms are designed to perform well
at estimating the entire regression model, resulting in an incorrect bias-variance trade-off for each
VIM measure.

However, defining VIM parameters in terms of causal relations for continuous variables poses
additional technical challenges. When researchers using causal inference methods are faced with
exposures of continuous nature, the most common approach is to dichotomize the continuous ex-
posure and consider the effect of its binary version on the outcome. This approach suffers from
various flaws. First, the causal parameter does not answer questions about plausible modifications
to the data generating mechanism. Stitelman, Hubbard, and Jewell (2010a) show that the additive
causal effect of a dichotomized exposure compares an intervention in which the density of the ex-
posure is truncated below the dichotomization threshold with an intervention in which the density
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is truncated above it. Such interventions are seldom realistic, and might not be of great interest
for specific applications. Second, even if truncation interventions are realistic, the data analyst still
has to choose a cutoff point for the dichotomization. Most of the times the decision about such
cutoff point is data-driven (i.e., comparing quantiles), or made completely arbitrarily. This practice
renders a parameter that is dependent on the data, making its interpretation in terms of the original,
continuous exposure even more difficult. For instance, if VIM measures for continuous outcomes
are defined in terms of a dichotomization, it is often possible to define the right cutoff point that
makes the continuous variable more important than a given binary variable of reference. It is thus
necessary to argue why the chosen cutoff point makes these VIM measures comparable.

In this paper we explore a VIM problem in which it is necessary to rank a list of both continuous
and binary variables in terms of their importance for developing a medical outcome, which is a
very common problem in variable importance analysis. We use state of the art methods for causal
inference to solve prediction and VIM problems and illustrate the use of our methods using a
medical application, but the methods we develop and the arguments we present are completely
general and can be applied to any prediction or VIM problem (e.g., the analysis of ecological
data, genomics, educational and social research, economics). For prediction, we use a machine
learning technique called super learning which uses cross validation to choose an optimal convex
combination of a list of prediction algorithms provided by the user. The properties of this method
have been extensively studied through analytical calculations as well as simulations by van der
Laan and Dudoit (2003) and van der Laan, Dudoit, and Keles (2004); van der Laan, Polley, and
Hubbard (2007), among others. We define VIM measures in terms of appropriate interventions
in a causal model, which results in parameters that have a clear interpretation in terms of the
expected outcome under a clinical intervention. VIM measures with causal interpretation are more
relevant than their machine learning/modelling counterpart because they attempt to discover the
factors that must be intervened upon in order to obtain a significant improvement in the outcome,
and not just the factors that are associated to the outcome in question. We define VIM measures
that respect the continuous or binary nature of the variable, and are comparable in the sense that
their mathematical definition is equal up to first order, providing a valid ranking of the variables in
terms of their causal importance. In order to find VIM estimators with the best possible statistical
properties we use the tools for efficient inference in semi-parametric models described by Bickel
et al. (1997); van der Laan and Robins (2003), and Rose and van der Laan (2011) among others,
which allow us to use asymptotically linear estimators of the VIM parameters that are consistent
and efficient in the non-parametric model (under regularity conditions).

We demonstrate the use of these techniques in an example predicting clinical outcomes and
evaluating the VIM of a set of competing variables in severe trauma patients. Trauma is the lead-
ing cause of death between the ages of 1 and 44, according to the World Health Organization. The
vast majority of these deaths take place quickly and much of the initial resuscitative and decision-
making action takes place in the first minutes to hours after injury (Hess, Holcomb, and Hoyt, 2006;
Holcomb et al., 2007). In addition, it is clear that as patients live through their initial resuscitation,
operative conduct and early ICU care are the principal drivers of their current physiologic state and
future outcome are dynamic. Different variables are important in the first 30 minutes after injury
than at 24 hours after a patient has survived long enough to receive large volume resuscitation,
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operative intervention and ICU care. At any time, however, practitioners are often left making care
decisions without knowledge of the current patient physiologic state and which parameters are im-
portant at that moment. Left with this uncertainty and awash in constantly evolving multivariate
data, practitioners make decisions based on clinical gestalt, a few favorite variables, and rules of
thumb developed from clinical experience. To aid in prediction, the medical literature is filled
with scoring systems and published associations between these variables (physiology, biomarker,
demographic, etc.) and outcomes of interest (Krumrei et al., 2012; Lesko et al., 2012; MacFadden
et al., 2012; Nuñez et al., 2009; Schöchl et al., 2011). While numerous, these published statistical
associations, given the reported methodology, often report misspecified and overfit models. In ad-
dition most of these statistical predictive models do not account for the rapidly changing dynamics
of a severely injured patient, and fail to take into account the statistical issues discussed in the
previous paragraphs. An ideal system would mimic the clinical decision making of an experienced
practitioner by providing dynamic prediction (changing prediction at iterative time points) while
evaluating the dynamic importance of each variable over time (Buchman, 2010). This then would
mimic the implicit understanding a clinician brings to a patient where it is clear that the necessary
focus of care must change over time.

The chapter is organized as follows. In section 5.1 we describe the structure of the data and
introduce the statistical problem using causal inference tools to define statistical parameters that
measure the importance of a variable with respect to an outcome of interest. In section 5.2 we
present various estimators for the variable importance parameters previously defined, and briefly
describe the super learner (van der Laan, Polley, and Hubbard, 2007), an ensemble learner whose
asymptotic performace is optimal for prediction. In section 5.3 we describe the problem of prog-
nosis for trauma patients and the dynamic importance of clinical factors, demonstrate the use of
the methods previously presented, and compare the results with an approach that utilizes stepwise
regression to estimate VIM measures and provides a comparison with common statistical practice.
Finally, in section 5.4 we provide some concluding remarks.

5.1 Data, problem formulation, and parameters of interest
In order to estimate the effect of a variable A on an outcome Y controlling for a set of variables W ,
it is common practice among data analysts to estimate the parameter β in a parametric regression
model E(Y |A,W ) = m(A,W |β ) for a known function m, for example,

E(Y |A,W ) = β0 +β1A+β2W. (5.1)

It is also common to assume more complex models for the relation between (A,W ) and Y (e.g., by
varying the amount of interaction terms, functional form of m, or by using smoothing techniques),
but the linear regression example suffices to introduce the problem. Under model (5.1), the estimate
of β1 is interpreted as the expected change in Y given a change of one unit in A:

β1 = E{E(Y |A+1,W )−E(Y |A,W )}, (5.2)
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where we note that the interest of the researcher is to estimate the right hand side of this equa-
tion, since under small violations to the assumptions of model (5.1) the estimate of β1 cannot be
interpreted as in (5.2) anymore. Consider for example the following models:

E(Y |A,W ) =β
(1)
0 +β

(1)
1 A+β

(1)
2 W +β

(1)
3 AW (5.3)

E(Y |A,W ) =β
(2)
0 +β

(2)
1 log(A)+β

(2)
2 W. (5.4)

If the true conditional expectation is given by model (5.3), but (5.1) is estimated instead, neither
the estimate of β1 in model (5.1) nor β

(1)
1 in (5.3) represent the quantity in the right hand side of

(5.2), which is now given by β
(1)
1 +β

(1)
3 E(W ). On the other hand, if the true model is (5.4), the

parameter of interest is now given by β
(2)
1 {E(log(A+1))−E(logA)}.

In order to avoid these flaws, in this paper we will define parameters in terms of characteristics
of the probability distribution of the data under a non-parametric model, as in equation (5.2). This
practice allows the definition of the parameter of interest independently of (possibly) misspecified
parametric models, and avoids dealing with different interpretations of regression parameters under
incorrect model specifications.

The causal interpretation of statistical parameters (e.g., 5.2) requires additional untestable as-
sumptions about the distribution of counterfactual outcomes under a hypothetical interventions that
are often encoded in a structural equation model (Pearl, 2000).

In the remaining of the section we will describe the observed data, and use a nonparametric
structral equation model (NPSEM ) in order to define the VIM measures in terms of modifications
to the assumed causal model. We will now introduce the example that motivated the development
of these tools, and that will be analyzed in section 5.3.

Example The data analyzed in this example were collected as part of the Activation of Coag-
ulation and Inflammation in Trauma (ACIT) study, which is a prospective cohort study of severe
trauma patients admitted to a single level 1 trauma center. Several physiological and clinical mea-
surements were recorded at several time points for each patient after arrival to the emergency
room. These variables include demographic variables (e.g., age, gender, etc.), baseline risk fac-
tors (e.g., asthma, chronic lung disease, Glasgow coma scale, diabetes, injury mechanism, injury
severity score, etc.), longitudinally measured variables that account for the patient’s treatment and
health status history (e.g., respiratory and heart rate, platelets, coagulation measures like prothrom-
bin time and INR, activated protein C, etc.), and an indicator of the occurrence of death at each
time interval. Because these data are often collected in a high-stress environment, it is common
that some variables are missing for some patients at a given time point. The list of variables we
analyzed presented in table 5.1.

Assume that observations on each patient are recorded at times t0, t1, . . . , tJ , where t0 = 0, and
let T denote the time of death of a patient. The observed data for each patient is given by the
random variable

O = (L0,C1,L1,Y1, . . . ,CJ,LJ,YJ),
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Variable Type Description
Age Baseline Age in years
GCS Baseline/Treatment Arrival Glascow Comma Score
ISS Baseline/Treatment Injury Severity Score
Asthma Baseline Indicator of previous Asthma
COPD Baseline Indicator of previous Chronic Obstructive Pulmonary Disease
OCLG Baseline Indicator of Other Chronic Lung Disease
CAD Baseline Coronary Artery Diseae
CHF Baseline Congestive Heart Failure
ESRD Baseline End Stage Renal Disease
CIRR Baseline Cirrhosis
DIAB Baseline Diabeted
HPAN Baseline Hypoalbuminemia
Gender Baseline Gender
MECH Baseline Injury mechanism: blunt or penetrating
HR Treatment Heart Rate
RR Treatment Respiratory Rate
SBP Treatment Spontaneous Bacterial Peritonitis
BDE Treatment Base Deficit/Excess
BUN Treatment Blood Urea Nitrogen
CREA Treatment Creatinine
HGB Treatment Hemoglobin
HCT Treatment Hematocrit
PLTS Treatment Platelets
PT Treatment Prothrombin Time
PTT Treatment Partial Prothrombin Time
INR Treatment International Normalized Ratio
FV Treatment Factor III
FVIII Treatment factor VIII
ATIII Treatment Antithrombin III
PC Treatment Protein C
DDIM Treatment D-Dimer
TPA Treatment Tissue Plasminogen Activator
PAI Treatment Plasminogen Activator Inhibitor
SEPCR Treatment Soluble Endothelial Protein C Receptor
STM Treatment Soluble Thrombomodulin
APC Treatment Activated Protein C

Table 5.1: Variables in the ACIT data set

where L0 denotes a set of baseline variables recorded at admision to the hospital, L j =(L j1, . . . ,L jK)
denotes a set of variables measured at time t j, C j = (C j1, . . . ,C jK) where C jk denotes an indicator
of missingness of L jk, and Yj = I(t j < T ≤ t j+1) denotes an indicator of death occuring in the
interval (t j, t j+1], for j = 0, . . . ,J− 1. Once death occurs the random variables in the remaining
time points of the vector O become degenerate so that this structure is well defined.

In order to introduce the VIM measures we will temporarily assume that the observed data
were generated by the following non-parametric structural equation model (NPSEM Pearl, 2000).
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If the assumptions of NPSEM are correct, the VIM parameter can be causally interpreted as the
expected change in the outcome caused by a care intervention on the variable of interest. If the
assumptions of the model are false, the VIM measure provides a measure of the importance of each
variable for predicting the outcome if no other variable was collected at the time point of interest,
as we will see below. The NPSEM is given by

L0 = fL0(UL0)

C jk = fC jk(C j−1,L j−1,L0,UC j) j = 1, . . . ,J; k = 1, . . . ,K

L jk =C jk fL jk(C j−1,L j−1,L0,UL j) j = 1, . . . ,J; k = 1, . . . ,K (5.5)

Yj = fY j(C̄ j, L̄ j,L0,UY j) j = 1, . . . ,J,

where, for a random variable X , fX denotes an unknown but fixed function, UX denotes all the
unmeasured factors that are causally related to X , and X̄ j = (X1, . . . ,X j) denotes the history of X up
until time t j. As pointed out by Pearl (2000), this model assumes that the data O for each patient are
generated by the mechanistic process implied by the functions fX j with a temporal order dictated
by the ordering of the time points t j. In addition, this NPSEM encodes two important conditional
independence assumptions:

L jk⊥⊥L jk∗|(L0,L j−1) ∀ j, k∗ 6= k, (5.6)
L jk⊥⊥L̄ j−2|(L0,L j−1) ∀ j, k. (5.7)

Assumption (5.6) means that the variables L jk at time t j are drawn simultaneously as a function of
the past only, and the contemporary variables do not interact with each other. Assumption (5.7)
means that the value of a variable L jk is only affected by the immeadiate past, and is not directly
affected by any of the variables measured before or on time t j−2.

We will define VIM measures in terms of the causal effect of L jk on Yj′ , for all j′ ≥ j and for
all k. That is, we are interested in estimating the effect of a variable recorded at time point t j on the
hazard of death in each of the subsequent time intervals (t j, t j+1], . . . ,(tJ−1, tJ]. This approach has
the advantage that VIM can be seen as a dynamic process in which the factors that are decisive for
developing a clinical outcome change as a function of time.

As a consequence of assumption (5.6), the problem of estimating the causal effect of each L jk
on each Yj′ for j′ ≥ j can be seen as a series of cross-sectional problems as follows. Note that
L jk∗ for k∗ 6= k are not confounders of the causal relation between L jk and Yj′ . To illustrate this,
consider the NPSEM encoded in the directed aclyclic graph of Figure 5.1, in which for simplicity
we assume that all covariates are observed (i.e., C variables are not present) and that J = K = 2.
It stems from the graph that the variable L22 plays no role as a confounder of the causal effect of
L21 on Y2. Thus, for fixed j, j′ ≥ j, and k, and for each patient still at risk at t j′ , denoting A≡ L jk,
C≡C jk, W ≡ (L0,C j−1,L j−1), and Yj′ ≡Y , it suffices to consider the following simplified NPSEM:

W = fW (UW ), C = fC(W,UC), A =C fA(W,UA), Y = fY (A,C,W,UY ), (5.8)

where the U variables denote all the exogenous, unobserved factors associated to each of the
observed variables, and the functions f are deterministic but unknown and completely unspec-
ified. Thus, from now on we will focus on the study of this data structure with observed data
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L0

L11

L12 L21

L22

Y1 Y2

Figure 5.1: Directed acyclic graph, the arrows in blue and red denote the relations that confound
the causal effect of L21 on Y2

O = (W,C,A,Y ); the analysis will be done repatedly for each combination ( j, j′,k) of time points
and variable of interest.

Some additional consequences of NPSEM (5.8) are:

(1) The missingness indicator C is allowed to depend on the covariates measured in the previous
time point. In this way we take into account that a variable can be missing as a result of the
previous health status of the patient, and also that it can be strongly correlated with previous
missingness indicators.

(2) Missingness is informative. A patient’s missingness indicator C is allowed to affect the way
Y is generated, therefore acknowledging that missingness can contain information about the
health outcome (e.g., sicker patients who will die earlier might be more likely to have missing
values because information stops being recorded during life-threatening situations).

Without loss of generality we will assume that the variable A is either binary or continuous in the
interval (0,1). The true distribution of O will be denoted P0, with Q̄0(A,C,W ) ≡ E0(Y |A,C,W ),
g0(A|C,W )≡ P0(A|C,W ), φ0(C|W )≡ P0(C|W ) and QW,0(W )≡ P0(W ).

For the analysis of the ACIT data we have classified the variables L jk in two non-mutually
exclusive categories: baseline and treatment variables. Baseline variables (L0) are causally related
to the outcome but can seldom be manipulated by the physician and are rarely of interest as possible
care targets. Although baseline variables are not of interest in themselves, controlling for them is
crucial when estimating the effect of treatment variables, which are often longitudinal variables that
represent possible targets for clinical care. The label of each variable according to this classification
is shown in table 5.1.

We will now define the VIM parameter for continuous and binary outcomes.
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Continuous Variables. Consider an intervened system in which the variables are generated by
the following system of equations

W = fW (UW )

CI = 1

AI = fA(W,UA)+δ (5.9)

Y I = fY (AI,CI,W,UY ),

which, for a small positive δ , can be interpreted as a model in which there is no missingness,
and the distribution of the exposure variable AI is shifted to the right by δ units. This type of
intervention has been previously discussed in the literature (Dı́az and van der Laan, 2011a), and
belongs to a wider class of interventions known as stochastic interventions (Korb et al., 2004;
Didelez, Dawid, and Geneletti, 2006; Dawid and Didelez, 2010). The parameter

E(Y I)−E(Y )

can be causally interpreted as the expected reduction in mortality rate gained by an increase of δ

units in the variable A for each patient. Since the counterfactual data OI = (W,CI,AI,Y I) are not
observed, E(Y I) is not estimable without further untestable assumptions. Under the randomization
assumption (see, e.g., Rubin, 1978; Pearl, 2000) that

(C,A)⊥ Y I|W, (5.10)

and the positivity assumption

g0(A|W )> 0, and φ0(1|W )> 0 for all A and W , (5.11)

the expectation E(Y I) is identified as E(Y I) = EW E{Q̄(A+δ ,C,W )|C = 1,W}, and the parameter
of interest is defined as

Ψc(Q̄,QW ,g)≡ EW E{Q̄(A+δ ,1,W )|C = 1,W}−E(Y ), (5.12)

The true value of this parameter will be denoted ψc,0. A proof of this result under the randomization
assumption is presented by Dı́az and van der Laan (2011a). That proof follows the arguments for
identification of general causal parameters given by Pearl (2000), who provides a unified frame-
work for identification of counterfactual parameters as function of the observed data generating
mechanism. Equation (5.12) defines the VIM measure for continuous exposures.

Binary Variables For binary variables, following the structural causal model described in (5.8),
the VIM parameter is defined according to the following intervened system:

W = fW (UW )

CI = 1

AI =

{
1 with probability g(1|1,W )+δ

0 with probability g(0|1,W )−δ

Y I = fY (AI,CI,W,UY ),
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where 0 < δ < supw g(0|1,w) is a user-given value. Under randomization assumption (5.10), and
the positivity assumption

0 < g0(1|W )< 1, and φ0(1|W )> 0 for all W , (5.13)

the expectation of Y I is identified as a function of the observed data generating mechanism as
E(Y I) = EW E{Q̄(A,C,W )|C = 1,W}+δ{E[Q̄(1,1,W )− Q̄(1,0,W )]}, and the parameter of inter-
est is defined as

Ψb(Q̄,QW ,g)≡ EW E{Q̄(A,C,W )|C = 1,W}+δ{E[Q̄(1,1,W )− Q̄(1,0,W )]}−E(Y ), (5.14)

The true value of this parameter will be denoted ψb,0. Equation (5.14) defines the VIM measure
for binary exposures that we will use in this paper.

Comparability We argue that the previous variable importance measures for continuous and
binary VIM are comparable up to first order. First of all, note that, under the appropriate differen-
tiability assumptions, for continuous A we have

Ψc(Q̄,QW ,g)≈ EW{Q̄(A,1,W )|C = 1,W}+δ
d

dδ
EW E{Q̄(A+δ ,1,W )|C = 1,W}

∣∣∣∣
δ=0

.

This expression and (5.14) both have the form a+ δ × b, where b can be seen as the appropriate
slope of E{Q̄(A,C,W )} as a function of its first argument, providing an argument that, at least in
first order, these two VIM measures are comparable.

Causal interpretation If model (5.5) does not hold, ψc,0 does not have a causal interpretation
and must not be used to make treatment decisions. In that case, there are two main uses of this
parameter. First, it can be interpreted as the importance of variable L jk for predicting death in
the interval (t j, t j+1) when only the patient’s history W = (L0,C j−1,L j−1) and A = L jk have been
measured. This prediction VIM measure may be used as a tool for determining the best set of
prediction variables by ruling out those whose change from A to A+ δ would not induce a con-
siderable change in the expected prediction of a patient’s outcome. Second, this VIM parameter
may be used as a tool for formulating causal hypothesis that may be tested in a subsequent ran-
domized study or in an observational study in which the necessary causal assumptions are met. An
analogous argument is valid for the VIM parameter ψb,0 for binary variables.

In the following sections we will discuss double robust estimation methods for these parame-
ters.

5.2 Estimation and prediction methods
We will first discuss the consistent and efficient estimation of the VIM parameters defined in the
previous section, and then we will procede to discuss prediction methods for Q̄0, g0 and φ0.
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VIM estimation
In order to define semi-parametric VIM estimates that have optimal asymptotic properties we first
need to talk about the efficient influence function. The efficient influence function is a known
function D of the data O and P0, and is a key element in semi-parametric efficient estimation,
since it defines the linear approximation of all efficient regular asymptotically linear estimators
(Bickel et al., 1997). This means that the variance of the efficient influence function provides a
lower bound for the variance of all regular asymptotically linear estimators, analogously to the
Cramer-Rao lower bound in parametric models.

The efficient influence function of parameters (5.12) and (5.14) are given by

Dc(Q̄,QW ,g,φ)(O) = Dc1(Q̄,g,φ)(O)+Dc2(Q̄,g,φ)(O)+Dc3(Q̄,QW ,g)(O) (5.15)
Db(Q̄,QW ,g,φ)(O) = Db1(Q̄,g,φ)(O)+Db2(Q̄,g,φ)(O)+Db3(Q̄,QW ,g)(O), (5.16)

respectively, where

Dc1(Q̄,g,φ)(O) =
C

φ(1|W )

g(A−δ |1,W )

g(A|1,W )
{Y − Q̄(A,1,W )}

Dc2(Q̄,g,φ)(O) =
C

φ(1|W )

[
Q̄(1,A+δ ,W )−Eg{Q̄(1,A+δ ,W )|C = 1,W}

]
(5.17)

Dc3(Q̄,QW ,g)(O) = Eg{Q̄(1,A+δ ,W )|C = 1,W}−Y −Ψc(Q̄,QW ,g),

and

Db1(Q̄,g,φ)(O) =
C

φ(1|W )

(
δ

2A−1
g(A|1,W )

+1
)
{Y − Q̄(A,1,W )}

Db2(Q̄,g,φ)(O) =
C

φ(1|W )
[Q̄(A,1,W )−Eg{Q̄(A,1,W )|C = 1,W}] (5.18)

Db3(Q̄,QW ,g)(O) = δ{Q̄(1,1,W )− Q̄(0,1,W )}+Eg{Q̄(A,1,W )|C = 1,W}−Y −Ψb(Q̄,QW ,g).

Result 5 provides the conditions under which these estimating equations have expectation zero,
therefore leading to consistent, triply robust estimators.

Result 5. Let D be either Dc or Db presented in equations (5.15) and (5.16). We have that

EP0{D(O|φ ,g, Q̄,ψ0)}= 0

if either (Q̄ = Q̄0 and φ = φ0) or (Q̄ = Q̄0 and g = g0) or (g = g0 and φ = φ0).

Recall that an estimator that solves an estimating equation will be consistent if the expectation
of the estimating equation equals zero. As a consequence of this result, and under the conditions
on Q̄, g and φ stated in Theorem 5.11 and 6.18 of van der Vaart (2002), an estimator that solves
the efficient influence function D will be consistent if either two of the three initial estimators are
consistent, and it will be efficient if all of them are consistently estimated. Mathematical proofs
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of the efficiency of these estimators are out of the scope of this paper, but the general theory
underlying their asymptotic properties can be found in van der Laan and Robins (2003), among
others.

We will use targeted minimum loss based estimators (TMLE, van der Laan and Rubin, 2006;
Rose and van der Laan, 2011) of the parameters Ψc and Ψb. TMLE is a substitution/plug-in esti-
mation method that, given initial estimators (Q̄n,QW,n,gn) of (Q̄,QW ,g), finds updated estimators
(Q̄∗n,Q

∗
W,n,g

∗
n) and defines the estimator of Ψ as

ψn = Ψ(Q̄∗n,Q
∗
W,n,g

∗
n).

TMLE is an estimation method that enjoys the best properties of both G-computation estima-
tors (Robins, 1986) and the estimating equation methodology (see e.g., van de Geer, 2000; van
der Laan and Robins, 2003). On one hand, TMLE is similar to G-computation estimators (e.g.,
Ψ(Q̄n,QW,n,gn)) in that it is a plug-in estimator, and therefore produces estimates that are always
within the range of the parameter of interest (e.g., it is always in the interval [0,1] if the estimand
is a probability). On the other hand, under regularity conditions and consistency of (Q̄n,gn,φn), it
is assymptotically linear with influence function equal to the efficient influence function:

ψn−ψ0 =
n

∑
i=1

D(P0)(Oi)+oP(1/
√

n).

As a consequence, TMLE has the following properties:

• It is a substitution/plug-in estimator.

• It is efficient if Q̄n,gn, and φn are consistent for Q̄0,g0, and φ0, respectively.

• It is consistent if either Q̄n or both gn and φn are consistent. This property is refered to as
double robustness.

• It is more robust to empirical violations of the positivity assumptions (5.11) and (5.13).

In the next subsection we will describe an iterative procedure that transforms the initial esti-
mates Q̄n and gn into targeted estimates Q̄∗n and g∗n such that Ψ(Q̄∗n,g

∗
n,Q

∗
W,n) is a TMLE of

Ψ(Q̄0,g0,QW,0).

TMLE algorithm
In order to define a targeted maximum likelihood estimator for ψ0, we need to define three ele-
ments: (1) A loss function L(Q) for the relevant part of the likelihood required to evaluate Ψ(P),
which in this case is Q = (Q̄,g,QW ). This function must satisfy Q0 = argminQ EP0L(Q)(O), where
Q0 denotes the true value of Q; (2) An initial estimator Q0

n of Q0; (3) A parametric fluctuation Q(ε)
through Q0

n such that the linear span of d
dε

L{Q(ε)}|ε=0 contains the efficient influence curve D(P)
defined by either (5.15) or (5.16), depening on wheter A is continuous or binary. These elements
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are defined below:

Loss Function
As loss function for Q, we will consider L(Q) = LY (Q̄) + LA(g) + LW (QW ), where LY (Q̄) =
Y log{Q̄(A,W )}+(1−Y ) log{1−Q̄(A,W )}, LA(g)=− logg(A|W ), and LW (QW )=− logQW (W ).
It can be easily verified that this function satisfies Q0 = argminQ EP0L(Q)(O).

Parametric Fluctuation
Given an initial estimator Qk

n of Q0, with components (Q̄k
n,g

k
n,Q

k
W,n), we define the (k+1)th fluc-

tuation of Qk
n as follows:

logit Q̄k+1
n (ε1)(A,W ) = logit Q̄k

n(A,W )+ ε1Hk
1(C,A,W )

gk+1
n (ε1)(A|W ) ∝ exp{ε1Hk

2(A,W )}gk
n(A|W )

Qk+1
W,n (ε2)(W ) ∝ exp{ε2Hk

3(W )}Qk
W,n(W ),

where the proportionality constants are so that the left hand side terms integrate to one, for contin-
uous A

Hk
1(A,C,W ) =

C
φn(1|W )

gk
n(A−δ |,1W )

gk
n(A|,1,W )

,

for binary A

Hk
1(A,C,W ) =

C
φn(1|W )

(
δ

2A−1
gk

n(A|1,W )
+1
)
,

Hk
2(A,W ) = D2(Pk)(O), and H3(W ) = D3(Pk)(O), with D2 and D3 defined as in (5.17) and (5.18).

We define these fluctuations using a two-dimensional ε with two different parameters ε1 and ε2,
though it is theoretically correct to define these fluctuations using any dimension for ε , as far as
the condition D(P) ∈< d

dε
L{Q(ε)}|ε=0 > is satisfied, where < · > denotes linear span. The con-

venience of the particular choice made here will be clear once the targeted maximum likelihood
estimator (TMLE) is defined.

Targeted Maximum Likelihood Estimator
The TMLE is defined by the following iterative process:

1. Initialize k = 0.

2. Estimate ε as εk
n = argminε PnL{Qk

n(ε)}.

3. Compute Qk+1
n = Qk

n(ε
k
n).

4. Update k = k+1 and iterate steps 2 through 4 until convergence (i.e., until εk
n = 0)

First of all, note that the value of ε2 that minimizes the part of the loss function corresponding
to the marginal distribution of W in the first step (i.e., −Pn logQ1

W,n(ε2)) is ε1
2 = 0. Therefore, the
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iterative estimation of ε only involves the estimation of ε1. The kth step estimation of ε1 is obtained
by minimizing Pn(LY (Q̄k

n(ε1))+LA(gk
n(ε1))), which implies solving the estimating equation

Sk(ε1) =
n

∑
i=1

{[
Yi− expit{logit Q̄k

n(Ai,Wi)+ ε1Hk
1(Oi)}

]
Hk

1(Oi)+D2(Pk
n )(Oi)−∫

A D2(Pk
n )(Yi,a,Wi) exp{ε1D2(Pk

n )(Yi,a,Ci,Wi)} gk
n(a|1,Wi)dµ(a)∫

A exp{ε1D2(Pk
n )(Yi,a,Ci,Wi)} gk

n(a|1,Wi)dµ(a)

}
(5.19)

where
D2(Pk

n )(O) = Q̄k
n(A+δ ,1,W )−

∫
A

Q̄k
n(a+δ ,1,W )gk

n(a|1,W )dµ(a).

The TMLE of ψ0 is defined as ψn ≡ limk→∞ Ψ(Pk
n ), assuming this limit exists. In practice, the

iteration process is carried out until convergence in the values of εk is achieved, and an estima-
tor Q∗n is obtained. Under the conditions of Theorem 2.3 of van der Laan and Robins (2003), a
conservative estimator of the variance of ψn is given by

1
n

n

∑
i=1

D2(Q̄∗n,QW,n,g∗n,φn)(Oi).

An R function that computes the TMLE of ψ0 can be found in appendix A.2.

Augmented IPTW, stepwise, and undadjusted estimators. In addition to the TMLE we will
compute three additional estimates of the VIM, for comparison with other estimation methods.
The first estimator, the augmented IPTW (AIPTW), is an estimator that uses the efficient influence
function of the parameter in order to define the estimator as the solution of the corresponding esti-
mating equation. Because the AIPTW is also asymptotically linear with influence function equal to
the efficient influence function, it is consistent and assymptotically efficient. However, the estimat-
ing equation that defines the AIPTW may not have a solution in the parameter space, in which case
the AIPTW does not exist. Additionally, the AIPTW is more sensitive to practical violations to the
positivity assumption conmpared to the TMLE. The second estimator, a g-computation formula
based on stepwise regression (SW) represents common practice in statistics. The SW estimator
requires initial estimators φn and Q̄n of φ0 and Q̄0, and is defined as

ψc,n,SW =
1
n

n

∑
i=1

{
Ci

φn(Wi)
Q̄n(Ai +δ ,1,Wi)−Yi

}
ψb,n,SW =

1
n

n

∑
i=1

{
Ci

φn(Wi)
Q̄n(Ai,1,Wi)+δ [Q̄n(1,1,Wi)− Q̄n(0,1,Wi)]−Yi

}
,

for Ψc and Ψb, respectively. The unadjusted estimator is identical to the SW estimator but includ-
ing only the intercept term in the vector W .

Since the consistency of the initial estimators of Q̄0, g0 and φ0 is key to attain estimators
with optimal statistical properties (i.e., consistency and efficiency), we will carefully discuss the
construction of such estimators in the next subsection. In particular, the next subsection deals with
the construction of an estimator for Q̄0, the predictor of death in our working example.
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Prediction
As explained in the previous section, the consistency of the initial estimators Q̄n, gn and ψn de-
termine the statistical properties of the estimators of ψc,0 and ψb,0. Common practice in statistics
involves the estimation of models like

logit Q̄(A,W ) = β0 +β1A+β2W +β3AW. (5.20)

This approach that has gained popularity among researchers in epidemiology and biostatistics,
partly because of the analysis of its statistical properties requires simple mathematical methods,
and partly because it is readily available in every statistical software. Nevertheless, as it is also
well known among their users, parametric models of the type described by (5.20) are rarely cor-
rect, and their choice is merely based on their computational advantages and other subjective cri-
teria. This practice leads to regression estimator whose usefulness is highly questionable given
that the assumptions it entails (linearity, normality, link function, etc.) do not originate in legit-
imate knowledge about the phenomena under study, but rather come from analytical tractability
and computational convenience.

In this paper we will use the super learner (van der Laan, Polley, and Hubbard, 2007) for
estimation of Q̄0, g0, and ψ0. Super learner is a methodology that uses cross-validated risks to find
an optimal combination of a list of user-supplied estimation algorithms. One of its most important
theoretical properties is that its solution converges to the oracle estimator (i.e., the candidate in
the library that minimizes the loss function with respect to the true probability distribution), thus
providing the closest approximation to the real data generating mechanism. Proofs and simulations
regarding these and other asymptotic properties of the super learner can be found in van der Laan,
Dudoit, and Keles (2004) and van der Laan and Dudoit (2003).

To implement the super learner predictor it is necessary to specify a library of candidate pre-
dictors algorithm. In the case of the conditional expectations Q̄0, φ0, and g0 for binary A, the
candidates can be any regression or classification algorithm. Examples include random forests,
logistic regression, k nearest neighbors, Bayesian models, etc. For estimation of the conditional
densities g0 we will also use the super learner, with candidates given by several histogram density
estimators, which yields a piece-wise constant estimator of the conditional density. The choice of
the number of bins and their location is indexed by two tuning parameters. The implementation of
this density estimator is discussed in detail by Dı́az and van der Laan (2011b), and will be ommited
in this paper.

5.3 Data analysis
In this section we analyze the data described in the example of section 5.1. The sample size was
n = 918 patients, and measurements of the variables described in table 5.1 were taken at 6, 12, 24,
48, and 72 hours after admision to the emergency room.

The main objective of the study was the construction of prediction models for the risk of death
of a patient in a certain time interval given the variables measured up to the start of the interval, as
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well as the definition and estimation of VIM measures that provide an account of the longitudinal
evolution of the relation between these physiological and clinical measurements and the risk of
death at a certain time point.

The data set was partitioned in 6 different data sets according to the time intervals defined by
the time points in which measurements were taken, each of these 6 datasets contained only the
patients that were at risk of death (alive) at the start of the time interval. Each of the continuous
covariates was rescaled by subtracting the minimum and dividing by the range so that all of the
covariates range between zero and one. The methods described in the previous sections were
applied to each variable in each of these datasets.

The candidate algorithms for prediction of death used in the super learner predictor are as
follows:

• Logistic regression with main terms (GLM)

• Stepwise logistic regression (SW)

• Bayesian logistic regression (BLR)

• Generalized additive models (GAM)

• Earth (Earth)

• Sample mean (MEAN),

from which the first three represent common practice in epidemiology and statistics, GAM and
Earth are algorithms that intend to capture non-parametric structures of the data, and the sample
mean is included for contrast.

Table 5.2 shows the coefficients of each candidate algorithm in the super learner predictor of
E(Yj|L̄ j,C̄ j,L0). The variability in these coefficients shows that no single algorithm is optimal
for prediction at each time point, and that each algorithm describes certain features of the data
generating mechanism that the others are not capable of unveiling.

0-6hr 6-12hr 12-24hr 24-48hr 48-72hr 72+hr
GLM 0.0000 0.0000 0.0000 0.0318 0.0259 0.0000

SW 0.0000 0.1889 0.0000 0.0000 0.2073 0.1787
BGLM 0.3318 0.0586 0.1049 0.1329 0.0313 0.2750

GAM 0.5118 0.7525 0.8951 0.8353 0.7201 0.2487
Earth 0.1563 0.0000 0.0000 0.0000 0.0154 0.1298

MEAN 0.0000 0.0000 0.0000 0.0000 0.0000 0.1678

Table 5.2: Coefficients in the Super Learner
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Figure 5.2 presents the ROC curves for the cross-validated super learning predictions of death,
as well as the cross-validated predictions based on a logistic model with AIC-based stepwise se-
lection of variables, for comparison with common practice. The super learner prediction methods
outperforms the stepwise prediction in all cases, with AUC ROC (area under the ROC curve) dif-
ferences ranging from 0.02 to 0.07. Though this differences might be small, an interpretation of
their meaning reveals the clinical relevance of a slight improvement in prediction. The AUC ROC
can be interpreted as the proportion of times that a patient who will die obtains a higher prediction
score than a patient who will survive. In practice, an AUC ROC difference of 0.02 means that in
100 pairs of patients (pairs formed by one patient who will die and one who will not) the super
learner classifier will correctly classify two pairs more than the step-wise classifier, which could
potentially lead to live-saving treatments for these two patients.
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Figure 5.2: ROC curves of cross-validated prediction for the super learner (SL) and the logistic
step-wise regression (SW), for different time intervals.

The VIM measures computed for each variable at each time point were ranked according to
their p-value. Table 5.3 presents the first five most important variables for prediction of death at
each time interval, according to the TML estimator presented in section 5.2. Recall that all the
continuous variables were re-scaled between zero and one; the value δ = 0.01 was used for all
the estimates. The interpretation of the values in the first row of table 5.3, for example, is that if
PT were to increase by 1% for every patient, the mortality rate in the first time interval would be
augmented by 2.13%, according to the TMLE. The TMLE and the AIPTW produced generally
similar results, whereas the SW estimator produced results that are not significant. This is because
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TMLE and AIPTW are efficient estimators that make the best use of the information available in
order to find precise and reliable estimates of the VIM measure.

In addition to the previous tables, Figure 5.3 shows heatmaps of the effect that a modification on
each variable at a given time point would have in the mortality rates of the subsequent time intervals
(i.e., the VIM measure). For example, Figure 5.3a shows the effect that an intervention on each of
the variables measured at baseline will have on the outcome between 0-6 hours, 6-12 hours, 12-24
hours, 24-48 hours, 48-72 hours, and 72+ hours. Additionally, the dendrogram plotted in the left
margin of Figure 5.3a shows a hierarchical clustering of the variables acording to the profile of their
effect on the longitudinal outcome. For example, an increase in variables DDIM through CREA
at baseline would cause an increase (significative most of the times) in mortality rate, particularly
at earlier time points. Variables RR through SBP seem to have a small protective effect that is
significative in few cases, and variables PF12MN through TPA have estimated protective effect
whose statistical significance could not be established with this sample.

At each time point, variables that less than 15% of observed values were not included in the
analysis. For this reason, and because missingness was more common in later measurement times,
the number of variables included in Figure 5.3 decreases as the time of measurement increases.
Additionally, the output for variables measured at 48 and 72 hours is not shown because none of
the results were significant.

5.4 Discussion
The techniques presented in this paper provide a methodology for computing prediction algorithms
and VIM measures that overcome the difficulties presented in the introduction, namely the lack of
interpretability and optimality of the estimates. The superiority of the super learner as a prediction
method has been proven analytically by several authors, and is corroborated in our example by
comparison with current practice in epidemiology and biostatistics. The VIM measures that were
defined provide parameters with a valid causal and statistical interpretation, independent of the
statistical model or prediction method selected. The use of consistent and efficient estimates of the
VIM parameters was also demonstrated, and the importance of using these optimal estimators was
exemplified in the application section.
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VarName VarTime TMLE IPTW StepwiseGLM Unadjusted
PT 00 0.0213(<0.001) 0.0215(<0.001) -0.0011(0.698) 0.0400(<0.001)
ISS 00 -0.0320(<0.001) -0.0322(<0.001) -0.0242(<0.001) -0.0244(0.002)
FVIII 00 0.0105(0.027) 0.0108(0.023) 0.0085(0.839) 0.0827(<0.001)
APC 00 0.0205(0.028) 0.0202(0.031) 0.0235(0.386) 0.1063(<0.001)
INR 00 0.0109(0.113) 0.0065(0.343) -0.0011(0.722) 0.0345(<0.001)

(a) Death between 0 and 6 hours
VarName VarTime TMLE IPTW StepwiseGLM Unadjusted
CREA 00 0.0289(<0.001) 0.0289(<0.001) 0.0013(0.020) 0.0338(<0.001)
HCT 00 0.0383(<0.001) 0.0383(<0.001) -0.0005(0.384) 0.0281(<0.001)
HGB 00 0.0396(<0.001) 0.0396(<0.001) -0.0004(0.485) 0.0281(<0.001)
BUN 00 0.0260(<0.001) 0.0258(<0.001) 0.0009(0.441) 0.0347(<0.001)
PT 00 0.0088(<0.001) 0.0086(<0.001) 0.0019(0.426) 0.0376(<0.001)

(b) Death between 6 and 12 hours
VarName VarTime TMLE IPTW StepwiseGLM Unadjusted
CREA 00 0.0281(<0.001) 0.0282(<0.001) 0.0012(0.033) 0.0314(<0.001)
HCT 00 0.0559(<0.001) 0.0558(<0.001) -0.0006(0.278) 0.0262(<0.001)
HGB 00 0.0578(<0.001) 0.0577(<0.001) -0.0004(0.467) 0.0264(<0.001)
BUN 00 0.0240(<0.001) 0.0238(<0.001) 0.0003(0.799) 0.0319(<0.001)
PT 00 0.0077(<0.001) 0.0074(0.001) 0.0019(0.377) 0.0357(<0.001)

(c) Death between 12 and 24 hours
VarName VarTime TMLE IPTW StepwiseGLM Unadjusted
CREA 00 0.0565(<0.001) 0.0565(<0.001) 0.0013(0.051) 0.0266(<0.001)
HCT 00 0.0566(<0.001) 0.0564(<0.001) -0.0002(0.732) 0.0224(<0.001)
HGB 00 0.0389(<0.001) 0.0390(<0.001) -0.0001(0.862) 0.0224(<0.001)
APC 00 0.0532(<0.001) 0.0539(<0.001) 0.0226(0.310) 0.0761(<0.001)
ISS 00 -0.0233(<0.001) -0.0236(<0.001) -0.0211(<0.001) -0.0155(0.020)

(d) Death between 24 and 48 hours
VarName VarTime TMLE IPTW StepwiseGLM Unadjusted
PTT 00 0.0351(<0.001) 0.0350(<0.001) 0.0018(0.016) 0.0261(<0.001)
RR 24 0.0339(<0.001) 0.0304(<0.001) 0.0057(0.749) 0.0644(<0.001)
BDE 24 0.0426(<0.001) 0.0501(<0.001) 0.0140(0.870) 0.0828(<0.001)
DDIM 12 0.0260(<0.001) 0.0263(<0.001) 0.0481(0.885) 0.0605(<0.001)
ISS 00 -0.0195(<0.001) -0.0202(<0.001) -0.0180(<0.001) -0.0116(0.049)

(e) Death between 48 and 72 hours
VarName VarTime TMLE IPTW StepwiseGLM Unadjusted
PTT 00 0.0300(<0.001) 0.0298(<0.001) 0.0017(0.012) 0.0220(<0.001)
CREA 00 0.0026(0.004) 0.0026(0.004) 0.0007(0.291) 0.0168(<0.001)
ISS 00 -0.0140(0.008) -0.0148(0.004) -0.0145(0.008) -0.0085(0.124)
DDIM 12 0.0138(0.017) 0.0116(0.049) 0.0669(0.693) 0.0604(<0.001)
FVIII 00 0.0087(0.034) 0.0097(0.015) 0.0046(0.525) 0.0500(<0.001)

(f) Death after 72 hours

Table 5.3: VIM estimates for the five most important variables for prediction of death at each time
interval according to TML estimate (p-values in parentheses and truncated at 0.001).



CHAPTER 5. APPLICATION TO PROGNOSIS AND VARIABLE IMPORTANCE IN
SEVERE TRAUMA PATIENTS 85

*

***

***

*

***

***

***

***

***

*

***

***

***

*

***

***

***

***

***

*

***

***

***

***

***

***

***

***

*

*

*

***

***

***

*

***

***

***

*

H
our  00

H
our  06

H
our  12

H
our  24

H
our  48

H
our  72

HCT
HGB
APC
CREA
ISS
PTT
GCS
HR
SBP
PLTS
RR
BUN
PT
DDIM
PF12NM
INR
FVIII
BDE
PC
ATIII
FV

−0.04

−0.02

0

0.02

0.04

(a) Variables measured at admission

***

*

*

*

*** *
H

our  06

H
our  12

H
our  24

H
our  48

H
our  72

BDE

RR

HR

SBP

APC

PC

FV

FVIII

ATIII

DDIM

−0.02

−0.01

0

0.01

0.02

(b) Variables measured at 6 hours

***

*** *

H
our  12

H
our  24

H
our  48

H
our  72

DDIM

APC

ATIII

FVIII

FV

PC

HR

BDE

RR

SBP

−0.02

−0.01

0

0.01

0.02

(c) Variables measured at 12 hours
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Figure 5.3: VIM estimates of measured variables according to TMLE. ‘***’ indicates p-value ≤
0.001, ‘**’ indicates 0.001 < p-value ≤ 0.01, and ‘*’ indicates 0.01 < p-value ≤ 0.05.
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Appendix A

R functions

A.1 R function tmle.shift() for chapter 2

Arguments

Argument Description
Y Outcome vector.
A Treatment vector.
W Covariates matrix.
Qn An initial estimator of Q̄0 in the form of a function that takes a vector A

and a matrix W and returns the vector of conditional expectations of Y
given A and W.

gn An initial estimator g0 that takes as input a vector A and a matrix W
and returns the density of A conditional on W at points A.

delta A function of W defining the parameter of interest.
tol Tolerance value for the convergence of ε .
max.iter Maximum of iterations allowed.
Aval A vector with equally spaced values indicating a partition of the support

of A over which to compute Riemann sums to approximate the integrals
involved in the estimation process.

Table A.1: Arguments of the R function tmle.shift

Code
tmle.shift <- function(Y, A, W, Qn, gn, delta, tol = 1e-5, iter.max = 5, Aval){

# interval partition length
h.int <- Aval[3]-Aval[2]
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# this function takes as input initial estimator of Q and g and returns
# their updated value
f.iter <- function(Qn, gn, gn0d = NULL, prev.sum = 0, first = FALSE){

# numerical integrals and equation (7)
Qnd <- t(sapply(1:nrow(W), function(i)Qn(Aval + delta, W[i,])))
gnd <- t(sapply(1:nrow(W), function(i)gn(Aval, W[i,])))
gnd <- gnd/rowSums(gnd)
if(first) gn0d <- gnd
EQnd <- rowSums(Qnd*gnd)*h.int
D2 <- Qnd - EQnd
QnAW <- Qn(A, W)
H1 <- gn(A - delta, W)/gn(A, W)
# equation (8)
est.equation <- function(eps){
sum((Y - (QnAW + eps*H1)) * H1 + (Qn(A + delta, W) - EQnd) -
rowSums(D2*exp(eps*D2 + prev.sum)*gn0d)/rowSums(exp(eps*D2 + prev.sum)*gn0d))

}
eps <- uniroot(est.equation, c(-1, 1))$root
# updated values
gn.new <- function(a, w)exp(eps*Qn(a + delta, w)) * gn(a, w)
Qn.new <- function(a, w)Qn(a, w) + eps * gn(a - delta, w)/gn(a, w)
prev.sum <- prev.sum + eps*D2
return(list(Qn = Qn.new, gn = gn.new, prev.sum =

prev.sum, eps = eps, gn0d = gn0d))
}
ini.out <- f.iter(Qn, gn, first = TRUE)
gn0d <- ini.out$gn0d
iter = 0
# iterative procedure
while(abs(ini.out$eps) > tol & iter <= iter.max){
iter = iter + 1
new.out <- f.iter(ini.out$Qn, ini.out$gn, gn0d, ini.out$prev.sum)
ini.out <- new.out

}
Qnd <- t(sapply(1:nrow(W), function(i)ini.out$Qn(Aval + delta, W[i,])))
gnd <- t(sapply(1:nrow(W), function(i)ini.out$gn(Aval, W[i,])))
gnd <- gnd/rowSums(gnd)
# plug in tmle
psi.hat <- mean(rowSums(Qnd*gnd)*h.int)
# influence curve of tmle
IC <- (Y - ini.out$Qn(A, W))*ini.out$gn(A - delta, W)/ini.out$gn(A, W) +

ini.out$Qn(A + delta, W) - psi.hat
var.hat <- var(IC)/length(Y)
return(c(psi.hat = psi.hat, var.hat = var.hat, IC = IC))
}

Example
Here is an example of how to use the previous function based on the data generating mechanism
presented in the simulation

n <- 100
W <- data.frame(W1 = runif(n), W2 = rbinom(n, 1, 0.7))
A <- rpois(n, lambda = exp(3 + .3*log(W$W1) - .2*exp(W$W1)*W$W2))
Y <- rbinom(n, 1, plogis(-1 + .05*A - .02*A*W$W2 + .2*A*tan(W$W1^2) -

.02*W$W1*W$W2 + 0.1*A*W$W1*W$W2))
fitA.0 <- glm(A ~ I(log(W1)) + I(exp(W1)):W2, family = poisson, data =

data.frame(A, W))
fitY.0 <- glm(Y ~ A + A:W2 + A:I(tan(W1^2)) + W1:W2 + A:W1:W2, family =
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binomial, data = data.frame(A, W))
gn.0 <- function(A = A, W = W)dpois(A, lambda = predict(fitA.0,

newdata = W, type = "response"))
Qn.0 <- function(A = A, W = W)predict(fitY.0, newdata = data.frame(A, W,

row.names = NULL), type = "response")
tmle00 <- tmle.shift(Y, A, W, Qn.0, gn.0, delta=2, tol = 1e-4, iter.max = 5,

Aval = seq(1, 60, 1))

A.2 R functions for chapter 5
## Qn, phin, and gn are the initial estimators of Q, phi, and g.
## Qn and gn should be given in form of a list with n elements, each
## containing a function of A. For example Qn[[1]]
## should be a function of a containing E(Y|A=a, C=1,W_1).
## phin is a vector of size n containing P(C=1|W).
## Aval is a range of values of A used to integrate over, only useful
## for continuous A, but included
## in the function for binary A for compatibility.
## tol is the tolerance on epsilon
## iter.max is the maximum of iterations of the TMLE algorithm

## Function for binary exposures
tmle.bin <- function(Y, A, C, Qn, phin, gn, delta, tol = 1e-5,

iter.max = 5, Aval=c(0,1), lengths=diff(Aval)){

n <- length(Y)
wC <- C/phin
wC <- as.vector(wC[,1])

f.iter <- function(Qn, gn, gn0d = NULL, prev.sum = 0, first = FALSE, iter){

## computation of different parts of the efficient influence function
Qnd <- t(sapply(1:n,function(i)sapply(Aval, function(a)Qn[[i]](a))))
gnd <- t(sapply(1:n,function(i)sapply(Aval, function(a)gn[[i]](a))))
gnd <- gnd/rowSums(t(t(gnd) * lengths))

EQnd <- rowSums(t(t(Qnd * gnd) * lengths))
Qn1W <- sapply(1:n, function(i){Qn[[i]](1)})
Qn0W <- sapply(1:n, function(i){Qn[[i]](0)})
QnAW <- sapply(1:n, function(i){A[i]*Qn1W[i] + (1-A[i])*Qn0W[i]})
D2AW <- wC * sapply(1:n, function(i){Qn[[i]](A[i]) - EQnd[i]})
H1 <- wC * sapply(1:n, function(i){delta * (2*A[i] - 1) /

gn[[i]](A[i]) + 1})

IPTW <- varIPTW <- NULL

## if it is the first iteration, compute the augmented IPTW
if(first){

gn0d <- gnd
IPTW <- mean(H1 * (Y - QnAW) + D2AW + EQnd +

delta * (Qn1W - Qn0W) - Y)
varIPTW <- var( H1 * (Y - QnAW) + D2AW + EQnd +

delta * (Qn1W - Qn0W) - Y)/n
}

D2 <- wC * (Qnd - EQnd)

## estimating equation



APPENDIX A. R FUNCTIONS 89

est.equation <- function(eps){
sum((Y - expit(logit(QnAW) + eps * H1)) * H1 + D2AW -

rowSums(D2 * exp(eps * D2 + prev.sum) * gn0d) /
rowSums(exp(eps * D2 + prev.sum) * gn0d))

}

## solve the estimating equation
eps <- try(uniroot(est.equation, c(-1, 1))$root, silent = TRUE)

gn.new <- Qn.new <- list()
file <- paste(’Qngn’, iter, sample(1e5, 1), ’.r’, sep=’’)
if(file.exists(file))file.remove(file)

## update g and Q
for(i in 1:n){

cat("gn.new[[",i,"]] <- function(A)exp(eps * wC[", i,"] *
Qn[[", i, "]](A + delta)) *
gn[[", i, "]](A)\n",

sep = ’’, file = file, append = TRUE)
cat("Qn.new[[",i,"]] <- function(A)expit(logit(Qn[[", i, "]](A))

+ eps * wC[", i,"] * gn[[", i, "]](A - delta) /
gn[[", i, "]](A))\n",

sep = ’’, file = file, append = TRUE)
}

source(file, local = T)
file.remove(file)

gn.new <- lapply(gn.new, Vectorize)
Qn.new <- lapply(Qn.new, Vectorize)

## this avoids recursive computation of numerical integrals
prev.sum <- prev.sum + eps * D2

return(list(Qn = Qn.new, gn = gn.new, prev.sum = prev.sum,
eps = eps, gn0d = gn0d, IPTW = IPTW, varIPTW = varIPTW))

}

## initiate
iter = 0
ini.out <- f.iter(Qn = Qn, gn = gn, gn0d = NULL, prev.sum = 0,

first = TRUE, iter = 0)

## extract A-IPTW
gn0d <- ini.out$gn0d
IPTW <- ini.out$IPTW

## iterate
while(abs(ini.out$eps) > tol & iter <= iter.max){

cat("iter ", iter, " started at ", date(), file = "iters.txt", append = TRUE)
iter = iter + 1
new.out <- f.iter(ini.out$Qn, ini.out$gn, gn0d, ini.out$prev.sum, FALSE, iter)
ini.out <- new.out

}

## compute TMLE and influence function
Qn <- ini.out$Qn
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gn <- ini.out$gn

Qnd <- t(sapply(1:n,function(i)sapply(Aval, function(a)Qn[[i]](a))))
gnd <- t(sapply(1:n,function(i)sapply(Aval, function(a)gn[[i]](a))))
gnd <- gnd/rowSums(t(t(gnd) * lengths))

EQnd <- rowSums(t(t(Qnd * gnd) * lengths))
Qn1W <- sapply(1:n, function(i){Qn[[i]](1)})
Qn0W <- sapply(1:n, function(i){Qn[[i]](0)})
QnAW <- sappli(1:n, function(i){A[i]*Qn1W[i] + (1-A[i])*Qn0W[i]})
D2AW <- wC * sapply(1:n, function(i){Qn[[i]](A[i]) - EQnd[i]})
H1 <- wC * sapply(1:n, function(i){delta * (2*A[i] - 1) / gn[[i]](A[i]) + 1})

psi.hat <- mean(EQnd + delta * (Qn1W - Qn0W) - Y)
IC <- H1 * (Y - QnAW) + D2AW + EQnd + delta * (Qn1W - Qn0W) - Y

var.hat <- var(IC)/n
meanIC <- mean(IC)

return(c(psi.hat = psi.hat, var.hat = var.hat, meanIC = meanIC, iter = iter,
IPTW = IPTW, varIPTW = varIPTW))

}

tmle.shift <- function(Y, A, C, Qn, phin, gn, delta, tol = 1e-5, iter.max = 5,
Aval, lengths=diff(Aval)){

n <- length(Y)
wC <- C/phin
wC <- as.vector(wC[,1])

wA <- function(gn, A, delta){
## ifelse(gn(A) == 0, 1, gn(A-delta)/gn(A))
gn(A-delta)/gn(A)

}

f.iter <- function(Qn, gn, gn0d = NULL, prev.sum = 0, first = FALSE, iter){

Qnd <- t(sapply(1:n,function(i)sapply(Aval, function(a)Qn[[i]](a))))
gnd <- t(sapply(1:n,function(i)sapply(Aval, function(a)gn[[i]](a))))
gnd <- gnd/rowSums(t(t(gnd) * lengths))

EQnd <- rowSums(t(t(Qnd * gnd) * lengths))
QnAW <- sapply(1:n, function(i){Qn[[i]](A[i])})
D2AW <- wC * sapply(1:n, function(i){Qn[[i]](A[i] + delta) - EQnd[i]})
H1 <- wC * sapply(1:n, function(i){wA(gn[[i]], A[i], delta)})

IPTW <- varIPTW <- NULL

if(first){
gn0d <- gnd
IPTW <- mean(H1 * (Y - QnAW) + D2AW + EQnd - Y)
varIPTW <- var(H1 * (Y - QnAW) + D2AW + EQnd - Y)/n

}

D2 <- wC * (Qnd - EQnd)

est.equation <- function(eps){
sum((Y - expit(logit(QnAW) + eps * H1)) * H1 + D2AW -

rowSums(D2 * exp(eps * D2 + prev.sum) * gn0d) /
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rowSums(exp(eps * D2 + prev.sum) * gn0d))
}

eps <- try(uniroot(est.equation, c(-1, 1))$root, silent = TRUE)

cat(’eps = ’, eps, ’\n’, sep = ’’)

##
if(inherits(eps, ’try-error’)) return(list(est.eq = est.equation))

gn.new <- Qn.new <- list()
file <- paste(’Qngn’, iter, sample(1e5, 1),’.r’, sep=’’)
if(file.exists(file))file.remove(file)

for(i in 1:n){
cat("gn.new[[",i,"]] <- function(A)exp(eps * wC[", i,"] *

Qn[[", i, "]](A + delta)) * gn[[", i, "]](A)\n",
sep=’’, file = file, append = TRUE)

cat("Qn.new[[",i,"]] <- function(A)expit(logit(Qn[[", i, "]](A))
+ eps * wC[", i,"] * wA(gn[[", i, "]], A, delta))\n",

sep=’’, file = file, append = TRUE)
}

cat(file)
source(file, local = T)
file.remove(file)

prev.sum <- try(prev.sum + eps * D2)

##
if(inherits(prev.sum, ’try-error’)) return(list(est.eq = est.equation))

return(list(Qn = Qn.new, gn = gn.new, prev.sum = prev.sum, eps= eps,
gn0d = gn0d, IPTW = IPTW, varIPTW = varIPTW, est.eq = est.equation))

}

iter = 0
ini.out <- f.iter(Qn = Qn, gn = gn, gn0d = NULL, prev.sum = 0, first = TRUE, iter = 0)

gn0d <- ini.out$gn0d
IPTW <- ini.out$IPTW
varIPTW <- ini.out$varIPTW

##
save(list = ls(), file = ’iter0.RData’)
if(inherits(try(abs(ini.out$eps)), ’try-error’)) return(ini.out)

while(abs(ini.out$eps) > tol & iter < iter.max){

cat("iter ", iter, " started at ", date(), file = "iters.txt", append = TRUE)
new.out <- f.iter(ini.out$Qn, ini.out$gn, gn0d, ini.out$prev.sum, FALSE, iter)
ini.out <- new.out
iter = iter + 1

##
save(list = ls(), file = paste(’iter’, iter, ’.RData’, sep = ’’))
if(inherits(try(abs(ini.out$eps)), ’try-error’)) return(ini.out)

}



APPENDIX A. R FUNCTIONS 92

Qn <- ini.out$Qn
gn <- ini.out$gn

Qnd <- t(sapply(1:n, function(i)sapply(Aval, function(a)Qn[[i]](a))))
gnd <- t(sapply(1:n, function(i)sapply(Aval, function(a)gn[[i]](a))))
gnd <- gnd/rowSums(t(t(gnd) * lengths))

EQnd <- rowSums(t(t(Qnd * gnd) * lengths))
QnAW <- sapply(1:n, function(i){Qn[[i]](A[i])})
D2AW <- wC * sapply(1:n, function(i){Qn[[i]](A[i] + delta) - EQnd[i]})
H1 <- wC * sapply(1:n, function(i){gn[[i]](A[i] - delta)/gn[[i]](A[i])})

psi.hat <- mean(EQnd - Y)
IC <- H1 * (Y - QnAW) + D2AW + EQnd - psi.hat - Y

var.hat <- var(IC)/n
meanIC <- mean(IC)

return(c(psi.hat = psi.hat, var.hat = var.hat, meanIC = meanIC,
iter = iter, IPTW = IPTW, varIPTW = varIPTW))

}
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Appendix B

Proofs

B.1 Theorem 1
This proof follows closely the proofs presented in Zheng and van der Laan, 2010 for a general CV-
TMLE. Those proofs rely heavily on empirical process theory, of which van der Vaart and Wellner,
1996 provide a complete study.

Proof of Theorem 1. First of all note that

R(ψ,Q)−R(ψ,Q0) =−P0D{Q̄,QW ,g0,ψ},

which implies that

R̂(Ψ̂k)− R̂0(Ψ̂k) =−ESP0D{ ˆ̄Q∗(PT ),QW (PV ),g0,Ψ̂k(PT )}.

Note that
ESPV D{ ˆ̄Q∗(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )}= 0,

so that we can write

R̂(Ψ̂k)−R̂0(Ψ̂k) = ES(PV −P0)D{ ˆ̄Q∗(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )}

+ESP0

[
D{ ˆ̄Q∗(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )}−D{ ˆ̄Q∗(PT ),QW (PV ),g0,Ψ̂k(PT )}

]
= ES(PV −P0)D{ ˆ̄Q∗(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )} (B.1)

+ESP0
g0− ĝ(PT )

g0ĝ(PT )
h
[
{Q̄2,0− ˆ̄Q∗2(PT )}−2Ψ̂k(PT ){Q̄1,0− ˆ̄Q∗1(PT )}

]
. (B.2)
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We will first handle the term (B.2). By Cauchy-Schwartz, (B.2) can be bounded by

sup
(a,v)
|h(a,v)|

∣∣∣∣∣∣∣∣g0− ĝ(PT )

g0ĝ(PT )

∣∣∣∣∣∣∣∣
0,S
|| ˆ̄Q∗2(P0)− ˆ̄Q∗2(PT )||0,S

+ESP0
g0− ĝ(PT )

g0ĝ(PT )
h{Q̄2,0− ˆ̄Q∗2(P0)}

−2 sup
(s,a,v)

|h(a,v)Ψ̂k(PTS)(a,v)|
∣∣∣∣∣∣∣∣g0− ĝ(PT )

g0ĝ(PT )

∣∣∣∣∣∣∣∣
0,S
|| ˆ̄Q∗1(P0)− ˆ̄Q∗1(PT )||0,S

−2ESP0
g0− ĝ(PT )

g0ĝ(PT )
hΨ̂k(PT ){Q̄1,0− ˆ̄Q∗1(P0)}. (B.3)

Using a similar argument, the last term can be bounded (using assumption 1 and up to universal
constants) by

||ĝ(PT )−g0||0,S||Ψ̂k(PT )−ψ0||0,S+

ESP0
g0− ĝ(PT )

g2
0

hψ0{Q̄1,0− ˆ̄Q∗1(P0)}+ ||ĝ(PT )−g0||20,S,

whereas the second term in (B.3) is bounded by

ESP0
g0− ĝ(PT )

g2
0

h{Q̄2,0− ˆ̄Q∗2(P0)}+ ||ĝ(PT )−g0||20,S.

Therefore

R̂(Ψ̂k)− R̂0(Ψ̂k) = ES(PV −P0)D{ ˆ̄Q∗(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )} (B.4)

+ESP0
g0− ĝ(PT )

g2
0

h
[
{Q̄2,0− ˆ̄Q∗2(P0)}−2ψ0{Q̄1,0− ˆ̄Q∗1(P0)}

]
+Remn,

where

Remn ≤ ||g0− ĝ(PT )||0,S
{

a||Q̄∗2(P0)− Q̄∗2(PT )||0,S−b||Q̄∗1(P0)− ˆ̄Q∗1(PT )||0,S+
c||Ψ̂k(PT )−ψ0||0,S +d||g0− ĝ(PT )||0,S

}
,

for constants a,b,c,d.
On the other hand, since ESPV f = P f when f does not depend on S, we may rewrite (B.4) as

ES(PV −P0)D{ ˆ̄Q∗(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )}

=ES(PV −P0)

[
D{ ˆ̄Q∗(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )}−D{Q̄∗(P0),QW,0,g0,ψ0}

]
(B.5)

+(P−P0)D{Q̄∗(P0),QW,0,g0,ψ0}
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Following similar arguments to those presented by Zheng and van der Laan, 2010, and using the
assumptions of the theorem, it can be proven that (B.5) is oP(1/

√
n), which implies

ES(PV −P0)D{̂̄Q(PT )(ε̂),QW (PV ), ĝ(PT ),Ψ̂k(PT )}=
(P−P0)D{Q(P0)(ε0), ĝ(P0),ψ0}+oP(1/

√
n).

This result, together with (B.4) and assumptions 2, 3 and 4, yields

R̂(Ψ̂k)− R̂0(Ψ̂k) = (P−P0) [D{Q(P0),QW,0,g0,ψ0 + ICg(P0)]+oP(1/
√

n).

B.2 Theorem 2
Before proceeding to prove Theorem 2, we will first present and prove the following useful theo-
rem.

Theorem 3. Define R̂(Ψ̂k,ψ0)≡ R̂(Ψ̂k)− R̂(ψ0) and R̂0(Ψ̂k,ψ0)≡ R̂0(Ψ̂k)−R0(ψ0), where

R̂(Ψ̂k) = ESR{Ψ̂k(PT ),
ˆ̄Q∗k(PT ),PV}

is the TMLE of the true conditional risk

R̂0(Ψ̂k) = ESR{Ψ̂k(PT ),Q0}.

Assume
(R̂− R̂0)(Ψ̂k,ψ0) = ES(PV −P0)Dk(PT ,P0, ε̂k)+Remk

for some function Dk that depends on (PT ,P0, ε̂k) such that

ESP0Dk(PT ,P0, ε̂k) = R̂0(Ψ̂k,ψ0),

||Dk(PT ,P0, ε̂k)||∞ < M1 < ∞, and P0{Dk(PT ,P0, ε̂k)}2 ≤M2P0Dk(PT ,P0, ε̂k). Assume also that ε̂k
falls in a finite set with maximally nc points for some finite c, and denote Mn = ncKn. Then,

ER̂0(Ψ̂k̂,ψ0). (1+2δ )ER̂0(Ψ̂k̃,ψ0)+

c(M1,M2,δ )
1+ logMn

n
+(1+δ ){ERemk̃−ERemk̂},

where c(M1,M2,δ ) = (1+δ )2(M1/3+M2/δ )
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Proof of Theorem 3.

0≤R̂0(Ψ̂k̂,ψ0)

=R̂0(Ψ̂k̂,ψ0)− (1+δ )R̂(Ψ̂k̂,ψ0)+(1+δ )R̂(Ψ̂k̂,ψ0)

≤R̂0(Ψ̂k̂,ψ0)− (1+δ )R̂(Ψ̂k̂,ψ0)+(1+δ )R̂(Ψ̂k̃,ψ0)

=R̂0(Ψ̂k̂,ψ0)

+(1+δ ){R̂(Ψk̃,ψ0)− R̂0(Ψ̂k̃,ψ0)}
− (1+δ ){R̂(Ψk̂,ψ0)− R̂0(Ψ̂k̂,ψ0)}
+(1+δ )R̂0(Ψ̂k̃,ψ0)

− (1+δ )R̂0(Ψ̂k̂,ψ0)

=(1+2δ )R̂0(Ψ̂k̃,ψ0)+Hk̂ +Tk̃,

where

Hk =−(1+δ )(R̂− R̂0)(Ψ̂k,ψ0)−δ R̂0(Ψ̂k,ψ0)

Tk = (1+δ )(R̂− R̂0)(Ψ̂k,ψ0)−δ R̂0(Ψ̂k,ψ0).

By using the assumptions of the theorem we get

Hk =− (1+δ )ES(PV −P0)Dk(PT ,P0, ε̂k)−δESP0Dk(PT ,P0, ε̂k)− (1+δ )Remk

≡H∗k − (1+δ )Remk.

Following arguments similar to those presented by Dudoit and van der Laan, 2005 and van der
Vaart, Dudoit, and van der Laan, 2006 we have that

EH∗k̂ . c(M1,M2,δ )
1+ logMn

n
.

The same bound applies to ET ∗
k̃

. As a consequence we obtain the desired result.

Proof of Theorem 2. Recall from Theorem 1 that

R̂(Ψ̂k)− R̂0(Ψ̂k) = ES(PV −P0)D{ ˆ̄Q∗k(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )}+

2ESP0
g0− ĝ(PT )

g0ĝ(PT )
hΨ̂k(PT ){ ˆ̄Q∗k(PT )− Q̄0}, (B.6)

where D is the efficient influence function

D(Q,QW ,g,ψ)(O) =−2
h(A,Z)ψ(A,Z)

g(A,W )
{Y − Q̄(A,W )}+∫

A
ψ(a,Z){ψ(a,Z)−2Q̄(a,W )}h(a,Z)dµ(a)−R(ψ)(Q̄,QW ).
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Applying this same equality to the constant algorithm ψ0 and subtracting it from (B.6) yields

(R̂− R̂0)(Ψ̂k,ψ0) = (B.7)

ES(PV −P0)
[
D{ ˆ̄Q∗k(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )}−D{ ˆ̄Q∗0(PT ),QW (PV ), ĝ(PT ),ψ0}

]
+2ESP0

g0− ĝ(PT )

g0ĝ(PT )
h{Ψ̂k(PT )−ψ0}{ ˆ̄Q∗0(PT )− Q̄0} (B.8)

+2ESP0
g0− ĝ(PT )

g0ĝ(PT )
hΨ̂k(PT ){ ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )} (B.9)

=ES(PV −P0)
[
D{ ˆ̄Q∗k(PT ),QW (PV ),g0,Ψ̂k(PT )}−D{ ˆ̄Q∗0(PT ),QW (PV ),g0,ψ0}

]
(B.10)

+ES(PV −P0)

([
D{ ˆ̄Q∗k(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )}−D{ ˆ̄Q∗k(PT ),QW (PV ),g0,Ψ̂k(PT )}

]
−
[
D{ ˆ̄Q∗0(PT ),QW (PV ), ĝ(PT ),ψ0}−D{ ˆ̄Q∗0(PT ),QW (PV ),g0,ψ0}

])
(B.11)

+Remk,1 +Remk,2

≡ES(PV −P0)Dk(P,P0)+Remk,1 +Remk,2 +Remk,3 (B.12)

where Dk(P,P0) denotes the function inside square brackets in (B.10), and Remk,1, Remk,2 and
Remk,3 denote (B.8), (B.9) and (B.11), respectively. From the definition of the efficient influence
function D, note that D{Q̄,QW ,g,ψ}= LQ̄,g(ψ)−R(ψ, Q̄,QW ), which implies

ES(PV −P0)Dk(P,P0) = ES(PV −P0)

[
L ˆ̄Q∗k(PT ),g0

(Ψ̂k(PT ))−L ˆ̄Q∗0(PT ),g0
(ψ0)

]
−

ES(PV −P0)

[
R{Ψ(PT ),

ˆ̄Q∗k(PT ),QW (PV )}−R{ψ0,
ˆ̄Q∗0(PT ),QW (PV )}

]
, (B.13)

where the term inside square brackets in (B.13) is a constant, and (B.13) equals zero. Note that
ˆ̄Q∗k(PT )≡ ˆ̄Q(PT )(ε̂k) depends on PV only through ε̂k, thus allowing us to rewrite

(R̂− R̂0)(Ψ̂k,ψ0) = ES(PV −P0)Dk(PT ,P0, ε̂k)+Remk,1 +Remk,2 +Remk,3,

for
Dk(PT ,P0, ε̂k)≡ L ˆ̄Q∗k(PT ),g0

(Ψ̂k(PT ))−L ˆ̄Q∗0(PT ),g0
(ψ0).

From the identity P0LQ̄,g0
(ψ) = P0LQ̄0

(ψ) (LQ̄ denotes the g-comp loss function) we have that

ESP0Dk(PT ,P0, ε̂k) = R̂0(Ψ̂k,ψ0).

This fact together with (B.12) prove that Dk satisfies the conditions of Theorem 3, with Remk =
Rem1,k +Rem2,k +Rem3,k. By application of Theorem 3 we obtain

ER̂0(Ψ̂k̂,ψ0). (1+2δ )ER̂0(Ψ̂k̃,ψ0)+

c(M1,M2,δ )
1+ logMn

n
+(1+δ ){ERemk̃−ERemk̂}.
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It remains to study ERemk. Let us first consider ERem1,k. Note that

||(Ψ̂k(PT )−ψ0)/
√

g0||20,S = R̂0(Ψ̂k,ψ0)

Since g0 and ĝ(PT ) are assumed bounded away from zero (positivity assumption), we can apply
the Cauchy-Schwartz inequality to obtain

ERem1,k . E||(ĝ(PT )−g0)(
ˆ̄Q∗0(PT )− Q̄0)||0,S

√
R0(Ψ̂k,ψ0).

We now consider ERem2,k. By applying the Cauchy-Schwartz inequality we obtain

Rem2,k . ||ĝ(PT )−g0||0,S|| ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )||0,S. (B.14)

From the definition of ε̂k in the CV-TMLE of R(Ψ̂k), note that ˆ̄Q∗k satisfies the equation

ESPV
h

ĝ(PT )
Ψ̂k(PT ){Y − ˆ̄Q∗k(PT )}= 0.

Applying the same equation for ψ0 and ˆ̄Q∗0, and subtracting it from the previous one yields

ESPV
h

ĝ(PT )

(
Ψ̂k(PT ){Y − ˆ̄Q∗k(PT )}−ψ0{Y − ˆ̄Q∗0(PT )}

)
= 0,

which can be written as

ESPV
h

ĝ(PT )
{Ψ̂k(PT )−ψ0}{Y − ˆ̄Q∗k(PT )}= ESPV

h
ĝ(PT )

ψ0{ ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )},

which implies

ESP0
h

ĝ(PT )
ψ0{ ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )}=ES(PV −P0)

h
ĝ(PT )

{Ψ̂k(PT )−ψ0}{Y − ˆ̄Q∗k(PT )}

−ES(PV −P0)
h

ĝ(PT )
ψ0{ ˆ̄Q∗k(PT )− ˆ̄Q∗0(PT )}

−ESP0
h

ĝ(PT )
{Ψ̂k(PT )−ψ0}{ ˆ̄Q∗k(PT )− Q̄0}.

By empirical process theory (van der Vaart and Wellner, 1996, Theorem 2.14.1), noting that the first
two terms are empirical processes applied to functions in a class of functions F = { f (k,εk,ε0) :
k,εk,ε0}, the expectations of the first two terms are bounded by (1+ logMn)/

√
n. The third term

is bounded by
√

R0(Ψ̂k,ψ0)|| ˆ̄Q∗k(PT )− Q̄0||0,S. These facts together with (B.14) yield

ERem2,k . E||ĝ(PT )−g0||0,S
1+ logMn√

n
+

E||(ĝ(PT )−g0)||0,S||( ˆ̄Q∗k(PT )− Q̄0)||0,S
√

R0(Ψ̂k,ψ0),
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Finally, consider the term Rem3,k. We can bound this term by maxk,εk,ε0 ES(PV−P0)D(PT ,k,εk,ε0),
for

D(PT ,k,εk,ε0) =D{ ˆ̄Q∗k(PT ),QW (PV ), ĝ(PT ),Ψ̂k(PT )}−D{ ˆ̄Q∗k(PT ),QW (PV ),g0,Ψ̂k(PT )}

−D{ ˆ̄Q∗0(PT ),QW (PV ), ĝ(PT ),ψ0}+D{ ˆ̄Q∗0(PT ),QW (PV ),g0,ψ0}

=2h
ĝ(PT )−g0

ĝ(PT )g0
{Ψ̂k(PT )(Y − ˆ̄Q∗k(PT ))−ψ0(Y − ˆ̄Q∗0(PT ))}

Let F(PT ) be the envelope of the class of functions F (PT ) = {D(PT ,k,εk,ε0) : k,εk,ε0}, over
which we take the maximum. We have P0F(PT )

2 . ||ĝ(PT )−g0||20,S. We will apply the following
inequality for empirical processes indexed by a finite class of functions F :

E max
f∈F
|(P−P0) f |. 1√

n

√
log(#F )||F ||2,

where F is an envelope of F . Thus, given PT , we can bound the conditional expectation of
Rem3,k by (1+ logMn)||ĝ(PT )−g0||0,S/

√
n, which results in the following bound for the marginal

expectation:

ERem3,k .
1+ logMn√

n
E||ĝ(PT )−g0||0,S.

Accumulation of these bounds for the different components of Remk̂ and Remk̃ yields the following
inequality:

ER̂0(Ψ̂k̂,ψ0).(1+2δ )ER̂0(Ψ̂k̃,ψ0)

+ c(M,δ )
1+ log(Kn)

n

+(1+δ )E||(ĝ(PT )−g0)(
ˆ̄Q∗0(PT )− Q̄0)||0,S

√
ER̂0(Ψ̂k̂,ψ0)

+(1+δ )E||ĝ(PT )−g0||0,SE|| ˆ̄Q∗k̂(PT )− Q̄0||0,S
√

ER̂0(Ψ̂k̂,ψ0)

+(1+δ )E||ĝ(PT )−g0||0,SE|| ˆ̄Q∗k̃(PT )− Q̄0||0,S
√

ER̂0(Ψ̂k̃,ψ0)

+(1+δ )
1+ logMn√

n
E||ĝ(PT )−g0||0,S

.(1+2δ )ER̂0(Ψ̂k̃,ψ0)

+ c(M,δ )
1+ log(Kn)

n

+(1+δ )E||(ĝ(PT )−g0)(
ˆ̄Q∗0(PT )− Q̄0)||0,S

√
ER̂0(Ψ̂k̂,ψ0)

+(1+δ )E||ĝ(PT )−g0||0,SE|| ˆ̄Q∗k̄(PT )− Q̄0||0,S
√

ER̂0(Ψ̂k̂,ψ0)

+(1+δ )E||ĝ(PT )−g0||0,S
1+ logM(n)√

n
,
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where k̄ is either k̂ or k̃, whichever gives the worst bound. This inequality can be written as
x2−bx . c, for

b =(1+δ )E||ĝ(PT )−g0||0,S|| ˆ̄Q∗k̄(PT )− Q̄0||0,S+

(1+δ )E||(ĝ(PT )−g0)(
ˆ̄Q∗0(PT )− Q̄0)||0,S

c =c(M,δ )
1+ logMn√

n
+(1+δ )E||ĝ(PT )−g0||0,S

1+ logMn√
n

and can be solved using the quadratic formula as x ≤ (b+
√

b2 +4c)/2, which in turn implies
x≤ b+

√
c, proving Theorem 2.
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