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ABSTRACT

A calculation is given of the radiated energy loss from a charged

rod which moves at constant speed past an infinite set of parallel semi-

infinite conducting plates of infinitesimal thickness, with the rod taken

parallel to and at a fixed distance from the plate edges. The problem

is analyzed using the Wiener-Hopf techni~ue, and the resulting formulas

are evaluated analytically in the limits of high rod speed and low rod

speed, and compared with numerical evaluation over the full range of

speeds .
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I. INTRODUCTION
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An electron ring accelerator accelerates heavy ions by trapping

the ions in the potential well associated with a compact ring of relativ-

istic electrons, and then accelerating the electrons by means of externally

. d' 1applle flelds. It is clear that the highly charged electron ring will,

while being accelerated, radiate strongly because of its motion past the

conducting surfaces of the acceleration column. Considerable theoretical

effort has been devoted to determining the extent of this radiation; more

2
than a dozen different calculations having been reported.

The crucial point is the dependence of the ring radiation, at

ultrarelativistic speeds, upon ring speed. If, for example, the

radiation were to increase with increasing speed then the efficiency of

an electron ring accelerator would decrease with increasing energy and

there would result--in upper limit to the energy of the

accelerator. Thus the very development of electron ring accelerators

hinged upon demonstratkn that they would not be limited by radiation

loss at high energies.

It is easy to estimate the radiation due to acceleration of the

electron ring and to see that--at least in the relativistic limit--it is

quite small. The radiation which is not small is the diffraction radiation

due to the motion of the ring near conducting surfaces. Crudely speaking,

one could say that image charges are being accelerated and hence there is

radiation. It suffices to calculate the energy radiated by a ring moving

at constant speed.

If the ring is approximated by a charge Q, then the net energy

gain per unit length of the structure can be written in the form
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AQ
2

BQ .

For a charge moving at constant speed, A is proportional to the externally

applied fields in the structllre and is, clearly, the energy gain for an

infinitesimal charge. The term BQ2 is, by superposition) independent

of the external fields on the structure. Thus it may be calculated for

an unexcited structure. It is simply the radiated energy loss of a

charge Q, moving at constant speed through the structure. The consider-

able theoretical effort, mentioned above, has been devoted to determining

B which is, clearly, a function only of charge speed and the geometry

of the accelerating structure.

The simplest model which has been considered is tbat of a charge

passing through a closed cylindrical cavity. 'rhe radiation loss into the
':\ n -1/2

cavity was found to increase with increasing i, where i [l - (vc/c
c

)]

and v is the charge speed and c the speed of light. 3

It was suggested by Kolpakov and Kotov that a reasonable

approximation to a cavity with entrance and exit ports will omit

the radiation for modes with wavelengths less than the port dimensions.

4
The radiation loss is then found to be )' - independent at large )'.

A wave-diffraction model was employed by Lawson to study, more

carefully, the short wavelength modes which were eliminated in the

)' , and this result was obtainedat large

Kolpakov-Kotov approximation. Lawson found that they contributed energy

1/2
)'loss which increased as

5 6independently by Courant. '

There remained the possibility that the radiation loss to an

infinite periodic array was quite different from the loss to a single

cavity. Voskresenskii and Bolotovskii had derived an expression for the
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energy lO~;:J LJy it l:harged rod moving past a periodic array or :..>emi-infinite

planes) 7 which they subsequently employed to show that asymptotically the

radiation varied as III' at large
13

y. A I-independent asymptotic depend-

ence was obtained by Kuznetsov and Rubin. 9 Numerical evaluation of the

Voskresenskii-Bolotovskii formula gave energy loss which fitted rather

well--up to I' ~ 300 --a
10

dependence.

Thus it seemed likely that there wasn't a practical limit to the

energy of an electron ring accelerator--at least up until exceedingly high

energies--and development programs pressed ahead in four different

laboratories. There remained, however) the question of reconciling the

numerical results with the asymptotic evaluations, and this task is

accomplished in this paper.

Also, clearly) the radiation loss had to be evaltBted for

structures which approximate actual acceleration columns. Keil has

studied) numerically) a periodic array of cylindrical cavities connected

. 11
by beam plpes. His analysis--in contrast with the work on the planar

problem--must be cut off at short wavelengths. He finds energy loss

which is r -independent, for large I' The neglect of small wavelengths

The difference between

is supported by a numerical indication of convergences, and also by the

-1/2
rresults obtained in this paper.

and
o

y dependence, at large I' is presumably a result of infinite

transverse structure dimensions vs finite transverse dimensions. Energy

balance argument~ presented in Appendix B, show that in a finite structure

the energy loss can not decrease with increasing I .

Still outstanding at the present time, are results for periodic

structures of finite length and for slightly imperfect structures.

12
Efforts are) however) being put into these problems. Rigorous analytic
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results for periodic, finite transverse dimel1~;ior,CtJ structuTes, would be

most valuable) and hence worth the considerable effort they probably will

demand.

SIJecifically, in thic; paper we comlmte the radiative energy loss

from a charged rod which moves at constant past an infinite set of

paralle] semi-infinite conducU.ng plates. r1'he plates are lmiforrnly

spaced a distance 2:n:L apart, and the rod move~3 in the direction of

their common normal at a d.istance Xo belm., i:J1C plates r edges, as

depicted in Fig. 1. We take the y direction 3.S being perpendicular to

the plane of the figUTe; note that all fields and currents may be assumed

to be independent of "J •

Radiation problems with thisbOlmdary configUTation were apparently

first considered by Carlson and Heins ,13 I-Imvever, i~he work. of these authors,

and some later studies by Heins,14 did not consider our parl;icular form of

radiating source, and did not have occasion to compute energy losses. A

problem identical with ours was analyzed by VO:3kresenskii and Botolovskii. 7, 8

Despite this analysis, there are two reasons for reconsidering the problem

here. First, as already stated, the work of Eotolovskii and Voskresenskii

is in conflict with the numerical eva.luations .10 Secondly, it would be

desirable to have expressions for the energy loss) valid in the limiting

regimes of low and ultrarelativistic rod speed, in ,,,hicn the dependence

upon rod speed and geometrical IXJ.rameten;i~; transparentj and from \--rhich

numerical results readily may be obtained.

It is to this second task, i. e,) the asymptotic evaluation of

the energy loss, that OUT primary ati~el1tion will be devoted. This is

accomplished in Sees. 3 and 4. We first of all, however, derive in
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Sec. 2 the formal solution to the boundary value problem, both in order

to correct an error in Ref. 7 and for the sake of completeness. Finally,

the modifications required to treat a slightly different situation, in

which the charged rod is replaced by a moving current, are briefly

considered in Appendix A.

The main results of our analysis are the formal expression of

Eqs. (34) and (36), the asymptotic formula of Eqs. (64) - (67), and the

low-speed formula of Eq. (71) with Eq. (86) (and Fig. S) and Eq. (98).

Comparison between the asymptotic formulas, which have a dominant y-l/2

dependence, and direct numerical evaluation of Eqs. (34) and (36) is

presented in Fig. 4. The results for a current-carrying rod are given

in (A.S) and (A.9).
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It follows from Maxwell's equations that the electric field

~ and current density J satisfy
;::::J '"

ClJ
V )( (2 x~) = -4Jr if (1)

(We use Gaussian units but set the light speed c = 1.) Here-the left-

hand side is

v( 4:rrp)
'"

But the charge density p satisfies ClP/2lt 0) so that) by

differentiating Eq. (1) with respect to time) we may obtain an equation

in which p does not appear:

It suffices to solve the x component of this equation:

~ [cl
2

_ Cl
2

2
_ Cl

2

2
] S

at Clt Clx Clz x 4~ [*:dZ Jz + (::2 -::~ JJ
(3 )

Here the unknowns are ex and the induced surface current J ) since
x

J is given in terms of the motiml of the charged rod. In fact) if the
z

rod has speed v and charge per unit length q)

J z (4)
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We have in addition the boundary condition that

surface of each (infinitely conducting) plate,

(]CRL-19793

r
G vanish on the

x

E~ \
x z=2n:nL

o , x > 0 , (5 )

from which relation, together with the obvious fact that

J I
x lz=2JmL

o , x < 0 , (6)

it is evident that our problem is amenable to the Wiener-Hopf technique.

More specifically, the situation here differs from the usual

Wiener-Ropf problem only in the periodicity of the mixed boundary

conditions (5) and (6). This difference is conveniently dealt with by

noting the symmetry

€~ (z + 2:rmL,
x

t + 2nnL)-,
v

which suggests for
r<-L..- the appropriately modified Fourier representation
~..'

I
2n:

00

L
n=-oo -00

z inz/L
dro exp lim (- - t) ] e

v

Rere and below, w should be assumed to have a small positive imaginary

part, so that only outgoing waves are obtained. The currents, which

possess the same symmetry, (7), as 6, may be similarly expressed:x

J
x

2n:L j (x, z - vt) 'f'
L->n=-oo

o(z - 2n:nL)

I
2n

dro j(x,w) exp[im(~ _ t)Jeinz / L ,
v
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(X) ,.cD
f

inz/L1 I
b(x xO)exp[ k(~ t) ] (10)J - i clDl q () + - e

z 271 / I nOL_ I

-(X) -(X)

Upon substituting these representations into Eq. (3) we find that

and j must satisfy

,.,::"'

,5- ,
'~/n

r' 2:2J
i -­
: " 2
i... OX

2+(1) (
en

- - +
V

\

(11)

The boundary conditions (5) and (6) now take the form

-00

C..~ (XJW)
C'n o J x o " (12 )

j(x
J

(1)) o , x < O.

The system (11) - (13) may be solved by--essentially--the

. 15conventional Wiener-HopI' technlque. We first Fourier-transform in x J

according to the convention

r
-00

dx f(x)
-ikx

e

and note that Eqs. (12) and (13) imply analyticity properties for the

transformed functions. Thus Eq. (11) become,~

471 2 2(w - k ) j (kJU))
jw

ikx
O() ik e

nO

(14 )

where
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CD I
j
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is defined to have a positive real part. The subscript on j serves

to remind us that this function must, by E~. (13), be analytic (in k)

in the half-plane Im(k) < O. Similarly E~. (12) implies that the

function

CD

\
L
-00

is analytic for Im(k) > O. But, from E~. (14),

E (k)
+

where

4rri ":
-J

w
2 2

(k,w) (k - CD ) V(k) , (16)

m

V(k)
\' 1

"- I

k
2 2IL____

+ a
n-m

so that both the unknown functions j

(17)

and E may be determined from
+

their analyticity properties, as follows. We suppose there exist

We will compute the explicitly below; for the present it suffices

functions

(ii )

(iii)

v (k) and V (k) such that
+ -

V (k)[V (k)J is analytic and nonzero in the half-plane
+ -

1m (k) ~ 0 [Im(k) ~ oJ.

Both the V (k) have at most polynomial growth for large
+

V+(k) VJk) V(k).

V (k)
+

k.

to note that they have the asymptotic behavior

V (k)
±

-1/2
k for k -+ 00 , rm(k) Z 0, (18)
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and that they evidently allow us to rewrite Eq. (16) in the form

+

ikx
ke 0
(k + iet

O
)

1

VTkT+

) (k - i eto) j J k )VJ k ) •

(19)

Since the left- (right)-hand side of this eqlBtion is analytic in the

upper- (lower)-half k-plane, it defines, by analJ~ic continuation, an

entire function. That the entire function must be a polynomial--of

degree one at most--follows from Eq. (18) and the fact that, for physically

acceptable fields and currents, E
+

mU3t vanish for large k.

Thus we have, in particular,

j (k) (20 )

The constants A
O

and A
l

are easily determined. We recall that Ul

has a small positive imaginary part, so that Eq. (20) is consistent with

"-'

the analyticity property of j only if AO + Alk = B(k + ill); and the

left-hand side of Eq. (19) may be evaluated at k = ieto to yield

B
1

Finally tben, using Eg. (14),

ikx
O

o _k::::-e__~
nO k2 2+ eto

(21 )
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x component of that field,

We recognize the first term here as the infinite space solution. Hence the

C , which arises purely from the surface
,-vs

currents in the plates, is given by E~. (8) and

c~, (x, (J))
C sn

(Ill +

Note that, for x < 0, the integral over k is entirely trivial. In

particular

~ (-xO,w)V sn
~
v (w +

-(ao+a )x
e n 0 ((Jj - ia )

n

iao)V (iaO)a (aO + a )V (-ia )+ n n - n

We have now solved E~s. (3) - (6), except for the determination

of V and V. We will not examine the field structure here,but will
+

restrict our attention to computing the rate of energy loss, H, to the

plates. This ~uantity must e~ual the power needed m move the charged

rod through the field due to the plates:

C (x,z,t)dx dzv sz

J~'

- ~v b (-x
O

' vt, t )sz

Note that at any point not on the plates

(24)

V. C,/ = 0 , so that for such
......... r v S

points the Fourier components [in the representation of the form (8)J of

C' may easily be related to those of C;. In this way E~. (24)
~z C sx

becomes
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CD rCO invt/L
\., i 0:. q.v n ,=- ( (25 )w dill r-, -x l'

2ni j J
e '-~sn 0")(W f)L_.___ \V +

n=-(X) -co

Of primary interest is the time-averaged energy loss, to which only the

n = 0 term in E~. (25) contributes. We denote the average energy loss

per plate by ~2U) that is,

rT

2nL
l

1 I .
U - 2 lim

T J W dt
~ v T -.. (X)

0

E~uations (23) and (25) give

U

( CD
iLv j',
~ 1

J
-co

niL fm dill
-20:

0
x

O (w - iO:
O

) 1e
2 0:

0
(w + iO:

O
) V+( iO:

O
)v_( -iO:o ) .w

-co (26 )

We now turn our attention to the explicit Wiener-Hopf factorization

of' V(k). This may be accomplished by a conventional procedure .13.. 14 We

first of all decompose each term of' the right-hand side of' E~. (17) into

partial fractions

n ctn na

(k ~ iO: )-1. Using then the identity
n

(n + a)-I, we find

V(k)

But15

nL

sin
2 2 1/2 1 ! w

(w - k) ! sin nL ' - +
J ~ v

2 1/2-1
(0)2 _ k) !

J



2 2 1/2
sin 2rrL(w - k )

2rrL(w2 _ k2 )1/2

~{
I i

n==l
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_00; I r 2 ,'1h~ i2kL/n/1'-'- "L i
, I (-i en) ~ k +i I (.E..) - {J.J2

r
e

I I I
l 2L

h==l t

m

{k
11/ 2 1

-i2kL/n'1"1 2L [(-E..t 2 \ \
(i i )

X ! i - - IJ) I en 2L jn==l t (28 )

-t-i2kL/n
where the :!: i e factors have b~en inserted so as to make each

infinite product converge separately. In a similar manner we obtain

r
! CJJ 2

2 sin rrL - (w
iV

~
I :
I I
, I
I '

n==l

i2kL/n
(k + ia )(k + ia )e

n -n

11'
n==l

L 2 -i2kL/n
( -1 H- ) (k - ia ) (k - ia )e

n n -n

Upon substituting the representations (28) and (29) into Eq. (27), one

may by inspection obtain a factorjzation

V(k)

in which the factors

A A

V (k) V (k)
+



A

v (k)
+

-14-

fk . r (n )2 2 1/2
+

l t 2L - (J)
<D

1 r-::.(
( 2~i )

(k + iao) I (k + ia ) (k + ia )
n=l n -n

UCRL-19793

and

00,
A

"'--.....

(-V (k)
1 2ni )

(k - iao) L .
,n=.L

J
,'I

r 2 2 n/2 l

tk - i I (E-) - CD

rL 2L j
(31)

(k - ia._)(k ia )
11 -n

clearly have the desired analyticity properties. These factors are,

howeve~ unsatisfactory because they are not polynomial-bounded for large

16
k. In fact

A

V (k)
±

± 2ikL -1/2
2 k, k --'> 00, 1m(k) ~ 0 .

[The relation (32) can be seen to follow from Eqs. (30) and (31) by noting

the identity

rlf(z)
cz

ze

and recalling that I'(z)
1

e- z zZ-2 for large z.17] A proper choice

for the V (k)
±

V (k)
+

is obviously

which functions clearly have the asymptotic behavior we anticipa.ted in

Eq. (18).

We substitute the results (30) - (33) into Eq. (25), and obtain

for the average energy loss per plate (per unit charge-squared) the

expression
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u 2n:L .
-l
V I

rOO

.J
-00

dw M
co

exp -
(w - i °0 )

rw +' "i 00)

+ 0 )
-n

J

and we have noted,

2 11721
W I \

J
2 -1/2

(1 - v )

f
l

-2 /cD IL/v; ~.(
X 2 1i

I I
L =1

is the relativistic factorHere )'

from Eq. (1)), that 0
0

= Iwl/v;. It is convenient to replace the

integration variable by A = wL/v, and to introduce the abbreviation

[~ (2 2 2 '\ 1/2 1
n + n-4AV) i

I . )

x
n=l

. 1{r
A 2 2 2 1/2 \ A{~ + [(n-,) -, v] J ~, l· 2 2 2J-1/2\

(n+A) - A v j

Then

u 2n:i
I

2J { I X o 1 (lVA - ilAI \). r)

dA ... exp I' -2 A I - \ pc- (A, ; )
,... t L; J "IVA + i IAI

Recalling now that ill --and hence A --is to be considered as having

a small positive imaginary part, we find that P(-A,/)

This guarantees that U is real and positive, and allows us to rewrite

Eq. (35) in the more convenient form



u - 1m
)

(00

4:rr (.~~/vy )I' 1 + ljvy
, 0

-16 -

r Xo
d;\ exp 1-2;\

L LI'
~(;\,I') .

UCRL-19793

The integral in Ell. (36) has been evaluated nL1lllerj.cally with the help

of Esther Schroeder.
lO

The remainder of this report will be devoted to an

analytic evaluation of U, for each of the two limiting situations

I' »1 and I' ~ 1. Specifically, in the case of large I' we will

to £.~//('V-3/2).derive a closed form asymptotic expression which is correct [J I

In the opposite limiting case our expression for U will involve a very

easily (but nonanalytically) evaluated integral, and will be correct to

""-U,I-/ 2,
(:1~v). In both cases a systematic means of obtaining more accurate

expressions will be clear, but the labor seems unjustified, especially

since our results compare well with the numerical evaluation.
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3 . ENERGY LOSS FROM AN ULTRARELATIVISTIC ROD

TJmL-19793

Considering first the case of large Y, we begin with the

observation that

p(A., CD) 1 ,

as is evident from the definition, Eq. (34). Thus our proced1ITe will

be to let

z (A., y) - 2 in p( A., y) ,

and expand

1 + z +
2

z
2T +

Our first task, then, is to derive a SUfficiently accurate expression

for z. The definition, Eq. (38), may be substantially simplified if

we use Eq. (37) to write

p( A., I) (40 )

One term in the logarithm of Eq. (38) is
(' 1

1
11/2 rIL(-~)2 - 2(_~) ]1/2

'n .~ + r(£t - 2 (£) c ~ J j - in 1"- 1"-

. l l J
-1

sinh
1

and the other terms may be treated similarly. We find

where

z(A.) 1\-4 - .£n 2
I

(41 )
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F(¢)
-1 1 -1 1

- sinh
i( ¢2 )1/2

+ sinh ') )1/2
- 2¢ i ( ¢,-- + 2¢

-1 2
sinh

(¢2 _ 4)1/2
I

(42 )

Because of Eq. (36) we may restrict our attention to Re(A) > O.

Recalling our convention Im(A) > 0, we see that the relevant singularities

of F(¢) OCC1IT in the upper-half ¢ = (n/A)-plane, at

¢
2 1/2

1 + (1 - l/i ) + iO ,-

¢ 2(1 -
2 1/2

l/i ) + iO ,

¢ iO ,

¢ 2 + iO .

These are all branch-points; we choose the the cuts of F(¢) for

Re(~) > 0 to extend upwards as indicated in Fig. 2. It is easily

verified that

1
m

o
Using also the relation

2A
i

.En 2 .

2

OJ

L
n=l

in which the path C = C
l

+ C
2

remains below the branch-points of F

as in Fig. 2, we find
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A.
i

+ +

n for some integer n. Since

We now observe that there will be contributions to E~. (45) from the

region ¢ ~ 1/y2 only if A./y2

such contributions will be weighted by
-1'

e' in our formula (36) for

u, they may clearly be neglected in the present large - Y analysis.

Hence we allow C
I

and C
2

to coalesce onto the real axis up to some

"> / 2point I), where we choose 0 ;;:- 1)" . Next, we take advantage of the

fact that (ctn nA.~ + i) becomes exponentially sWBIl in the limit

¢ -> ~ im, by deforming the rest of the contour C
2

into the lower-

half plane, and by "wrapping" the contour C
l

around the branch cuts in

the usual way. The result of these mutilations is to leave E~. (45) in

the form

(ctn nA.¢ + i) F(¢) d¢
A.
i f

I + II

+ 211.

+

r
)
IV

A.
i
J(ctn rt>J/; - i)}' (¢ )d¢

III

which is conveniently decomposed as follows:
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z(/I.) Zl(/I.) + z2(/I.) + z3 (/I.) , ( 46)

r
zl (/I.)

/I. I (ctn Tf/l.¢ + i) F(¢) d¢ , (47)- - !i
)
I

('

z2 (/I.)
/I.

I
(ctn Tf/l.¢ + i) sinh-l 2

d¢- -
4)1/2i } (¢2

11

/I.
(ctn Tf/l.¢ - i) sinh-l 2

d¢-
4)1/2i ¢2i y(

.JIll

r
- 2/1. ! -1 2

d¢ (48 )
i

sinh
y(¢2 4l!2

,
J

jIV

( "

Z3(/I.)
/I.

) (ctn Tf/l.¢ + i) r(¢) d¢ + ~ i (ctn Tf/l.¢ - i)r(¢)d¢- -
i i

l ,

~IIII

+ 2/1. Iv r(¢) d¢, (49 )

where

r(¢ )
-1 1 -1 1 (50)- sinh

'r (¢2 _ 2¢)1/2
+ sinh

y (¢2 + 2¢ )1/2

The contours I - IV are depicted in Fig. 3.

We re-emphasize that the error in Eq. (46) corresponds to an

error in U which is exponentially small; up to this point, no serious

approximations have been made. Now, however, we commit ourselves to
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keeping only terms in Eq. (56), which then becomes

u 4rr ( 2i)r- 1m - 1 - -
y VI

o

[We anticipate here that The contribution l~om to

Eq. (51) is easily disposed of. Consider

1m 4n:
y

(1 _ 2
y
i ) [CO

o
[

Xo
dA. exp -2 - A.

L)'

oc
1

2
!

rF(¢)
)
I

CX)

L
m=l (

' 2xO

L)'

-2

- 2n:im ¢ )

'.:!here T.T ....... h ............r">.
rt'l,...; .LLCk V c:; identity

co 00

x 2 ':- inx 2n:
~._-

\

b(x 2n:n)ctn - \ e i .. -2 i / i )
,

,
~ ... ".- ..
n=l -00

in which the a-function terms are here irrelevant, to explicitly perform

the integral over A.. Since I¢I is not small on the path I, it is

clear that

The higher-order terms in zl may be similarly treated, and we conclude

that, in our approximation, the term zl may be omitted from Eq. (46).
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With regard to z2' we observe first of all that the definition

( 1.0 )LfU is eCluivalent to

A
i ¢ -1

ctn JlA sinh
2 4)

where the path lies to the left of all poles of ctn JlAP except the one

at ¢ = O. Hence we may evaluate the integral in ECl. (54) in terms of

principal value and pole contributions in the usual way; since the integrand

is odd in ¢, the principal value vanishes and we are left yith the semi-

residue

-1 i
sinh

f

i
- + (ss)

The calculation of z3 [ECl. (49) ] is more complicated. It is

helpful to observe first, from ECl· (51 ), that a term in z3 of the

form Aal can contribute to U at most 9- term of order a+p
(its)'

contribution will be smaller if the term is purely real). Thus we may

drop such terms whenever a + p < - 3/2. With this in mind we expand

f(¢) (S6)

where

fO(¢) -1 1 -1 1 (')7)- sinh
)'(2¢)1/2

+ sinh
y (-2p )1/2

,

~l (J \ (i - 1) ~1/2
I \YJ ) - -'-

4{;- )'
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The error in EQ. (j6) would contribute to z a term of o~der
)

to

and, by our remarks above, may be ignored. To compute the contribution

from f
O

, it is simplest to revert from Eq. (49) to our earlier

formulation, EQ. (44):

r CX> _cx>

dn J° I " ..- ....

10

fO(E.)z3 2

l.
~\ - I\.
/l .._._

n=l

f\(0
(00

1 r 1/2
'I,

' 1 (2::...) (1 + i) !
2 " JcL~=l

I 2n yI
1

, 1-
..J

CX>

-3/2 1\.3/2 )' -3/22
- i)-- -(1 n

3 ..3
! /.-.:>..

n=l

+

il
-y(-2-n/-I\.-)1......,7~2 J .

Here we bave expanded sinh-1 x = x - (x3/ 6) + (j'(x5 ). The error term

in Eq. (59) is again irrelevant and the last integral vanishes identically,

as may be verified by integrating by parts twice. There remains

(1 - i)
6{2 (60)

where
18

is the Riemann zeta function.
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Finally we must compute the contribution to z3

to E~s. (49) and (55), this is

According

+ 2i (61)

By the nature of the path IV the last term here is E!'( Ny3) and may be

neglected; the other terms may be integrated explicitly by means of

Eq. (53) (in which again the 5 functions do not contribute). We 0~ve

then

{JO co
1 (1 - i)A r: 2:n:iAil¢ ¢1/2 d¢z3 r-- e

2V2 y

l ioo n==l

fm co

¢1/2 d¢\
\--r'

-2:n:iAn¢')
/ e
c_.~ J0 n==l

(1 - i)A I )' -2rrAily 1/2 dy
2y Jo

e y

iF!

(1 - i)

8-/2 rr
(62 )

Equations (60) and (62) rrovide a sufficiently accurate expression

for This result, together with E~. (55)) is now of
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course to be substituted into Eq. (51). Thus, after performing the

elementary integration over A, we find that the average energy loss

per plate is

_q2 S(I!;) ( 2nL //2
2'j2 X o

2nL ) -1
I

Xo

2 JSO!2)
+ q \ V"

I 4.2
t

S(1!2) ( 2nL
+ 2 "'f2- Xo

+

Recall that 2TCL is the actual distance between plates. We introduce

the abbreviation

p == 2nL!xO '

19
and evaluate the numerical coefficients in EQ. (63), which then becomes

U
-1/2

b
-1 -3/2 (a1'( .-2 )a )' + y + c y + .~) ,

with

~

0.516 p3/2 ,a =

b 'V

P(1 - 0·339p ) ,

1/2 2
c ~ p (0.462 - 0.516p + 0.0784p )

(64)

(65 )

(66)



-26- UCRL-19793

In Fig. 4 evaluation of Eq. (64)--for three values of p --is

presented and compared with numerical evaluation of Eq. (36). The accuracy

of the asymptotic formulas--even to I as low as 2.0--was, of course,

unexpected.
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4. ENERGY LOSS FROM A 3LOlv HOll

UCHL-19793

,,'e -(lOV -:~urn our attention to the case in which ) is close to 1.

It is convenient to begin again with our exact formula (36), but here we

will always drop terms of order ~. The small velocity limit is

analytically somewhat awkward because of the form of lim Ee (p).

Equation (34) gives

peA, 1) e
-2A .en 2

2A - n
n

(68 )

where [A] is the largest integer less than A. On the other hand we

will find that

~2L/(v) , v ~ 0 J

from which it follows in particular that we may approximate

Similarly expanding

1

I'
1 - ~~VY
l+J.VY

5 2
1 + 2iv - 2" v

where the
2

v term is irrelevant in view of Eq. (69), we find that

Eq. (36) may be written in the form

U 8rr(v Uo + U
l

) + ff(~) J (71 )

(00
-KA

p2 (A, 1) ,
I

Uo - f dA e (72 )
J O

U
l t dA

-KA
p2(A,l) Im(£n p) . (73 )- e
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Here of course K =' 2x
O
/L, and we need evaluate Im(£n p) only to

lowest order.

We consider first DO' The definition (72) may be rewritten as

From ECJ.. (68).,

dx -~(m+x)2( 1)e P- m+x, .

e
-2 (m+x)£n 2

/
//

/ 2m + 2x - 1
f
i

\
\ m

.: ,

where the second factor is the usual binomial coefficient. Introducing

the CJ.uantity

z

we have

1 -K/2"4 e ,

12m 2
(1 00 + 2x - 1

DO I dx
2x L zm ( (76)z

./0 m='O
\

m,
I

The sum of sCJ.uares may be rewritten as the sCluare of a sum by means of

the artifice

I /

lX
\ 2

(,m ,,2n: I
CD + 2x - CD

m (~m 2x - 1\

L \zm
I \

+ \
1

,
(e

ie, I- 1 de ) z) j i

2n: I Ii J L
m='O )0 m='O \ ml m \L- -'

(77)
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We denote the sum on the right-hand side by S(x)8)) so that

f 2x 1
(2rr 2

DO dx z
2-;)0

d8 /s(x)s) I

By the binomial theorem and Cauchy's theorem,

UCRL-19793

\~q:>.,
'g 2m f dw ~+

\2m+2x-l

S (x) e) 1 2 (z e
1

)
w I (79)2rri m+l i9 /

m="U
w z e

where the integration contour must enclose the origin of the w plane in

such a way as to include only the pole at w O. We choose it to be

a circle with radius only slightly less than 1/4. The series is now

geometric and easily summed:

S (x) e) dw
w

w
is 2

w - (w + z e )
(80)

The integrand here has poles at

w
1
2

is
z e + 1 ( i9 )1/2

·.1 - 4 z e
2

and by our contour choice only the smaller of these is enclosed. Since

the integrand is otherwise analytic inside the contour)

S (x) e)

rl 1
1_ - -(1 - 4z
l2 2

(1 -
(81 )

It is now convenient to replace z by

u 4z
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so that upon substituting Eq. (81) into Eq. (78) we have

UCRL-.l:9793

2x
dxu

l.- J'2n:
2n:

o

2-4xde u

I
f is 1/212x-l
1 - (1 -ue ) J [

-is 1/21
2x

- l
1 - (1 - ue ) J

(
-is)1/2

1 - ue (82 )

Notice that x appears now only in exponents, so that the x-integration

could readily be performed. Howeven we defer this step in order first

to simplify the integral over 8. To this end we replace the integration

variable by
is

y = e , whence

'1
1 r 2(1-x)
1+ J

o
dx u

[[1 - (1 _ uy)1/2] 1 _ (1 _ ufy )1/2 ] 1,2x-1

X JL.<.-.' .JI..J__

(1 - uy)1/2 (1 _ u/y)1/2

Here the contour is the unit circle. The integrand has branch points at

y = 0, u, 1/u, 0) • Since it is evident from Eq. (82) that the integrand

is always imaginary. ~e thus make the further substitution

is continuous throughout the domain of integration, no branch cut can

cross the contour. Thus the branch-points at 0 and u must be

connected by a cut, and we shrink the contour to surround this cut in

the obvious way. On the new contour y is real and 0 ~ y~ u so that

(1 _ u/y)1/2
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i tan e J

UCRL-J-9793

(1 - 2 2
u cos

}

2X-l

- i tan 8) "

1 r42
d8- "Ii;

""-Jr/2 (1 -

2 19
u e cos e

~---- 1/2 r --=----r-'--",-~11-r:'2,-::o1
c 2 e) 'l (1 L C r,) Iu cos !. \ - U cos Co ,-

L ~

.... rr ! (1 2 2 e)1/211 - - 1.1 cos
X d:x: (84)

l :1.(3 II e U cos e
"'0 L J

Performing the x integral we findJ after some simple ffi'J.nipulations

(1 -

1
4n de

(1 - u2 cos2 8)1/2 - i tan e

2 2 )~L/2
u cos e

1

-1 1cosh .,- -----e - ie
u cos

This form may be further simplified, if we observe that

, ? 2
\1 - u· cos

__-_i tan e,_~-:o-

1/2
e)

. d ( h-1 1 . e \ 1-l ~ COSL ----, - :L J + •
oEl 1..1, cos l:-) )
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Hence the tan 8 term in Eq. (85) may be integrated by parts; we thus

find its contribution is equal to that of the other term. We have then,

finally,

[/2 de
1

U
o

-
2n

-1 1
n/2 cosh

8
- i 8

u cos

(2 -1 1
1 . cosh

8
de

u cos
n

( -1 1
2

+ 8
2

)0 )cosh
8u cos

(86)

This integral is easily evaluated numerically; a plot of Uo(u) is given in

Fig. 5. It has been checked--approximately--by extrapolations ot" numerical

evaluations of Eq. (36).

The asymptotic forms of Uo for large and small" == 2Xo/L are

easily determined. Considering first the case of large ~,we note

that

limit

-1
cosh

1
u cos e

1 1
2 £n u

- .£n 2u cos 8 ,

L
2x 'o

for Hence in this

L.

On the other hand, for K small and e ~ n/4,

-1
cosh

1
u cos 8

for K c~: 0, rr/4 ,

so that the main contribution to the integral in Eq. (86) comes from the

lower end-point. It is in fact clear that if we choose 5 to be

l/?
proportional to, but larger than, ,,-'-, the small ~ form of U

o
will

follow the small b form of
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fl" -1 1
1

cosh
eu cos

de
IT

( -1 1
2

2
0 cosh e ) + eu cos

UCRL-19793

I. in

"1 (20/2 I

1 + sin e !,
l de1

)0
cos e

~e IdeR:! +
IT

1 + sin e )2 + e
2

2IT e
~£n t

cos e i
(,

..J
(88 )

Here we have set u = 1 in the integrand (since e
2

;; 'c? >

isolated the singular part of Uo (u=l)u Now letting 0 oc

arbitrarily small we find

II: ) and

lie:.r, become

Uo '"
1

£n 5- 2n
,

"'"
1 .en

Xo
4IT L

,

\,

since the first integral in E<l. (88) remains finite as ()+ 0 .

In order to evaluate U
l

[cf. E<l. (73)], we first note from

E<l. (34) that for small v

f £n{~ ((n
2 2 2 11/ 2 t

Im(.en p) 1m - A.) -
,

(90)+ A. v I

J~
j

r r r
2 ]"/2 I,

~ .en I(~ - 1)2 (91 )~ 1m + - V f
i I... J

Jn=l

since, as we have remarked, it suffices to compute U
l

to lowest order.

We now set A. = m + x, but here, unlike the case of E<l. (74), we choose

lx' ~ 1 Then
2



Im(£n p) - ( n
m+x

1
11/ 2 !, '>
f i

.J J

UC.RL-19793

( mv
8 1 _ v [ 2]1/2

- Ix I) i - ( m : x )

where 8 is the usual Heaviside function: it is equal to one (zero)

when its argument is positive (negative). Equation (73) tillS become

dx - ( x
m + x

where mv/ (1 - v). Because of the exponential factor in the

integrand, we may assume ~ is small. It follows that to lowest order

-Km
e dx • (95 )

n: 2 d
2 v d;

The integral is (rr/2 )mv2 + {I(~), whence

00

[
Here we have included the m = 0 term--which clearly does not contribute

--so that the sum may be recognized from Eq. (79):

co

\'
L.
m=O

-Km
e

1
2n:
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We have thus merely to repeat the procedure of Eqs. (74)-(84) above,

setting everywhere x = O. The result is

2 d
( rr/2

de
-v JU

l T dK
)-rr/2

2 r) 1/2
(1 - L-

e)u cos

2 d K(e- K
/

2 ) ,-v (97)"4 d;

where K is the complete elliptic integral of the first kind. The

'd t't 191 en 1 y

dK !. [ E(k) KCk)]dk k 1 _ k2

in which E is the complete elliptic integral of the second kind,

finally gives

v2 {E(e-K/2 )
b \. 1 _ e- K

!
U · kn 19 t· f th ft·slng own proper les 0 e unc lons

(98 )

E and K, we find

that U
I

vanishes exponentially for large K, while

for

Combining now Eqs. (71 ), (86), and (98 ), we conclude

[/
2

r,J2
-l( e ) 2[E(c-,/2)

U 8v a de

cosh cos 9 .

)r
+ rrvr ,/2

-K

e
2

1 - e
-1 e

cosh ( 8 +cos

+ f}(~) . (100)
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APPENDIX A: THE CASE OF A MOVING CUHRENT
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Our analysis is very easily carried over to the ;301ution of a

slightly different problem, namely, that in which the moving rod has no

net charge, but carries a current in the y direction. In this Appendix

we briefly outline the necessary modifications to the argl@ents and

results presented above.

The essential difference between the two problems is that in

the moving current case, the relevant component of the field is

and this function satisfies an equation significantly simpler than that

...... _, -.. ... ..-..
"=:>U.LVC

in the moving charge case • In fact we have now to

\ dJd2 d2 \.

~+ -- \ 4n df- (A.l)
dZ2 dt21

/

/ 2
I L
I 2
\ dX
\

where C:
y

satisfies the usual boundary condition (5) and

J
y

q v' 5(x + x
O

) 5(z - vt) + J
sy

(A.2 )

Here and v are as in Fig. 1, and v' is the y-directed velocity,

in the plates is

associated with the given current, of the charge per unit length q.

[The q in Eq. (A.2) has the same numerical value as that in Eq. (4),

in so far as the positive charge carried by a ring in an electron ring

accelerator is small compared to the negative charge.] The unknown current

J ; we note that it may be represented in the same
sy

as J in the previous problem, and that its transformx

also satisfies Eq. (13).
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rrhus ECl. (A.l) differs in structure from ECl. (3) only in having

somewhat fewer derivatives, and the Fourier transform procedure of

ECls. (8) - (17) may be carried through with only minor cllanges. In

this way we obtain the analogues of ECl. (lL/-):

2 2 C
(k + ex ) C (k,w)

n n

and of Eq. (19):

'"4n:iCDj +
nv'

4n:iCD .:iI...:..- 5
v nO

E
+

V
+

ik.xO
l~l1iw (v' e (A.4)

Here of course the unknowns E and j
+

have different physical

meanings from the moving charge case: they refer to y components rather

than x components of the field and current. More significantly, the

( 4) (k2 _ ( 2 )absence in Eq. A. of the factor on the right-hand side

allows us to conclude, by the usual Wiener-HopI' argument, that both

sides must equal a constant [rather than, as in the case of Eq. (19),

a first-degree polynomial]. The constant may be evaluated as usual by

setting k = iex j thuso j is determined, and Eq. (A.3) yields

f../ (x,(J)sn

ill

r
./
-(X)

dk
ikx

e (A.S )

where the subscript s again indicates that we have omitted the infinite

space solution.

Finally we compute the time-averaged energy loss per plate:



U'
2nL

2
'1 v

lim
T -7 co

1
T
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(A.6)

where ~O is of course the given current, and we use a prime to

distinguish the energy loss in the moving current case. E'luation (A.5)

yields, in the usual way,

U' 4 ,2
- n v y 1m (A.7)

where p(A.,y) is defined by E'l. (34).

Comparing the exact E'ls. (36) and (A.7), we observe that the

relation between U' and U is analytically very simple; in particular,

both Cluantities involve the same integral. It follows that our asymptotic

evaluations of U need be only trivially modified.

Specifically, in the ultrarelativistic case we find

[remember y = (1 - v 2)1/2 Jz

U'

where

2 2[-1/2 -1 3/2 /, 2v' y a' y + b' Y + c' y- + (J(y- )] , (A.8 )

a' a

b' ,

c'

and we recall

pl/2 (0.462 + 0.516p + 0.0784p2)1

p = 2nL/x . Notice the surpris'ingly similarityo

between b', c' and b, c [cf. ECls. (65) - (67)J.

Note that if we accelerate a rod in the z direction, then the

y TIomentum (v'y) is invariant. Hence if the rod before acceleration
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(y == 1) is relativistic) then vly == 1) and we may expect the radiation

due to the

y» 1.

y current to equal that from the charge in the limit

In the case of small v, Eq. (A.i) implies

U' (A.10)

where U
l

is given by Eq. (<;18).
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APPENDIX B: ENERGY BALANCE ARGUMENTS
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In this appendix we present argL@ents which yield a lower limit

to the amount of diffraction radiation produced by a charge, Q, passing

at constant speed) v) through an accelerating structure of finite

dimensions. The discussion is only barely novel; related argwnents have

been made by Eberhard Keil) John Lawson) and others.

The net energy gain in traversing the structure) t\ U, may, for an

electromagnetically linear device) be written in the form:

t.:o U AQ (B.l)

The coefficient A is proportional to the applied field:

A (B.2 )

where E/ is the field) in the absence of the charge Q) measured at

some reference position. The coefficient B is the quantity we wish to

bound.

The accelerating structure has a total stored energy, W, prior

to the introduction of the charge Q, which is proportional to f,2:

W

Clearly by energy conservation

(B.4)

which implies, by Eqs. (B.l), (B.2), and (B.3):
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Taking the maximum of the right-hand side of Eq. (B.5), yields the limit:

B ? (B.6)

Physically, it is clear that ~ is finite, and it is also clear

that there exist accelerating structures for which ~ is nonzero. In

particular, even for extreme relativistic particles an efficient accel-

eration column can be designed; i.e., ~ need not decrease with

increasing /, where

For these structures--which are just the structures of physical interest

--it follows, from Eq. (B.6), that B can not decrease without limit

with increasing y The restriction to electromagnetically linear

structures is not a severe restriction; one can, for example, imagine

disconnecting a structure from the--generally nonlinear--power supplies

after it has been excited.
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FIGURE CAPrIONS

Fig. 1. Hod, plates, and coordinate system. 'rhe origin is at the edge

of one of the plates.

Fig. 2. Branch cuts and integration contours in the complex r/J plane.

Fig. 3. Transformed integration contours.

Fig. 4. Energy loss per plate, per square of the unit charge per unit

Thein terms of the relativistic factor

length on the rod, as a function of rod speed, v, expressed

'" (1 2)-1/2y - - v .

solid lines are the asymptotic evaluation of Eq. (64) and the

dashed lines are the numerical evaluation of Eq. (36). Curves

are presented--as indicated on the figure--for three valiles of

p '" 2rrL/xo which span the range of practical interest.

V;rr '" The .; 'Y'l+",-.,.............. , IT ...::r ~..o..:. _ _ -:J
ll1 Eq. (0,'- \ as a function 01'~ ~b' /. -L-uv<CC;j.LQ,-L u O' ueJ..-i..ueu \ UO),

-x L
0 To lowest order in rod speed, theu = e v, energy

loss per plate, per square of the unit charge per unit length

on the rod, is given by U = 8rrvUO'
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