
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

A Framework for Discovering Implicit Knowledge from Event Logs

Permalink

https://escholarship.org/uc/item/3mv8p6v0

Author

Zhang, Zhenyu

Publication Date

2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3mv8p6v0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

A Framework for Discovering Implicit Knowledge from Event Logs

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computational Science

by

Zhenyu Zhang

Dissertation Committee:
Professor Shangping Ren, Chair

Professor Nalini Venkatasubramanian
Professor Sharad Mehrotra

Professor Alex Nicolau
Professor Wei Wang

2022

© 2022 Zhenyu Zhang

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES vi

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

VITA ix

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Background . 1
1.2 Technical Challenges . 4
1.3 Framework Architecture . 7
1.4 Thesis Outline . 10

2 Definitions and Notations 11
2.1 Event Logs . 11
2.2 Process Models . 14
2.3 Process Discovery Algorithms . 19

3 Event Logs Cleaning 23
3.1 Background and Related Work . 23
3.2 Identify Mainstream Behaviors in Event Logs Based on Frequency-based Ap-

proaches . 27
3.3 Construct Hidden Markov Models to Filter Out Outliers in Event Logs . . . 32
3.4 Experimental Evaluation . 37

3.4.1 Performance Metrics . 38
3.4.2 Process Model Discovery Performance Improvement Using the Hidden

Markov Model . 40
3.4.3 Hidden Markov Model Approach Vs Two Commonly Used Filtering

Approaches . 41
3.5 Summary . 45

ii

4 Implicit Knowledge Discovery - Timing Constraints 46
4.1 Background and Related Work . 46
4.2 Extract Time Dependent Set from a Workflow Net 48
4.3 Mine Timing Constraints from Event logs 49
4.4 Road Traffic Fine Management Process Case Study 54
4.5 Summary . 56

5 Implicit Knowledge Discovery - Process Scenarios 58
5.1 Background . 58
5.2 Related Work . 60
5.3 Construct Aggregated Vectors with Activity and Timing Information 61
5.4 Process Scenarios Discovery . 64

5.4.1 Distance-based Process Discovery Algorithm 64
5.4.2 Density-based Process Discovery Algorithm 67

5.5 Experimental Evaluation . 71
5.5.1 Performance Metrics . 72
5.5.2 Effectiveness Validation . 73
5.5.3 Process Model Discovery Performance Improvement with Timing In-

formation . 77
5.5.4 Distance-based Scenario Discovery Compared with Exhaustive Search

for k with k-means clustering . 79
5.5.5 Density-based Scenario Discovery Compared with Four Commonly

Used Process Scenarios Discovery Approaches 80
5.6 Summary . 81

6 Incorporating Domain Knowledge for Implicit Knowledge Discovery 82
6.1 Background and Related Work . 82
6.2 Generate Augmented Ordering with a Density-based Approach 84
6.3 Discover Process Scenarios Based on Domain Knowledge and the Augmented

Ordering . 87
6.3.1 Identify the Maximum Similarity Distance in Event Logs Based on

Domain Knowledge . 88
6.3.2 Discover Process Scenarios Based on the Maximum Similarity Distance

and the Augmented Ordering . 90
6.4 Experimental Study . 92

6.4.1 Effectiveness Validation in Wastewater Treatment Domain 92
6.4.2 Performance Evaluation . 96

6.5 Summary . 97

7 Conclusion 98

Bibliography 101

iii

LIST OF FIGURES

Page

1.1 The architecture of the framework for discovering implicit knowledge from
event logs . 8

2.1 View of the XES event log file which displays the first trace observed in the log 13
2.2 Simple Petri net example with two transitions and four places 17
2.3 Process model using the Alpha Algorithm from data in Table 2.1. 19
2.4 Process model using the Heuristic Algorithm from data in Table 2.1. . . . 20
2.5 Process model using the Inductive Algorithm from data in Table 2.1. . . . 20

3.1 Workflow of using Hidden Markov Model to filtering out outliers from event
logs . 25

3.2 Mainstream process model corresponding to top frequency event traces . . . 30
3.3 Mainstream process model corresponding the mainstream sublog 31
3.4 Hidden Markov model example with Φ = {S1, S2},O = {A,B}, and π =

[1.0, 0.0] . 33
3.5 Behavior precision generated from event logs with different noise levels . . . 41
3.6 Behavior recall generated from event logs with different noise levels 42
3.7 Structural precision generated from event logs with different noise levels . . . 42
3.8 Structural recall generated from event logs with different noise levels 42
3.9 Fitness values of each process models from real life event logs 44
3.10 Precision values of each process models from real life event logs 44
3.11 F1 Scores of each process models from real life event logs 45

4.1 Mining and integrating timing constraints in workflow models 47
4.2 Process model corresponding to the event log shown in Table 3.1 48
4.3 Process model integrated with timing constraints 54
4.4 Road traffic fine management process model 55
4.5 Timing constraints in traffic fine management process 56
4.6 Process model integrated with timing constraints 56

5.1 Basic idea used in distance-based approach for obtaining the number of pos-
sible scenarios k . 65

5.2 Strategy used in the density-based algorithm to partition event logs into a set
of clusters . 68

5.3 Wastewater Treatment Process Model . 74

iv

5.4 Scenario one: Removing solid debris process 74
5.5 Scenario two: Treating sludge process . 75
5.6 Scenario three: Treating liquid process . 76
5.7 F1 scores of two-phase clustering approach, optimal k-means approach, and

average F1 score of k-means approach . 79

6.1 Process model representing the domain knowledge 90
6.2 Process model related to the primary process scenario provided by the domain

expert . 93
6.3 Removing solid debris process in wastewater treatment process 94
6.4 Treating sludge process in wastewater treatment process 95
6.5 Thickening process in wastewater treatment process 95

v

LIST OF TABLES

Page

2.1 A visual representation of the pm4py example event log 15

3.1 Example of event logs containing five activities and six event traces 29
3.2 Characteristics of event logs used for evaluations in the cleaning phase 38
3.3 Fitness, precision, and F1-score of each process models from different event

logs . 41

5.1 Aggregated vectors transferred from event logs 64
5.2 Characteristics of event logs used for evaluations in the discovery phase . . . 72
5.3 Weighted average fitness of process models generated by real life event logs . 77
5.4 Weighted average precision of process models generated by real life event logs 78
5.5 F1 score of process models generated by real life event logs 78
5.6 Average improvement percentage . 78
5.7 Weighted average fitness, weighted average precision, and F1 score generated

by process scenarios discovery approaches . 80

6.1 Average improvement percentage under real life event logs 97

vi

LIST OF ALGORITHMS

Page
1 Extracting Time Dependent Set of a Transition 50
2 Mining Timing Constraints . 53
3 Constructing Timing Vector . 63
4 Obtaining the number of possible scenarios k in event logs . . . 66
5 Event log partitioning . 70
6 Generating an Augmented Ordering 86
7 Identify the Maximum Similarity Distance from Aggregated Vec-

tors . 90
8 Discover process scenarios based on the maximum similarity dis-

tance and the augmented ordering 91

vii

ACKNOWLEDGMENTS

First and foremost I am extremely grateful to my thesis advisor Prof. Shangping Ren and co-
advisor Prof. Nalini Venkatasubramanian for their invaluable advice, continuous support,
and patience during my Ph.D. study. Their immense knowledge and plentiful experience
have encouraged me in all the time of my academic research and daily life. I would also like
to thank my former team members, Dr. Chunhui Guo, Dr. Zhicheng Fu, and Dr. Xiayu
Hua, for their technical support on my study. I would like to thank all the team members
from the University of California-Irvine and San Diego State University. It is their kind help
and support that have made my study and life in the USA a wonderful time. I would also
like to thank Prof. Sharad Mehrotra, Prof. Alex Nicolau, and Prof. Wei Wang for being
in my thesis committee and for their helpful suggestions and advice. I thank my wife, Mrs.
Rui Xu, for her love and support throughout my Ph.D. program. Finally, I would like to
express my gratitude to my parents, Mr. Lin Zhang and Mrs. Guiying Wei. Without their
tremendous understanding and encouragement in the past few years, it would be impossible
for me to complete my study.

Special thanks to the National Science Foundation (NSF) for the support to my research
work under grants NSF 1952247, NSF 1952225, and NSF 1929469.

viii

VITA

Zhenyu Zhang

EDUCATION

Doctor of Philosophy in Computational Science 2022
University of California, Irvine Irvine, California

San Diego State University, San Diego San Diego, California

Master of Software Engineering 2014
University of Wisconsin, La Crosse La Crosse, Wisconsin

Bachelor of Science in Computer Sciences 2012
Wuhan University Wuhan, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2021–2022
University of California, Irvine Irvine, California

Graduate Research Assistant 2017–2021
San Diego State University San Diego, California

Graduate Research Assistant 2015–2016
Illinois Institute of Technology Chicago, Illinois

TEACHING EXPERIENCE

Teaching Assistant 2020–2021
San Diego State University San Diego, California

Teaching Assistant 2016–2017
Illinois Institute of Technology Chicago, Illinois

Teaching Assistant 2013–2014
University of Wisconsin, La Crosse La Crosse, Wisconsin

ix

REFEREED JOURNAL PUBLICATIONS

Process scenario discovery from event logs based on ac-
tivity and timing information

2022

Journal of Systems Architecture

UACFinder Mining Syntactic Carriers of Unspecified
Assumptions in Medical Cyber-Physical System Design
Models

2020

ACM Transactions on Cyber-Physical Systems

A framework for supporting the development of verifi-
ably safe medical best practice guideline systems

2020

Journal of Systems Architecture

REFEREED CONFERENCE PUBLICATIONS

Using Domain Knowledge to Assist Process Scenario
Discoveries

Jun 2022

2022 IEEE 46th Annual Computers, Software, and Applications Conference

Empirical Studies of Three Commonly Used Process
Mining Algorithms

Oct 2021

2021 IEEE International Conference on Systems, Man, and Cybernetics

Improving Process Discovery Results by Filtering Out
Outliers from Event Logs with Hidden Markov Models

Sep 2021

2021 IEEE 23rd Conference on Business Informatics

Using Event Log Timing Information to Assist Process
Scenario Discoveries

Dec 2020

2020 IEEE Third International Conference on Artificial Intelligence and Knowledge
Engineering

Mining timing constraints from event logs for process
model

Jun 2020

2020 IEEE 44th Annual Computers, Software, and Applications Conference

Prevent Potential Hazards Caused by Medical Device
Time Differences in Integrated Clinical Environments

Jun 2019

2019 IEEE International Conference on Embedded Software and Systems

Reducing Patient Waiting Time for Radiotherapy
Treatments with a Genetic Algorithm

Dec 2018

2018 International Conference on Computational Science and Computational Intelli-
gence

x

IAfinder: Identifying potential implicit assumptions to
facilitate validation in medical cyber-physical system

Jun 2018

2018 55th ACM/ESDA/IEEE Design Automation Conference

Model and integrate medical resource available times
and relationships in verifiably correct executable medi-
cal best practice guideline models

Apr 2018

2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems

SOFTWARE

Timing Constraint Discovery tool
https://github.com/stevenzzy9/timingConstraintsMining.
Java algorithm that discovers timing constraints from event logs.

Process Scenarios Discovery tool
https://github.com/stevenzzy9/WastewaterTreatmentProcessDiscovery.
Java algorithm that discovers process scenarios related to the wastewater treatment pro-
cess from event logs.

xi

https://github.com/stevenzzy9/timingConstraintsMining.
https://github.com/stevenzzy9/WastewaterTreatmentProcessDiscovery.

ABSTRACT OF THE DISSERTATION

A Framework for Discovering Implicit Knowledge from Event Logs

By

Zhenyu Zhang

Doctor of Philosophy in Computational Science

University of California, Irvine, 2022

Professor Shangping Ren, Chair

Although automation has become widespread in many industries, some workplaces, such as

utility industries, still rely heavily on individuals to perform critical tasks based on their

extensive past experiences. This accumulated intellectual capital not only improves produc-

tivity and efficacy under normal conditions but more importantly, also contains knowledge

about identifying anomalies and addressing unexpected events and situations. This knowl-

edge is essential and critical to ensuring system safety and reliability, especially for industries

with aging infrastructures where anomalies are becoming more common. Unfortunately, this

knowledge is not explicitly recorded in defined guidelines, protocols, or standard workflows

but implicitly resides in the minds of skilled workers and routine event logs. As skilled work-

ers retire or leave the business, we may lose this accrued indispensable knowledge that is

critical to the industries’ productivity, reliability, and safety.

This thesis proposes a framework to discover implicit knowledge from event logs. The im-

plementation of the framework contains three phases. We first proposed an approach that

uses hidden Markov models to filter out outliers from event logs in the clean phase. Then,

in the discovery phase, we propose approaches to discover the implicit knowledge related to

timing constraints and process scenarios from event logs. For timing constraint discovery,

we have presented an approach that extends existing process mining techniques to mine and

xii

integrate timing constraints with a workflow or process model constructed by any existing

process mining algorithm. A real-life road traffic fine management process scenario is used

as a case study to investigate the effectiveness and validity of the approach. For process

scenario discovery, we present the distance-based and density-based approaches that obtain

timing information from event logs and use the information to assist process scenario dis-

coveries. A wastewater treatment process provided by a domain expert is used as a case

study to investigate the effectiveness and validity of the approach. In the incorporating

phase, we present an approach that incorporates domain knowledge to assist in discovering

process scenarios from event logs. The case studies and experiment results indicate that the

proposed implicit knowledge discovery framework can mine implicit knowledge related to

the timing constraints and process scenarios from event logs and outperform commonly used

approaches with different real-life event logs.

xiii

Chapter 1

Introduction

1.1 Background

As with many developed nations, the United States is amidst an aging workforce crisis.

According to labor force projections from the U.S. Bureau of Labor Statistics, workers aged

55 and older will not only be the fastest growing segment of the labor market in the coming

decade [66], but will also make up 25.2% of the total workforce by 2024 compared to 13.1%

in 2000 [67]. As these workers near or surpass typical retirement ages, concerns are centered

on how to prepare the workforce for the loss of decades of accumulated knowledge and skills.

Such concerns are exacerbated by the exceptional size of the workforce nearing retirement

over the next few decades; by 2024, approximately 41 million workers will be over the

age of 55, among which approximately 42% of them are in management and professional

occupations [67].

Although automation has become widespread in many industries, some workplaces, such as

utility industries, still rely heavily on individuals to perform critical tasks based on their

extensive past experiences. This accumulated intellectual capital not only improves produc-

1

tivity and efficacy under normal conditions, but more importantly, also contains knowledge

about identifying anomalies and addressing unexpected events and situations. This knowl-

edge is essential and critical to ensuring system safety and reliability, especially for industries

with aging infrastructures where anomalies are becoming more common. Unfortunately, this

knowledge is not explicitly recorded in defined guidelines, protocols, or standard workflows,

but implicitly resides in the minds of skilled workers. As skilled workers retire or leave the

business, we may lose this accrued indispensable knowledge that is critical to the industries’

productivity, reliability, and safety. For instance, the Gerdau Group, the biggest producer

of long steel operating in the Americas, encountered a situation where it risked significant

knowledge loss [44]. An experienced and senior worker was suddenly leaving the business for

health reasons, with no one who would be left within the company with the same knowledge

and skills. This worker had an implicit knowledge about a procedure -whether to turn off

the furnace during shutdowns in production. It was a long time before the other workers

concluded that it was best to keep the furnace burning at a temperature of roughly 13300F .

The reason is that it would cost more fuel to reheat the furnace after it was turned off rather

than keep it running at a lower temperature. However, before that, the workers frequently

changed the furnace’s temperature, damaging the refractory bricks and shortening the wall

life of the furnaces by 25%. The loss of implicit knowledge resulted in a loss of $25,000 per

furnace for the company. Hence, accurately capturing and retaining critical experiences and

implicit knowledge has become an urgent problem.

Over the past two decades, many process control systems have been developed in many

areas, including industrial manipulation and production, medicine, the military, and agricul-

ture [9, 21, 42, 39]. Most existing industrial process control systems maintain event logs to

understand what actually happened to a system [62]. Event logs record amounts of process

execution data, such as time information, the actual event description, the event’s severity,

the executor or process involved, or other relevant information. As a large amount of event

logs are generated, the implicit knowledge not only exists in the minds of skilled workers

2

but is also hidden in event logs. Process mining is an emerging research field that looks

at event logs to build graphical models and provides new insights to businesses that allow

them to make process-driven decisions. Process mining aims to use event data to extract

process-related information, e.g., to automatically discover a process model by observing

events recorded by some enterprise system [68]. Hence, process mining is a possible solution

for accurately capturing and retaining critical experiences and implicit knowledge.

The term ‘implicit knowledge’ was first used by chemical engineer turned scientist Michael

Polanyi in his 1958 book Personal Knowledge: Towards a Post-Critical Philosophy [54].

In this book, implicit knowledge is defined as the knowledge gained through living and

working experience, both in personal life and professional development. Implicit knowledge

is abstract, subjective, informal, and difficult to share or express. Today, implicit knowledge

is often expressed in behaviors, timing constraints, routines, practical process scenarios,

responses, etc. Discovering and retaining all types of implicit knowledge is complex and

timing-consuming. Hence, we choose timing constraints and practical process scenarios as

the focus of this thesis. The reasons are as follows: (1) the timing information can be critical

in many domains,and timing constraints need to be enforced in order to provide safe and

effective manipulation; (2) over time, the process evolves into a complicated comprehensive

system. There is a gap between the practical process, including multiple scenarios, and the

defined process. Understanding the practical process scenarios is critical to the industries’

productivity, reliability, and safety. Therefore, the thesis addresses the challenges of applying

process mining techniques to discover implicit knowledge in terms of timing constraints and

practical process scenarios from event logs.

3

1.2 Technical Challenges

Process discovery is the first step of process mining. Process discovery is focused on producing

a process model from behavior seen and captured within an event log, which means it

takes an input of an event log, applies a process mining algorithm, and then provides an

output of a process model. The resulting model can help to obtain the knowledge hidden

in event logs. The next step of process mining is conformance checking, which requires

an event log and a process model as input. Its primary goal is to observe and determine

discrepancies between the model passed in and what is actually observed in the event log [74].

Additionally, conformance checking is used to measure the performance of process discovery

algorithms and uncover models that are not properly aligned with the actual behavior in

a business environment. The last area of process mining is process enhancement, which

focuses on extending and improving an existing process model using information about the

actual processes record in an event log [74]. However, since most research efforts have been

focused on improving discovery results, the existing works in process mining research are not

adequate to directly uncover the implicit knowledge from event logs. The major technical

challenges of applying process mining techniques to discover implicit knowledge from event

logs are as follows.

Challenge I: Filtering Out Outliers from Event Logs

Many process mining algorithms are based on the assumption that event logs contain ac-

curate representations of an ideal set of processes. These ideal sets of processes imply that

the information contained within the log represents what is really happening in a given en-

vironment. However, many of these event logs might contain noisy, infrequent, missing, or

false process information that are generally classified as outliers. The presence of outliers

will lead to infrequent paths within the derived model. This causes the process model to

become cluttered and results in a model that are simply not an accurate representation of the

4

actual behavior. In order to limit these adverse effects, event logs are typically subjected to

a pre-processing phase where they are manually cleaned from outliers [69]. However, this is a

challenging and time-consuming task, with no guarantee on the effectiveness of the resulting

model, especially in the context of large event logs exhibiting complex process behavior [63].

The inability to effectively detect and filter out outliers adversely affects the quality of the

discovered model. In particular, the discovered model’s precision can be greatly affected.

Hence, we need to develop an approach to automatically and efficiently filter out outliers

from event logs.

Challenge II: Mining Timing Constraints from Event Logs

Over the last decades, several research groups have been working on techniques for automated

process discovery based on event logs. The goal of many process mining algorithms, such as

Alpha algorithm [70], region-based approaches [60, 13], heuristic approach [80], to name a

few, is to construct a process model from a set of event logs. However, these algorithms focus

only on the functional aspects of a process, the timing information as to when an action must

take place is neglected. The timing constraints can be one critical type of implicit knowledge

in many domains. For instance, a silicon wafer undergoes a fabrication process by entering

multiple production steps, where each step is performed by different, highly sophisticated

tools. The skilled workers follow timing constraints at the wet etch and furnace process

steps in order to prevent the likelihood of oxidation and contamination. Failing to do so,

risks contact failures, low and unstable yields, the consequence of which is either rework

or the wafers must be scrapped. Discovering timing constraints and following them has

a considerable impact not only on a fab production performance but also its profitability.

However, process models uncovered by most existing process mining techniques only reveal

the underline structures of an actual process, and the timing constraints are not reflected

in the process models. Therefore, we need to provide an effective way to mine the timing

constraints from event logs.

5

Challenge III: Discovering Process Scenarios from Event Logs

Like the human body, an industrial control system can be broken down into a series of

process scenarios, each performed by functionally related components working together to

form a complex whole. A layperson may walk onto a plant floor and see complete systems

at work, but the skilled worker takes a step closer to see the different process scenarios

that make up the big picture, evaluates how each fits into the process, and addresses the

unique requirements of the application. This skilled worker’s ability to accurately distinguish

between different process scenarios is essential in the industry.

Despite the demonstrated usefulness of process discovery algorithms, they face challenges in

an environment where different scenarios exist [32, 15, 77, 35]. When different scenarios are

grouped into one process model, the accuracy of the model representing reality reduces, but,

more importantly, the complexity of the model becomes incomprehensible. This results in

it being difficult, if not impossible, to achieve the goal of better understanding, monitoring

and improving the current processes. Hence, we need to discover an approach to assist in

discovering process scenarios from event logs.

Challenge IV: Using Domain Knowledge to Assist Implicit Knowledge Discover-

ies

While process scenarios discovery algorithms have proven to be valuable in multiple contexts,

the techniques’ largest drawback is most algorithms achieve this by solely using an event log

without allowing the domain expert to influence the discovery in any way. However, the

domain expert has particular domain expertise that should be exploited to create better

process models in model fitness and precision criteria. Understanding our data within the

context of the problem we are trying to solve is crucial before we move on to discovering.

Domain knowledge can help us understand how our data are collected and hence, the ap-

propriate methods for preprocessing. With domain knowledge, we will also have guidance

6

on what mainstream behaviors, representing the primary process scenario, might be helpful

for implicit knowledge discoveries. Suppose we try to uncover the practical process scenarios

from event logs related to wastewater treatment processes. A domain expert might articulate

that when discovering the process scenarios in the wasterwater treatment process, we need

to correctly identify the mainstream behaviors related to the liquid treatment process by

microfiltration membrane bioreactors. Based on the domain knowledge, we could get better

process models in model fitness and precision criteria. Hence, we need to incorporate domain

knowledge to assist in discovering implicit knowledge from event logs.

This thesis proposes a framework to address these challenges in discovering implicit knowl-

edge from event logs. The following section provides a high-level overview of the framework’s

design and explains how these challenges are addressed.

1.3 Framework Architecture

In order to address the four technical challenges presented in Chapter 1.2, the thesis designs a

framework to discover implicit knowledge from event logs. The architecture of the framework

is depicted in the following Figure 1.1. The implementation of the framework contains three

phases. A brief introduction of each phase is as follows.

Cleaning Phase: This phase takes the raw event logs as the input, and the clean event logs

are the output. It contains an automatic process that uses hidden Markov models to filter

out outliers from event logs prior to applying process discovery algorithms to improve process

discovery results. The approach has been implemented on top of the pm4py Framework [7]

We then analyze if filtering out outliers by the proposed approach can improve the quality of

the implicit knowledge in the form of process models. Through the analysis, we find that our

approach adequately identifies and removes outliers, leading to an increase in the process

7

Figure 1.1: The architecture of the framework for discovering implicit knowledge from event
logs

discovery results. We also evaluate the proposed approach by using the combination of

two commonly used filtering approaches: the Matrix Filter approach [58] and the Anomaly

Free Automation approach [20]. The evaluation results show that the proposed method

outperforms two commonly used filtering approaches for both artificial and real-life event

logs.

Discovery Phase: For this phase, we propose approaches to discover the implicit knowl-

edge related to timing constraints and process scenarios from event logs. This phase takes

the clean event logs as the input. The implicit knowledge related to timing constraints or

process scenarios is output represented by process models.

For timing constraints discovery, we have presented an approach that extends existing process

8

mining techniques to mine and integrate timing constraints with process models. A real-

life road traffic fine management process scenario is used as a case study to investigate the

effectiveness and validity of the approach. The evaluation results show that the algorithm is

able to discover the timing constraints of an actual workflow process from event logs.

For process scenarios discovery, we propose a distance-based approach and a density-based

approach, both of which obtain temporal information from event logs and use this informa-

tion to assist process scenario discoveries. A real wastewater treatment process provided by

a domain expert is used as a case study to investigate the effectiveness and validity of these

two approaches. We also use real-life event logs to compare the performance of the proposed

approaches for process scenario discoveries with the commonly used k-means clustering ap-

proach. The experiment data shows that these two proposed approaches are able to discover

the process scenarios from event logs.

Incorporating Phase: In the incorporating phase, we present an approach incorporating

domain knowledge to discover implicit knowledge related to process scenarios from event logs.

The algorithm is implemented based on the open-source process mining framework pm4py.

We examine the effectiveness of the proposed approach for process scenario discovery in

the wastewater treatment domain. And then, we evaluate whether incorporating domain

knowledge can improve the process scenario discovery performance. The experiment data

show that the proposed approach is able to discover the process scenarios from event logs

by incorporating domain knowledge, and the process models obtained with the proposed

approach have higher performance.

In summary, the successful implementation addresses all the challenges identified above.

More specifically, Challenge I is addressed by the Cleaning Phase. Challenge II and Challenge

III are addressed by the Discovery Phase. Challenge IV is addressed by the Incorporating

Phase.

9

1.4 Thesis Outline

Chapter 3 presents an approach that uses Hidden Markov Models to filter out outliers from

event logs before applying any process discovery algorithms. In Chapter 4, we present

an approach that extends existing process mining techniques to mine and integrate timing

constraints with a workflow or process model constructed by any existing process mining

algorithm. In Chapter 5, we discover distance-based and density-based approaches that use

timing information to assist in discovering process scenarios from event logs. In Chapter 6,

we propose an approach that incorporates domain knowledge to assist in discovering process

scenarios from event logs. Every technical chapter, i.e., Chapters 3-6, contains sections to

discuss the background and related work and illustrate the experiments, respectively. We

conclude the thesis in Chapter 7 with a summary of the work and open challenges.

10

Chapter 2

Definitions and Notations

Discovering implicit knowledge is impossible without proper data. Hence, we formalize

notations and definitions related to event logs used in this thesis. Then, preliminaries are

presented, including various process modeling notations and process discovery techniques.

2.1 Event Logs

The starting point of implicit knowledge discovery is event logs which record information

about activities as they take place. An event log is a file containing recorded business or

process information that gets captured over a period of time. The standard file type for an

event log is an XES file. This file type has been approved as the standard by IEEE, but

many event logs are also composed of comma-separated value files. In this part, we will use

a simple event log provided by the open-source process mining framework for illustrative

purposes. In Figure 2.1, we see the XES formatted event log, which distinguishes between

events and traces via data identifiers, i.e., < event > and < \event >. Notice that there

is metadata at the top of the log before the first instance of a trace. This data describes

11

the attribute mappings that are observed in the event and trace data. Additionally, this

example does not have any case-level attributes, only event-level. To make this file more

understandable, we convert the values into a table view as shown in Table 2.1. Each row in

this table represents an event linked to a trace via the case id attribute in the first column.

For the formal definitions, we adopt definitions similar to the ones given in [68]. In particular,

for a given activity set Ω, an event entry e in an event log records an activity happening

within the operation of a process. An event trace σ is a finite sequence of event entries

ordered by their occurrence time. An event log log consists of a set of event traces. The

formal definitions of an event entry, an event trace, and an event log are given below.

Definition 1 (Event Entry (e)). An event entry e is a tuple (α, τ), i.e., e = (α, τ), where α

is activity’s name and τ is the timestamp of activity α. The sets of all event activity names,

activity timestamps, and events in a given event log are denoted as Ω, T and E, respectively.

Definition 2 (Attribute Function (Fα and Fτ)). The attribution functions are defined to

obtain an event entry’s activity name and time stamps, respectively, i.e., Fα : E 7→ Ω and

Fτ : E 7→ T .

Definition 3 (Event Trace (σ)). An event trace σ is a finite sequence of event entries

e1, · · · , en, i.e., σ = [e1, · · · , en], where Fτ (ei) < Fτ (ei+1) and 1 ≤ i ≤ n.

Definition 4 (Event Log (log)). An event log log is a set of event traces, i.e., log =

{σ1, · · · , σm}. The number of traces in the event log log is denoted as | log |.

For the Table 2.1. This event log log has five traces, i.e., log = {σ1, σ2, σ3, σ4, σ5, σ6} and

| log | = 6. The log also shows that for trace σ1, there are five event entries, i.e., σ1 =

[e1, e2, e3, e4, e5]. It is worth pointing out that the ordering of event entries within a trace

is important, while the ordering of event entries among different traces is of no significance.

The activity name and its timestamp of an event entry in an event trace are obtained by

12

Figure 2.1: View of the XES event log file which displays the first trace observed in the log

13

function Fα and Fτ , respectively. For instance, the activity name of e2 in trace σ1 is Fα(e2) =

examinethoroughly, and its timestamp is Fτ (e2) = “2010− 12− 31 10 : 06 : 00 + 01 : 00”.

2.2 Process Models

The plethora of process modeling notations available today illustrates the importance of pro-

cess modes. Some industries may use only informal process models to structure discussions

and document process-related knowledge. As business processes have become more complex,

heavily rely on process control systems, and may span multiple organizations, process mod-

eling has become of the utmost importance. Process models assist in managing complexity

by providing insight and documenting knowledge related to procedures, timing constraints,

resource management, etc. Today, most process models are made by hand and are not based

on rigorous analysis of existing process data. Hence, this thesis focuses on the process model

that can be generated by process mining techniques. This section presents preliminaries

that will be used in later chapters. In particular, various process modeling definitions and

notations are introduced, and some analysis techniques are reviewed.

Petri nets are the oldest and best investigated process modeling language allowing for the

modeling of concurrency. Although the graphical notation is intuitive and simple, Petri nets

are executable and many analysis techniques can be used to analyze them [41, 26, 87]. A

Petri net is a bipartite graph consisting of places and transitions. The network structure is

static, but, governed by the firing rule, tokens can flow through the network. The state of

a Petri net is determined by the distribution of tokens over places and is referred to as its

marking. Hence, we choose the Petri net as representation for implicit knowledge related to

the workflows and process scenarios.

Definition 5 (Petri net [26]). A Petri net N is a tuple (P, T, F), where

14

case id activity timestamp costs resource
3 register request 2010-12-30 14:32:00+01:00 50 Pete
3 examine casually 2010-12-30 15:06:00+01:00 400 Mike
3 check ticket 2010-12-30 16:34:00+01:00 100 Ellen
3 decide 2011-01-06 09:18:00+01:00 200 Sara
3 reinitiate request 2011-01-06 12:18:00+01:00 200 Sara
3 examine thoroughly 2011-01-06 13:06:00+01:00 400 Sean
3 check ticket 2011-01-08 11:43:00+01:00 100 Pete
3 decide 2011-01-09 09:55:00+01:00 200 Sara
3 pay compensation 2011-01-15 10:45:00+01:00 200 Ellen
2 register request 2010-12-30 11:32:00+01:00 50 Mike
2 check ticket 2010-12-30 12:12:00+01:00 100 Mike
2 examine casually 2010-12-30 14:16:00+01:00 400 Sean
2 decide 2011-01-05 11:22:00+01:00 200 Sara
2 pay compensation 2011-01-08 12:05:00+01:00 200 Ellen
1 register request 2010-12-30 11:02:00+01:00 50 Pete
1 examine thoroughly 2010-12-31 10:06:00+01:00 400 Sue
1 check ticket 2011-01-05 15:12:00+01:00 100 Mike
1 decide 2011-01-06 11:18:00+01:00 200 Sara
1 reject request 2011-01-07 14:24:00+01:00 200 Pete
6 register request 2011-01-06 15:02:00+01:00 50 Mike
6 examine casually 2011-01-06 16:06:00+01:00 400 Ellen
6 check ticket 2011-01-07 16:22:00+01:00 100 Mike
6 decide 2011-01-07 16:52:00+01:00 200 Sara
6 pay compensation 2011-01-16 11:47:00+01:00 200 Mike
5 register request 2011-01-06 09:02:00+01:00 50 Ellen
5 examine casually 2011-01-07 10:16:00+01:00 400 Mike
5 check ticket 2011-01-08 11:22:00+01:00 100 Pete
5 decide 2011-01-10 13:28:00+01:00 200 Sara
5 reinitiate request 2011-01-11 16:18:00+01:00 200 Sara
5 check ticket 2011-01-14 14:33:00+01:00 100 Ellen
5 examine casually 2011-01-16 15:50:00+01:00 400 Mike
5 decide 2011-01-19 11:18:00+01:00 200 Sara
5 reinitiate request 2011-01-20 12:48:00+01:00 200 Sara
5 examine casually 2011-01-21 09:06:00+01:00 400 Sue
5 check ticket 2011-01-21 11:34:00+01:00 100 Pete
5 decide 2011-01-23 13:12:00+01:00 200 Sara
5 reject request 2011-01-24 14:56:00+01:00 200 Mike
4 register request 2011-01-06 15:02:00+01:00 50 Pete
4 check ticket 2011-01-07 12:06:00+01:00 100 Mike
4 examine thoroughly 2011-01-08 14:43:00+01:00 400 Sean
4 decide 2011-01-09 12:02:00+01:00 200 Sara
4 reject request 2011-01-12 15:44:00+01:00 200 Ellen

Table 2.1: A visual representation of the pm4py example event log
15

• P is a finite set of places;

• T is a finite set of transitions, P ∩ T = ∅; and

• F ⊆ (P × T) ∪ (T × P) is a set of directed arcs.

Notation 1 (•t). Given a Petri net N = (P, T, F) and a transition t ∈ T , we use notation •t

to represent a set of places immediately before transition t, i.e., •t = {p|p ∈ P ∧ (p, t) ∈ F}.

Notation 2 (t•). Given a Petri net N = (P, T, F) and a transition t ∈ T , we use notation

t• to represent a set of places immediately after transition t, i.e., t• = {p|p ∈ P ∧(t, p) ∈ F}.

The state of a Petri net N = (P, T, F) is represented by its markings which is a distribution

of tokens on places P . A marking of N is defined by a mapping function m : P → N, where

N is the natural number set. A place p is marked by a marking m if m(p) > 0.

The execution semantics of a Petri net N = (P, T, F) are defined by transition firings which

specify the enabling conditions and the marking transformation of the Petri net. A transition

t ∈ T is enabled by a marking m if m marks all places in its pre-set •t, i.e.,

∀p ∈ •t : m(p) > 0. (2.1)

The firing of an enabled transition t transforms the marking m to m′ as below:

m′(p) =


m(p)− 1 if p ∈ •t ∧ p ̸∈ t•

m(p) + 1 if p ̸∈ •t ∧ p ∈ t•

m(p) otherwise

(2.2)

We use the Petri net shown in Figure 2.2 to explain the above concepts. In the graphical rep-

resentation, places, transitions, arcs, and tokens are represented by circles, squares, arrows,

and black dots, respectively. The Petri net N shown in Figure 2.2 is defined as (P, T, F),

16

where P = {p1, p2, p3, p4}, T = {t1, t2}, and F = {(t1, p1), (p1, t2), (t2, p2),

(t2, p3), (t2, p4), (p2, t1)}. The current marking is m = {(p1, 3), (p2, 0), (p3, 0), (p1, 1)}. Based

on formula (2.1), the transition t2 is enabled by the marking m. After the firing of t2,

according to formula (2.2), the new marking becomes m′ = {(p1, 2), (p2, 1), (p3, 1), (p1, 2)}.

Figure 2.2: Simple Petri net example with two transitions and four places

A good reason for using Petri nets to model workflows is that Petri nets treat states and

events on an equal footing [72]. They are event-based and state-based at the same time.

Their formal analysis methods allow extraction and calculations on either of these aspects

in isolation or in combination where appropriate. This results in a subclass of the Petri net

named a workflow net with three further constraints: (1) there is one and only one input

place where a process starts; and (2) there is one and only one output place where the process

ends; and (3) all elements are on a path from the input place to the output place. The formal

definition is given below.

Definition 6 (Workflow net [73]). A net N = (P, T, F) is a workflow net, if it is a Petri

net and satisfies the following constraints:

• There is one and only one input place i, i.e.

1. ∃i ∈ P , s.t. ∀t ∈ T, (t, i) /∈ F ,

2. ∃i1, i2 ∈ P , (∀t ∈ T, (t, i1) /∈ F ∧ (t, i2) /∈ F)→ i1 = i2.

• There is one and only one output place o, i.e.

1. ∃o ∈ P , s.t. ∀t ∈ T, (o, t) /∈ F ,

17

2. ∃o1, o2 ∈ P , (∀t ∈ T, (o1, t) /∈ F ∧ (o2, t) /∈ F)→ o1 = o2

• For a pseudo transition ξ /∈ T , the net (P, T ∪ {ξ}, F ∪ {((o, ξ), (ξ, i)}) is a strongly

connected net.

Timing constraints in process control system is crucial in determining and controlling the

life cycle of activities. Most integration of timing constraints with process models involve

the assignment of deadlines and other external temporal and synchronisation constraints, the

calculation of the overall process duration and the checking of timing inconsistencies [27, 50].

However, in our work, we want to determine when the task is enabled, when it is executed

and for how long the execution will last, not a timing constraint on the overall process.

Hence, we choose time Petri netas representation for implicit knowledge related to the timing

constraints [47]. The time Petri nethas dealt with the effect of temporal constraints at every

activity and how these constraints affect the liveness and safety aspects of the entire process.

More specifically, the time Petri netextends Petri net by specifying a time interval for every

transition to constrain firing duration. The definition is as follows.

Definition 7 (Time Petri Net [47]). A time Petri net N is a tuple (P, T, F, I) such that

(P, T, F) is a Petri net and I associates each transition t ∈ T with a static firing time

interval, i.e., I : T → {[a, b] ∈ R∗ × (R∗ ∪ +∞)|a ≤ b}, where R∗ is the set of all non-

negative real numbers.

Given a time Petri net N = (P, T, F, I), the firing time interval I(t) = [a, b] for transition

t ∈ T specifies the earliest firing time a and the latest firing time b after the transition t is

enabled. For instance, suppose the transition t is enabled at time instance τ , t can only be

fired during time interval [τ + a, τ + b]. If the transition t is not fired during [τ + a, τ + b],

then t becomes disabled.

If a transition t’s firing time interval is I(t) = [0,+∞], it indicates that t can be fired

immediately after enabling and never becomes disabled if the N ’s state does not change.

18

Hence, if ∀t ∈ T : I(t) = [0,+∞], the given time Petri net N = (P, T, F, I) has equivalent

execution semantics with Petri net N ′ = (P, T, F).

Recently, the Business Process Modeling Notation (BPMN) has become one of the most

widely used languages to model processes [84]. The BPMN is supported by many tool ven-

dors used in many industries and has been standardized by the OMG [51]. Most existing

standard guidelines in utility industries are represented by BPMN models, such as wastewa-

ter treatment process model [52], air traffic process control systems [86]. Since the BPMN is

to support process management by providing a notation that is intuitive to users, domain ex-

perts from different disciplines can easily understand and produce the BPMN model. Hence,

in this thesis,we choose the BPMN model as the representation of the domain knowledge.

Figure 2.3: Process model using the Alpha Algorithm from data in Table 2.1.

2.3 Process Discovery Algorithms

Process Discovery describes the data-based visualization of a process using process mining

discovery algorithms. In the last two decades, several process discovery algorithms have been

19

Figure 2.4: Process model using the Heuristic Algorithm from data in Table 2.1.

Figure 2.5: Process model using the Inductive Algorithm from data in Table 2.1.

20

proposed [23, 24, 36, 46, 70, 80, 82, 83]. These algorithms are based upon or are extensions

of three commonly used process mining algorithms: the α algorithm [70], the Heuristic algo-

rithm [80], and the Inductive algorithm [46]. The input of these process discovery algorithms

is an event log, and the output is a process model. We will briefly introduce these three

process discovery algorithms.

The Alpha algorithm was one of the first process discovery algorithms [71]. The algorithm

first scans the event log for particular patterns. These patterns are called log-based ordering

relationships and are used to discover dependency patterns between events in the log. These

patterns are represented in a footprint matrix which describes the constraints and relations

each event has with respect to other observed events. The Figure 2.3 shows the results

of the Alpha algorithm using the log from Table 2.1. The resulting Petri net is simple to

understand and requires much less effort to analyze compared to the table view. However,

the algorithm was not a particularly good tool for mining process scenarios because it was

too sensitive to noise and outliers.

The Heuristic algorithm [80] is a Frequency-based approach that takes frequencies of events

and sequences into account and constructs process models similar to causal nets. The Heuris-

tic miner intends to focus on showing the mainstream behavior, which allows it to be more

robust to noise. Additionally, this algorithm has a few key advantages over the Alpha miner.

It takes frequency into account, which allows it to filter out exceptional or noisy behavior,

it’s able to detect short loops, and it allows a miner to skip single event activities. Using

the same event log from Table 2.1, we construct a process model discovered by the Heuristic

algorithm. The resulting process model is shown in Figure 2.4.

In recent years, the Inductive Miner and its variants have dominated process discovery ap-

plications. The Inductive Miner allows for many alternatives and variants, is excellent at

handling infrequent behavior, and can deal with most large models. The most significant

benefit of the inductive miner is that it results in a process tree that ensures formal cor-

21

rectness and avoids deadlocks, allowing for a model that is sound by construction [74, 45].

According to the divide and conquer strategy, the Inductive Miner works by repeatedly find-

ing a split within a trace in the event log, detecting the operator that describes the split, and

then further examining the resulting sublogs. This recursive nature continues until we have

formed sublogs corresponding to the execution of a single activity [74]. To determine the

order of splitting, the Inductive miner outlines rules for making "cuts” based on exclusive-

choice cuts, parallel cuts, redo-loop cuts, and process tree operators. Figure 2.5 shows the

results of applying the Inductive Miner [45] on the event log shown in Table 2.1.

22

Chapter 3

Event Logs Cleaning

3.1 Background and Related Work

Most process mining algorithms mentioned in Chapter 2.3 are based on the assumption that

an event log accurately represents information about a working process as it takes place.

Unfortunately, many real-life process event logs often contain noise and infrequent behavior.

Noise refers to inserting erroneous activities in the log, not logging some activities that have

occurred, or reporting some activities with an out-of-order time sequence [64, 65].

The presence of noise can result from data entry problems, faulty data collection instruments,

data transmission, streaming problems, or other technical limitations. However, infrequent

behavior refers to a behavior that only occurs in exceptional case within the process. Without

having business or domain knowledge, distinguishing between noise and infrequent behavior

is a challenging task [59]. Therefore, we consider this as a separate research question and do

not cover such cases in this thesis. As such, we consider both noise and infrequent behavior

to be outliers.

23

The presence of outliers will lead to infrequent paths within the derived model. This causes

the process model to become cluttered and results in a model that is simply not an accurate

representation of the actual behavior. In order to limit these adverse effects, event logs are

typically subjected to a pre-processing phase where they are manually cleaned from outliers

[69]. However, this is a challenging and time-consuming task, with no guarantee on the

effectiveness of the resulting model, especially in the context of large event logs exhibiting

complex process behavior [63].

The inability to effectively detect and filter out outliers adversely affects the quality of the

discovered model. In particular, the discovered model’s precision can be greatly affected. A

frequently used performance metric is precision which shows the degree to which a model

allows for unobserved behavior in the log. In some cases, low levels of outliers will have a

detrimental effect on the quality of the models produced by various discovery algorithms.

The Heuristics Miner [80], Fodina [76], and the Inductive Miner [14] algorithms claim to

have noise-tolerant capabilities. However, they result in low-quality models in the presence

of low-levels of outliers. For instance, the Heuristics Miner can have a 49% drop in precision

when the amount of outliers corresponds to just 2% of the total log size [20].

To address these concerns, researchers within the process mining community have proposed

some approaches. The ProM framework offers several plugins for filtering anomalous data.

These filtering methods are based on activity frequencies/positions, specific event attributes,

and prefix-based rules, i.e., whether a trace is a prefix of another trace in the given event log,

etc. However, these plugins require user input and domain knowledge. As a result, several

studies have leveraged various methods to remove the so-called outliers from event logs before

implementing process discovery algorithms. Some of these works require a reference model

to replay process instances and filter out outliers. However, these methods are not often

applicable due to the unavailability of reference models.

On the other hand, several studies perform filtering based on sequence mining algorithms.

24

Some of these generic methods are based on creating data models to represent normal behav-

ior. The constructed models are then used for filtering out anomalous traces. An approach of

this type is proposed in [20], which creates an abstraction of the observed behaviors based on

event transitions using an Anomaly-Free Automaton (AFA). Subsequently, this algorithm

removes the infrequent event transitions from the constructed automaton, and considers

non-replayable log traces on the so-called automaton as outlier traces. Although showing

improvement in performance measures, this method cannot take incomplete traces or the

ones with missing events into account.

Figure 3.1: Workflow of using Hidden Markov Model to filtering out outliers from event logs

In [58], the authors propose a method for computing the occurrence likelihood of particular

activities based on their preceding sequence of activities. In this method, an event with a

likelihood lower than a pre-defined threshold is considered an outlier. Consequently, using

trace-level filtering, the corresponding trace is opted out. The filtering method proposed

in [30] yields an improvement upon the latter method by repairing traces that contain outlier

event(s) instead of totally removing them. Outliers in this study are identified based on

25

context frequency in traces. A drawback of this method is the addition of unreal activities

to the event log through the repairing process.

All the algorithms mentioned above, based on direct event relationships, ignore the existence

of parallel activities and long-term dependencies in the traces. In [58], the sequence length

can be increased, but it increases the complexity of this method. Also, long-term relations

cannot be identified in the proposed AFA algorithm. To address these issues and capture

long term flow relationships between activities, [29] proposes a filtering technique based

on sequential patterns and rules. e.g., whether a particular event is followed by another

one somewhere in the trace or not. A limitation of this method is that it disregards the

directly following relations and merely considers indirectly following relations. Therefore,

this algorithm might fail to capture some outlier behaviors.

In this Chapter, we present an approach that uses a statistical model of sequential data, the

hidden Markov model, to filter out outliers from event logs prior to applying any process

discovery algorithms. Below we provide an outline of the approach, and an overview of the

four steps required is shown in Figure. 3.1. First, we obtain the mainstream process model by

applying an existing process discovery algorithm on process mainstream behaviors across the

entire event log. For a given event log, the process mainstream behaviors imply either a set

of frequently occurring event traces or a set of event traces that cover all of the frequently

occurring activities. Next, we replay the original event log using the mainstream process

model and obtain a mainstream sublog. The mainstream sublog shows us where the event

traces fit within the mainstream process model. For the third step, we use the mainstream

process model and the mainstream sublog to construct a hidden Markov model. Based on

the hidden Markov model , we calculate the probability of the occurrence of each event trace,

which is recorded in the original event log but not in the mainstream sublog, and compare

it with a user-defined threshold. We define the event trace as an outlier if the probability of

the occurrence of an event trace derived from the hidden Markov model is lower than the

26

threshold. Finally, we remove the outliers from the original event logs to improve process

discovery results.

The approach has been implemented on top of the pm4py Framework [7], and is evaluated

by using the combination of two commonly used filtering approaches: the Matrix Filter

approach [58] and the Anomaly Free Automation approach [20]. We measure the effectiveness

of the proposed approach when using artificial and real-life event logs . The results of our

experiments show that our approach adequately identifies and removes outliers, leading to

an increase in the process discovery results. We measure these quality metrics in terms

of fitness, precision, and F1-score. Additionally, we compare our process discovery results

under different model complexity levels against the commonly used filtering approaches in

terms of behavior recall, behavior precision, structural recall, and structural precision. The

results of these experiments show that our approach outperforms two commonly used filtering

approaches, namely the Matrix Filter approach and the Anomaly Free Automation approach.

This Chapter is organized as follows: we develop an approach to identify mainstream be-

haviors of the event log in Chapter 3.2. Chapter 3.3 presents the proposed approach to

construct the hidden Markov model to filter out outliers from event logs. We evaluate the

proposed outlier filtering technique in terms of four criteria mentioned above using artificial

and real-life even logs and discuss our findings in Chapter 3.4.

3.2 Identify Mainstream Behaviors in Event Logs Based

on Frequency-based Approaches

Now, we present a frequency-based approach to obtain the mainstream process model and

the mainstream sublog for representing the primary process behaviors across the entire event

log. Given an event log, the process mainstream behaviors imply either a set of event traces

27

that occur frequently or a set of event traces that cover all of the frequently occurring

activities. Our approach consists of three steps: (1) selecting a set of event traces based on

frequency-based approaches; (2) applying an existing process mining algorithm on the set

of event traces selected from (1) to obtain the mainstream process model; (3) obtaining the

mainstream sublog by replaying the original event log on the mainstream process model.

To obtain the mainstream process model and the mainstream sublog that represents the

mainstream process behaviors across a given event log, we convert the event log to the

grouped event log. Before we give the grouped event log formal definition, we first introduce

the distinct activity sequence.

Definition 8 (Distinct Activity Sequence). Given an event log log with an activity set

Ω, the distinct activity sequence I is a finite sequence of activities [t1, . . . , tn] satisfying

∃σ ∈ log, |σ| = |I| ∧ (∀0 < i < |σ|, act(σi) = I(i))

For an illustrative purpose, we consider a simplified event log as shown in Table 3.1, the

trace σ1 is [e1, e2, e3, e4] where e1 = (A, ”08 : 15”), e2 = (B, ”10 : 24”), e3 = (C, ”10 : 25”),

e4 = (D, ”13 : 19”). The corresponding distinct activity sequence I1 is [A,B,C,D]

Definition 9 (Grouped Event Log). Given an event log log, the grouped event log G cor-

responding to log is a set of distinct activity sequences {Ii} satisfying ∃I1, I2 ∈ G, (|I1| =

|I2| ∧ ∀0 < n < |I1|, I1(n) = I2(n)) → I1 = I2. The superscript n of a distinct activity

sequence indicates the number of corresponding event traces in the log. Labeling function

supp : I 7→ N is used to get the superscript of the distinct activity sequences.

Consider the event log log in Table 3.1, for trace 1, 3, and 6. The corresponding dis-

tinct activity sequence for these traces is [A,B,C,D]. For trace 2 and trace 4, the cor-

responding distinct activity sequence is [A,C,B,D]. For the distinct activity sequence

[A,E,D], only one correspond event trace exists. Hence, the grouped event log G is

{[A,B,C,D]3, [A,C,B,D]2, [A,E,D]}. The number of corresponding event traces has a

28

supp([A,B,C,D]) = 3. Note that, if the superscript n equals 1, we omit it for simplicity.

Using this representation of an event log, we illustrate the steps to obtain the mainstream

process model and the mainstream sublog for representing the process mainstream behaviors

in the log.

Trace Identifier Activity Timestamp
Trace 1 A 08:15
Trace 2 A 08:24
Trace 3 A 09:30
Trace 1 B 10:24
Trace 3 B 10:24
Trace 2 C 10:26
Trace 1 C 10:25
Trace 4 A 11:45
Trace 2 B 11:46
Trace 2 D 12:23
Trace 5 A 13:14
Trace 4 C 13:17
Trace 1 D 13:19
Trace 6 A 13:39
Trace 3 C 14:09
Trace 6 B 14:19
Trace 3 D 14:29
Trace 4 B 14:43
Trace 5 E 15:22
Trace 6 C 15:29
Trace 5 D 15:45
Trace 4 D 16:10
Trace 6 D 16:43

Table 3.1: Example of event logs containing five activities and six event traces

In the first step, we use three different strategies to select the event traces to represent

the following mainstream behaviors: 1.) frequent event traces, 2.) frequent activities, or

3.) a combination of both from the event log. For the frequent event traces, the event

traces are selected from an event log based on the top xth frequency of the distinct activity

sequences in the grouped event log, where x is user-defined. For instance, assuming that x

equals two, the distinct activity sequences are the two most frequently occurring traces in

29

G: [A,B,C,D], [A,C,B,D] and the corresponding set of event traces is {σ1, σ2, σ3, σ4, σ6}.

For the frequent activities, we first calculate the frequency of each activity in the grouped

event log. Then we obtain a set of frequent activities whose frequency is larger than a user-

defined threshold. The event traces that are selected from the event log are based on the

top frequencies of the distinct activity sequences that cover the frequent activities set. For

instance, the frequencies of activities A,B,C, and D in the G are 3/11, 2/11, 2/11, 3/11,

and 1/11 respectively. Assuming the threshold is 2, the set of frequent activities is {A,D}.

The corresponding frequent distinct activity sequences, which cover the frequent activities

set, are [A,B,C,D] and the corresponding event traces in the log are {σ1, σ3, σ6}. For the

combination of frequent event traces and activities, we first pick up the event traces based

on frequent activities. Then, from the remaining event traces, we select event traces based

on the frequent event traces.

For the second step, we apply an existing process discovery algorithm to the event traces

that are derived from the first step to obtain the mainstream process model. Finally, for

event traces in the original event log, we identify whether an event trace is replayable defined

below on the mainstream process model . We refer the set of replayable event traces as the

mainstream sublog.

Definition 10 (Replayable). Given a workflow net N = (P, T, F) and an event trace σ =

[e1, . . . , en], the σ is replayable on the N that satisfies ∀j, 1 ≤ j ≤ n, (N,mstart)
act(e1)−−−−→

. . .
act(ej)−−−−→ . . .

act(en)−−−−→ (N,mend), where marking mstart = (i, 1), and marking mend = (o, 1).

Figure 3.2: Mainstream process model corresponding to top frequency event traces

We use the following example to show how the mainstream sublog is obtained. Consider the

event log log, and a mainstream process model N = (P, T, F) shown in Figure 3.2 which is

30

derived by applying an inductive miner algorithm [38] on the top two most frequent event

traces. From the process model that is constructed by the inductive miner algorithm, there

are activities (which are represented as rectangles) and invisible activities (which are repre-

sented as the black rectangles, such as ϵ1 and ϵ2) in Figure 3.2. The invisible activities and

circles in the process model are only for routing purposes. These components are produced

by process mining algorithms, but are not recorded in event logs.

For the event trace σ1 shown in Table 3.1, the activity sequence is [A,B,C,D]. The initial

marking of the mainstream process model N = (P, T, F) is {(i, 1)}. According to formula 2.2,

there is a firing sequence of transition [A,B,C,D] in the process model, i.e., (N, {(i, 1)}) A−→

(N, {(P1, 1)})
ϵ1−→ (N, {(P2, 1), (P3, 1)})

B−→ (N, {(P3, 1), (P4, 1)})
C−→ (N, {(P4, 1), (P5, 1)})

ϵ2−→

(N, {(P6, 1)})
D−→ (N, {(o, 1)}). Based on definition 10, the event trace σ1 is replayable on the

N . Similarly, σ2, σ3, σ4, and σ6 are replayable on the mainstream process model. However,

σ5 is not replayable, since there is no firing sequence of transitions in the process model N .

Hence, the mainstream sublog is {σ1, σ2, σ3, σ4, σ6}.

Figure 3.3: Mainstream process model corresponding the mainstream sublog

31

3.3 Construct Hidden Markov Models to Filter Out Out-

liers in Event Logs

In this Chapter, we first briefly introduce the hidden Markov Model definition. And then

we present an approach to apply the hidden Markov model derived from the mainstream

sublog and the mainstream process model to filter out outliers within the event logs. In

particular, the first step of our approach is to construct a hidden Markov model based on

the mainstream process model and the mainstream sublog. The second step is to apply the

obtained hidden Markov model to identify the outliers and remove them from the event log.

A hidden Markov Model is an extension of a discrete Markov process, which is a combination

of two probability distribution processes wherein one of them is hidden. A hidden process can

only be determined through another process that produces a sequence of observations [53].

Each observation depends on the states in a hidden process. The hidden Markov model can

also be interpreted as Markov model wherein, its proper states are not directly observed [57].

The hidden Markov model is defined as follows.

Definition 11 (Hidden Markov Model [57]). A Hidden Markov Model λ is a tuple (Φ,O,A,B, π),

where:

• Φ is a finite set of hidden states;

• O is a finite set of observations;

• A: (Φ×Φ)→ [0, 1] is a hidden state transition matrix, such that ∀s1∈Φ
∑

s2∈Φ A(s1, s2) =

1;

• B: (Φ×O)→ [0, 1] are observation probabilities, such that ∀s∈Φ
∑

o∈O B(s, o) = 1;

• π: Φ→ [0, 1] is the initial state distribution, such that
∑

s∈Φ π(s) = 1.

32

From the above definition, we know that all of the observation elements could be produced

in each of the hidden states. The probability of an observation o ∈ O in a hidden state s ∈ Φ

is denoted by the observation probability B(s, o). Note that, for a given event log log with

an activity set Ω, we want to use a hidden Markov model to represent process mainstream

behaviors observed in the event log log, and then link the observations that can be produced

by the hidden Markov model to the activities in the event log by using the same identifier,

i.e., O = Ω.

Given a hidden Markov model λ = (Φ,O,A,B, π) and an observation sequence Θ =

o1, o2, . . . , on, the probability of the occurrence of Θ, i.e., P (Θ|λ), can be calculated by

using the Forward-Backward [53, 12] algorithm. We apply this fundamental problem for

Hidden Markov Models to identify whether an event trace is outlier in event logs.

Figure 3.4: Hidden Markov model example with Φ = {S1, S2},O = {A,B}, and π = [1.0, 0.0]

For an illustration purpose, we consider a simplified hidden Markov model λ = (Φ,O,A,B, π)

shown in Figure 3.4. The depicted hidden Markov model has two hidden states Φ = {S1, S2},

two observations O = {a, b}, and the initial state distribution is π = [1.0, 0.0]. The labeled

33

arrows in this model correspond to the A matrix, i.e., A =

0.2 0.8

0.4 0.6

. In this example,

the probability of a transition from hidden state S1 to state S2 is 0.8. The B matrix shown

underneath the hidden state, i.e., B =

0.5 0.5

0.3 0.7

, gives the probability of producing each

activity in that state. The probability of producing the activity a in hidden state S1 is 0.5.

Given an observations sequence Θ = aba, the probability of occurrence of Θ corresponding

to the λ is 0.1682.

While a hidden Markov model is an inherently stochastic model, a workflow net is an an-

alytical representation and does not directly support a probabilistic description. Because

of this, we need to infer the probabilistic parameters of a hidden Markov model from the

mainstream sublog and the mainstream process model.

Given a grouped event log G that corresponds to the mainstream sublog and a mainstream

process model N = (P, T, F), we use following rules to construct the hidden Markov model

λ = (Φ,O,A,B, π).

• Hidden states (Φ): each place in the mainstream process model is represented by

exactly one state in the hidden Markov model λ, i.e. |Φ| = |P |;

• Observations (O): the observations are the grouped event logs G that correspond to

the mainstream sublog

• Hidden state transition matrix (A): given two hidden state s1, s2 ∈ Φ, and the corre-

sponding two places p1, p2 ∈ P , the element A(s1, s2) of A is

∑
i∈[0,|G|] sup(Ii)∑

i∈[0,|G|] sup(Ii) +
∑

j∈[0,|G|] sup(Ij)

satisfying ∃t1 ∈ •p1, t2 ∈ (p1 •
⋂
•p2) : [t1, t2] ∈ Ii and ∃t1 ∈ •p1, t2 ∈ (p1 •

⋂
•px)∧px ∈

(P − {p2}) : [t1, t2] ∈ Ij;

34

• Observation probabilities matrix (B): given a hidden state s ∈ Φ, the corresponding

place p ∈ P , and a transition t ∈ T , the element B(s, t) of B is assign as follows:

1. When p is not in the output place, B(s, t) =
∑

i∈[0,|G|] sup(Ii)∑
j∈[0,|G|] sup(Ij)

satisfying ∃t1 ∈ •p :

[t1, t] ∈ Ii and ∃t1 ∈ •p, t2 ∈ p• : [t1, t2] ∈ Ij

2. When p is the output place, the corresponding hidden state s is a final state,

which does not produce any observable activity from the event log. Hence, the

element B(s, t) = 0 . Instead, it is associated to a dummy end element ϵ, where

the element B(s, ϵ) = 1.

• Initial state distribution (π): the probability of the hidden state corresponding to the

input place in N equals one, and probabilities of all other hidden states equal zero.

In the following, we will use an example to illustrate the steps required to construct a hidden

Markov model λ = (Φ,O,A,B, π) that is based on a mainstream sublog and a mainstream

process model N = (P, T, F).

Example 1. Consider the new grouped event log G shown in Figure 3.3, we select the

event traces corresponding to the top three frequency of the distinct activity sequences from

the event log, i.e., [ABD], [ACD], and [ACECD]. Then, we apply an existing process

mining algorithm, for instance, the inductive miner algorithm developed by [38], on the

selected event traces. The obtained mainstream process model is represented by a work-

flow net N = (P, T, F) that is depicted in Figure 3.3. Based on the mainstream process

model, the event traces corresponding to the distinct activity sequence [ABEBD] are re-

playable. Hence, the grouped event log G that is corresponding to the mainstream sublog is

{[ABD]10, [ACD]10, [ACECD]10, [ABEBD]3}.

According to the rules to construct the hidden Markov model λ = (Φ,O,A,B, π), the hidden

states Φ contains s1, s2, s3, s4 that represent the places p1, p2, p3, p4 respectively. O is the

grouped event log G that corresponds to the mainstream sublog, i.e., O = {[ABD]10, [ACD]10,

35

[ACECD]10, [ABEBD]3}. For initial state distribution π, the input place of N is p1, which

corresponds to the hidden state s1 and π = [1, 0, 0, 0].

We take the hidden states s3 and s4 as an example to illustrate the steps for element A(s3, s4)

in a hidden state transition matrix. The places corresponding to the hidden states s3 and

s4 are p3 and p4, respectively. As •p3 = {B,C} and p3 •
⋂
•p4 = {D}, we sum up the

superscripts of the distinct activity sequences containing the subsequent [B,D] or [C,D], such

that the sup([ABD]) + sup([ACD]) + sup([ACECD]) + sup([ABEBD]) results in 33 as the

numerator of A(s3, s4). Since p3 •
⋂
•p2 = {E}, we sum up the superscripts of the distinct

activity sequences containing the subsequent [C,E] or [D,E], i.e., the sup([ACECD]) +

sup([ABEBD]) results in 13. Hence the A(s3, s4) is 33
33+13

≈ 0.717.

We take the hidden states s2 and s4 as examples to illustrate different scenarios of construct-

ing the observation probabilities matrix. The place corresponding to the hidden state s2 is p2.

Consider the transition C, since •p2 = {A}, we sum up the superscripts of distinct activity

sequences containing the subsequent [A,C], i.e., sup([ACD]) + sup([ACECD]) = 20 as the

numerator for B(s2, C). Since p2• = {B,C}, we sum up the superscripts of distinct activ-

ity sequences containing the subsequent [A,B] or [A,C], i.e., sup([ACD]) + sup([ABD]) +

sup([ABEBD]) + sup([ACECD]), and the following result is 33. Hence the B(s2, C) is

20
33
≈ 0.606. For the hidden state s4, the place p4 corresponding to s4 is output place in

the mainstream process model. According to the rule, the element B(s4, A) = B(s4, B) =

B(s4, C) = B(s4, D) = B(s4, E) = 0, and B(s4, ϵ) = 1. Similarly, based on the rules, we

construct other elements of A and B, and get the following results:

36

A =



0 1 0 1

0 0 1 0

0 0.28 0 0.72

0 0 0 1


B =



1 0 0 0 0 0

0 0.39 0.61 0 0 0

0 0 0 0.28 0.72 0

0 0 0 0 0 1



In the second step, we take the event log log and use the hidden Markov model λ produced by

the first step as input. Given an event trace σ = [e1, . . . , en], we compute the probability of

σ, given the model λ, i.e., Pr(σ|λ), using the Forward-Backward Procedure [12, 11]. Then,

we compare the resulted probability with the user-defined threshold κ. We identify each

event trace in the log with the probability conditioned on λ being higher than the threshold,

i.e., Pr(σ|λ) > κ as an outlier. Finally, we remove the outliers from the event log in order

to improve process discovery results. For example, consider the event trace corresponding

to the distinct activity sequence [ABDCD] in Example 1. We apply the Forward-Backward

Procedure to the event trace, and the probability is 0.038. Assuming the threshold of κ is

0.01, the event trace corresponding to [ABDCD] is not an outlier. Similarly, we calculate

the probability of the event trace corresponding to [ABBD] and find that it is under the λ, so

we treat it as an outlier. Finally, the resulted event log contains event traces corresponding

to distinct activity sequence [ABD], [ACD], [ACECD], [ABEBD], [ABDCD].

3.4 Experimental Evaluation

In this Chapter, we evaluate our proposed approach using both artificial event logs and real-

life event logs from [1, 2, 3, 5, 4]. The artificial logs are generated from the Processes and

Logs Generator (Plg) [18], which is an open-source tool that is used to generate artificial

event logs based on the user-defined process model. The characteristics of the real-life event

37

logs we selected are summarized in Table 3.2. The objectives of our evaluations consist of two

components. First, we evaluate if filtering out outliers by using the hidden Markov model

can improve the quality of the process models that are discovered from event logs. To do

so, we choose an existing Inductive mining algorithm [38], and apply it on the same real-life

event logs with and without the hidden Markov model approach. Second, we compare the

performance of the proposed approach with two commonly used filtering approaches, i.e.,

the Matrix Filter approach [58] and the Anomaly Free Automation approach [20], using the

artificial and real-life event logs. Before the evaluation, we first define our evaluation criteria.

DataSet Number of
Traces

Number of
Event Entry

Average number of
Event Entry

BPIC2013 [1] 819 2351 2.871
BPIC2020 [2] 10500 56,437 5.374

Hospital Billing [3] 100000 451359 4.514
Road Traffic [4] 150370 561470 3.734

Table 3.2: Characteristics of event logs used for evaluations in the cleaning phase

3.4.1 Performance Metrics

The quality of a process model is evaluated by two criteria: (1) fitness f , and (2) precision p.

The fitness measures how well a model can reproduce the process behavior that is contained

within a log, and the precision measures the degree to which the behavior that is made

possible by a model is found within a log [20]. A model with good Fitness allows for behavior

seen in the log. This means that if a model has perfect fitness, then all of the behavior seen

in the log is shown in the provided process model. Similar, the higher precision values are,

the better quality of the process model. We use the pm4py [8] library to calculate these

performance metrics value.

Definition 12. (Fitness [56]) Let k be the number of different traces from the aggregated

log. For each log trace i (1 ≤ i ≤ k), ni is the number of process instances combined into the

38

current trace, mi is the number of missing tokens, ri is the number of remaining tokens, ci

is the number of consumed tokens, and pi is the number of produced tokens during log replay

of the current trace. The fitness metric f is defined as follows:

f = 1
2
(1−

∑k
i=1 nimi∑k
i=1 nici

) + 1
2
(1−

∑k
i=1 niri∑k
i=1 nipi

)

Definition 13. (Precision [56]) Let k be the number of different traces from the aggregated

log. For each log trace i (1 ≤ i ≤ k), ni is the number of process instances combined into

the current trace, and xi is the mean number of enabled transitions during log replay of the

current trace (note that invisible tasks may enable succeeding labeled tasks but they are not

counted themselves). Furthermore, TV is the set of visible tasks in the Petri net model. The

precision metric p is defined as follows:

p =

∑k
i=1ni(|TV |−xi)

(|TV |−1)·
∑k

i=1 ni

However, the fitness and precision are two aspects of a process model which may not always

be consistent. The F1 score [69] is defined as the harmonic mean of the weighted average

fitness fW and precision pW , i.e. F1 = 2×fW×pW

fW+pW
. We will also use the F1 score as an

evaluation criteria.

For any given artificial event log, we will have two process models that represent the reference

model and the mined model. As such, we need to determine the behavioral and structural

similarity between these two models [24]. The behavioral similarity metrics analyze the event

log to quantify how similar the behavior of the mined model is to that of its reference model

in terms of precision and recall [19]. The higher that the behavioral precision and recall

is, the greater the similarity is between the referenced model and the mined model. The

structural similarity metrics reflects the degree of correct causality relations that exist in the

referenced model or the mined model. This is typically measured in terms of precision and

39

recall. A value of both structural precision and recall close to 1 indicates two process models

are structurally, very similar.

Definition 14. (Behavioral precision and recall [19]) Let σ be a trace in an event log. L(σ)

be the number of occurrences of σ in an event log. Nr and Nm be the respective Petri net for

the reference and the mined models. Cr and Cm be the respective causality relations for Nr

and Nm. The behavioral precision Bpand recall Br is defined as:

Bp =
∑

σ∈L(
L(σ)
|σ| ×

∑|σ|−1
i=0

Enabled(Cr,σ,i)∩Enabled(Cm,σ,i))
Enabled(Cm,σ,i)

)∑
σ∈L L(σ)

Br =
∑

σ∈L(
L(σ)
|σ| ×

∑|σ|−1
i=0

Enabled(Cr,σ,i)∩Enabled(Cm,σ,i))
Enabled(Cr,σ,i)

)∑
σ∈L L(σ)

Definition 15. (Structural precision and recall [19]) Let Cr and Cm be the respective causal-

ity relations for Nr and Nm. The structural precision Sp and structural recall Sr are defined

as:

Sp =
|Cr∩Cm|
|Cm| Sr =

|Cr∩Cm|
|Cr|

3.4.2 Process Model Discovery Performance Improvement Using

the Hidden Markov Model

This set of experiments is to evaluate whether filtering out outliers by using the hidden

Markov model can improve the quality of process models discovered from event logs. More

specifically, given an event log, we apply the three different approaches presented in Chap-

ter 3.2 to obtain the mainstream sublog and mainstream process model. For each mainstream

sublog and mainstream process model , we apply the proposed approach in Chapter 3.3 to

construct the hidden Markov model and filter out outliers from the original event log. Then,

we discover a process model from event logs using the inductive mining algorithm presented

in [38]. The fitness, precision, and F1-score of each event log and their respective process

models are depicted in Table 3.3.

40

BPIC 2013 BPIC 2020 Road Traffic Hospital Billing
Fitness Precision F1 Fitness Precision F1 Fitness Precision F1 Fitness Precision F1

No Filtering
Approach 0.922 0.478 0.629 0.913 0.679 0.778 0.768 0.561 0.648 0.785 0.539 0.639

Activity Approach
and HMMs 0.935 0.595 0.798 0.945 0.785 0.858 0.791 0.604 0.684 0.858 0.543 0.665

Trace Approach
and HMMs 0.937 0.577 0.786 0.947 0.787 0.860 0.812 0.667 0.732 0.826 0.597 0.693

Combination
and HMMs 0.947 0.641 0.832 0.958 0.842 0.896 0.829 0.709 0.764 0.889 0.61 0.723

Table 3.3: Fitness, precision, and F1-score of each process models from different event logs

From the experiment results, it is clear that when we use our proposed approach to filter out

the outliers from an event log, prior to applying process discovery algorithms, we are able

to achieve higher fitness, precision, and F1 score with different real-life event logs. For the

real-life event logs, the average improvement percentage of fitness, precision, and F1 score

are 7.23%, 24.44%, and 19.57%, respectively.

Figure 3.5: Behavior precision generated from event logs with different noise levels

3.4.3 Hidden Markov Model Approach Vs Two Commonly Used

Filtering Approaches

This set of experiments is to compare our proposed approach with the two commonly used

filtering approaches such as the Matrix Filter approach (MF) [58] and the Anomaly Free

Automation approach (AFA) [20] using the aforementioned artificial and real-life event logs.

41

Figure 3.6: Behavior recall generated from event logs with different noise levels

Figure 3.7: Structural precision generated from event logs with different noise levels

Figure 3.8: Structural recall generated from event logs with different noise levels

42

Artificial event logs: For benchmarking the different filtering approaches, we consider

two different complexity levels for the reference models by using four basic structures found

within a process. The first level of the reference model contains a parallel structure, an

exclusive-choice structure, a loop structure, and a sequence structure. The second level of

the reference model contains the interactions between these basic structures by combining

them together. For each level of the reference model, we create ten different reference models

that contain an increasing activity number. Then, for each referenced model, we use the Plg

tool to generate ten event logs by injecting an incremental amount of noise ranging from 1%

to 30% to produce an event log that contains one thousand event traces.

For each artificial event log, we first use the three different approaches to obtain the main-

stream sublog and mainstream process model , and construct the hidden Markov models.

Then, we filter out the outliers from the given event log based on the hidden Markov model.

We also apply the two commonly used approaches, i.e., MF and AFA on the given artifi-

cial event log to filter out the outliers. For each clean event log derived from five different

filtering approaches , we apply the inductive mining algorithm to discover a process model,

and calculate the behavioral recall, behavioral precision, structural recall, and structural

precision. The results are depicted in Figure 3.5, Figure 3.6, Figure 3.7, , Figure 3.8.

As shown in results, the proposed approach outperforms the two commonly used approaches

on average cases. More specifically, the performance of our proposed approach (Combina-

tion + HMMs) is 10.43%, 11.92%, 9.61%, 9.20% higher than the performance of the MF

approach with respect to behavioral recall, behavioral precision, structural recall ,and struc-

tural precision, respectively. The performance of our proposed approach (Combination +

HMMs) is 8.89%, 9.57%, 7.47%, 8.85% higher than the performance of ANA approach with

respect to behavior recall, behavior precision, structural recall ,and structural precision, re-

spectively. We also observe that the approach using the combination strategy to construct

the hidden Markov models outperforms the approaches using frequent activity or event traces

43

to construct a hidden Markov models with respect to the four criteria.

Figure 3.9: Fitness values of each process models from real life event logs

Figure 3.10: Precision values of each process models from real life event logs

Real-life event logs: We use five different approaches, i.e., MF approach, AFA approach,

HMMs derived from frequent activity approach, HMMs derived from frequent event trace

approach, and HMMs derived from combination approach on the real-life event logs to filter

out outliers. Then, we apply the inductive mining algorithm on clean event logs to discover

a process model and calculate fitness, precision, and F1 score. The results are depicted in

Figure 3.9, Figure 3.10, and Figure 3.11.

From the experiment results, the performance of the proposed approach (Combination +

HMMs) is 0.4%, 11.3%, and 6.7% higher than the MF approach with respectively for fitness,

44

Figure 3.11: F1 Scores of each process models from real life event logs

precision, and F1 score. The fitness derived from the proposed approach (Combination +

HMMs) is 0.54% lower than the ANA approach, but the precision is higher. Hence, we are

able to achieve 3.9% higher F1 score with different real-life event logs.

3.5 Summary

In this Chapter, we present an approach that uses hidden Markov models to filter out

outliers from event logs prior to applying process discovery algorithms to improve process

discovery results. Our experiments on artificial event logs and real-life event logs show

that: (1) process models obtained by filtering out outliers with hidden Markov models have

higher fitness, precision, and F1 score than process models obtained by directly applying

discovery algorithms on the event logs; (2) the proposed filtering method outperforms two

commonly used filtering approaches, namely the Matrix Filter approach and the Anomaly

Free Automation approach for both artificial event logs and real-life event logs.

45

Chapter 4

Implicit Knowledge Discovery - Timing

Constraints

4.1 Background and Related Work

Once the raw event logs are cleaned by the approach presented in Chapter 3, the next step is

to discover implicit knowledge from a clean event log. As we mentioned above, most process

mining algorithms focus only on the functional aspects of a process, the timing information

as to when an action must take place is neglected. However, the timing information can be

critical in many domains, such as patient care. For instance, an ionized calcium test must

be tested within 10 minutes of its collection, and blood specimens received in a lab after

10 minutes need to be re-collected for accurate results. These timing constraints need to

be enforced in order to provide safe and effective patient care. However, process models

uncovered by most existing process mining techniques only reveal the underline structures of

an actual process, the timing constraints, such as the 10-minute limit in the ionized calcium

test example, are not reflected in the process models

46

Figure 4.1: Mining and integrating timing constraints in workflow models

This chapter presents an approach that extends existing process mining techniques to dis-

cover and integrates timing constraints with a process model constructed by any existing

process mining algorithm. The approach contains three major steps, i.e., first for a given

workflow model constructed by an existing process mining algorithm and represented by a

workflow net (which belongs to a subset of Petri net) and, extract a time dependent set

associated with each transition in the workflow model. Second, based on the time dependent

sets, develop an algorithm to extract implicit timing constraints from event logs for each

transition in the model. Third, extend the original workflow model into a time Petri net

where the discovered timing constraints are associated with their corresponding transitions.

Figure 4.1 depicts the architecture of our approach. A real-life road traffic fine manage-

ment process [49] is used as a case study to investigate the effectiveness and validity of the

approach. The case study provides evidence that the approach is able to discover timing

47

constraints of an actual workflow process from event logs.

This Chapter is organized as follows: we present an approach to extract time dependent set

in Chapter 4.2. Chapter 4.3 develops the algorithm to mine the timing constraints from event

logs based on time dependent sets and integrate the timing constraints into the workflow net

in the form of the time Petri net. A real-life road traffic fine management process scenario

is performed in Chapter 4.4 to investigate the effectiveness and validity of the approach.

4.2 Extract Time Dependent Set from a Workflow Net

Before we show how to extract a time dependent set of a transition, we first give its formal

definition.

Definition 16 (Time Dependent Set). Given a workflow net N = (P, T, F), where T = A∪Γ,

A∩Γ = ∅. A is a set of non-invisible transitions, and Γ is a set of invisible transitions. The

time dependent relation set Θ(t) of a transition t ∈ A is defined as follows:

Θ(t) = {a ∈ A|(a•∩•t ̸= ∅)∨(∃ε1, ..., εi ∈ Γ : a•∩•ε1 ̸= ∅∧εi−1•∩•εi ̸= ∅∧εi•∩•t ̸= ∅)}

Figure 4.2: Process model corresponding to the event log shown in Table 3.1

Example 2. Consider the event log given in Table 3.1 and a corresponding process model

shown in Figure 4.2 which is derived by applying an inductive miner algorithm [14] on the

given log. In the process model constructed by the inductive miner algorithm, there are

48

activities represented in rectangles and invisible activities represented in black rectangles,

such as ε1 and ε2, in Figure 4.2. Invisible activities and circles in the process model are only

for routing purposes. They are produced by process mining algorithms, but not recorded in

event logs.

For activity D’s time dependent set, as the invisible activity ε2 is connected to the target

activity D, we need to trace back until we find a visible activity that connects to the invisible

activity ε2, which are activity B and C. Hence, activity D’s time dependent set Θ(D) =

{E,B,C}. Similarly, the time dependent sets of the activity A, B, C, and D are Θ(A) =

∅,Θ(B) = {A},Θ(C) = {A}, and Θ(E) = {A}, respectively.

Algorithm 1 gives the procedure of extracting time dependent set of the transition x in the

workflow net. The time complexity of algorithm 1 is O(N3), where N is the number of

transitions in the workflow net.

4.3 Mine Timing Constraints from Event logs

We design an algorithm to automatically mining timing constraints for every transition

based on the time dependent set and represent the workflow model associated with timing

constraints by time Petri nets.

Given a workflow N = (P, T, F) mined from an event log log, we first construct a time Petri

net N ′ = (P, T, F, I) where ∀t ∈ T : I(t) = [0,+∞]. The constructed time Petri net N ′ has

the same execution semantics as N as explained in Chapter 2.2. The next step is to mine

the firing time interval for every transition t from event logs and update the corresponding

I(t).

As presented in Chapter 4.2, the time dependent set Θ(t) of a transition t contains all

49

Algorithm 1 Extracting Time Dependent Set of a Transition

Require: a workflow net N = (P, T, F), a transition x
Ensure: The time dependent set Θ of transition x
1: Define three sets Θ(x) = {} ; A = {} ; Γ = {}
2: for each transitions t ∈ T do
3: if t is non-invisible transition then
4: A = A ∪ {t}
5: else
6: Γ = Γ ∪ {t}
7: end if
8: end for
9: for each transition t0 ∈ T do

10: if •x ∩ t0• ≠ ∅ then
11: Θ(x) = Θ(x) ∪ {t0}
12: end if
13: end for
14: repeat
15: Define break condition: condition = False
16: for each transition t1 ∈ Θ(x) do
17: if t1 ∈ Γ then
18: condition = True
19: Θ(x) = Θ(x)− {t1}
20: for each transition t2 ∈ T do
21: if •t1 ∩ t2• ≠ ∅ then
22: Θ(x) = Θ(x) ∪ {t2}
23: end if
24: end for
25: end if
26: end for
27: until condition
28: return Θx

transitions that have immediate timing impact on the transition t. We use the following rules

to determine the timing constraints for each transition in a workflow net from the workflow

net’s corresponding event logs: if a transition directly follows the workflow net’s input place,

i.e., Θ(t) = ∅, we set its timing constraint as I(t) = [0,+∞]; otherwise, I(t) = [a, b] where a

and b are determined as following:

• Earliest Firing Time: the transition t’s earliest firing time (a) is the minimum value

of time between an occurrence of t and its most recent occurrence of any transition

50

t′ ∈ Θ(t) that occurs before t in the same event trace, i.e., a = min{(τc − τr)|ec =

(t, τc) ∧ er = (tr, τr) ∧ Φ(ec, er) = True}, where

Φ(ec, er) =∀σ ∈ log : ∀ei(ti, τi) ∈ σ : ti = t∧

τc = τi ∧ (∃ej(tj, τj) ∈ σ : 0 < j < i∧

tj ∈ Θ(t) ∧ τj = τr ∧ (∀ek(tk, τk) ∈ σ :

j < k < i ∧ tk /∈ Θ(t)))

(4.1)

• Latest Firing Time: the transition t’s latest firing time (b) is the maximum value

of time between an occurrence of t and its most recent occurrence of any transition

t′ ∈ Θ(t) that occurs before t in the same event trace, i.e., b = max{(τc − τr)|ec =

(t, τc) ∧ er = (tr, τr) ∧ Φ(ec, er) = True}, where Φ(ec, er) is given in formula (4.1).

Theorem 1. Given an event log log = {σ|σ = e1(t1, τ1), . . . , ei(ti, τi), . . . , en(tn, τn)} and

corresponding time Petri net N ′ = (P, T, F, I) with I(t) = [a, b] derived by the mining rules

for each t ∈ T , all timestamps of corresponding activity t in log log satisfy the timing con-

straint I(t) = [a, b].

Proof. We use contradiction to prove the theorem. For transition t, suppose there exist event

entries e = (t, τ) and e′ = (t′, τ ′) in the same event trace σ, and the transition t’s timing

constraint C(t) determined by event entries e and e′ is τ − τ ′ < a. Because the event entries

e and e′ determine the timing constraint C(t) for t, Φ(e, e′) = True holds, where Φ(e, e′) is

defined in formula (4.1). The timing constraint C(t) < a contradicts the Earliest Firing

Time rule, i.e., a = min{(τc − τr)|ec = (t, τc) ∧ er = (tr, τr) ∧ Φ(ec, er) = True}. Hence,

transition t′s timing constraint must be larger than or equal to a, i.e., C(t) ≥ a.

Similarly, suppose there exist event entries e = (t, τ) and e′ = (t′, τ ′) which determines

the transition t’s timing constraint C(t) as τ − τ ′ > b. Since the event entries e and e′

51

determine the timing constraint C(t), Φ(e, e′) = True holds, where Φ(e, e′) is defined in

formula (4.1). The timing constraint C(t) > b contradicts the Latest Firing Time rule,

i.e., b = max{(τc − τr)|ec = (t, τc) ∧ er = (tr, τr) ∧ Φ(ec, er) = True}. Hence, transition t′s

timing constraint must be smaller than or equal to b, i.e., C(t) ≤ b.

Therefore, a ≤ C(t) ≤ b holds, i.e., all timestamps of activity t in event log log satisfy the

timing constraint interval I(t) = [a, b].

It is worth pointing out that the timing constraints defined by these rules may not be tight.

We will give an example to explain a possible reason for its looseness in Chapter 4.4.

Algorithm 2 gives the detailed steps of applying the rules to automatically mine and up-

date the firing timing constraints for every transition in a workflow net model. The time

complexity of Algorithm 2 is O(K ×M ×N2), where K is the number of transitions in the

process model, M is the number of traces in the event log, and N is the number of events

in a trace. We illustrate Algorithm 2 in Example 3 with the event log given in Table 3.1.

Example 3. The Petri net N mined from the the event log log in Table 3.1 is depicted in

Figure 4.2. We first construct a time Petri net N ′ = (P, T, F, I) where ∀t ∈ T : I(t) =

[0,+∞]. According to Algorithm 1, the time dependent set of N ′ is Θ = {Θ(A) = ∅,Θ(B) =

{A},Θ(C) = {A},Θ(D) = {B,C,E},Θ(E) = {A}}.

We take transitions A and D as examples to illustrate different scenarios of applying Al-

gorithm 2. As Θ(A) = ∅, based on Lines 2-4, Algorithm 2 does not update the firing time

interval of transition A, i.e., I(A) = [0,+∞].

The time dependent set of transition D is Θ(D) = {B,C,E}. We apply Lines 7-16 of

Algorithm 2 for every trace in the event log log. For instance, the trace σ1 = {A,B,C,D}

only contains one occurrence of event D at time “08/05/2019 : 13:19". Based on Lines 9-15,

we locate the event C occurring at “08/05/2019 : 10:25" and calculate the following results

52

Algorithm 2 Mining Timing Constraints

Require: The constructed time Petri net N ′ = (P, T, F, I), the corresponding event log
log = {σ}, and the corresponding time dependent set Θ = {Θ(t)|t ∈ T}.

Ensure: The time Petri net N ′ = (P, T, F, I) with I updated.
1: for each t ∈ T do
2: if Θ(t) = ∅ then
3: CONTINUE
4: end if
5: Define temporary variables a = +∞ and b = −∞
6: for each σ = e1(t1, τ1), . . . , ei(ti, τi), . . . , en(tn, τn) ∈ log do
7: for each 1 ≤ i ≤ n do
8: if ti = t then
9: j = i− 1

10: while j ≥ 1 do
11: if tj ∈ Θ(t) then
12: ∆ = τi − τj
13: a = min(a,∆), b = max(b,∆)
14: BREAK
15: end if
16: j −−
17: end while
18: end if
19: end for
20: end for
21: I(t) = [a, b]
22: end for

∆ = 174, a = 174, and b = 174 with minutes as the time units. After applying the procedure

to other four traces, the final results are a = 20 and b = 174, i.e., I(D) = [20, 174].

Similarly, we apply Algorithm 2 to other three transitions and get the following results I(B) =

[54, 202], I(C) = [92, 339], and I(E) = [128, 128]. The updated time Petri net is shown in

Figure 4.3.

The proposed techniques of mining timing constraints from event logs for a given workflow

net model is implemented on an existing open-source process mining framework pm4py [8].

The implementation of the technique is available at https://github.com/stevenzzy9/

Wastewater-Treatment-Process-Discovery.

53

https://github.com/stevenzzy9/Wastewater-Treatment-Process-Discovery
https://github.com/stevenzzy9/Wastewater-Treatment-Process-Discovery

Figure 4.3: Process model integrated with timing constraints

4.4 Road Traffic Fine Management Process Case Study

In this Chapter, we apply the proposed approach to a road traffic fine management process

used in Italy. By the Italian law, a traffic fine management process starts with the Create

Fine activity. A fine notification must be sent within 90 days since its creation. After being

notified, the offender can either pay the fine or appeal the fine within 60 days of notification.

If the fine is paid, the corresponding case is closed. The system maintains a case for up

to 5 years from the corresponding offense is committed. The snapshot of the event log was

taken in June 2013 [6]. After filtering out all open (unclosed) cases, the event log contains

145,800 event traces. Among these traces, 41 % of the traces end after two events, and 51%

of the traces have five or more events. In addition, 62 % of the traces take longer than

100 days to finish. Figure 4.4 depicts the process model mined by an open source SIMPLE

algorithm [23].

We first apply Algorithm 1 to extract the time dependent sets for all transitions in the

workflow net given in Figure 4.4. The time dependent sets are generated by the tool we

developed based on Algorithm 1. Second, using the time dependent sets, we mine the timing

constraints from the event log by applying Algorithm 2. The execution results are captured

and depicted in Figure 4.5. The process model associated with mined timing constraints is

represented as a time Petri net and depicted in Figure 4.6.

54

Figure 4.4: Road traffic fine management process model

From the mined timing constraints shown in Figure 4.6, we can conclude that except the

Send for Credit Collection transition, the latest firing times of all other transitions are less

than 5 years. The latest firing time of the Insert Fine Notification transition is 83 days

which obeys Italian law’s 90-day notification restrict.

If an offender does not pay the fine on time or if the prefecture denies a offender’s appeal, the

system sends the offender’s information to the credit card company to automatically deduct

the fine. According to the law, the fine notification and offender response takes up to 90

and 60 days, respectively. Hence, the Send for Credit Collection activity must occur after

150 days. The mined timing constraint for Send for Credit Collection activity is [209, 3330]

which complies with the law and reflects the actual scenario. The time difference between

150 and 209 is the system processing time for Send for Credit Collection activity and/or the

appeal process time by prefecture.

As shown in Figure 4.4, the Payment activity has two pre-activities: Create Fine and Notify

Result Appeal to Offender, which represent two scenarios of the Payment activity. The first

scenario indicated by pre-activity Create Fine is that an offender directly pays the fine after

the fine creation. The second scenario represented by pre-activity Notify Result Appeal to

Offender is that an offender appeals against the fine and pays the fine after the appeal is

55

Figure 4.5: Timing constraints in traffic fine management process

denied. According to the Italian law, the timing constraint for activity Payment under the

first scenario is [0, 60], but the law does not specify when the Payment must happen if the

appeal is denied. However, our algorithm does not distinguish these two scenarios and the

mined timing constraint [0, 1721] for the Payment activity covers all cases of both scenarios.

Hence, it may be loose for the first scenario. Our further work is to extend the proposed

approach to tighten the timing constraints.

Figure 4.6: Process model integrated with timing constraints

4.5 Summary

In this chapter, we have presented an approach that extends existing process mining tech-

niques to not only mine but also integrate timing constraints with a workflow or process

56

model constructed by any existing process mining algorithm. In particular, we first intro-

duced the concept of time dependent set for each transition in a workflow net model and

developed an algorithm that automatically finds the sets from a given workflow net model.

Based on the time dependent sets, we developed an algorithm to extract implicit timing

constraints from event logs for each transition in the model and represent the process model

in terms of time Petri net in which we assign each transition with the appropriate timing

constraints mined from event logs. The algorithm is implemented based on the open-source

process mining framework pm4py. A real-life road traffic fine management process scenario

is used as a case study to investigate the effectiveness and validity of the approach. The

evaluation results show that the algorithm is able to discover the timing constraints of an

actual workflow process from event logs.

57

Chapter 5

Implicit Knowledge Discovery - Process

Scenarios

5.1 Background

Due to the complex application design and development, the use of increasingly sophisti-

cated processes, particularly in the utility industry and medical domain, discovering process

scenarios has become a subject of great interest. Despite the demonstrated usefulness of

process discovery algorithms, these algorithms face challenges in process scenarios discov-

ery [32, 15, 77, 35]. When different scenarios are grouped into one process model not only

the accuracy of the model representing the reality reduces, more importantly, the complexity

of the model becomes incomprehensible and hence makes it difficult, if not impossible, to

achieve the goal of better understanding, monitoring and improving the current processes.

Trace clustering techniques are often used to assist in discovering different process scenarios.

Most existing trace clustering methods [15, 34, 61, 16] often contain two major steps. First,

use a set of transformation rules to convert each trace in a given event log into a vector.

58

Second, apply clustering algorithms, such as k-means [61], to the vectors and partition the

vectors into different clusters, and hence partition the corresponding event log into different

subsets of logs where event traces in the same subset most likely belong to the same scenario.

Once an event log is partitioned into different clusters, process discovery techniques are

applied to individual clusters to obtain process models for different scenarios.

Event logs often contain rich information, such as activity names, timestamps, activity execu-

tors, etc. However, our observation is that most transformation rules used in trace clustering

techniques [34, 61, 15, 16] to convert an event trace to a vector only use the activity name

information in the event log. We hypothesize that if additional information is added into

the constructing vectors, we shall obtain process models that more accurately reflect model

fitness and precision criteria. We have also observed that the commonly used trace clustering

algorithms , e.g., k-means [61, 16, 15], need a priori knowledge about the number of scenarios

k, which is unfortunately not available for most application. The question is, do we have

an approach to offer a good solution without the requirements of domain knowledge related

to the number of scenarios? The last observation is that the shape of all clusters found by

commonly used trace clustering techniques [61, 16, 15] is convex, which is very restrictive.

Hence, we should propose an approach for discovering clusters with arbitrary shapes.

In this chapter, we present an approach that uses timing information to assist in discovering

process scenarios from event logs. This approach has three steps. First, we obtain the time

dependent sets from a process model produced by applying an existing process discovery

algorithm to the entire event logs. Second, we construct aggregated vectors containing

activity and timing information derived from the time dependent set and event time stamps.

For the third step, we provide two algorithms, the distance-based and the density-based

algorithms, to generate subsets of event logs where event traces in the same subset are most

likely under the same scenarios. A real wastewater treatment process provided by a domain

expert is used as a case study to investigate the effectiveness and validity of the approach.

59

To evaluate the performance of the proposed approach for process scenario discoveries, we

apply an existing process discovery algorithm, e.g., the HeuristicsMiner algorithm [81], to

obtain a process model from each subset.

5.2 Related Work

The work in [31] is the first study which applies trace clustering techniques to assist in

discovering the process scenarios in order to obtain more accurate and interpretable process

models from event logs. This study proposed an approach to cluster the event traces based

on the structural patterns frequently occurring in the event log, and then partition the

corresponding event log into different subsets of logs where event traces in the same subset

most likely belong to the same scenario. Once the event logs are partitioned into different

clusters, process discovery techniques can be applied on the clusters to obtain process models

for different scenarios.

The most straightforward idea for clustering traces methods relies on traditional data clus-

tering techniques [40]. Greco et al. [34] were pioneers in studying the clustering of log traces

within the process mining domain. They use a vector space model considering the activities

to cluster the traces in an event log with the purpose of discovering more simple process mod-

els for the subgroups. The authors propose the use of disjunctive workflow schemas (DWS)

for discovering process models. The underlying clustering methodology is k-means cluster-

ing. Song et al. [61] proposed an approach to construct a vector space model for traces in

an event log. In [61], the author allows for different kinds of attributes, e.g., activity name,

executor, to determine the vector associated with each event trace, and then provide four

clustering techniques for trace clustering. In [15, 16], they extend the existing trace cluster-

ing techniques by improving the way in which control-flow context information is taken into

account. The control-flow context information refers to the execution pattern of activities

60

in the event log. Jagadeesh et al. [15] propose a generic edit distance technique based on

the Levenshtein distance. The approach relies on substitution, insertion, and deletion costs

to partition the event log into a set of sub logs. Bose et al. [16] propose a refinement of the

technique by using conserved patterns, which are Maximal, Super Maximal, and Near Super

Maximal Repeats. However, their implementation applies hierarchical clustering instead of

k-means.

5.3 Construct Aggregated Vectors with Activity and Tim-

ing Information

In this Chapter, we present an approach to automatically construct aggregated vectors that

contain both activity name from event traces and timing information derived from the time

dependent set and event entry timestamps.

We first apply a similar approach used in [61] to map each event trace σ in a given event log

into an activity vector (A⃗σ) which is defined below.

Definition 17 (Activity Vector (A⃗)). Given an event trace σ and an activity set Ω, the

activity vector A⃗ corresponding to an event trace σ is A⃗σ = (N1(α1), · · · ,Nn(αi)), where

n = |Ω|, αi ∈ Ω, and N (αi) is the number of times the activity αi occurs in the trace σ.

Based on the definition, for event log log given in Table 3.1, we have the activity set Ω =

{A,B,C,D,E}, hence the size of all activity vector |A⃗| = 5. Furthermore, for Trace 1 (σ1),

its corresponding activity vector A⃗σ1 = (1, 1, 1, 1, 0), where A⃗σ1 [5] = 0 indicates that activity

E does not occur in Trace 1.

There is another important information contained in an event trace, i.e., the time stamp of

each recorded activity. Our idea is to extend the activity vector by adding timing information

61

related activities in a given trace. Our hypothesis is with additional activity related to timing

information, we will be able to discover more accurate scenarios. Our experiments confirms

this hypothesis. To obtain the timing information related to each activity in a given trace,

we first introduce the following definitions.

Definition 18 (Time Dependent Pair (α, β)). Given an event log’s activity set Ω, for any

two activities α, β ∈ Ω, if β ∈ Θ(α), the activities α and β are called a time dependent pair

denoted as (α, β), and the set of all time dependent pairs in a given activity set Ω is denoted

as O =
⋃

α∈Ω
{(α, β)|β ∈ Θ(α)}.

For instance, in Example 2, activity D’s time dependent set is Θ(D) = {B,C,E}, the

corresponding time dependent pairs are (D,B), (D,C), and (D,E). Furthermore, the set

of all time dependent pairs corresponding to the event log shown in Table 3.1 is O =

{(B,A), (C,A), (D,B), (D,C), (D,E), (E,A)}.

Definition 19 (Timing Vector (T⃗)). Given a time dependent pair set O, the timing vector

T⃗ , |T⃗ | = |O|, represents the maximal time durations between two activities of a given time

dependent pair (α, β) ∈ O. For a given trace σ = [e1, · · · , em], the value of the timing vector

T⃗σ[(α, β)] is defined as: T⃗σ[(α, β)] = max{Fτ (ei) − Fτ (ej) | 1 ≤ i, j ≤ m ∧ i ̸= j ∧ ei, ej ∈

σ ∧ Fα(ei) = α ∧ Fα(ej) = β}.

Consider Trace 1(σ1) in Table 3.1 and a time dependent pair (B,A). The trace σ1 contains

the activity B at time "10:24", the activity A’s time stamp is “08:15". The time duration

between the activity A’s time stamp and the activity B’s time stamp is 129 with minutes as

the time units. Hence we have T⃗σ1 [(B,A)] = 129, indicating that activity B occurs at most

129 time units after the occurrence of activity A in σ1. Algorithm 3 gives the detailed steps

of obtaining the timing vector from an event trace.

Before we aggregate the activity and timing vectors to obtain a vector that contains both

activity information and timing information in an event trace, we normalize the activity and

62

Algorithm 3 Constructing Timing Vector

Require: An event trace σ = {e1, · · · , en} and the set of all time dependent pairs O =⋃
α∈Ω
{(α, β)|β ∈ Θ(α)}

Ensure: The corresponding timing vector T⃗σ = (Γ(α1, β1), · · · ,Γ(αi, βj)), where the
Γ(αi, βj) indicates the maximal time duration
between two activities of a given time dependent pair (αi, βj) ∈ O

1: for i = 1 to n do
2: j = i− 1
3: while j ̸= 0 do
4: if (ei, ej) ∈ O then
5: if Fτ (ei)−Fτ (ej) > Γ(Fα(ei),Fα(ej)) then
6: Γ(Fα(ei),Fα(ej)) = Fτ (ei)−Fτ (ej)
7: end if
8: end if
9: j = j − 1

10: end while
11: end for

timing vectors. Normalization of the activity and timing vector is used to prevent features

with large numerical values from dominating in distance-based objective functions which is

used in trace clustering. For a given event trace σ, the corresponding activity vector and

timing vector are A⃗ = (a1, · · · , am) and T⃗ = (t1, · · · , tn), respectively, we apply A⃗
∥A⃗∥

and T⃗
∥T⃗ ∥

to normalize the vectors, where ∥A⃗∥ =
√
a21 + · · ·+ a2n and ∥T⃗ ∥ =

√
t21 + · · ·+ t2n. Finally,

we aggregate the normalized activity and normalized timing vectors.

Definition 20 (Aggregated Vector (V⃗)). Given an event trace σ, assume the corresponding

activity and timing vectors are A⃗σ = (a1, · · · , ai, · · · , am) and T⃗σ = (t1, · · · , tj, · · · , tn), re-

spectively, the aggregated vector V⃗ corresponding to an event trace σ is V⃗σ = (a1
∥A⃗∥

, · · · , ai
∥A⃗∥

, · · · ,
am
∥A⃗∥

, t1
∥T⃗ ∥

, · · · , tj

∥T⃗ ∥
, · · · , tn

∥T⃗ ∥
), where ai = A⃗σ[i], tj = T⃗σ[j], ∥A⃗∥ =

√
a21 + · · ·+ a2n, and

∥T⃗ ∥ =
√

t21 + · · ·+ t2n.

Consider Trace 1(σ1) in Table 3.1, the aggregated vector corresponding to σ1 is V⃗σ1 =

(0.5, 0.5, 0.5, 0.5, 0, 0.419, 0.423, 0.569, 0.566, 0, 0). Table 5.1 gives the vector value for the

other four traces. Note that, we can also use weighted concatenation to aggregate the

normalized activity and timing vectors. The weighted values provide a way to emphasize

63

Activity Information Timing Information
N (A) N (B) N (C) N (D) N (E) (B,A) (C,A) (D,B) (D,C) (D,E) (E,A)

V⃗σ1 0.500 0.500 0.500 0.500 0.000 0.419 0.423 0.569 0.566 0.000 0.000
V⃗σ2 0.500 0.500 0.500 0.500 0.000 0.759 0.458 0.004 0.439 0.000 0.000
V⃗σ3 0.500 0.500 0.500 0.500 0.000 0.144 0.742 0.652 0.053 0.000 0.000
V⃗σ4 0.500 0.500 0.500 0.500 0.000 0.624 0.322 0.305 0.642 0.000 0.000
V⃗σ5 0.577 0.000 0.000 0.577 0.577 0.000 0.000 0.000 0.000 0.151 0.988

Table 5.1: Aggregated vectors transferred from event logs

which perspective should have more impact on the outcome of discovery process scenarios.

5.4 Process Scenarios Discovery

In this Chapter, we provide two algorithms as an option to generate subsets of event logs

where event traces in the same subset are most likely under the same scenarios. The first

algorithm is the distance-based algorithm named the two-phase approach for discovering the

process scenarios from a given event log using aggregated vectors. Another algorithm is the

density-based process discovery algorithm based on aggregated vectors. In the following, we

will explain in detail.

5.4.1 Distance-based Process Discovery Algorithm

For a given event log, often times, we do not know aprior how many different scenarios are

embedded in the log. Hence, the first phase of our two-phase approach is to identify the

number of possible scenarios k in a given log. The second phase is to apply an existing

clustering approach, such as the k-means algorithm [61], to partition the event log into k

clusters based on the aggregated vectors so that existing process discovery algorithms can be

applied on the clusters of sub-logs to obtain different process scenarios in terms of process

models.

64

We use Figure 5.2 to illustrate the basic idea used in the first phase to obtain the number

of possible scenarios k. For simplicity, assume the cardinality of event trace’s aggregated

vector |V⃗| = 2, therefore, each aggregated vector (a trace) can be mapped to a point in a

two-dimensional domain shown in Figure 5.2. Consider the centroid point A, we can define

two radius circles, the inner circle, and the outer circle. The points within the inner circle of

A have short distance from A, or can be considered ‘similar’ to A, while the points outside

the outer circle (such as C) are considered far away or different from A. The radius are the

thresholds for defining if two points are similar or different. The points outside the inner

circle but within the outer cycle, such as point B, may or may not have similar characteristics

to A. For these points, we repeat the process of choosing a centroid point and defining similar

and different points from the new centroid points, until all points are categorized. Then the

number of centroids selected during the process is the k. There are many existing techniques

in the literature to identify the radius of inner and outer circles, i.e., the distance thresholds,

such as the cross validation approach [17]. Sometimes, the distance threshold can also be

set by domain experts [34]. Here, we adopt the upper quartile and the lower quartile as the

two distance thresholds.

Figure 5.1: Basic idea used in distance-based approach for obtaining the number of possible
scenarios k

Let d(V⃗i, V⃗j) denote Euclidean distances between aggregated vectors V⃗i, V⃗j, Algorithm 5

65

shows the procedure to find the number of the scenarios from aggregated vectors. The time

complexity of the algorithm is O(N2), where N is the number of event traces in the event

log log. We use Example 5 to illustrate Algorithm 5.

Algorithm 4 Obtaining the number of possible scenarios k in event logs

Require: A set of aggregated vectors Π = {V⃗1, · · · , V⃗| log |} and a set of Euclidean distances
M = {d(V⃗i, V⃗j)|V⃗i, V⃗j ∈ Π}; δmin and δmax be the two distance thresholds, respectively.

Ensure: The number of clusters (k) and a set of centroids C for the k clusters’ aggregated
vectors

1: k ← 0 and C ← ∅
2: while Π ̸= ∅ do
3: Select an arbitrary aggregated vector V⃗i ∈ Π
4: Π← Π− {V⃗i}
5: ∆← {V⃗i}
6: k ← k + 1
7: for each V⃗j ∈ Π do
8: if d(V⃗i, V⃗j) ≤ δmax then
9: ∆← ∆ ∪ {V⃗j}

10: end if
11: if d(V⃗i, V⃗j) ≤ δmin then
12: Π← Π− {V⃗j}
13: end if
14: end for
15: c⃗← calculate the initial centroid of the aggregated vectors in the set ∆
16: C ∪ {c⃗}
17: end while
18: return k and C

Example 4. Consider the set of aggregated vectors Π = {V⃗1, V⃗2, V⃗3, V⃗4, V⃗5} given in the

Table 5.1, the set of Euclidean distances of two aggregated vectors in L is M = {(V⃗1, V⃗2) =

166.39, (V⃗1, V⃗3) = 237.58, (V⃗1, V⃗4) = 108.03, (V⃗1, V⃗5) = 343.18, (V⃗2, V⃗3) = 315,

(V⃗2, V⃗4) = 91.28, (V⃗2, V⃗5) = 306.72, (V⃗3, V⃗4) = 299.03, (V⃗3, V⃗5) = 405.6, (V⃗4, V⃗5) = 323.32},

and the first quartile and the third quartile of the elements inM is δmin = 5 and δmax = 10,

respectively.

According to Line 4-6 of algorithm, we select an aggregated vector V⃗1, remove it from the set

Π, and put it into the set ∆. Based on the line 7, the number of the scenario becomes one, i.e.

k = 1. We apply Line 8-15 of algorithm for every aggregated vector in the the set Π. For the

66

aggregated vector V⃗2, since the distance between aggregated vectors V⃗1 and V⃗2, i.e. d(V⃗1, V⃗2),

is 166.39 and less than δmin, we remove the aggregated vector V⃗2 from the set Π and add V⃗2

into the set ∆. Hence, the set ∆ is updated to {V⃗1, V⃗2}, and Π becomes {V⃗3, V⃗4, V⃗5}. For

the aggregated vector V⃗3, the distance between aggregated vectors V⃗1 and V⃗3, i.e. d(V⃗1, V⃗3),

is 237.58 and less than δmax, we add V⃗3 into set ∆. Because d(V⃗1, V⃗3) > δmin, we keep V⃗3

in the set Π. After applying the procedure to the other two aggregated vectors, the ∆ =

{V⃗1, V⃗2, V⃗3, V⃗4}, and the Π = {V⃗3, V⃗5}. We have the initial centroid of the aggregated vectors

in the set ∆ is (1, 1, 1, 1, 0,−790,−87,−327, 0, 0, 0). We repeat the steps until Π becomes

empty, and have k = 3 and the initial centroids are (1, 1, 1, 1, 0,−790,−87,−327, 0, 0, 0),

(1, 1, 1, 1, 0, 54, 279, 245, 20, 0, 0), and (1, 0, 0, 1, 1, 0, 0, 0, 0, 23, 151).

In the second phase, we take the number of scenarios k and the initial centroids produced

by the first phase as input and apply k-means algorithm [43] to partition the event log into

k clusters, i.e., scenarios. Finally, the existing process discovery algorithms can be applied

on the subset of logs to obtain different process scenarios in terms of process models.

5.4.2 Density-based Process Discovery Algorithm

In Chapter 5.4.1, we propose a distance-based algorithm to generate subsets of event logs

where event traces in the same subset are most likely under the same scenarios. The distance-

based algorithm is easy to understand and implement and can handle large datasets well.

However, the distance-based algorithm gets difficult in high dimensional spaces as the dis-

tance between the points increases and Euclidean distance diverges. More importantly,

clusters can take any irregular shape unlike the distance-based algorithm where clusters are

more or less spherical due to the characteristics of a process such as wastewater treatment

processes. Hence, we proposed the density-based algorithm for process scenario discovery.

We use Figure 5.2 to illustrate the basic idea used in the density-based algorithm to partition

67

the event log into a set of clusters. For simplicity, assume the cardinality of event trace’s

aggregated vector |V⃗| = 2, therefore, each aggregated vector (an event trace) can be mapped

to a point in a two-dimensional domain shown in Figure 5.2.

Figure 5.2: Strategy used in the density-based algorithm to partition event logs into a set of
clusters

Considering the sample sets of aggregated vectors depicted in Figure 5.2, we can easily and

clearly detect two different process scenarios of aggregated vectors and noise not belonging

to any of those scenarios. For instance, aggregated vectors A and B belong to two different

process scenarios. However, the aggregated vector C is noise. The main reason we recognize

the clusters is that within each cluster, we have a typical density of points that is considerably

higher than outside of the cluster. Furthermore, the density within the areas of noise is lower

than the density in any of the clusters. The key idea is that for each point of a cluster the

neighborhood of a given radius has to contain at least a minimum number of points, which

the density in the neighborhood has to exceed a threshold. Hence, we would have to define

the two appropriate parameters which are the following. The distance that will be used

to locate the points in the neighborhood of any point and the minimum number of points

clustered together for a region to be considered dense. Then, we can retrieve all points that

are reachable from the given point using the these two parameters. There is no easy way

68

to get the knowledge related to the parameters in advance, the existing technique in the

literature to determine the parameters of the cluster is heuristic [28, 48, 79]. Sometimes, the

two parameters can be set by domain experts [34].

Let d(V⃗i, V⃗j) denote Euclidean distances between aggregated vectors V⃗i, V⃗j. Let Eps denote

the distance measure that will be used to locate the points in the neighborhood of any point.

Let MinPts denote the minimum number of points clustered together for a region to be

considered dense.

Algorithm 5 shows the procedure to partition the event log into a set of clusters using the

density-based algorithm from aggregated vectors. The time complexity of the algorithm is

O(n× log(n)), where n is the number of event traces in the event log log. We use Example 5

to illustrate Algorithm 5.

Example 5. Consider the set of aggregated vectors Π = {V⃗1, V⃗2, V⃗3, V⃗4, V⃗5} given in the

Table 5.1, the set of Euclidean distances of two aggregated vectors in L is M = {(V⃗1, V⃗2) =

0.203, (V⃗1, V⃗3) = 0.202, (V⃗1, V⃗4) = 0.108, (V⃗1, V⃗5) = 0.508, (V⃗2, V⃗3) = 0.306, (V⃗2, V⃗4) = 0.124 ,

(V⃗2, V⃗5) = 0.507, (V⃗3, V⃗4) = 0.281, (V⃗3, V⃗5) = 0.508, (V⃗4, V⃗5) = 0.508}, and the two parameters

are Eps = 0.3 and MinPts = 1.

According to Lines 2-5, we select an aggregated vector V⃗1, and check the label of aggregated

vector V⃗1. We apply Line 6-11 of algorithm for every aggregated vector in the set Π to find

the neighborhood of aggregated vector V⃗1. Since the distance between aggregated vectors V⃗1

and V⃗2, i.e. d(V⃗1, V⃗2), is 0.203 and less than Eps, we add V⃗2 into list NeighborsList. After

applying the step to the other three aggregated vectors V⃗3, V⃗4, V⃗5, the NeighborsList becomes

V⃗2, V⃗3, V⃗4. Then we check whether the list NeighborsList contains at least a MinPts of

points on Line 12-15. Based on Line 16 and 17, aggregated vector V⃗1 is labeled as 1 and then

removed from list NeighborsList. We apply Line 18-32 of algorithm to find the neighborhood

of every aggregated vector in the list NeighborsList, i.e.V⃗2, V⃗3, V⃗4. We repeat the steps until

69

Algorithm 5 Event log partitioning

Require: A set of aggregated vectors Π = {V⃗1, · · · , V⃗| log |} and a set of Euclidean distances
M = {d(V⃗i, V⃗j)|V⃗i, V⃗j ∈ Π}; Eps and MinPts be the two parameters.

Ensure: a set of the clusters related to aggregated vectors
1: k ← 0
2: for each V⃗i ∈ Π do
3: if V⃗i is not labeled then
4: continue
5: end if
6: NeighborsList← Empty List
7: for each V⃗j ∈ Π do
8: if d(V⃗i, V⃗j) ≤ Eps then
9: NeighborsList← NeighborsList ∪ {V⃗j}

10: end if
11: end for
12: if |NeighborsList| < MinPts then
13: V⃗i is labeled as noise
14: continue
15: end if
16: k ← k + 1 and V⃗i is labeled as k
17: SearchList← NeighborsList\{V⃗i}
18: for each V⃗m ∈ SearchList do
19: if V⃗m is labeled as noise then
20: V⃗m is labeled as k
21: end if
22: V⃗m is labeled as k
23: NeighborsList← Empty List
24: for each V⃗n ∈ Π do
25: if d(V⃗m, V⃗n) ≤ Eps then
26: NeighborsList← NeighborsList ∪ {V⃗n}
27: end if
28: end for
29: if |NeighborsList| ≥MinPts then
30: SearchList← SearchList ∪NeighborsList
31: end if
32: end for
33: end for

all aggregated vectors are labeled, and partition the event log into two subsets, i.e., scenarios.

The first subset of the event log contain V⃗1, V⃗2, V⃗3, V⃗4, and the second subset contain V⃗5

Finally, the existing process discovery algorithms can be applied on the subset of logs to

70

obtain different process scenarios in terms of process models.

5.5 Experimental Evaluation

In this Chapter, we firstly apply the technique to the artificial logs to investigate the effective-

ness and validity. Then we experimentally evaluate the proposed approach on five real-life

event logs [1, 2, 3, 5, 4].The characteristics of these event logs are summarized in Table 5.2.

The artificial logs are generated from the Processes and Logs Generator (Plg) [18], which is

an open-source tool that is used to generate artificial event logs based on the user-defined

process model.

The objectives of our evaluations consist of four components. First, investigate the effective-

ness of process scenario discoveries in wastewater treatment. To do so, we apply the proposed

approach on the artificial logs generated from the Plg based real wastewater treatment pro-

cess provided by a domain expert and examine the effectiveness of the approach. Second,

we evaluate if having timing information can improve the quality of process scenario models

discovered from event logs. In order to achieve the objective, we choose an existing heuristic

mining algorithm [81], and apply it to the same event logs but with and without time infor-

mation. Third, we compare the number of scenarios and the scenario models obtained by

the distance-based algorithm with k-means approach where k is exhaustively searched. The

last, we compare the density-based algorithm with the four commonly used process scenarios

discovery approaches such as the k-means approach (KM) [61], the Model-based approach

(MB) [25], the Distanced-based approach (DB) [34], and the Conserved Patterns approach

(CP) [16] using real-life event logs. Before the evaluation, we first define our evaluation

criteria.

71

DataSet Number of
Traces

Number of
Event Entry

Average number of
Event Entry Per Trace

BPIC2013 [1] 819 2351 2.871
BPIC2020 [2] 10500 56,437 5.374

Hospital Billing [3] 100000 451359 4.514
Review Process [5] 10000 236360 23.636
Road Traffic [4] 150370 561470 3.734

Table 5.2: Characteristics of event logs used for evaluations in the discovery phase

5.5.1 Performance Metrics

The quality of a process model is evaluated by two criteria, i.e., (1) fitness f , and (2) precision

p. Fitness measures how well a model can reproduce the process behavior contained in a

log, and the precision measures the degree to which the behavior made possible by a model

is found in a log [20].The higher fitness value and precision value, the better quality of the

process model. We use the pm4py [8] library to calculate the fitness value and precision

value.

As we may have multiple scenarios in a given event log, we need the weighted average fitness

fW and precision pW to evaluate the quality of the multiple scenario process models. Similar

to the approach in [25], the weighted average fitness and precision are calculated as follows:

fW =

∑k
i=1 ni × fi
| log |

pW =

∑k
i=1 ni × pi
| log |

where k is the number of subsets of logs representing the scenarios, ni is the number of event

traces in the ith subset of a given event log, and fi and pi are the fitness value and precision

value of the process model derived from of subsets of logs, respectively.

The fitness and precision are two aspects of a process model which may not always be

consistent. The F1 score [69] is defined as the harmonic mean of the weighted average

72

fitness fW and precision pW , i.e. F1 = 2×fW×pW

fW+pW
. We will also use the F1 score as an

evaluation criteria.

5.5.2 Effectiveness Validation

This set of experiments examines the proposed approach’s effectiveness for process scenario

discovery in the wastewater treatment domain. More specifically, based on the process model

provided by the domain expert, we first use the Plg to generate five artificial event logs by

injecting an incremental amount of noise ranging from 1% to 20% to produce an event log

that contains one thousand event traces. Then, for each artificial event log, we apply the

proposed approach to partition the event log into clusters and discover a process model from

each subset of the event log using the heuristic mining algorithm presented in [81].

Figure 5.3 shows the wastewater treatment process model in the form of the Business Process

Modeling Notation [85]. All wastewater treatment processes begin with influent wastewater

from sewage lines arriving at a treatment facility. The wastewater is sent through coarse and

fine screens to remove both large and small objects, debris, etc. from the water. After these

first mandatory steps are completed, the wastewater will go through different sub-processes

depending on if the water can be reused or if it will be disposed of at a landfill. Figure 6.3,

Figure 6.4, and Figure 6.5 show the results produced by the proposed approach.

The first scenario within the wastewater treatment process shown in Figure 6.3 is used to

remove solid debris in the water that ranges anywhere from 0.01 inch to 6 inches. This process

begins at the “Coarse Screens” activity, where the screens have openings of 0.25 inches to 6

inches. These screens remove the larger solids, such as rags, sticks, rocks, etc. After the large

debris is removed from the wastewater, it moves to the “Fine Screens” activity where smaller

particles are moved from the water. Screens anywhere from 0.01 inch to 0.25 inches are used

to suspend solids and clarify the water to acceptable levels. The final processing step is the

73

Figure 5.3: Wastewater Treatment Process Model

“Compacted Screenings” where after the screens used previously are washed, and they are

then compacted to reduce the amount of water and increase the concentration of solids. The

first scenario ends with the “Disposal to Landfill” activity, where waste is disposed of.

Figure 5.4: Scenario one: Removing solid debris process

The second scenario within the wastewater treatment process shown in Figure 6.4 is used

to treat sludge by converting it to a solid form. The same process of water going through

the coarse/fine screens occurs as in the first scenario. Then, the water goes through the

“Primary Clarifiers” activity, where solids are separated from the wastewater by gravity in a

clarification tank. After this activity, “Blending” routes some of the water flow away from the

treatment process so that it can be blended with fully treated water before it is disposed of.

The “Anaerobic Digester” step continues the treatment process by degrading organic matter

by removing oxygen. The process can either end at this point or continue with the “Storage

Tank” activity where water can be stored before it is disposed of at a landfill.

74

Figure 5.5: Scenario two: Treating sludge process

The third scenario within the wastewater treatment process shown in Figure 6.5 describes

the liquid flow through the process. The third scenario also starts with coarse/fine screen

activities. It then goes to the "Primary Clarifiers" activity, similar to the second scenario, to

allow solids to separate from the liquids. The liquid then moves to the "Bio-reactor Tanks,"

where the liquid is treated by microfiltration membrane bioreactors that combine a sus-

pended growth biological reactor with microfiltration for secondary water treatment. Then,

depending on various chemical levels, clarity levels, etc., the water will simultaneously travel

to various other activities before the end of the process. The first route is to the "Final Clar-

ifier" activity, where an activated sludge process is used to settle out microorganisms. Then

the "Chlorine Contact Basin" is also used to disinfect the water and remove microorganisms,

bacteria, viruses, etc., from the water. Water is then moved to "Ponds," where organic con-

tent and pathogens are reduced/removed from the wastewater. Then the "De-chlorination

Pond" reduces chlorine levels in the wastewater. Before the process ends, the water is moved

to either the "Effluent Pumping Station" for transporting the water or the Cascade Aerator

to oxidize iron and reduce dissolved gases. The third scenario’s second route starts with one

of three activities. The first, "Gravity Thickening," is used to condense biosolids to separate

the solids from the solid-free supernatant. The second activity, "Dissolved-Air Flotation

Thickening", thickens sludge to bring solids to the surface, separating the solids and liquids.

The final option is "Wastewater Centrifuge De-watering Thickening," where a high-speed

rotation separates water from the sewage. After one of these processes is used to treat the

75

wastewater, it is then sent to the "Blend Tank" and the "Anaerobic Digester" for further

treatment before the process ends.

Figure 5.6: Scenario three: Treating liquid process

According to the wastewater treatment workflow from conventional water reclamation plants,

wastewater treatment is a process in which the solids in wastewater are partially removed

and partially changed by decomposition from highly complex, putrescible organic solids to

mineral or relatively stable organic solids. Primary and secondary treatment removes the

majority of biological oxygen demand and suspended solids in wastewater. The proposed

approach utilizes the duration of each treatment activity and the frequency of event trace

sequences related to treatment processes for different waste forms to discover the process

scenarios in wastewater treatment. Based on the domain expert’s verification, the evaluation

results show that the proposed approach is able to discover the process scenarios from event

logs in the wastewater treatment domain.

76

k=2 k=3 k=4 k=5
Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information
BPIC2013 0.951 0.998 0.952 0.961 0.970 0.972 0.979 0.981
BPIC2020 0.985 0.998 0.986 0.998 0.986 0.998 0.989 0.998

Hospital Billing 0.785 0.998 0.973 0.995 0.945 0.957 0.945 0.997
Review Process 0.898 0.956 0.915 0.957 0.925 0.963 0.939 0.962
Road Traffic 0.768 0.976 0.823 0.976 0.963 0.979 0.969 0.975

Table 5.3: Weighted average fitness of process models generated by real life event logs

5.5.3 Process Model Discovery Performance Improvement with Tim-

ing Information

This set of experiments is to evaluate whether adding the timing information in constructing

the vectors can improve process scenario discovery performance. More specifically, given an

event log, we apply the proposed approach to construct the aggregated vectors that contain

both activity information and timing information. For the same event log, we also apply

the heuristic mining approach presented in [61] to obtain the activity vectors that contain

only the activity information. For both aggregated vectors and activity vectors, we apply

the k-means algorithm to partition the event logs into k clusters, where k is from 2 to 5,

and discover a process model from each subset of logs using the heuristic mining algorithm

presented in [80].

We use the pm4py tool [8] with the following settings: (1) process mining algorithm is

heuristic mining; (2) the dependency threshold of the algorithm is 0.9; (3) the minimum

number of occurrences of an activity is 1; (4) the minimum number of occurrences of an edge

is 1; and (5) the thresholds for the loops of length is 2. The weighted average fitness, the

weighted average precision, and the F1 score of the process models are depicted in Table 5.3,

Table 5.4, and Table 5.5, respectively.

From the experiment results, it is clear that when we add timing information into the vector,

we are able to achieve higher weighted average fitness, weighted average precision, and F1

77

k=2 k=3 k=4 k=5
Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information
BPIC2013 0.816 0.899 0.721 0.857 0.675 0.804 0.651 0.759
BPIC2020 0.943 0.953 0.876 0.941 0.876 0.907 0.989 0.996

Hospital Billing 0.883 0.917 0.792 0.890 0.870 0.907 0.863 0.944
Review Process 0.530 0.754 0.431 0.571 0.475 0.551 0.492 0.646
Road Traffic 0.640 0.729 0.606 0.729 0.561 0.719 0.561 0.708

Table 5.4: Weighted average precision of process models generated by real life event logs

k=2 k=3 k=4 k=5
Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information

Without
Timing

Information

With
Timing

Information
BPIC2013 0.879 0.946 0.821 0.906 0.796 0.880 0.782 0.855
BPIC2020 0.963 0.975 0.927 0.969 0.927 0.950 0.940 0.964

Hospital Billing 0.831 0.956 0.873 0.939 0.906 0.948 0.902 0.959
Review Process 0.667 0.843 0.585 0.716 0.627 0.701 0.646 0.733
Road Traffic 0.698 0.835 0.688 0.837 0.709 0.829 0.709 0.819

Table 5.5: F1 score of process models generated by real life event logs

score, under different k and with different real-life event logs.

For each event log, we also calculate the average improvement percentage of different k values

which is shown in Table 6.1. We observe that the improvements of the weighted average

precision is better than the weighted average fitness in general. The reason is that the

weighted average fitness resulted from the approach in [61] is closer to 1 than the weighted

average precision, which indicates the room for fitness improvement is relatively small.

Weighted Average
Fitness

Weighted Average
Precision F1 Score

BPIC2013 2.02% 16.00% 9.53%
BPIC2020 1.24% 4.09% 2.71%
Hospital
Billing 10.18% 8.06% 9.06%

Review
Process 5.09% 30.30% 20.12%

Road
Traffic 15.84% 20.81% 18.73%

Table 5.6: Average improvement percentage

78

5.5.4 Distance-based Scenario Discovery Compared with Exhaus-

tive Search for k with k-means clustering

The third set of experiments compare the performance of the distance-based algorithm with

the k-means approach. For both the proposed approach and the optimal k-means solution,

we use the aggregated vectors when partitioning the event log.

To obtain the optimal k-means solution, we use the brute-force approach as follow. We apply

the k-means algorithm to partition the event log to a set of sub logs with the k starting from

2 with incremental step of 1 until one of the resulted subsets becomes empty. For each

resulted cluster set, we apply the heuristic mining algorithm to generate the process models,

and calculate the F1 score, and the average F1 of all resulted cluster sets from k-means

approach when k varies. Both the largest and the average F1 scores are compared with the

value obtained with the proposed solution. The results are depicted in Figure 5.7.

Figure 5.7: F1 scores of two-phase clustering approach, optimal k-means approach, and
average F1 score of k-means approach

As shown in Figure 5.7, the proposed two-phase scenario discovery approach outperforms

the k-means approach on average cases. More specifically, the F1 score of the two-phase

approach is 7.73%, 8.21%, 7.15%, 7.46%, and 8.10 % higher than the average F1 score

79

BPIC 2013 BPIC 2020 Review Process Toad Traffic Hospital Billing

fW pW F1
Score fW pW F1

Score fW pW F1
Score fW pW F1

Score fW pW F1
Score

Proposed 0.985 0.877 0.928 0.998 0.887 0.939 0.951 0.646 0.769 0.974 0.719 0.827 0.936 0.793 0.859
KM 0.951 0.816 0.878 0.985 0.883 0.931 0.898 0.530 0.667 0.768 0.640 0.698 0.785 0.792 0.788
DB 0.952 0.721 0.821 0.986 0.876 0.928 0.915 0.431 0.586 0.823 0.606 0.698 0.973 0.774 0.862
CP 0.965 0.675 0.794 0.986 0.872 0.926 0.925 0.475 0.628 0.963 0.561 0.709 0.945 0.619 0.748
MB 0.972 0.651 0.780 0.989 0.889 0.936 0.939 0.492 0.646 0.969 0.561 0.711 0.931 0.663 0.774

Table 5.7: Weighted average fitness, weighted average precision, and F1 score generated by
process scenarios discovery approaches

for BPIC 2013, BPIC2020, Hospital Billing, Review Process, and Road Traffic event logs,

respectively. Compared with the optimal k-means solution, the two-phase approach results

in lower f1 score, but the difference is less than 5%.

5.5.5 Density-based Scenario Discovery Compared with Four Com-

monly Used Process Scenarios Discovery Approaches

This set of experiments is to compare our proposed approach with the four commonly used

process scenarios discovery approaches such as the k-means approach (KM) [61], the Model-

based approach (MB) [25], the Distanced-based approach (DB) [34] and the Conserved

Patterns approach (CP) [16] using real-life event logs.

For each real-life event logs, we use the different approaches to generate subsets of event logs

where event traces in the same subset are most likely under the same scenarios. For each

subset of logs produced by the different approaches, we apply the inductive mining algorithm

to discover a process model, and calculate the weighted average fitness, the weighted average

precision, and the F1 score of the process models. The results are depicted in Table 5.7.

From the experiment results, the performance of the proposed approach is 3.31%, 7.93%,

and 5.61% higher than the commonly approaches with respectively for fitness, precision, and

F1 score on average. The proposed method outperforms four commonly used approaches

with different real-life event logs.

80

5.6 Summary

In this chapter, we present an approach that uses timing information to assist in discovering

process scenarios from event logs without a prior knowledge about the number of scenarios k.

The algorithm is implemented based on the open-source process mining framework pm4py.

A real wastewater treatment process provided by a domain expert is used as a case study to

investigate the effectiveness and validity of the approach. The evaluation results show that

the algorithm is able to discover the process scenarios from event logs. The experiments

on real-life event logs show that the process scenario models obtained with the additional

timing information have higher fitness and precision scores than the models obtained without

the timing information. These results lead to the conclusions that timing information can

improve process scenario discovery performance, and the proposed approach can discover

different process scenarios more effectively. The experiments on real-life even logs also show

that the distance-based algorithm results in higher F1 scores on average compared to the

k-means approach, and less than 5% lower F1 score compared with the optimal k obtained

through exhaustive search.

81

Chapter 6

Incorporating Domain Knowledge for

Implicit Knowledge Discovery

6.1 Background and Related Work

In the previous Chapter, process scenario discovery techniques have proven valuable in mul-

tiple contexts. The techniques’ largest drawback is that most algorithms achieve this by

solely using an event log without allowing the domain expert to influence the discovery in

any way. However, the domain expert has specific domain expertise that should be exploited

to create better process models in model fitness and precision criteria.

Although the field of process scenario discovery has matured in recent years, applying domain

knowledge for discovering better process scenario models is still in its nascent stages. In [55],

authors suggest an approach to discover a control flow model based on event logs and prior

knowledge specified in terms of augmented Information Control Nets. [75] proposes a dis-

covery algorithm using Integer Linear Programming based on the theory of regions, which

can be extended with a limited set of user-specified constraints during process discovery.

82

In [33], the authors introduce a process discovery technique presented as a multi-relational

classification problem on event logs. Their approach is supplemented by Artificially Gen-

erated Negative Events, with the possibility to include prior knowledge during discovery.

Their work [55, 75, 33] addresses the issue of incorporating domain knowledge to improve

the discovered process model. However, these works also face challenges in environments

with different scenarios. In [22], authors propose a novel semi-supervised trace clustering

technique based on expert knowledge. Their approach is based on incorporating expert

knowledge starting from a complete expert solution, in which the expert provides a complete

clustering solution based on the expert’s expectations. However, domain experts cannot

provide complete solutions in some specific domains due to the system’s complexity.

In this Chapter, we present an approach that incorporates domain knowledge to assist in

discovering process scenarios from event logs. Below, we provide an overview of the approach

and the four steps required. First, we construct aggregated vectors for a given event log using

the approach proposed in Chapter 5.3. Next, we use the density-based approach to generate

an augmented ordering of the event log representing its density-based clustering structure.

This augmented ordering contains information equivalent to the density-based clusterings

that correspond to a broad range of parameter settings. Thirdly, we replay the original event

log using the process model provided by the domain expert and obtain an expert sublog.

The expert sublog shows us where the event traces fit within the process model provided

by the domain expert. Based on the expert sublog, we identify the maximum similarity

distance. Finally, we discover process scenarios by the maximum similarity distance and the

augmented ordering.

This Chapter is organized as follows. In Chapter 6.2, we propose an algorithm to generate the

augmented ordering. Next, we develop an approach to discover the process scenarios using

domain knowledge and the augmented ordering in Chapter 6.3.2. Chapter 6.4 investigates

the approach’s effectiveness using a real wastewater treatment process and evaluates the

83

proposed approach in terms of three criteria, i.e., the weighted average fitness, the weighted

average precision, and F1 score using real life even logs, and discusses our findings.

6.2 Generate Augmented Ordering with a Density-based

Approach

The key idea of density-based clustering is that for each event trace of a cluster, the neighbor-

hood of a given radius(ε) has to contain at least a minimum number of event traces(MinPts),

i.e., the cardinality of the neighborhood has to exceed a threshold. If we directly apply the

existing density-based approach, i.e., DBSCAN algorithm [28], to partition the event log,

we will meet a problem, which is the intrinsic cluster structure cannot be characterized by

global density parameters. Different local densities may be needed to reveal clusters in a dif-

ferent subset of the event logs. In order to overcome this problem, we propose an algorithm

that produces a special order of the event log with respect to its density-based clustering

structure containing information about every clustering level of the event traces. Moreover,

event traces of the event log are ordered such that spatially closest event traces become

neighbors in the ordering. Additionally, the distance information is stored for each event

trace representing the density that must be accepted for a cluster so that both event traces

belong to the same cluster. This distance information consists of two values for each event

trace: the core-distance and a reachability-distance, introduced in the following definitions.

Definition 21 (Core-distance of an aggregated vector V⃗). Given an aggregated vector V⃗

corresponding to an event trace σ from an event log log, let ε be a distance value, let Nε(V⃗)

be the ε−neighborhood of V⃗, let MinPts be a natural number and let MinPts-distance(V⃗) be

the distance from V⃗ to its MinPts’s neighbor. Then, the core-distance of an aggregated vector

84

V⃗ is defined as CDε,MinPts(V⃗) =


UNDEFINED, if |Nε(V⃗)| < MinPts

MinPts-distance(V⃗), Otherwise

Consider Trace 1(σ1) in Table 3.1, the aggregated vector corresponding to σ1 is V⃗1 =

(1, 1, 1, 1, 0, 129, 130, 175, 174, 0, 0). Assume the MinPts values is 2, and the distance value

is 500, i.e., MinPts = 2.0 and ε = 500.0. Since the Euclidean distances of two aggregated

vectors in L are (V⃗1, V⃗2) = 166.39, (V⃗1, V⃗3) = 237.58, (V⃗1, V⃗4) = 108.03, (V⃗1, V⃗5) = 343.18, the

core-distance of an aggregated vector V⃗1 is CD500,2(V⃗1) = 108.03.

The core-distance of an aggregated vector V⃗ corresponding to an event trace σ is simply the

smallest distance ε between V⃗ and an aggregated vector in its ε-neighborhood such that V⃗

would be a core object with respect to ε if this neighbor is contained in Nε(V⃗). Otherwise,

the core-distance is UNDEFINED.

Definition 22 (Reachability-distance of an aggregated vector V⃗1 and V⃗2). Given two ag-

gregated vector V⃗1 and V⃗2 corresponding to two event traces σ1 and σ2 from an event log

log, let ε be a distance value, let Nε(V⃗2) be the ε−neighborhood of V⃗2, let MinPts be a nat-

ural number Then, the reachability-distance of an aggregated vector V⃗1 and V⃗2 is defined as

RDε,MinPts(V⃗1, V⃗2) =


UNDEFINED, if |Nε(V⃗2)| < MinPts

max(CDε,MinPts(V⃗2), distance(V⃗1, V⃗2)), Otherwise

Algorithm 6 shows the procedure to create an ordering of aggregated vectors corresponding

to event traces from the event log, additionally storing the core-distance and a suitable

reachability-distance for each aggregated vector. The algorithm’s time complexity is O(N ×

log(N)), where N is the number of event traces in the event log L. We use Example 6 to

85

illustrate Algorithm 6.

Algorithm 6 Generating an Augmented Ordering

Require: A set of aggregated vectors Π = {V⃗1, · · · , V⃗| log |}, a distance value ε , and a natural
number MinPts.

Ensure: An ordering of aggregated vectors and corresponding reachability-distance for each
aggregated vector

1: for each aggregated vectors V⃗ ∈ Π do
2: Set V⃗ ’s reachability distance is UNDEFINED
3: end for
4: for each unprocessed aggregated vectors V⃗ ∈ Π do
5: N is the ε−neighborhood of V⃗
6: mark V⃗ as processed
7: output V⃗ to the ordered list
8: if CDε,MinPts(V⃗) ̸= UNDEFINED then
9: Seeds = empty priority queue

10: for each next q in Seeds do
11: M is the ε−neighborhood of q
12: mark q as processed
13: output q to the ordered list
14: if CDε,MinPts(q) ̸= UNDEFINED then
15: coredist = CDε,MinPts(q)
16: for each o in M do
17: if o is not processed then
18: reachDist = max(coredist, dist(q,o))
19: if RDε,MinPts(o, q) ̸= UNDEFINED then
20: Seeds.insert(o,RDε,MinPts(o, q))
21: else
22: Seeds.move(o,RDε,MinPts(o, q))
23: end if
24: end if
25: end for
26: end if
27: end for
28: end if
29: end for

Example 6. Consider the set of aggregated vectors Π = {V⃗1, V⃗2, V⃗3, V⃗4, V⃗5} given in the Ta-

ble 3.1, and assume the two parameters are MinPts = 2.0 , and ε = 500.0, the corresponding

core-distance of each aggregated vector in the setΠ are CD500,2(V⃗1) = 108.03,CD500,2(V⃗2) =

91.28,CD500,2(V⃗3) = 237.58,CD500,2(V⃗4) = 91.28,CD500,2(V⃗5) = 306.72.

86

According to Line 2-4 of algorithm, we select an aggregated vector V⃗1, and check the label

of aggregated vector V⃗1. We apply Line 8-14 of the algorithm for every aggregated vector

in the set Π to find the neighborhood of aggregated vector V⃗1. Since the distance between

aggregated vectors V⃗1 and V⃗2, i.e. d(V⃗1, V⃗2), is 108.03 and is less than ε, we add V⃗1 into pri-

ority queue Seeds. After applying the step to the other three aggregated vectors V⃗2, V⃗3, V⃗4, V⃗5,

the Seeds becomes V⃗1, V⃗2, V⃗4, V⃗3, V⃗5 in order of distance from smallest to largest. Then we

remove the first element V⃗1 from the priority queue Seeds and set the V⃗1 as the point p

on Line 10-15. Based on Line 17- 19, we calculate the reachability-distance of the aggre-

gated vector V⃗1 and other aggregated vectors in priority queue Seeds, i.e.RD500,2(V⃗1, V⃗2) =

91.28,RD500,2(V⃗1, V⃗3) = 237.58,RD500,2(V⃗1, V⃗4) = 91.28,RD500,2(V⃗1, V⃗5) = 306.72, and then

find the smallest reachability-distance, i.e. RD500,2(V⃗1, V⃗2) = 91.28.

We apply Line 20-22 of the algorithm to remove the aggregated vector, which has the smallest

reachability-distance in the queue Seeds, and the Seeds becomes V⃗4, V⃗3, V⃗5. We set the V⃗2

as the point p and repeat the steps until all aggregated vectors are labeled. Finally, the

ordering of aggregated vectors is V⃗1, V⃗2, V⃗4, V⃗3, V⃗5 and the corresponding reachability-distances

are 108.03, 91.28, 91, 28, 237.58, 306.72

6.3 Discover Process Scenarios Based on Domain Knowl-

edge and the Augmented Ordering

This chapter presents an approach to discovering the process scenarios from event logs based

on domain knowledge. This approach has two steps. First, we identify the maximum simi-

larity distance in the event logs based on domain knowledge. Second, we use the approach

on the maximum similarity distance and the augmented ordering produced by algorithm 6

to generate subsets of event logs where event traces in the same subset are most likely under

87

the same scenarios.

6.3.1 Identify the Maximum Similarity Distance in Event Logs Based

on Domain Knowledge

Before we introduce the approach to identify the maximum similarity distance in the event

log based on the domain knowledge, we first discuss how expert knowledge can be represented

and how it can be incorporated into a trace clustering approach. Typically, domain knowl-

edge can be represented in three distinct approaches: expert-driven initialization, constraints

clustering, and process model initialization [22].

The expert-driven initialization approach is related to semi-supervised learning [10]. In this

approach, the domain expert is expected to manually assign a small subset of traces to a

cluster, after which a clustering algorithm extends the clusters to the entire event log. The

approach is useful for centroid-based algorithms such as k-means algorithms, which often

rely on random initialization of starting data points in order to commence the clustering.

By setting these starting data points based on the domain knowledge of an expert instead

of randomly, the performance of the trace clustering results should increase.

The constraints clustering approach refers to specify domain knowledge effectively in terms

of constraints. Rather than provide a starting subset of clustered traces, the expert provides

a set of constraints to which the clustering solution is expected to conform. Typical examples

of expert constraints are must-link constraints, which indicate that two elements must be

included in the same cluster, and cannot-link constraints, indicating that two elements should

not be clustered together [78].

The process model initialization approach uses process model as a way to input the domain

knowledge based on the expert’s experience. For the process model initialization approach,

88

the expert provides a process model representing the primary process scenario across the

entire event log. In this case, a clustering obtained with the use of the process model could

be a useful starting point for a clustering exercise. Then, the solution of the expert and the

regular trace clustering solution can be combined to create a consensus clustering. We use the

process model to input the domain knowledge in this work. The expert-driven initialization

approach and the constraints clustering approach, it will be addressed in our future work.

Given an event log and the process model provided by the domain expert, the maximum

similarity distance refers to the maximum Euclidean distances between aggregated vectors

in the primary process scenario, which is in the form of the process model provided by the

domain expert. Our approach to identify the maximum similarity distance consists of two

steps: (1) obtaining the primary process scenario sublog by replaying the original event

log on the primary process scenario model; (2) identifying the maximum similarity distance

based on the primary process scenario sublog.

For event traces in the original event log, we identify whether an event trace is replayable

defined in Chapter 3.2 on the primary process scenario model . We refer the set of replayable

event traces as the primary process scenario sublog. Let d(V⃗i, V⃗j) denote Euclidean distances

between aggregated vectors V⃗i, V⃗j. Algorithm 7 shows the procedure to identify the maxi-

mum similarity distance from aggregated vectors based on the domain knowledge. The time

complexity of the algorithm is O(N × logN), where N is the number of event traces in the

event log L. We use Example 7 to illustrate Algorithm 7.

Example 7. Consider the event log given in Table 3.1 and a process model shown in Fig-

ure 6.1 provided by a domain expert. According to Line 2-7 of algorithm, we select four

event traces from the event log based on the Definition 10, convert them into the corre-

sponding aggregated vectors, and put them into the set A. Hence, the set A is updated to

{(1, 1, 1, 1, 0, 129, 130, 175, 174, 0, 0), (1, 1, 1, 1, 0, 202, 122, 37, 117, 0, 0), (1, 1, 1, 1, 0, 54, 279,

245, 20, 0, 0), (1, 1, 1, 1, 0, 178, 92, 87, 183, 0, 0)}. We apply Line 8-13 of algorithm for every

89

Algorithm 7 Identify the Maximum Similarity Distance from Aggregated
Vectors
Require: a workflow net N = (P, T, F) provided by the domain expert, a event log L
Ensure: the Maximum Similarity Distance msd
1: Define a set A = {} ;
2: for each event trace σ ∈ L do
3: if σ is replayable on the N then
4: Convert the σ to aggregated vector V⃗
5: A = A ∪ {V⃗}
6: end if
7: end for
8: Set msd = 0
9: for each two aggregated vector V⃗i, and V⃗j ∈ A do

10: if d(V⃗i, V⃗j) ≥M then
11: msd = d(V⃗i, V⃗j)
12: end if
13: end for
14: return msd

aggregated vector in the the set A. After applying the procedure, the maximum similarity

distance produced by the event trace σ2 and event trace σ3 is 315, i.e. msd = 315.

Figure 6.1: Process model representing the domain knowledge

6.3.2 Discover Process Scenarios Based on the Maximum Similarity

Distance and the Augmented Ordering

The algorithm mentioned in Chapter 6.2 generates the augmented ordering consisting of the

ordering of the event traces and the corresponding reachability-distance. In the following,

we propose an approach using the maximum similarity distance and the augmented ordering

to generate subsets of event logs where event traces in the same subset are most likely under

90

the same scenarios. To simplify the notation, we specify the augmented ordering formally:

Definition 23 (Augmented Ordering). Given an event log L, a distance value ε, and a

natural number MinPts, the augmented ordering Λ is the result produced by the Algorithm 6

[λ1, . . . λi] where λi is characterized by a 3-tuple(m,n,RDε,MinPts), the m is index of the

augmented order, the n is the index of the event trace, and the RDε,MinPts) is reachability-

distance of the the corresponding event traceσn

Algorithm 8 Discover process scenarios based on the maximum similarity
distance and the augmented ordering
Require: a event log L, the Maximum Similarity Distance msd, and the the augmented

ordering Λ = [λ1, . . . λi], where λi = (m,n,RDε,MinPts)
Ensure: subsets of event logs
1: Define two sets Subsets = {} and ∆ = {};
2: for each λi ∈ Λ do
3: if λi.RDε,MinPts ≤ msd then
4: ∆ = ∆ ∪ {λi.n}
5: CONTINUE
6: end if
7: if λi.RDε,MinPts > msd, and ∆ ̸= {} then
8: Subsets = Subsets ∪∆
9: ∆ = {}

10: end if
11: end for
12: return Subsets

Based on the Definition 23, we know the augmented ordering is a special order of all the

event traces in the event log with respect to its density-based clustering structure containing

the information about every clustering level of the event traces. The Algorithm 6 does not

assign cluster memberships. Hence, we apply the maximum similarity distance to assign

cluster memberships. Algorithm 8 gives the detailed steps of generating subsets of event logs

where event traces in the same subset are most likely under the same scenarios. The time

complexity of Algorithm 8 is O(N), where N is the number of events in a trace. Finally, the

existing process discovery algorithms can be applied on the subset of logs to obtain different

process scenarios in terms of process models.

91

6.4 Experimental Study

In this Chapter, we first apply the proposed technique to the artificial logs to investigate

the effectiveness and validity. Then we experimentally evaluate the proposed approach on

five real-life event logs shown in Chapter 3.4. The objectives of our evaluations consist of

two components. First, investigate the effectiveness of process scenario discoveries in real

wastewater treatment processes. To do so, we apply the proposed approach on the artificial

logs generated from the Plg based on the wastewater treatment process and a process model

provided by a domain expert to examine the effectiveness of the approach. Second, we

evaluate if incorporating domain knowledge can improve the quality of process scenario

models discovered from event logs. In order to achieve the objective, we choose an existing

heuristic mining algorithm [81], and compare the scenario models obtained by the proposed

approach with the commonly used k-means clustering approaches where k is exhaustively

searched.

6.4.1 Effectiveness Validation in Wastewater Treatment Domain

This set of experiments examines the proposed approach’s effectiveness for process scenario

discovery in the wastewater treatment domain. More specifically, based on the wastewater

treatment process, we first use the Plg to generate five artificial event logs by injecting

an incremental amount of noise ranging from 1% to 20% to produce an event log that

contains one thousand event traces. Then, for each artificial event log, based on the process

model provided by the domain expert, we apply the proposed approach in Chapter 6.3.2 to

partition the event log into clusters using the process model provided by the domain expert,

and discover a process model from each subset of the event log using the heuristic mining

algorithm presented in [81].

92

Figure 5.3 shows the entire wastewater treatment process in the form of the Business Process

Modeling Notation (BPMN) [85]. All wastewater treatment processes begin with influent

wastewater from sewage lines arriving at a treatment facility. The wastewater is sent through

coarse and fine screens to remove large and small objects, debris, etc., from the water. After

these first mandatory steps are completed, the wastewater will go through different sub-

processes depending on if the water can be reused or if it will be disposed of at a landfill.

The process model representing the primary process scenario provided by the domain expert

is shown in Figure 6.1. This scenario describes the liquid flow through the wastewater

treatment process. The process starts with coarse and fine screen activities and then goes to

the "Primary Clarifiers" activity to allow solids to separate from the liquids. The liquid then

moves to the "Bio-reactor Tanks," where the liquid is treated by microfiltration membrane

bioreactors (MBRs) that combine a suspended growth biological reactor with microfiltration

for secondary water treatment. Then, depending on various chemical levels, the water will

travel to the "Final Clarifier" activity, where an activated sludge process is used to settle

out microorganisms. Then the "Chlorine Contact Basin" is also used to disinfect the water

and remove microorganisms, bacteria, viruses, etc., from the water. Water is then moved to

"Ponds," where organic content and pathogens are reduced from the wastewater. Then the

"De-chlorination Pond" is used to reduce the chlorine levels in the wastewater. Before the

process ends, the water is moved to either the "Effluent Pumping Station" for transporting

the water or the Cascade Aerator to oxidize iron and reduce dissolved gases.

Figure 6.2: Process model related to the primary process scenario provided by the domain
expert

93

Figure 6.3, Figure 6.4, and Figure 6.5 show the results produced by the proposed approach.

The first scenario within the wastewater treatment process shown in Figure 6.3 is used

to remove solid debris in the water. This process scenario begins at the “Coarse Screens”

activity. These screens remove the larger solids, such as rags, sticks, rocks, etc. After the

large debris is removed from the wastewater, it moves to the “Fine Screens” activity, where

smaller particles are moved from the water. The final processing step is the “Compacted

Screenings,” where the previously used screens are washed. They are then compacted to

reduce the amount of water and increase the concentration of solids. The first scenario ends

with the “Disposal to Landfill” activity where waste is disposed of.

Figure 6.3: Removing solid debris process in wastewater treatment process

The second scenario within the wastewater treatment process shown in Figure 6.4 is used

to treat sludge by converting to a solid form. The same process of water going through the

coarse and fine screens occurs as in the first scenario. Then, the water goes through the

“Primary Clarifiers” activity, where solids are separated from the wastewater by gravity in a

clarification tank. After this activity, “Blending” routes some of the water flow away from the

treatment process so that it can be blended with fully treated water before it is disposed of.

The “Anaerobic Digester” step continues the treatment process by degrading organic matter

by removing oxygen. The process can either end at this point or continue with the “Storage

Tank” activity, where water can be stored before it is disposed of at a landfill.

The third scenario within the wastewater treatment process shown in Figure 6.5 describes

the liquid flow through the process. The third scenario also starts with coarse/fine screen

activities. It then goes to the “Primary Clarifiers” and the “Bio-reactor Tanks” activities,

similar to the process model representing the primary process scenario provided by the

domain expert, to allow solids to separate from the liquids. The water will travel to one of

94

Figure 6.4: Treating sludge process in wastewater treatment process

three activities. The first, “Gravity Thickening,” is used to condense biosolids to separate

the solids from the solid-free supernatant. The second activity, “Dissolved-Air Flotation

Thickening”, thickens sludge to bring solids to the surface, separating the solids and liquids.

The final option is “Wastewater Centrifuge De-watering Thickening,” where a high-speed

rotation process separates water from the sewage. After one of these processes is used to

treat the wastewater, it is then sent to the “Blend Tank,” and the “Anaerobic Digester” for

further treatment before the process ends. The last scenario is the same as the primary

process scenario provided by the domain expert shown in Figure 6.1. The evaluation results

show that the proposed approach is able to discover the process scenarios from event logs.

Figure 6.5: Thickening process in wastewater treatment process

95

6.4.2 Performance Evaluation

This set of experiments evaluates whether incorporating domain knowledge can improve the

process scenario discovery performance. More specifically, given an event log, we apply the

proposed approach to generate subsets of event logs where event traces in the same subset

are most likely under the same scenarios. For the same event log, we also apply the trace

clustering approach presented in [61] to partition the event logs into k clusters, where k is

from 2 to 5. For each subset of logs produced by the different approaches, we discover a

process model using the heuristic mining algorithm presented in [80].

We use the pm4py tool [8] with the following settings: (1) the process mining algorithm

is heuristic mining; (2) the dependency threshold of the algorithm is 0.9; (3) the minimum

number of occurrences of an activity is 1; (4) the minimum number of occurrences of an edge

is 1; and (5) the thresholds for the loops of length is 2. The weighted average fitness, the

weighted average precision, and the F1 score of the process models are depicted in Table 5.7.

From the experiment results, it is clear that when we incorporate the domain knowledge

in the trace clustering, we can achieve higher weighted average fitness, weighted average

precision, and F1 score under different real-life event logs.

For each event log, we also calculate the average improvement percentage of different k

values, shown in Table 6.1. We observe that the improvements in the weighted average

precision are better than the weighted average fitness in general. The reason is that the

weighted average fitness resulting from the approach in [61] is closer to 1 than the weighted

average precision, which indicates the room for fitness improvement is relatively small.

96

Weighted Average
Fitness

Weighted Average
Precision F1 Score

BPIC2013 2.02% 10.30% 12.53%
BPIC2020 1.24% 4.09% 3.71%
Hospital
Billing 8.18% 8.96% 8.06%

Review
Process 5.09% 7.30% 12.12%

Road
Traffic 3.84% 9.81% 11.73%

Table 6.1: Average improvement percentage under real life event logs

6.5 Summary

This chapter presents a density-based trace clustering technique based on expert knowledge

to assist process scenario discovery results. In order to incorporate domain knowledge in

process scenario discoveries, we first generate an augmented ordering of the event log rep-

resenting its density-based clustering structure. Then, we identify the maximum similarity

distance using the process model provided by the domain expert. Finally, we partition the

event log into a set of sublogs by the maximum similarity distance and the augmented or-

dering. The algorithm is implemented based on the open-source process mining framework

pm4py. A real wastewater treatment process is used as a case study to investigate the effec-

tiveness and validity of the approach. The evaluation results show that the algorithm can

discover the process scenarios from event logs in the wastewater treatment domain. The ex-

periments on real-life event logs show that the proposed approach results in a higher fitness,

precision, and F1 scores on average compared to the k-means approach.

97

Chapter 7

Conclusion

Although automation has become widespread in many industries, some workplaces, such as

utility industries, still rely heavily on individuals to perform critical tasks based on their

extensive past experiences. This accumulated intellectual capital not only improves produc-

tivity and efficacy under normal conditions but, more importantly, also contains knowledge

about identifying anomalies and addressing unexpected events and situations. This knowl-

edge is essential and critical to ensuring system safety and reliability, especially for industries

with aging infrastructures where anomalies are becoming more common. Unfortunately, this

knowledge is not explicitly recorded in defined guidelines, protocols, or standard workflows

but implicitly resides in the minds of skilled workers and routine event logs. As skilled work-

ers retire or leave the business, we may lose this accrued indispensable knowledge that is

critical to the industries’ productivity, reliability, and safety. Hence, this thesis studies the is-

sues of implicit knowledge and develops a framework for discovering implicit knowledge from

event logs. The implementation of the framework contains three phases. We first present the

design and implementation of an approach that uses hidden Markov models to filter out out-

liers from event logs in the cleaning phase. For the discovery phase, we propose approaches

to discover the implicit knowledge related to timing constraints and process scenarios from

98

event logs. This phase takes the clean event logs as input. The implicit knowledge related to

timing constraints or process scenarios is output represented by process models. In the incor-

porating phase, we present an approach incorporating domain knowledge to discover implicit

knowledge related to process scenarios from event logs to improve performance in terms of

fitness, precision, and F1 value. The case studies and experiment results indicate that the

proposed implicit knowledge discovery framework can mine implicit knowledge related to

the timing constraints and process scenarios from event logs and outperform commonly used

approaches with different real-life event logs.

Beyond the scope of this thesis, there are several open challenges.

1. In the future, the proposed framework for discovering implicit knowledge needs to be

augmented to handle inaccurate information, misleading prior experience or lack of experi-

ence, domain language barrier, and large amounts of data and ensure effectiveness in terms

of correctness, preciseness, and timeliness.

2. Issue reporting and resolution is a software engineering process supported by tools such

as the Issue Tracking System (ITS), Peer Code Review (PCR) system, and Version Control

System (VCS) [37]. Several open-source software projects follow a process in which a defect

or feature enhancement request is reported to an issue tracker, followed by source-code

change or patch review and patch commit using a version control system. We can apply

the proposed framework to three software repositories (ITS, PCR, and VCS) from a control

flow perspective for effective implicit knowledge discovery. For example, we can discover a

runtime process model for a bug resolution process spanning three repositories and conduct

process performance and efficiency analysis.

3. Whereas the main focus of implicit knowledge discovery is on the control-flow perspective

and the time perspective, event logs may contain a wealth of information relating to other

perspectives, such as the organizational perspective, the case perspective, and the other

99

perspective. Organizational mining can be used to get insight into typical work patterns,

organizational structures, and social networks. Case data can be used to understand decision-

making better and analyze differences among cases. Moreover, the different perspectives

can be merged into a single model providing an integrated view of the process. Such an

integrated model can be used for more effective implicit knowledge analysis. In the future,

we will enhance the proposed framework from different perspectives.

100

Bibliography

[1] Bpi challenge 2013. https://data.4tu.nl/repository/uuid:
3537c19d-6c64-4b1d-815d-915ab0e479da.

[2] Bpi challenge 2020. https://data.4tu.nl/repository/uuid:
3f422315-ed9d-4882-891f-e180b5b4feb5.

[3] Hospital billing - event log. https://data.4tu.nl/repository/uuid:
76c46b83-c930-4798-a1c9-4be94dfeb741.

[4] Road traffic fine management process. https://data.4tu.nl/repository/uuid:
270fd440-1057-4fb9-89a9-b699b47990f5.

[5] Synthetic event logs - review example. https://data.4tu.nl/repository/uuid:
da6aafef-5a86-4769-acf3-04e8ae5ab4fe.

[6] Road Traffic Fine Management Process Data, 2015. https://data.4tu.nl/
repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[7] process-discovery, 2016. http://pm4py.pads.rwth-aachen.de/documentation/
process-discovery/alpha-miner/.

[8] State-of-the-art-process mining in Python, 2020. https://pm4py.fit.fraunhofer.de/.

[9] E. Abdi. Supernumerary robotic arm for three-handed surgical application: behavioral
study and design of human-machine interface. Technical report, EPFL, 2017.

[10] S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by seeding. In In Pro-
ceedings of 19th International Conference on Machine Learning (ICML-2002. Citeseer,
2002.

[11] L. E. Baum. Growth functions for trasformations on manifolds. Pac. J. Math.,
27(2):211–227, 1968.

[12] L. E. Baum, J. A. Eagon, et al. An inequality with applications to statistical estimation
for probabilistic functions of markov processes and to a model for ecology. Bulletin of
the American Mathematical Society, 73(3):360–363, 1967.

101

https://data.4tu.nl/repository/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da
https://data.4tu.nl/repository/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da
https://data.4tu.nl/repository/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5
https://data.4tu.nl/repository/uuid:3f422315-ed9d-4882-891f-e180b5b4feb5
https://data.4tu.nl/repository/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://data.4tu.nl/repository/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://data.4tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://data.4tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://data.4tu.nl/repository/uuid:da6aafef-5a86-4769-acf3-04e8ae5ab4fe
https://data.4tu.nl/repository/uuid:da6aafef-5a86-4769-acf3-04e8ae5ab4fe
https://data.4tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://data.4tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://pm4py.pads.rwth-aachen.de/documentation/process-discovery/alpha-miner/
http://pm4py.pads.rwth-aachen.de/documentation/process-discovery/alpha-miner/
https://pm4py.fit.fraunhofer.de/

[13] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process mining based on regions
of languages. In International Conference on Business Process Management, pages
375–383. Springer, 2007.

[14] A. Bogarín Vega, R. Cerezo Menéndez, and C. Romero. Discovering learning processes
using inductive miner: A case study with learning management systems (lmss). Psi-
cothema, 2018.

[15] R. J. C. Bose and W. M. Van der Aalst. Context aware trace clustering: Towards
improving process mining results. In Proceedings of the 2009 SIAM International Con-
ference on Data Mining, pages 401–412. SIAM, 2009.

[16] R. J. C. Bose and W. M. van der Aalst. Trace clustering based on conserved patterns:
Towards achieving better process models. In International Conference on Business
Process Management, pages 170–181. Springer, 2009.

[17] M. W. Browne. Cross-validation methods. Journal of mathematical psychology,
44(1):108–132, 2000.

[18] A. Burattin. Plg2: Multiperspective process randomization with online and offline
simulations. In BPM (Demos), pages 1–6, 2016.

[19] H.-J. Cheng and A. Kumar. Process mining on noisy logs—can log sanitization help to
improve performance? Decision Support Systems, 79:138–149, 2015.

[20] R. Conforti, M. La Rosa, and A. H. ter Hofstede. Filtering out infrequent behavior from
business process event logs. IEEE Transactions on Knowledge and Data Engineering,
29(2):300–314, 2016.

[21] I. Craig, C. Aldrich, R. Braatz, F. Cuzzola, E. Domlan, S. Engell, J. Hahn, V. Havlena,
A. Horch, B. Huang, et al. Control in the process industries. The impact of control
technology. IEEE control systems society, 2011.

[22] P. De Koninck, K. Nelissen, B. Baesens, S. vanden Broucke, M. Snoeck, and
J. De Weerdt. An approach for incorporating expert knowledge in trace clustering.
In International Conference on Advanced Information Systems Engineering, pages 561–
576. Springer, 2017.

[23] A. A. De Medeiros, B. F. van Dongen, W. M. Van der Aalst, and A. Weijters. Process
mining: Extending the α-algorithm to mine short loops. 2004.

[24] A. K. A. de Medeiros, A. J. Weijters, and W. M. van der Aalst. Genetic process mining:
an experimental evaluation. Data Mining and Knowledge Discovery, 14(2):245–304,
2007.

[25] J. De Weerdt, S. Vanden Broucke, J. Vanthienen, and B. Baesens. Active trace clustering
for improved process discovery. IEEE Transactions on Knowledge and Data Engineering,
25(12):2708–2720, 2013.

102

[26] J. Desel and W. Reisig. Place/transition Petri Nets, pages 122–173. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998.

[27] J. Eder, E. Panagos, H. Pozewaunig, and M. Rabinovich. Time management in workflow
systems. In BIS’99, pages 265–280. Springer, 1999.

[28] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231,
1996.

[29] M. Fani Sani, S. van Zelst, and W. Aalst. Applying sequence mining for outlier detection
in process mining: Confederated international conferences: Coopis, ctc, and odbase
2018, valletta, malta, october 22-26, 2018, proceedings, part ii. pages 98–116, 10 2018.

[30] M. Fani Sani, S. van Zelst, and W. Aalst. Repairing Outlier Behaviour in Event Logs,
pages 115–131. 06 2018.

[31] F. Folino, G. Greco, A. Guzzo, and L. Pontieri. Mining usage scenarios in business
processes: Outlier-aware discovery and run-time prediction. Data & Knowledge Engi-
neering, 70(12):1005–1029, 2011.

[32] S. Goedertier, J. De Weerdt, D. Martens, J. Vanthienen, and B. Baesens. Process
discovery in event logs: An application in the telecom industry. Applied Soft Computing,
11(2):1697–1710, 2011.

[33] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust process discovery
with artificial negative events. Journal of Machine Learning Research, 10:1305–1340,
2009.

[34] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. Discovering expressive process mod-
els by clustering log traces. IEEE Transactions on knowledge and data engineering,
18(8):1010–1027, 2006.

[35] C. W. Günther. Process mining in flexible environments. 2009.

[36] C. W. Günther and W. M. Van Der Aalst. Fuzzy mining–adaptive process simplification
based on multi-perspective metrics. In International conference on business process
management, pages 328–343. Springer, 2007.

[37] M. Gupta, A. Sureka, and S. Padmanabhuni. Process mining multiple repositories for
software defect resolution from control and organizational perspective. In Proceedings
of the 11th Working Conference on Mining Software Repositories, pages 122–131, 2014.

[38] J. Herbst and D. Karagiannis. An inductive approach to the acquisition and adaptation
of workflow models. In Proceedings of the IJCAI, volume 99, pages 52–57. Citeseer,
1999.

[39] L. Holloway, C. Bear, and K. Wilkinson. Re-capturing bovine life: Robot–cow rela-
tionships, freedom and control in dairy farming. Journal of Rural Studies, 33:131–140,
2014.

103

[40] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

[41] K. Jensen and L. M. Kristensen. Coloured Petri nets: modelling and validation of
concurrent systems. Springer Science & Business Media, 2009.

[42] F. Jentsch. Human-robot interactions in future military operations. CRC Press, 2016.

[43] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE
transactions on pattern analysis and machine intelligence, 24(7):881–892, 2002.

[44] M. Kuhn. Knowledge Management in a Steel Company: A case study of the Gerdau
Group. PhD thesis, Massachusetts Institute of Technology, 2009.

[45] S. Leemans, D. Fahland, and W. Aalst. Discovering block-structured process models
from event logs containing infrequent behaviour. volume 171, pages 66–78, 05 2014.

[46] S. J. Leemans, D. Fahland, and W. M. van der Aalst. Discovering block-structured
process models from event logs-a constructive approach. In International Conference
on Applications and Theory of Petri Nets and Concurrency, pages 311–329, Berlin,
Heidelberg, 2013. Springer.

[47] S. Ling and H. Schmidt. Time petri nets for workflow modelling and analysis. In Smc
2000 conference proceedings. 2000 ieee international conference on systems, man and
cybernetics.’cybernetics evolving to systems, humans, organizations, and their complex
interactions’(cat. no. 0, volume 4, pages 3039–3044. IEEE, 2000.

[48] S. Louhichi, M. Gzara, and H. B. Abdallah. A density based algorithm for discovering
clusters with varied density. In 2014 World Congress on Computer Applications and
Information Systems (WCCAIS), pages 1–6. IEEE, 2014.

[49] F. Mannhardt, M. De Leoni, H. A. Reijers, and W. M. Van Der Aalst. Balanced multi-
perspective checking of process conformance. Computing, 98(4):407–437, 2016.

[50] O. Marjanovic and M. E. Orlowska. On modeling and verification of temporal constraints
in production workflows. Knowledge and Information Systems, 1(2):157–192, 1999.

[51] O. B. P. Model. Notation (bpmn). object management group, dtc. 2010.

[52] J. Qiu, F. Lü, H. Zhang, L. Shao, and P. He. Data mining strategies of molecular infor-
mation for inspecting wastewater treatment by using uhrms. Trends in Environmental
Analytical Chemistry, 31:e00134, 2021.

[53] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[54] L. A. Reid. Personal knowledge: Towards a post-critical philosophy, 1959.

104

[55] A. J. Rembert, A. Omokpo, P. Mazzoleni, and R. T. Goodwin. Process discovery using
prior knowledge. In International conference on service-oriented computing, pages 328–
342. Springer, 2013.

[56] A. Rozinat and W. M. Van der Aalst. Conformance checking of processes based on
monitoring real behavior. Information Systems, 33(1):64–95, 2008.

[57] A. Rozinat, M. Veloso, and W. M. Van Der Aalst. Using hidden markov models to
evaluate the quality of discovered process models. Extended Version. BPM Center
Report BPM-08-10, BPMcenter. org, 161:178–182, 2008.

[58] M. F. Sani, S. J. van Zelst, and W. M. van der Aalst. Improving process discovery
results by filtering outliers using conditional behavioural probabilities. In International
Conference on Business Process Management, pages 216–229. Springer, 2017.

[59] M. F. Sani, S. J. van Zelst, and W. M. van der Aalst. Applying sequence mining for
outlier detection in process mining. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems", pages 98–116. Springer, 2018.

[60] M. Solé and J. Carmona. Process mining from a basis of state regions. In International
Conference on Applications and Theory of Petri Nets, pages 226–245. Springer, 2010.

[61] M. Song, C. W. Günther, and W. M. Van der Aalst. Trace clustering in process mining.
In International conference on business process management, pages 109–120. Springer,
2008.

[62] M. Song and W. M. Van der Aalst. Towards comprehensive support for organizational
mining. Decision support systems, 46(1):300–317, 2008.

[63] S. Suriadi, R. Andrews, A. H. ter Hofstede, and M. T. Wynn. Event log imperfection
patterns for process mining: Towards a systematic approach to cleaning event logs.
Information Systems, 64:132–150, 2017.

[64] S. Suriadi, R. S. Mans, M. T. Wynn, A. Partington, and J. Karnon. Measuring pa-
tient flow variations: A cross-organisational process mining approach. In Asia-Pacific
Conference on Business Process Management, pages 43–58. Springer, 2014.

[65] S. Suriadi, M. T. Wynn, C. Ouyang, A. H. ter Hofstede, and N. J. van Dijk. Under-
standing process behaviours in a large insurance company in australia: A case study.
In International Conference on Advanced Information Systems Engineering, pages 449–
464. Springer, 2013.

[66] M. Toossi. Labor force projections to 2014: Retiring boomers. Monthly Lab. Rev.,
128:25, 2005.

[67] M. Toossi. Labor force projections to 2024: The labor force is growing, but slowly.
Monthly Lab. Rev., 138:1, 2015.

105

[68] W. Van Der Aalst. Process mining: discovery, conformance and enhancement of busi-
ness processes, volume 2. Springer, 2011.

[69] W. Van Der Aalst. Data science in action. In Process mining, pages 3–23. Springer,
2016.

[70] W. Van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, 2004.

[71] W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, 2004.

[72] W. M. Van Der Aalst. Three good reasons for using a petri-net-based workflow man-
agement system. In Information and Process Integration in Enterprises, pages 161–182.
Springer, 1998.

[73] W. M. Van der Aalst, A. Weijters, and L. Maruster. Workflow mining: Which processes
can be rediscovered. Technical report, BETA Working Paper Series, WP 74, Eindhoven
University of Technology, Eindhoven, 2002.

[74] W. M. P. van der Aalst. Process Mining: Data Science in Action. Springer, Heidelberg,
2 edition, 2016.

[75] J. M. E. Van der Werf, B. F. van Dongen, C. A. Hurkens, and A. Serebrenik. Process
discovery using integer linear programming. In International conference on applications
and theory of petri nets, pages 368–387. Springer, 2008.

[76] S. K. vanden Broucke and J. De Weerdt. Fodina: A robust and flexible heuristic process
discovery technique. decision support systems, 100:109–118, 2017.

[77] G. M. Veiga and D. R. Ferreira. Understanding spaghetti models with sequence clus-
tering for prom. In International Conference on Business Process Management, pages
92–103. Springer, 2009.

[78] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al. Constrained k-means clustering
with background knowledge. In Icml, volume 1, pages 577–584, 2001.

[79] V. S. Ware and H. Bharathi. Study of density based algorithms. International Journal
of Computer Applications, 69(26), 2013.

[80] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros. Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP, 166:1–
34, 2006.

[81] A. J. Weijters and W. M. Van der Aalst. Rediscovering workflow models from event-
based data using little thumb. Integrated Computer-Aided Engineering, 10(2):151–162,
2003.

106

[82] L. Wen, J. Wang, and J. Sun. Mining invisible tasks from event logs. In Advances in
Data and Web Management, pages 358–365. Springer, 2007.

[83] L. Wen, J. Wang, W. M. van der Aalst, B. Huang, and J. Sun. Mining process models
with prime invisible tasks. Data & Knowledge Engineering, 69(10):999–1021, 2010.

[84] M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer
Berlin, 2020.

[85] S. A. White. Introduction to bpmn. Ibm Cooperation, 2(0):0, 2004.

[86] J. Whittle, R. Kwan, and J. Saboo. From scenarios to code: An air traffic control case
study. Software & Systems Modeling, 4(1):71–93, 2005.

[87] M. Wil Van Der Aalst and C. Stahl. Modeling business processes: a petri net-oriented
approach. MIT press, 2011.

107

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	Technical Challenges
	Framework Architecture
	Thesis Outline

	Definitions and Notations
	Event Logs
	Process Models
	Process Discovery Algorithms

	Event Logs Cleaning
	Background and Related Work
	Identify Mainstream Behaviors in Event Logs Based on Frequency-based Approaches
	Construct Hidden Markov Models to Filter Out Outliers in Event Logs
	Experimental Evaluation
	Performance Metrics
	Process Model Discovery Performance Improvement Using the Hidden Markov Model
	Hidden Markov Model Approach Vs Two Commonly Used Filtering Approaches

	Summary

	Implicit Knowledge Discovery - Timing Constraints
	Background and Related Work
	Extract Time Dependent Set from a Workflow Net
	Mine Timing Constraints from Event logs
	Road Traffic Fine Management Process Case Study
	Summary

	Implicit Knowledge Discovery - Process Scenarios
	Background
	Related Work
	Construct Aggregated Vectors with Activity and Timing Information
	 Process Scenarios Discovery
	Distance-based Process Discovery Algorithm
	Density-based Process Discovery Algorithm

	Experimental Evaluation
	Performance Metrics
	Effectiveness Validation
	Process Model Discovery Performance Improvement with Timing Information
	Distance-based Scenario Discovery Compared with Exhaustive Search for k with k-means clustering
	Density-based Scenario Discovery Compared with Four Commonly Used Process Scenarios Discovery Approaches

	Summary

	Incorporating Domain Knowledge for Implicit Knowledge Discovery
	Background and Related Work
	Generate Augmented Ordering with a Density-based Approach
	Discover Process Scenarios Based on Domain Knowledge and the Augmented Ordering
	Identify the Maximum Similarity Distance in Event Logs Based on Domain Knowledge
	Discover Process Scenarios Based on the Maximum Similarity Distance and the Augmented Ordering

	Experimental Study
	Effectiveness Validation in Wastewater Treatment Domain
	Performance Evaluation

	Summary

	Conclusion
	Bibliography

