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In a rat model of status epilepticus (SE) induced by lithium and pilocarpine and refractory to midazolam, deep
hypothermia (20 °C for 30 min) reduced EEG power over 50-fold, stopped SE within 12 min, and reduced EEG
spikes by 87%. Hypothermia deserves further investigation as a treatment of last resort for refractory SE.

This article is part of a Special Issue entitled “Status Epilepticus”.
Published by Elsevier Inc.
1. Introduction

Refractory and super-refractory status epilepticus (RSE, SRSE) are an
increasingly common therapeutic challenge in our intensive care units
(ICUs), at enormous financial and human costs. This increase may be
due in part to greater availability of EEGmonitoring, to increased recog-
nition of “subtle” SE, to improvements in ICU care, and to the aging of
the population, since SE and RSE are common in the elderly. Drugs fail
to stop SE in 31–53% of cases [1–3]. In the VA Cooperative Study, 47%
of patients with SE had RSE [3]. New methods for treating RSE and
SRSE are clearly needed.

During SE, pharmacoresistance develops progressively. All currently
available drugs display this phenomenon in experimental SE, with the
possible exception of NMDAantagonists in somemodels [4]. In humans,
early treatment of SE is much more effective than late treatment,
suggesting that pharmacoresistance may be present as well. In the VA
Cooperative Study [3], four treatments were randomly rotated. The
first treatment (regardless of which one of the 4 was selected) was
successful in 53% of patients. The third treatment given was successful
in 2% of patients. Time-dependent pharmacoresistance is the most
likely explanation for these results. We need alternative treatments
for RSE/SRSE and away to overcomepharmacoresistance. Here, we sug-
gest that hypothermia, which acts by completely different mechanisms
ry, Veterans Affairs Greater Los
Building 114, Room 139, West
4; fax: +1 310 268 4856.
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than anticonvulsant drugs, may be able to stop the pharmacoresistant
seizures of RSE/SRSE.

Hypothermia activates many anticonvulsant and neuroprotective
mechanisms. It reduces the cerebral metabolic rate by 6–7% per degree
Celsius, so that at 20 °C, the human cerebral oxygen consumption was
measured at one-fifth of normothermic values [5]. It alters the function
of ion pumps [6,7], intrinsic membrane properties, and voltage-gated
ion channels [8–10]. It slows the release of excitatory neurotransmitters
[11,12] and modifies gene expression [13].

These actions reduce excitatory drive and would be expected to
inhibit seizure activity. They also activate several neuroprotective
mechanisms: reduction of the cerebral demand for oxygen and glucose
[14]; preservation of ATP, energy stores, and tissue pH; reduction of the
release of excitotoxic amino acids [15] and of calcium influx into
neurons [16,17]; inhibition of early gene expression and stress
response; induction of the expression of heat shock and other stress
proteins [18,19]; and inhibition of early molecular cascades involved
in neuronal apoptosis.

Mild to moderate hypothermia has been shown to reduce seizure
activity in experimental animals and in humans [20,21], although
seizures frequently recur upon rewarming. Maeda et al. [22] induced
SE with intraamygdalar kainic acid injection and found that mild hypo-
thermia (30 °C) reduced seizure frequency and severity. Schmitt et al.
[23] used mild hypothermia (≥29 °C) to treat SE induced by perforant
path stimulation. Hypothermia alone reduced motor but not EEG
seizures. The combination of mild hypothermia with low-dose
diazepam reduced allmeasures of seizure activity, but seizures returned
upon rewarming. Liu et al. [24] induced SE with kainate in rats kept
hypothermic for 4 h and in normothermic controls. Seizure reduction
ment of refractory status epilepticus, Epilepsy Behav (2015), http://
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wasmuch greater during hypothermia at 23 °C than at 28 °C, suggesting
that the depth of hypothermia increases its efficacy [25].

Anecdotal reports of successful treatment of clinical SE with hypo-
thermia have been published [21,26]. Recooling stopped seizure activity
which developed upon rewarming in an infant treated for hypoxic–
ischemic encephalopathy [27]. Cold saline perfusion suppressed
interictal spike foci during electrocorticography [20] and was used to
stop seizures triggered by intraoperative cortical stimulation.

The neuroprotective role of hypothermia has been well-documented
in focal hypoxia–ischemia, in traumatic brain injury (TBI), and in global
cerebral ischemia. It has also been seenwith seizure-associated neuronal
injury [28], seizure-associated leaks in the blood–brain barrier (BBB)
[29], and other conditions [30].

In neonatal hypoxic–ischemic encephalopathy, hypothermia im-
proves developmental and radiological outcome [31–33]. Bernard et al.
[34] and the Hypothermia after Cardiac Arrest Study Group [35] showed
benefits of hypothermia after cardiac arrest due to ventricular fibrillation.
In focal ischemia, many animal models showed improved outcome after
hypothermia [36], but adverse effects of deep hypothermia have been
reported [37]. Hypothermia reverses many ischemia-induced changes
in gene expression and alters the expression of genes involved in protein
synthesis, in cell cycle and cell division, and in apoptotic pathways [38].

Hypothermia protects from TBI-induced neuronal injury [39–41]
and changes in gene expression [42]. It reduces BBB disruption and
cell-mediated inflammation [43,44]. Hypothermia decreases TBI-
induced inflammatory cytokines, cell-mediated immune responses,
and activation of immune transcription factors [45,46]. Mild hypother-
mia after TBI mitigated the TBI-associated reduction in pentylenetetra-
zol seizure threshold 12 weeks later [47].

Recent developments in ICU technology have reduced the complica-
tions of hypothermia. Mild hypothermia has become routine treatment
for neonatal hypoxic–ischemic encephalopathy [48,49], for TBI [50], and
for postcardiac arrest encephalopathy [34] and may have potential for
stroke [51]. Deep hypothermia is routinely used to protect the brain or
spinal cord when circulatory arrest is needed in cardiac surgery [52],
vascular surgery [53], and neurosurgery [54]. Most of the complications
reported after deep hypothermia are the result of induced circulatory
arrest, not the result of hypothermia itself [55,56], although the poten-
tial for adverse effects, especially for very deep hypothermia, is signifi-
cant [57].

Our results suggest that deep hypothermia is quite effective in stop-
ping seizures in this experimental model of RSE and may deserve
further study.

2. Materials and methods

Status epilepticuswas inducedwith lithium(3mEq/kg ip 16 h prior)
and pilocarpine (60 mg/kg ip) + methylscopolamine (1 mg/kg ip) in
adult male Wistar rats (200–250 g) previously implanted with skull
screw electrodes. Control animals were given an equal volume of saline
ip. Only lithium/pilocarpine-treated rats displaying behavioral/EEG
manifestations of seizures were used. Electroencephalography was re-
corded from skull-implanted electrodes. “Brain surface” temperature
was recorded from a probe preimplanted near the surface of the parietal
cortex. When full-blown SEwas established (12min after the 2nd stage
≥3 seizure), midazolam (3mg/kg ip) was injected. The second stage ≥3
seizure is a discrete and easily recognizable event. The timebetween the
second stage 3 or higher seizure and the onset of continuous polyspikes
is both short and reproducible (1.28 ± 1.1 min, n = 16). Choosing the
second stage 3 seizure as our time anchor and recording 12 min of
EEG before treating guarantees that all our rats are in full-blown SE
when treatment begins. In this study, we initiated cooling right after
completing themidazolam injection. In later experiments (not reported
here), we introduced an additional 15 min delay between midazolam
and the initiation of hypothermia, in order to eliminate animals which
respond to midazolam from the study, but in the current study, we
Please cite this article as: Niquet J, et al, Deep hypothermia for the treat
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cannot rule out a midazolam contribution to the behavioral or EEG re-
sponse to treatment.

All animals received scopolamine (2 mg/kg) at the same time as
midazolam. One of the problems of chemical models of SE is the
difficulty of obtaining clean results because of the presence of a convul-
sant in the animal. A specific treatment might stop the seizures, but the
convulsant could immediately restart them if it is not neutralized.
Morrissett et al. [58] were the first to show that an amount of atropine
or scopolamine which blocked SE as pretreatment was unable to stop
SE after seizures becameestablished. The seizures had become indepen-
dent of their original trigger (probably because of receptor trafficking).
We took advantage of this feature to block the effects of pilocarpine
without altering the course of SE. In preliminary experiments,
we studied the amount of antimuscarinic agent which stops 100% of
seizures when given as pretreatment but blocks 0% of seizures when
given after seizure onset. Scopolamine 2 mg/kg reached that goal.

Cooling was then started with whole body ice packs. Rectal temper-
ature closely approximated “brain surface” temperature. When rectal
temperature reached 20 °C, it was held for 30 min at that temperature
±1 °C, then ice packs were replaced by a warming blanket with
circulating 37 °C water, until rectal temperature reached 36 °C. Mean
cooling time from 37 °C to 20 °C was 39.5 min. Mean rewarming time
from 20 °C to 36 °C was 61.5 min. In “cool cap” animals, only the head
and neck of the animals were packed with ice.

Acute seizures were monitored by video/EEG for 24 h. The video/
EEGs were analyzed using our standard methods for quantifying many
components of seizure severity [59,60]. Relative EEG power was the
ratio of EEG power at the time of measurement to EEG power before
seizure induction in the same rat. It increased approximately 100-fold
during early SE, then declined as a function of time, treatment, and
temperature.

Analysis of variance was used for statistical testing if the data were
normally distributed with similar variance; otherwise, either data
transform to improve normality or nonparametric tests such as the
Kruskal–Wallis test were used. P values were considered significant
at the 0.05 level. Post hoc tests consisted of Scheffe's or Tukey's in
the case of ANOVA and Dunn's in the case of Kruskal–Wallis. The
Graph-Pad/Prism statistical package was used for these tests.

3. Results

Pilocarpine injection was followed by an increase in EEG power and
in behavioral activity, then by the appearance of EEG spikes, followed by
individual EEG seizures with behavioral arrest, twitching of face and
vibrissae, or clonic forelimb activity. The EEG seizures (Fig. 1A) merged
rapidly into nearly continuous polyspikes, while behavioral seizures in-
creased in frequency, severity, and duration but remained intermittent.
The injection of midazolam (41±19min after pilocarpine) was follow-
ed by a mild decrease in EEG power in both groups, but SE was not
interrupted until animals became hypothermic. Hypothermia stopped
seizures after approximately 25 min of SE (1483 ± 291 s), or 12 min
(761 ± 243 s, n = 5) after initiation of hypothermia (Fig. 1A and E),
while SE continued for 17.9 ± 4.6 h after initiation of cooling in paired
normothermic animals (n=5, p b 0.0001). The average brain and rectal
temperatures at the time of seizure terminationwas 31±0.6 °C (Fig. 1C
and E). In hypothermic animals, EEG power decreased with cooling
(Fig. 1B), and by the time they reached 20 °C, relative power in hypo-
thermic animals was 3% of that of the normothermic group measured
at the same time (p b 0.01). It was below prepilocarpine baseline and
showed no seizure or residual paroxysmal activity. It remained below
preseizure baseline through rewarming and in most animals, stayed
close to baseline values for the remaining of the 24 h, although some
late spikes and sharp wave activity did return. Manual review of EEGs
confirmed the absence of seizures after rewarming in most rats. In one
animal, 12 late seizures were observed 8.2–11.9 h after the initiation
of rewarming. Many of these seizures were brief (mean duration:
ment of refractory status epilepticus, Epilepsy Behav (2015), http://
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Fig. 1. Deep cooling durably reduces relative EEG power. (A) The upper panel shows the compressed 4-hour EEG of a normothermic (red) and a hypothermic rat (blue, 20 °C for 30 min)
with brain and rectal temperature. Both rats received midazolam 3 mg/kg ip (arrow), and cooling was initiated 2 min later. The lower panel shows the magnified 4-second EEG traces
marked by vertical lines (a–d) (vertical bar = 0.75 mV, horizontal bar = 1 s). (B) Relative EEG power (EEG power / baseline EEG power) in normothermic (red bars) and hypothermic
rats (blue bars, temperature in degrees Celsius) at the same time points. Relative EEG power was reduced by hypothermia in a dose-dependent fashion. The 20 °C point and the slope
were significantly different from normothermics (*p b 0.01). (C) “Brain surface” temperature during cooling and rewarming. (D) Brain temperature as a function of electrode depth
with the “cool cap” method. Steep temperature gradients suggest that deep structures such as the hippocampus may remain warmer than the cortical surface. (E) The left y-axis of
this graph shows the ratio of EEG power at each time point to initial EEGpower at baseline, beforepilocarpine injection.Note the logarithmic scale. Every timepoint beyond 30min showed
a significant difference between normothermic and hypothermic rats (**p b 0.01, *p b 0.05). The right y-axis shows the rectal and brain temperature scales. Note that the temperature of a
probe positioned at the surface of the parietal cortexwas close to the rectal temperature. (For interpretation of the references to color in this figure legend, the reader is referred to theweb
version of this article.)
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45 ± 6 s), and SE did not recur. In normothermic rats, EEG power de-
creased from pretreatment SE (probably in part due to midazolam)
but remained significantly above baseline for many hours, reflecting
continuation of SE (Fig. 1E). In most normothermic rats, semiperiodic
spike bursts which slowly decreased in amplitude over timewere sepa-
rated by stretches of low voltage background activity which increased
progressively in duration (Fig. 1A), and this pattern often continued
for the whole 24 h of recording.
Please cite this article as: Niquet J, et al, Deep hypothermia for the treat
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Most measures of the severity of SE were reduced in the hypother-
mic group compared to their normothermic counterparts. The number
of EEG spikes per 24 h, including those which occurred before the initi-
ation of cooling, was 7440 ± 1999 in the normothermic group (N) and
1004 ± 296 in the hypothermic group (H) (p b 0.01). The time it took
for EEG power to decline to twice prepilocarpine values was 4.97 ±
1.89 h after pilocarpine injection in the normothermic group against
0.8 ± 0.13 h in the hypothermic group (p b 0.05). Hjorth function
ment of refractory status epilepticus, Epilepsy Behav (2015), http://
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integral [61] for thefirst 6 h after pilocarpine injectionwas 9879±1939
in normothermics versus 3990 ± 618 in hypothermics (p = 0.01).

4. Discussion

These results suggest that deep hypothermia is a powerful tool for
seizure termination in this animal model and deserves further evalua-
tion as a potential treatment of last resort for RSE. In the current
study, hypothermia reduced EEG power over 100-fold and reduced
the duration of SE from a mean of 17.9 h (median: 24 h) to a mean of
0.2 h (median: 0.16 h). It terminated RSE in all animals. Seizures stopped
well before reaching our target temperature (range: 29–33 °C) and
returned in only one rat, many hours after the completion of
rewarming. Our experiments were designed tomimic the clinical situa-
tion where hypothermia is likely to be used only after drug treatment.
We induced SE with lithium and pilocarpine and treated with midazo-
lam when SE was well established. Midazolam reduced EEG power
and seizure severity but did not stop SE in normothermic animals. In
this study, hypothermia was applied just after midazolam injection.
Pilot experiments showed that the temperature of a probe positioned
on the surface of the parietal cortex was close to rectal temperature,
so the latter was used in most experiments. Temperature was brought
down and maintained near 20 °C for the relatively short period of
30 min. Warming was then initiated by wrapping the rats in an electri-
cal heating pad. Mean cooling time (39.5 min) was shorter than mean
rewarming time (61.5 min). All animals tolerated hypothermia well.

Deep hypothermia (13–20 °C) is used in vascular and cardiac surger-
ies and neurosurgery, with good results for periods of circulatory arrest
of 25–50 min [62], and the equipment and expertise needed are
available in most large surgical centers. Its potential for treating RSE
has never been evaluated, although results in experimental SE were
encouraging [23,25]. Our results suggest that cooling to 20 °C can be
very effective in stopping seizures. While surgical applications use
hypothermia as a method to allow circulatory arrest during repair of
aortic or cerebral aneurysms or congenital heart disease [63,64], its
use as a treatment for RSE would be free of the complications of circula-
tory arrest. It would add a nonpharmacological option to our treatment
regimens for RSE as well as for cholinergic seizures induced by nerve
agents or organophosphate insecticides and deserves further study.

Computer-generated seizure counts were reviewed manually, to
eliminate frequent duplicate counts, but underestimate seizure activity
since the computer counts long periods of high-amplitude polyspikes
(frequently seen in the early phase of SE) as single seizures and does
not count as seizures the long periods of semiperiodic bursts on a low-
amplitude background which is seen in most normothermic animals
in the late phase of SE. Preliminary experiments using “Cool Cap” hypo-
thermia were disappointing. The depression of seizure activity by head
cooling was transient, and in these adult rats, “cool cap” hypothermia
did not block seizures from returning upon rewarming. In “cool cap”
animals, we found steep temperature gradients between the parietal
cortex and deep brain, as shown in Fig. 1D. At a depth of 5 mm from
the cortical surface, brain temperature was over 8 °C warmer than cor-
tex temperature. This result is not surprising since the adult brain tissue
has a high fat content andwould be expected to be an excellent thermal
insulator, and steep temperature gradients after local cooling have
been observed in the mature primate brain [65]. This could result in
inadequate cooling of key brain regions, such as the ventral hippocam-
pus, where seizure activity could persist during cortical cooling and
from which it could spread (and restart SE) upon rewarming.

The rationale for injecting scopolamine in all animals at the time of
treatmentwas that two components are involved in chemically induced
SE: the initial pilocarpine stimulation of muscarinic receptors, and a
later component of self-sustaining seizures which are independent of
the original trigger. Since the dose of scopolamine used here blocks all
seizure activity when used as pretreatment, it should be sufficient to
prevent residual pilocarpine from restarting the seizures if a treatment
Please cite this article as: Niquet J, et al, Deep hypothermia for the treat
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stops self-sustaining SE. It enables us to study self-sustaining SEwithout
the confusing presence of a chemical convulsant on board [60,66].

5. Conclusion

This present study shows that deep hypothermia (20 °C for 30 min)
is an efficient treatment to stop RSE. Hypothermia is very neuroprotec-
tive in animalmodels of ischemic or traumatic brain injury [67], and our
preliminary data (not shown) indicate a strong reduction of neuronal
injury in RSE as well. Further studies of the risk/benefit ratio of hypo-
thermia in RSE and SRSE seem to be worth undertaking.
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