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Abstract

Cells convey information about their extracellular environment to their core functional 

machineries. Studying the capacity of intracellular signaling pathways to transmit information 

addresses fundamental questions about living systems. Here, we review how information-theoretic 

approaches have been used to quantify information transmission by signaling pathways that are 

functionally pleiotropic and subject to molecular stochasticity. We describe how recent advances 

in machine learning have been leveraged to address the challenges of complex temporal trajectory 

datasets and how these have contributed to our understanding of how cells employ temporal 

coding to appropriately adapt to environmental perturbations.
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Introduction

Cells are capable of sensing changes to their external environment and adapting their 

functions appropriately, a process known as cellular decision-making [1,2]. This involves the 

transmission of information gathered by molecular sensors or receptors through biochemical 

signaling pathways that can be functionally pleiotropic [3,4]. Signaling transduction is 

also subject to stochastic noise that affects molecular activities and mediates biological 

information transfer [5–9]. Cells may evolve to fine-tune noise levels to maximize 

information transmission [10], to distinguish stimulus conditions with specificity [11,12], 

or to allow for a degree of indeterminacy in decision-making within a population in 

a physiological strategy referred as bet-hedging [13]. An accurate quantification of the 

information flow within living systems is critical for characterizing such cellular behaviors 

and how their decision-making plays a role in physiology and pathology.
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At a conceptual level, “information” is a quantification on the amount of uncertainty. To 

formally quantify information, information theory was originally developed for the digital 

information transmitted through noisy channels [14]. Then, studies of electrical dynamics 

in neurons pioneered the application of information theory to biological systems [15–19]. 

Quantitative investigations addressed the information transmitted by neural spike trains 

elicited by the stimulus [20,21] and the information encoded in temporal patterns of firing 

[22]. Inspired by these studies, information-theoretic approaches have further been applied 

and adapted to study intracellular signaling processes [23,24] of immune cells responding to 

noxious substances [25,26].

For intracellular signaling, identifying signaling channels requires careful biological 

measurements to classify the groups of signaling molecules as pathways [4]. Thus, the term 

“signaling channel” needs to be accompanied by particular signaling molecules or defined 

by having separate time scales. By viewing biochemical signaling as an information channel, 

the sender is usually regarded as an environmental stimulus that is perceived by a receptor 

or sensor molecule. What is considered as the receiver, however, varies among studies 

and depends on what the experimental approach actually measures. Some studies measure 

the activities or subcellular localization of major signaling molecules, others measure the 

stimulus-induced expression of genes, and others measure cellular scale responses such 

as growth, division, movement, or death. Recent progress in measuring gene expression 

and signaling activities in individual cells [27] enables a quantitative investigation of 

intracellular information transmission based on experimental data. Information-theoretic 

analysis of such data may be used to quantify the extent of stimulus discrimination by the 

cell [28], as a focused biological problem of this review.

Among the many information measures, mutual information (Eq. 3) is a special one with 

important properties. It is a measure of correlation satisfying a set of requirements in 

Shannon’s theory [29]. When the measured variables are nonlinearly correlated, computing 

mutual information is still convenient. In addition, mutual information provides a likelihood 

for model inference [30]. This is especially useful when writing a likelihood function is 

hard, as prevailing in biological systems, where the intervening steps between measured 

species typically do not have quantitative models. For the stimulus discrimination process, 

mutual information has a clear biological meaning (Box 1); specifically, it indicates the 

amount of stimulus that cells can effectively discriminate by the intracellular signaling. 

Thus, mutual information is a major quantity to be reviewed.

Information-theoretic approaches are data-driven and involve a statistical estimation of the 

probability and entropy of the data. However, accurate estimation is hindered by some of 

the following properties of data. First, signaling-response data may be high dimensional, 

especially when based on imaging methods. Second, regulatory networks [31] of signaling 

molecules are capable of complex temporal patterns due to interdigitated feedback loops. 

Third, the data are affected by multiple sources that cause variability: preexisting biological 

heterogeneity within the population of cells, stochastic molecular noise that affects the 

signaling process, and technical imperfections in measurements. These make the estimation 

of the biologically relevant effective information capacity challenging.
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Recent works have shown that these challenges can be approached by machine-learning 

approaches, where a class of models are trained by data to recognize patterns in the data, 

to infer probabilities and to inform the way unseen data are treated. In recent decades, 

machine learning has had great success in image classification, speech recognition, and 

more [32–35]. Machine-learning models use labeled data, known as training data, to learn 

the complex distribution of data. The model can also cluster training data into different 

categories, classify new data that are not seen during training to the corresponding category, 

and assign an accurate probability to new data when given a sufficient amount of training 

data. Among the many applications of machine learning, two specific tasks related to 

intracellular information processing include pattern classification and time series analysis.

First, for pattern classification where a specific number of potential answers exist and 

training data have been labeled, a machine-learning model can be trained to correctly 

classify unseen data. An example is the MNIST dataset of handwritten digits, where the 

trained model, such as a deep neural network [33], performs well on the task of recognizing 

new digits. Second, time series analysis aims to extract meaningful statistics from the time 

series data, including stock prices, climate change, and speech. Machine-learning models 

such as recurrent neural networks [36,37], a class of neural networks where connections 

between nodes form a temporal sequence, are able to exhibit temporal dynamical behavior, 

learn the patterns in the time series data, and further predict future values, known as time 

series forecasting.

The machine-learning approaches for the above two tasks are applicable for evaluating 

the information content of single-cell signaling response data. The pattern classification 

may classify distinct single-cell signaling responses when cells encounter different ligands 

or concentrations of the same ligand [11]. The trained model is then used to classify 

the measured signaling responses from unknown stimulation conditions. The truth table 

of the classification enables us to estimate the intracellular information transmission. In 

addition, since the signaling processes happen in a time course, time series analysis is 

helpful to extract biologically meaningful statistics from the measured data and evaluate the 

information transmission over time.

Extending these approaches of machine learning to intracellular signaling, the past five 

years have seen new advances both in theory and in application. Although previous 

reviews have described studies of intracellular information processing [24,30,38,39] and 

specific applications in immuno-oncology [40] or other biological problems [25,41,42], the 

new advances have yet to be summarized and put into context. Here, we summarize the 

foundational work on information-theoretic quantities and then describe recent advances in 

leveraging mathematical modeling and machine-learning approaches to quantify information 

transmission via biochemical signaling pathways (Figure 1). A summary of data sources 

(Table 2) and existing numerical packages (Box 2) to estimate the information-theoretic 

quantities is provided to help interested readers learn more and contribute to this field.
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Foundational work on information theory for intracellular signaling

We begin with an overview of the fundamental information-theoretic quantities (Table 

1). First, we list the basic definitions in information theory [45], which have also been 

summarized in past reviews [40,51]. We also review mathematical modeling to study 

intracellular information processing, where the model can also be used to generate data 

for the data-driven approaches of quantifying intracellular information transmission. Thus, 

the survey of this section on the basic qualities and mathematical modeling prepares us to 

review the data-driven approaches in the next sections.

Basic definitions of information quantities

Shannon entropy.—Historically, four major types of entropy have been formulated, each 

of which provides a way of understanding the probabilistic nature of random variables. 

First, originating from the understanding of gas laws in the mid-1800s, Clausius introduced 

the concept entropy as the ratio between heat and temperature [52]. Second, based on 

the frequentist view of probabilities, Boltzmann formulated the entropy with maximum 

multiplicity of the macroscopic states [53] to obey the second law of thermodynamics at 

equilibrium, justifying the Maxwell–Boltzmann distribution [54]. Gibbs further developed 

this formulation as an ensemble of options [55]. Third, following Shannon’s information 

theory [14], Jaynes reframed statistical thermodynamics as inferences with the least possible 

bias under limited data [29]. Fourth, Shore and Johnson proved the principle of entropy 

maximization as requirements to be satisfied by any distribution function [44]. We refer 

readers to [56,57] for more detailed discussions.

We start with the formulation of entropy in Shannon’s theory, as it is more appropriate to 

provide biologically sound interpretations for the major information measure of this review, 

the mutual information introduced below. The Shannon entropy [14] for a discrete random 

variable x with possible states X and a discrete probability distribution P (x) is defined as:

H(X) = − ∑x∈XP (x)log2P (x) . (1)

Shannon entropy has a close connection to statistical physics [29], providing a likelihood 

for inference on models given data. Examples of such inferences in quantitative biology 

include the protein 3D structure from genomic sequences [58,59], the prevalence landscape 

of mutated viral sequences [60], and the diversity of the antibody sequence repertoire [61].

Differential entropy.—For a continuous probability density p(x), the Shannon entropy is 

defined as differential entropy [45]:

Hdiff(X) = − ∫
−∞

+∞
dx p(x) log2 p(x) . (2)

The estimate of entropy depends on estimating the probability distribution. One typically 

uses the frequency from finitely measured samples as an estimate of the probability to 

calculate the entropy of the probability distribution. Such an estimation of probabilities leads 
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to an error in calculating the entropy, which is proportional to the number of states and 

scales as 1 over the sample size [30].

Given N finite data, the cumulative probability distribution in the prefactor of Eq. (2) can 

be approximated by its sampling frequency [62]: Hdiff(X) = − ∑j = 1
N δj log2 p xj , where 

δj is the frequency of observing the j-th event. When the number of sampled data is 

infinitesimal compared with the number of total configurations, the sampling frequency δj
can be chosen as uniform for each sampled event, δj = 1/N, giving an averaged entropy 

(Boltzmann entropy − log2 p xj  for the configuration xj) of the finite samples. When the 

sampled data are sufficient to cover the frequent configurations of the full probability 

distribution, the averaged entropy from the samples approximates the entropy of the full 

distribution. This approximation was found useful to produce an accurate estimation of the 

mutual information of intracellular signaling [62].

Kullback–Leibler (KL)-divergence.—For two discrete probability distributions P (x), 
Q(x), the KL-divergence [43] DKL(P ∥ Q) = ∑x∈XP (x) log2[P (x)/Q(x)] quantifies the 

dissimilarity between the two distributions. The KL divergence is also named the relative 

entropy. As a symmetrized KL divergence, the Jensen–Shannon divergence plays a similar 

role in measuring the similarity between two probability distributions. The divergence can 

be used to quantify the similarity between the data distribution and the distribution generated 

from the model in various scientific disciplines. In biology, it has been applied to quantify 

distributional dissimilarity, including that between genes in tumors and healthy samples [63] 

and that between transcriptional states of T lymphocytes [64].

Cross entropy.—The cross entropy [44] for discrete probability distributions is 

CE(P ∥ Q) = DKL(P ∥ Q) + H(P ), where H(P) denotes the entropy of the probability 

distribution P as in Eq. (1). It quantifies the information across the two probability 

distributions, which is extendable to the continuous case similarly to the differential entropy. 

Cross-entropy between distributions of data and models may serve as a loss function in 

machine learning. Its application in biology is similar to the KL divergence.

Mutual information.—Given another random variable y with possible states Y, the mutual 

information [45,65,66] between the two random variables is:

I(Y ; X) = H(Y ) − H(Y ∣ X), (3)

where the conditional entropy H(Y ∣ X) = − ∑x ∈ X, y ∈ YP (x, y) log2[P (x, y)/P (x)]. Mutual 

information quantifies the mutual dependence between the random variables, i.e., the 

amount of information about one random variable through observing the other. It being 

zero is equivalent to the two random variables being independent.

Mutual information is symmetric and represents the correlation of two variables, which is 

termed “cooperativity” in physical biochemistry. In practice, one usually cares about the 

maximum mutual information (channel capacity), and maximization is conducted for only 

one variable, such that the interpretation becomes asymmetrical. The maximization is done 
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by inferring the probability distributions from limited data under certain constraints, such as 

the probability normalization condition. Thus, mutual information is closely related to the 

type of entropy formulated by Jaynes [14,29].

In addition, mutual information can also be regarded as a Kullback–Leibler 

(KL) divergence between the conditional distributions and the prior distribution 

PX:I(Y ; X) = EY DKL PX ∣ Y ∣ PX  where EY  is the expected value over the random 

variable Y. That is, mutual information is the expectation of the KL divergence of the 

univariate distribution PX from the conditional distribution PX ∣ Y  given Y. The more 

different the two distributions are on average, the greater the information gain.

The mutual information is widely useful. It helps disentangle interactions between a 

system’s internal variables and their coupling to changing environments [67]. It has also 

been extended to various contexts, for example, the renormalized mutual information for 

continuous variables with a deterministic dependence [68]. More importantly, it is the 

mutual information rather than the entropy that is more often used as a likelihood for the 

model inference [30,65].

Channel capacity.—Channel capacity is obtained by maximizing mutual information 

between the input and output distributions PX(x) and PY (y), which measures the rate at 

which information is transmitted over a communication channel. The maximum mutual 

information is formally obtained as:

Imax(Y ; X) = max
PX(x)

I(Y ; X),
(4)

where the maximization is with respect to the input marginal distribution PX(x).

Mutual information and channel capacity are essential to quantify the stimulus 

discrimination process by intracellular signaling (Box 1). Therefore, estimating the 

probabilities from limited measurements requires dedicated approaches, which will be 

elaborated in the next sections.

Pointwise information measures

We now review the pointwise information measures and measures that consider two 

consecutive timepoints. We denote two time series (trajectories) by x1:n, y1:n, where the 

subscript represents the timepoints, 1 to n. The dynamics of the time series can be 

incorporated by the transition probabilities, i.e., the conditional probabilities of the time 

series. For clarity, we consider a system with the Markov property: the conditional 

probability p xn ∣ x1:n − 1 = p xn ∣ xn − 1 . The information measures can be extended to the 

case of a stationary Markov process with higher order, i.e., longer memory.

Transfer entropy.—Given the transition probabilities, the transfer entropy [46] measures 

the amount of directed transfer of information between two time series, which can 

distinguish the driving and responding elements. It is defined as follows:
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TX Y = H yn ∣ yn − 1 − H yn ∣ yn − 1, xn − 1 , (7)

TX Y = H yn ∣ yn − 1 − H yn ∣ yn − 1, xn − 1 , where the conditional entropies are 

for the time series. Transfer entropy is a conditional mutual information 

TX Y = I yn; xn − 1 ∣ yn − 1 , which has the history of the variable yn − 1 in the condition. 

Transfer entropy is a finite version of directed information [74]. Restricted directed 

information was used to infer the causal relation between genes from single-cell RNA 

sequence data [75]. Similarly, for a single time series, the excess entropy [76] measures the 

amount of uncertainty in the future explained by the past information.

General information metric for two timepoints.—The strength of causal influences 

for two timepoints i, j between two time series x1:n, y1:n can be demonstrated by 

a unified framework of information measures [47]. To derive the framework, the 

authors approximated the joint probability distribution p xi, j, yi, j  by another probability 

distribution q xi, j, yi, j . The causal influences between two time series ci xi yj  can be 

quantified by minimizing the KL divergence between the two probability distributions 

p X1:n, Y 1:n , q X1:n, Y 1:n :

ci xi yj = min
q xi, j, yi, j

DKL p xi, j, yi, j ∥ q xi, j, yi, j ,
(8)

under the constraint of the Markov condition: q xi, yj ∣ yi = q xi ∣ yi q yj ∣ yi  [47]. Note that 

here the two timepoints are denoted by the subscript, whereas it is denoted by x, y in 

[47]. This general information metric can be reduced to various information measures [77], 

including mutual information and transfer entropy. It also generates integrated information 

[78] that quantifies the extent of synergistic causal influences between the two series and 

the stochastic interaction [79] that measures the mixed strength of causal and simultaneous 

influences. We expect that it will have applications in understanding the full information 

transfer between two dynamical variables of biological systems.

Trajectory-wise information measures

The above measures do not estimate the mutual information from an entire trajectory. To this 

end, the trajectory-wise information measures will be covered as follows.

Trajectory entropy.—Given the trajectory’s probability p y1:n  for the observed trajectory 

y1:n, the trajectory entropy for each single trajectory is given by [48]:

H y1:n = − log2 p y1:n . (9)

The trajectory entropy is for a single trajectory, rather than the average on the 

trajectory ensemble [80]. The trajectory entropy was originally formulated for mesoscopic 

nonequilibrium systems [81]. Based on the trajectory entropy, a set of thermodynamical 

quantities can be formulated [56,82]. In addition, the principle of maximum caliber [56] 
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extends the principle of entropy maximization to trajectories, and thus the maximization 

with respect to trajectories can be conducted in a similar procedure.

The trajectory entropy itself may be a stochastic quantity, and different experimental 

realizations lead to different distributions of the trajectory entropy. However, when the 

experimental condition is fixed and only repeated measurements are conducted, the 

entropy’s distribution is fixed and should be fully determined by a fixed distribution of 

the trajectory probability. Each trajectory configuration has a probability and an entropy 

value. In this case, the trajectory entropy can be inferred in the same way as the entropy for 

static variables, and the concept of information is defined similarly.

The probability of trajectory is not well defined mathematically in continuous-time space 

because the trajectory configurations are infinite and the total probability volume is infinite. 

Thus, discrete time is required to rigorously define the probability space. In practice, one 

can use the frequency of the trajectory with discrete time and finite state as an estimate 

of the probability and employ the differential entropy Eq. (2) to approximate the averaged 

trajectory entropy for an ensemble of trajectories. For example, the probability can be 

calculated by inferring a stochastic model from the data of signaling responses and is 

useful to quantify the mutual information from the time series data of intracellular signaling 

responses [49].

Mutual information in trajectory space.—In trajectory space, mutual information can 

be formulated as in [49,83]. We consider the mutual information between the input set (X)
and the output trajectory set Y 1:n , where n = 1, 2, 3, … denotes the timepoint. Up to each 

timepoint n,

I Y 1:n; X = H Y 1:n − H Y 1:n ∣ X , (10)

where H Y 1:n ∣ X  and H Y 1:n  are the conditional and unconditional trajectory entropy 

based on Eq. (9). When the trajectory probability is generated from a dynamical model, 

the probability depends on the dynamics. Then, the trajectory entropy and the mutual 

information also depend on the dynamics, such that the information embedded in dynamical 

patterns of trajectories can be revealed by this mutual information. The maximization for 

I Y 1:n; X  is done at each time point, which is a quantification of the maximum extent 

of distinguishing the stimuli cumulatively (see subsection “The stochastic model-based 

method”).

Mutual information rate in Fourier-frequency space.—The mutual information rate 

at which the information between trajectories increases with time has been formulated 

in the Fourier-frequency space [50,84]. The authors considered two ensembles of time 

series at steady state with each obeying Gaussian statistics. The coupling between 

ensembles can be linearized. Under the assumptions, the joint probability distribution of 

the two series fluctuates around the steady state mean values, and x1:n, y1:n is given 

by ρ(z) = exp −vTZ−1v/2 / (2π)N |Z|1/2 , where the vector z ≐ x1:n, y1:n . The covariance 
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matrix Z has the matrix blocks Cxx, Cxy, Cyx, Cyy, where each is defined as Cij
xx = xixj  with 

 denoting the noise average.

In the continuous-time limit at a fixed time interval, the mutual information rate between the 

two trajectory ensembles IR x1:n; y1:n ≐ lim
n ∞

I x1:n; y1:n /n is calculated as:

IR x1:n; y1:n = − 1
4π∫−∞

∞
dωln 1 − Sxy(ω) 2

Sxx(ω)Syy(ω)
, (11)

where Sxx(ω), Sxy(ω), Syy(ω) is the power spectrum from the Fourier transform of Cxx, 

Cxy, Cyy. The mutual information rate reveals the information transmission from the ligand 

concentration to the flagellar motor in the chemotaxis network of E. coli [50].

Information theory to intracellular signaling with mathematical modeling

With the above information quantities, information transmission through signaling networks 

has been characterized with the help of mathematical models. A number of mathematical 

models have been constructed to model signaling networks [31] and analyze the information 

flow in the networks [85]. More specifically, the information flow was estimated in models 

of gene regulation [26,86–88]. Optimal information processing strategies have been studied 

in different network topologies of gene regulation [89–95] using the data on noise levels of 

gene expression [10]. Information transmission in the MAPK/ERK pathway [96] and in the 

bacterial quorum sensing signaling network [97] was analyzed. The channel capacity was 

calculated from a discrete-time Markov model on the signaling transduction [98], and the 

mutual information was evaluated through chemical reaction networks [99–101].

In addition to quantifying information transmitted through one signaling molecule, the 

information flow through shared network components for multiple inputs and outputs was 

studied in interferon signaling [102] and with a Boolean network of fibroblast signal 

transduction [103]. The contribution of duplicated components in the signaling pathway 

to channel capacity was investigated [104]. Information transmission was found to be 

maximized by synergistic control in noisy gene regulatory networks [105]. The information 

transfer between dynamical system components was formulated for both continuous and 

discrete systems [106], as well as stochastic dynamical systems [107,108], where noise was 

tuned to improve information transmission [109]. Furthermore, information theory was used 

in deterministic dynamical systems to infer the structure of signaling networks [110]. The 

decoding of signaling information to determine downstream gene expression was explored 

[111,112].

First data-driven approaches of information theory to intracellular signaling

Henceforth, we focus on the mutual information between the extracellular stimulus 

conditions and the intracellular single-cell signaling responses, which provides an estimate 

of the amount of information about the stimulus identity and dose (Box 1). We mainly 

review the methods using single-cell measurements of signaling molecules by live-cell 
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imaging, as it provides real-time tracking of the signaling activities that are crucial to 

quantify information transmission.

In this section, we review the first set of data-driven approaches in historical developments. 

The prominent statistical approaches in quantifying information transmission from the 

live-cell imaging data are listed in Figure 2. A pioneering work employed a single-

timepoint measurement [113,114] (time-point method). A second approach [62] evaluated 

the information encoded in the signaling time course from the multivariate measurement 

(vector method), including a further extension by considering dynamical features of the 

signaling responses [115]. Extracting information transmission from long time series of 

signaling responses requires alternative approaches, which will be reviewed in the next 

section.

The time-point method

As a pioneering work in quantifying information transmission from measured single-cell 

signaling activity, the authors in [113] estimated the mutual information and channel 

capacity at a single timepoint. At each timepoint, the data from single-cell measurement 

under one stimulus condition led to a distribution of signaling activity across cells, and the 

distributions under various stimulus conditions provided mutual information for stimulus 

discrimination.

The estimated mutual information is affected by noise [28,116] and the feedback 

of regulators [114,117–119]. The analysis has been extended to multiple signaling 

molecules, enabling the noise decomposition of biochemical signaling networks [120]. For 

measurements at multiple timepoints, the method is applicable to each timepoint separately, 

without taking into account the time course of signaling responses. Thus, the information 

transmission over a time course through the signaling molecule may be lost.

The vector method applied to measurements

Remarkable progress was made in [62] to quantify the information transmission over 

the time course of signaling responses. The method treated the time series data from 

each single cell as a multivariate vector and used the k-nearest neighbor to estimate 

the probability of the time series [121,122]. The performance of the k-nearest neighbor 

estimator depends on the metric of the distance and the value of k [123], which may 

need to be fine-tuned for each dataset. The error bars and bias of this estimated mutual 

information were evaluated [124,125], and the accuracy was improved by kernel estimation 

[126]. Furthermore, information was coded by a combination of time series and molecular 

species [127].

Although the method can evaluate the information of the time course, the current limitation 

on the number of cells from live-cell imaging data restricts the length of the time course for 

an accurate estimation. As sampling the vectorial distribution suffers from a combinatorial 

explosion, the estimation becomes inaccurate when the number of timepoints increases 

over ~10 timepoints [49]. In addition, treating the time series as vectors makes the 

density estimation independent of the ordering of timepoints and thus does not distinguish 

dynamical patterns encoded in the time series.
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The vector method applied to dynamical features

The dynamical features of the temporal signaling responses transmit information [128], 

such as through amplitude and frequency regulation of transcription factor activity [129]. 

Information transmission via the dynamical features of signaling responses has been 

quantified [115] (Figure 3). The effect of representative features has been analyzed by 

adding one or a few features [130]. By adding dynamical features simultaneously, more 

information encoded in the trajectories was extracted [115]. This analysis uncovers the 

most informative features that optimize stimulus discrimination. Note that calculating each 

dynamical feature is subject to noise, which may alter the estimation of mutual information.

Recent approaches for estimating information transmission

To extract the information transmission from the long time course of the signaling responses 

[131–134], recent works have employed machine-learning methods. Below, we review three 

representative examples. They include the decoding-based approach [130] that uses the 

machine-learning classifier, the statistical learning-based method using logistic regression, 

and the stochastic model-based method which employs the hidden Markov model. In each 

case, the machine-learning methods help estimate the probability and information from the 

time series data. A comparison of the data-driven approaches is provided in the end.

The decoding-based approach

One approach used a machine learning decoder to calculate the mutual information [130] 

(Figure 4). This method first trained a classifier given the time series of signaling responses 

under each stimulus condition and used the classifier to separate new data of signaling 

responses into the group with the best match. It provided a lower bound on the mutual 

information, and the deviation depended on the accuracy of the classifier. When classifiers 

employ linear principal components, they may be inadequate for discriminating oscillatory 

and nonoscillatory trajectories. To overcome this issue, various machine-learning models, 

such as neural networks, can be used for classifiers to improve estimates [99]. In addition to 

the lower bound, an upper bound on the mutual information was derived [135].

The classifier can also use the most informative features to discriminate stimulus conditions, 

where the top-ranked features termed signaling codewords are identified by information-

theoretic analysis [115]. The codewords were further used to construct a decision tree 

to classify the stimulus conditions binarily by specific dynamical features. In addition, 

the dynamical signaling patterns to realize the optimal transmission of information were 

obtained by optimal control theory [136].

The statistical learning-based method

As an efficient method, a statistical learning-based estimation of mutual information 

(SLEMI) was proposed in [125,137] (Figure 5). The method is applicable to high-

dimensional time series of signaling responses, without restriction on the number of 

timepoints. The numerical package [125] enables a broader use to various datasets, 

generating mutual information, channel capacity and probabilities of correct pairwise 

discrimination. SLEMI used a Bayesian framework based on logistic regression to estimate 
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the probabilities of stimuli given measured trajectories. As logistic regression assumes a 

linear fitting on the trajectories to calculate the ratio of the trajectory probabilities between 

stimulus conditions, it is not clear whether this approach can fully account for the complex 

dynamical patterns of observed signaling trajectories, such as oscillatory behavior [115,138]. 

Thus, the estimated mutual information could be less accurate when applied to complex 

trajectories, where logistic regression may be replaced by a more advanced Bayesian 

classifier [125].

The stochastic model-based method

Inspired by the trajectory entropy defined along a single trajectory [81], the data can 

be viewed from the trajectory perspective. Then, stochastic dynamical models, such as 

the hidden Markov model that was used for speech recognition [139], can be applied 

to learn and reproduce the time course of the signaling responses [49] (Figure 6). The 

hidden Markov model (or the time-inhomogeneous Markov model) captures the time-

inhomogeneity of the trajectories and represents the trajectory ensemble with approximately 

80% accuracy. The model further generates trajectory probabilities to calculate mutual 

information. The limited number of measured cells and timepoints in live-cell imaging may 

alter the accuracy of the model training and the subsequent mutual information estimation.

This framework provides an estimate of the information encoded in the signaling dynamics 

over time. The estimated information accumulation over time reveals the temporal ordering 

of the discriminating different stimuli and may decrease when the stimuli induce similar 

signaling responses in a certain time regime that diminish the extent of the stimulus 

discrimination. It also indicates the temporal phases of information transmission that can 

be mapped to the functionality of the regulatory circuit and the amount of information 

accumulation available to immune response genes [49].

A comparison of the data-driven approaches

Applying each of the approaches above to the NFκB signaling responses under 13 different 

immune stimulus conditions characterizes their properties (Figure 7). All the methods give 

the maximum mutual information of approximately 1~2 bits, smaller than log2 13 ≈ 3.7 

bits under perfect transmission. The loss of information may be caused by molecular 

noise in signaling responses. For each method, the mutual information calculated from a 

single timepoint [113] ignores the information from time courses. The vector method [62] 

is ineffective when there are more than approximately 10 timepoints because it becomes 

inaccurate to sample the vectorial distribution from the measured data. Both methods do not 

distinguish the dynamical patterns with timepoints aligned properly.

The decoding-based method may not fully count the information over long time courses, 

as mutual information estimates are saturated after a handful of measurements. This can 

be improved with the performance of the classifier [99] and by using the optimal input 

distribution instead of the uniform distribution [130]. The random permutation of timepoints 

does not significantly alter the estimation, indicating an incomplete discrimination of the 

dynamical patterns of signaling responses and a lack of tracking information over time. 
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Thus, the scope of applying the decoding-based method depends on the complexity of the 

time series and the quality of the accessible classifiers.

Both the SLEMI [125] and stochastic model-based method give increasing mutual 

information, implying distinct temporal patterns of signaling responses at all times, as 

consistently observed in the data [49]. After the random permutation of timepoints, the 

mutual information from the two methods decreases, corresponding to the information under 

the genuine order of timepoints where the distinct stimuli become less distinguishable. The 

stochastic model-based method provides continuously increasing mutual information over 

time, even after the random permutation of timepoints, as permuted signaling responses have 

persistent differences in response amplitudes [49]. However, mutual information, such as in 

the early time regime, may be underestimated if the searched optimal number of parameters 

has an underestimation or the stochastic model does not accurately learn the dynamics.

Outlook

We have reviewed studies on quantifying the information transmission of intracellular 

signaling with the aid of mathematical modeling and machine learning. Several outstanding 

questions are guiding current and future studies.

To improve the quantification of information transmission, advanced models of machine 

learning [32,34] may be employed to learn the time course of signaling responses with 

higher performance. They may also enable the extraction of diverse useful information from 

the time series. Specifically, the recurrent neural network [36,37,140] has achieved great 

success in learning the dynamics of time series. The transformer with an attention-based 

architecture [141] performs well in learning complex time series because it can capture 

long-range dependencies between input and output by designing neural networks with 

functional gates for memorizing and updating. The application of these models to single-cell 

signaling responses may have a better performance in reproducing data and predicting future 

responses.

In addition to information transmission by signaling molecules in single cells, the reliability 

of signal transduction is affected by cell populations [142,143]. Cell subpopulations can 

independently transmit information that gives graded responses to stimuli [144]. Fractional 

response analysis by using Rényi information further reveals that changes in fractions 

of cells under various response levels scale linearly with the log of the cytokine dose 

[145]. It is also attractive to quantify the information content of the signaling process in 

more realistic contexts [146], such as under mixed natural signals. The mutual information 

estimates under time-varying signals reveal the information flow when cells are subject to 

environmental changes [99,147]. The information flow can be optimized by controlling the 

environment via reinforcement learning [148], which models how agents take action in an 

environment to maximize a cumulative reward, such as the information gain. In addition, the 

positional information from the spatially distributed signaling molecules has been evaluated 

by mathematical modeling [149,150] and by constructing the decoder [151]. Quantifying 

the information transmission over large spatial and long time scales [152] awaits further 

developments, such as by convolution neural networks [153].
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The increase of the single-cell data would continue to motivate future work of evaluating 

information content in a data-driven manner, and vice versa. In addition to live-cell imaging, 

applying machine-learning models to other single-cell data would reveal more insights into 

intracellular information processing. For example, the causal relation between genes has 

been inferred from single-cell RNA sequence data by using restricted directed information 

[75]. Both scRNA and smFISH (Table 2) data can measure downstream gene expression of 

the signaling molecule, providing a platform to test the hypothesis on conveying information 

of the signaling molecule to gene expression [49,112]. The autoencoder [35] may help 

learn meaningful representations from these multigene data. Furthermore, predictions 

from information-theoretic approaches [112] can be tested experimentally by optogenetic 

approaches [131,154,155]. Such experimental setups avoid the coactivation of other, 

unknown factors involved in gene expression, providing an unambiguous way to measure 

information transmission by the signaling molecule to downstream genes. Exploring the 

decoding of the signaling information to responsive gene expression for cell fate decisions 

documents the actual physiological role of estimated information quantities and reveals 

evolutionary perspectives of cellular information processing and decision-making.

While machine-learning approaches show promising applications in understanding living 

information processing, we would like to remind ourselves that simply applying machine 

learning as a tool may have limitations. As quoted from E. T. Jaynes [156]: “New data that 
we insist on analyzing in terms of old ideas (that is, old models which are not questioned) 
cannot lead us out of the old ideas. However, many data we record and analyze, we may just 
keep repeating the same old errors, and missing the same crucially important things that the 
experiment was competent to find. That is what ignoring prior information can do to us; no 
amount of analyzing coin tossing data by a stochastic model could have led us to discovery 
of Newtonian mechanics, which alone determines those data.”1 Therefore, machine learning 

and information theory should be taken as frameworks to help design the experiment, such 

as mutual information, which can frame an inference problem for modeling biological 

systems [30] and provide a new angle to understand and predict biological processes beyond 

existing data [157]. We anticipate that the cross-feeding between quantitative biology, 

information theory, and machine learning [158] will lead to significant advances in these 

areas.

Sources of single-cell data

We list sources of single-cell data useful for information-theoretic analysis, including 

mathematical model simulations, single-cell RNA (scRNA) sequences [159], single-

molecule fluorescence in situ hybridization (smFISH), and live-cell imaging [160] (Table 2). 

In the main text, we have mainly reviewed the approaches using live-cell imaging, but other 

types of data may find increasingly important roles in future studies. See a complementary 

review on the data source for studying intracellular signaling [27].

1We thank an anonymous reviewer for mentioning this quote.
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Data simulated from mathematical models.

To evaluate information transmission, the simulated data of signaling molecules can be 

generated from differential equations for modeling signaling transduction [62,109,112]. 

The trajectories of chemical species were also simulated from chemical reaction networks 

[99,100,111] by the stochastic simulation algorithm (or the Gillespie algorithm) [161]. To 

generate trajectories that accurately simulate the real time-course of signaling activities, the 

mathematical model needs to be experimentally calibrated and verified, which may require 

massive measurements on the modeled molecules and exploration of the model parameters 

[162,163].

Single-cell RNA sequencing (scRNA-seq).

The development of scRNA-seq has increased in recent years, as it generates the sequence 

profiles of all transcripts with their relative abundances in single cells. However, scRNA-seq 

data from methodologies such as droplet sequencing are subject to nonnegligible noise, and 

accurately measured genes are sparse. Thus, the data typically need dimension reduction 

to generate useful statistics and do not meet the high resolution required for the information-

theoretic approaches of quantifying intracellular information transmission. The specifically 

designed measurement, e.g., targeted scRNA-seq, may be more suitable, with a tradeoff 

between the number of measured genes and the control on the noise level.

In addition, scRNA-seq technologies initially measure gene expression at individual 

timepoints and do not track the transcriptome over time. To overcome this limitation, the 

pseudotime can be inferred to map out the trajectories (e.g., developmental trajectories 

of gene expression) for single cells [164,165], with multiple-timepoint measurements 

[166,167]. However, the accuracy of trajectory inferences depends on the dynamics of gene 

expression [168] and needs to be verified, such as by real-time tracking. The underlying 

dynamical equations governing the cell state transition can be inferred [169], which may 

provide high-resolution augmentation of the noisy distribution of signaling molecules over 

time to estimate intracellular information transmission.

Single molecule fluorescence in situ hybridization (smFISH).

As an imaging-based technique, smFISH enables the measurement of the expression of 

endogenous genes from ~10000 cells. A recent technique (MERFISH) can simultaneously 

image 100 to 1000 RNA species in single cells [170]. Nevertheless, smFISH needs to fix the 

sample and only measure it at a single timepoint, which prohibits its usage in quantifying 

information transmission over time.

Live-cell imaging.

Live-cell imaging is a direct method to measure the signaling activity of living cells in 

real time [62,62,115,130,133,138,171,172]. The time resolution reaches the time scale of 

minutes, which can continue for days. Approximately one thousand cells were measured 

in each experiment. This technique has a limitation on the number of signaling molecules 

measured simultaneously, which typically allows one or two molecules to be probed to date. 

Live-cell imaging and smFISH are complementary based on their pros and cons.
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Software packages

To calculate the information-theoretic quantities, a number of software packages are 

available (Box 2). Some of these are also listed in [40].
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Box 1.

The formulation of mutual information applied to stimulus discrimination 
via intracellular signaling.

Mutual information for stimulus discrimination.

Despite the interest in noise [5–8], mutual information serves as a fundamental quantity 

to understand information processing in biology [69] and has been widely used in 

biological systems [24,30,38]. For example, mutual information leads to a method 

to cluster genes [70], reconstruct the network of gene interactions [71], and quantify 

strengths of the influence between proteins [72].

For the focus of this review, intracellular signaling process, mutual information can 

be employed to measure the stimulus discrimination by signaling responses, where 

one random variable is the categorical stimulus set and the other is a set of the 

signaling responses under each stimulus. Specifically, the mutual information between 

M conditions chosen in an experiment as the stimuli set (S) and the signaling responses 

set (R) is:

I(R; S) = H(R) − H(R ∣ S), (5)

where H(R ∣ S) and H(R) are the conditional and unconditional entropy from the 

definition in Eq.(3). The mutual information between the extracellular stimulus 

conditions and the intracellular signaling responses quantifies the amount of information 

about the stimulus conditions (identity and dose).

Channel capacity of intracellular signaling channels.

With the probability distribution of the M stimulus conditions q = q1, q2, …, qM , 

the maximum mutual information is obtained by maximization with respect to this 

probability distribution:

Imax(R; S) = max
q

I(R; S), (6)

under the constraint of q1 + q2 + ⋯ + qM = 1 and qi ≥ 0. The maximization is useful 

especially when the stimulus distribution is empirically unknown. This is a Bayesian 

approach [30], where the prior for the probability distribution is typically assumed 

uniform, as uniform priors seem especially effective [19,73].

The maximum mutual information depends on the stimulus conditions under 

consideration: if M distinct conditions were considered, perfectly transmitted information 

leads to log2M bits, corresponding to the prior of a uniform distribution. A smaller 

value implies that the cells cannot fully discriminate the stimuli via the signaling 

response. With increased stimulus conditions in an experiment, the maximum mutual 

information approximates to the channel capacity through the signaling molecules. In 

addition, mutual information in trajectory space I R1:n; S  can be formulated similarly, 

where signaling responses are time series data. The maximization in Imax R1:n; S  can be 
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conducted by using data up to the timepoint n, which quantifies the maximum extent of 

information transmission cumulatively.
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Box 2.

Software packages of calculating information-theoretic quantities for 
intracellular signaling.

The estimation of entropy, Kullback–Leibler divergence, mutual Information and 

channel capacity can be found in the R package (http://strimmerlab.org/software/

entropy) and the MATLAB package (https://github.com/maximumGain/information-

theory-tool). Another Python and MATLAB packages for calculating entropy 

and mutual information can be found (https://github.com/robince). The MATLAB 

toolbox to evaluate the transfer entropy are provided by (https://figshare.com/

articles/code/MuTE_toolbox_to_evaluate_Multivariate_Transfer_Entropy/1005245) and 

(https://github.com/trentool/TRENTOOL3) [173]. A Python package (https://github.com/

wmayner/pyphi) computes the integrated information [174].

For evaluating the mutual information from the time series data, the k-nearest-neighbor 

approach [62,66] was in a Python package (https://github.com/pawel-czyz/channel-

capacityestimator). The decoding-based method [130] was implemented by a MATLAB 

package and a R package (https://github.com/swainlab/mi-by-decoding). The Statistical 

Learning-based Estimation of Mutual Information (SLEMI) [125,137] has a R package 

in CRAN (https://github.com/sysbiosig/SLEMI). The approach by using stochastic 

dynamical models [49] has a MATLAB package (https://github.com/signalingsystemslab/

dMI).
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Figure 1. A summary on the major ingredients of information-theoretic approaches to be 
reviewed.
(a) A schematic figure of the biological question of transmitting environmental information 

through intracellular signaling. (b-e) We summarize the ingredients of quantitatively 

studying information transmission: (b) the information metrics, (c) the mathematical models, 

(d) the data sources, and (e) the data-driven approaches, which are further categorized as 

traditional statistical approaches and more recent machine-learning based methods. Each of 

the topics will be covered in the following sections.
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Figure 2. The approaches for estimating information transmission by using single-cell signaling 
responses.
(a) A schematic figure on using the single-cell live imaging measurement on signaling 

responses to calculate mutual information, which quantifies the stimulus discrimination. 

(b) A schematic on the methods of using (upper) a single-timepoint data, (middle) a few 

timepoints, and (below) long time series. Reproduced from [49]. Copyright (2021), from 

Springer Nature.
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Figure 3. The vector method with dynamical features on estimating information transmission.
(a) A library of dynamical features was calculated for the long time series data of NFκB 

signaling responses. (b) The channel capacity was evaluated by the k-nearest neighbor 

estimation on the most informative dynamical features, for all stimuli and for different 

doses of one stimulus, as indicated. (c) The protocol of searching for the most informative 

combination of features. Reproduced from [115]. Copyright (2021), from Elsevier.
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Figure 4. The decoding-based approaches to calculate the mutual information from time series of 
signaling responses.
(a) The measured signaling responses under various stimulus conditions are used as the 

training data and the test data. (b) A classifier is trained by the training data and used 

to recognize the stimulus condition for the test data. (c) The truth table by the classifier 

gives an estimated lower bound on the mutual information for the stimulus discrimination. 

Reproduced with permission from [130]. Copyright (2018), from PNAS.
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Figure 5. The statistical learning-based estimation of mutual information.
(a) A schematic figure for the probabilities of discriminating two inputs. The input 

distribution P (X) and the conditional output probabilities P (Y ∣ X) lead to the conditional 

input distributions P (X ∣ Y ) by Bayes formula. (b, c) Information-theoretic analysis of 

NFκB signaling responses to the TNFα stimulus. (b) The channel capacity as a function 

of time by using a single-timepoint data individually and time series. (c) The probabilities 

(color filled fraction of the circle marks) of correct pairwise discrimination between TNFα 
concentrations for the 21-minute responses and time series. See a full description on the 

figure and symbols in the original paper. Adapted from [125]. Copyright (2021), from 

Elsevier.
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Figure 6. Quantifying the dynamical mutual information by using the stochastic models.
Stochastic models such as the hidden Markov model can be used to learn the signaling 

dynamics, reproduce data, infer the trajectory probabilities, and evaluate the mutual 

information. (a) The stochastic models to learn the data. (b) The evaluation on the model 

performance when identifying the proper number of parameters. (c) The procedures on 

calculating the mutual information from the trained stochastic models. (d) The estimated 

mutual information encoded in dynamics reveal the temporal ordering of discriminating 

certain stimuli pairs. Reproduced from [49]. Copyright (2021), from Springer Nature.
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Figure 7. A comparison on the data-driven approaches for time series data.
The data is the NFkB signaling responses under 13 different stimulus conditions (17 

conditions in total with replicates) [49]. The y-axis is labeled as “Maximum MI”, except for 

the decoding-based method providing a lower bound (y-axis is “MI” without “Maximum”) 

(a) The time-point method [113] and the vector method [62]. (b) The decoding-based 

method [130] by using the first 10 principle components and default parameters. (c) The 

statistical learning-based estimation of mutual information (SLEMI) [125], with parameters 

“boot_num”=10, “boot_prob”=0.8, ”testing_cores”=4 in the numerical package. (d) The 

stochastic model-based method [49] with 64 hidden states and 32 emission states for the 

hidden Markov model. The computational time of one bootstrap for the five methods is ~10 

minutes, ~1 hour, ~10 minutes, ~10 minutes, ~10 hours on personal desktop with intel(R) 

core(tm) i7–8700 CPU@3.7 GHz. Reproduced from [49]. Copyright (2021), from Springer 

Nature.
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Table 1.

The fundamental information quantities useful for intracellular information processing. The three 

categories of information metrics: the basic definitions in information theory, the pointwise information 

measures, and the trajectory-wise measures.

Information quantities Mathematical definition References

Shannon entropy, differentiational entropy
H(X) = − ∑x∈XP (x) log2 P (x), 

Hdiff(X) = − ∫−∞
+∞dx p(x) log2 p(x) [14]

KL-divergence DKL(P ∥ Q) = ∑x∈XP (x) log2[P (x)/Q(x)] [43]

Cross entropy CE(P ∥ Q) = DKL(P ∥ Q) + H(P ) [44]

Mutual information, channel capacity
I(Y ; X) = H(Y ) − H(Y ∣ X), Imax(Y ; X) = max

PX(x)
I(Y ; X)

[45]

Transfer entropy TX Y = H yn ∣ yn − 1 − H yn ∣ yn − 1, xn − 1 [46]

General information metric for two 
timepoints 

(integrated information, stochastic 
interaction)

ci xi yj =
min

q xi, j, yi, j
DKL p xi, j, yi, j ∥ q xi, j, yi, j [47]

Trajectory entropy H y1:n = − log2 p y1:n [48]

Mutual information in trajectory space I Y 1:n; X = H Y 1:n − H Y 1:n ∣ X [49]

Mutual information rate in 
Fourier-frequency space

IR x1:n; y1:n = − 1
4π ∫−∞

∞ dωln

1 − Sxy(ω) 2

Sxx(ω)Syy(ω)

[50]
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Table 2.

Sources of single-cell data. Reproduced from [27].

Typical measurements Data from mathematical models scRNA-seq smFISH Live-cell imaging

# of cells Model-specific ~100,000 ~10,000 ~1,000

# of molecules Model-specific ~10,000 ~1,000 ~1 or2

Timepoints vs. time series Time series Timepoints Timepoints Time series
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