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A MOMENT EQUATION APPROACH TO A MUON COLLIDER COOLING 
LATTICE 

C.M. Celata and A.M. Sessler, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, 
CA94720 USA 

P. B. Lee, B. A. Shadwick, and J. S. Wurtele, Univ. of CA at Berkeley, Berkeley, CA 94720 USA 

Abstract 

Equations are derived which describe the evolution of 
the second order moments of the beam distribution 
function in the ionization cooling section of a muon 
collider. Ionization energy loss, multiple scattering, and 
magnetic fields have been included, but forces are 
linearized. A computer code using the equations agrees 
well with tracking calculations. The code is extremely 

. fast, and can be used for preliminary design, where such 
issues as beam halo, which must be explored using a 
tracking code, are not the focus. 

1 INTRODUCTION 

One of the most fundamental problems in designing a 
muon collider is the initial cooling of the muons. Not 
only must the muons be cooled in order to accelerate 
efficiently, but the success of the cooling effectively 
determines the acceptance of the machine, thus putting an 
upper limit on the luminosity. Decreases in transverse 
emittance of almost three orders of magnitude, and in 
longitudinal by more than one, are necessary. 

Because of the short lifetime of the muons, the optimal 
cooling method appears to be ionization cooling. This 
method produces transverse cooling by passing the beam 
through material, thus decreasing the momentum of each 
particle in the direction of its motion. Longitu~~al 
momentum is then restored by means of RF cav1ttes. 
Longitudinal cooling can be achieved by using a 
dispersive element to correlate longitudinal momentum 
and transverse position, then passing the beam through a 
material whose thickness is dependent on transverse 
position. Multiple scattering and energy straggling are 
competing processes which determine the lower limit on 
the beam emittance. Theoretical estimates of the cooling, 
as well as a discussion of the effects of multiple scattering 
and straggling can be found in papers by Skrinsky [1], 
Vsevolozhskaya [2], and Neuffer [3,4]. The ionization 
cooling concept has yet to be experimentally proven, but 
a prototype experiment at FNAL has been proposed. 

Extensive tracking studies have been conducted by other 
authors [4]-[7], resulting in an initial design for the 
cooling section. Tools include the tracking code ICOOL 
[7], the results of which have been used as a standard of 
comparison for the code discussed in this paper. In this 
report we describe a moment equation approach to 
cooling section design, which is accurate for arbitrary 
distribution function, and is much faster than tracking. 

The main approximation of the theory is linearization of 
the forces in the problem. 

2. A CLOSED SET OF SECOND 
ORDER MOMENT EQUATIONS 

We consider first the case of a beam propagating 
through a straight lattice containing cooling absorbers and 
acceleration. The transverse equations of motion for a 
single particle in the cooling section can be written as: 

dp ,.!- -) v (dE) _x =':l~vxB +...JL- +Fx 
dt X V ds Total 

(1) 

and similarly for Y, where X and Y are the transverse 
coordinates and B is the focusing field. We neglect 
transverse components of the accelerating electric field, 
since the rf cavity for the cooling section will be a closed 
pillbox, with no holes for the beam passage. Fx is the X 
component of the force associated with multiple 
scattering, and (dE/dsh-o~a~ is the energy change per unit 
length in the direction of the particle's motion, due to 
passage through matter (note: dE/ds<O). (dE/dsho~a~ can 
be written as (dE/ds) •• g + A, where (dE/ds)avg is the mean 
en~rgy loss per unit length for a distribution of particles 
with a given ~, and A is the energy straggling due to 
statistics of the ionization process. Below we drop the 
subscript "avg", so that "dE/ds" is the mean loss. We will 
assume that v/+v/<<vi. We wish. to take moments of 
the single particle equations with the transverse 
coordinates and momenta, and to arrive at a closed set of 
equations. In order to eliminate higher order moments 
which would couple the 2nd order equations to those of 
higher order, we linearize the forces on the right side of 
the equations by expanding in the transverse coordinates. 
Taylor expanding B about X=Y=O, so that Bz=Bzo, Bx 
=Bxo+ C11X+C12Y, and Bv =Bv0+ ~1X+C22Y, we obtain: 

( 2) 

Y" + (f3zr )' Y' = 21 2 [ qf3z (-X'Bzo + Cu X 
f3zr moe f3z r 

+ C12Y)+ Y' ~~ + Fy] 

( 3) 



The prime signifies d/dZ, ~=v/c, and m0 is the rest mass. 
Next we assume that ~z=~zo+X. where ~zo is ~z for a 
reference particle, and to maintain consistent ordering in 
equations (2) and (3) we set ~~zo and Y=Yo· For the 
same reason (consistent ordering), we assume that dE/ds is 
evaluated at the~ of the reference particle in Eqs. (2)-(12). 
The quantities we are interested in- e.g., for the 
calculation of emittance-- are coordinates and momenta 
measured with respect to the beam centroid. Therefore we 
average equations (2) and (3) over the particle distribution 
of all the particles in a beam slice located within Z 
increment AZ, obtaining for the centroid motion: 

X"+ PzO' X'= qf3zo [Y' Bzo- CzlX -CzzY)+ X' dE ( 4) 
Pzo M M ds 

( 5) 
Y'dE 

+---
M ds' 

where M=m0c2~zo 2.y0. These equations can now be 
subtracted from equations (2) and (3), to give equations for 
x and y, where x=X-X, and y=Y- Y. Because the 
equations are linear, the equations of motion for x and y 
will be identical to equations (2) and (3), with x and y 
everywhere replacing X and Y. Bxo and By0 = 0, since we 
have assumed a straight lattice. We now take moments of 
the equations of motion with respect to x, y, x', and y', 
to get: 

( " ' J M tx2 
- x'2 + iz: xx' = qf3z0c(xy' Bzo 

2 -) -,dE -CzlX -Czzxy +XX-, 
ds 

( 6) 

AJ(xy)" + Pzo' (;)'- 2x'y'] = qf3z0c[(yy'- xx')Bzo 
~l ~0 (8) 

+(Cl2- C21)xy + Cux2 - CzzY2 ]+ (xy)' ~!, 

nJ ~(x'y-xy')+(x'y-xy'f]= 
"lPzo 

( 9) 

2 

M[ ( x'y' )' + 2 ~: x'y'] = qfJ,0c[(y' - ?)n,, 

+ Cuxx'- CzzYY' + C1zx'y- Czlxy']+2x'y':, 

-) -dE 1 d8 2 
_r x'y +x'z-+-m~czp zr _o_ 

"22 ds 2 .. "'II zO o dz , 

1 Hy' 2 )' + i y'1] = qp,,c(-x'y' B., 

r -, C -,) --:2 dE 
+ '"'llxy + 12YY + Y ds 

1 2 2 d802 
+2moc f3zo ro ~· 

( 10) 

(12) 

Here 90 is the change in rms v x/v z due to multiple 
scattering. These equations, with equations (4) and (5) and 
an equation for Pzo' (see below), give a complete closed 
set of transverse moment equations for the case of a lattice 
with no bends. 

A computer code has been written to solve Eqs. (4)
(12). The Bethe-Bloch model is used for dE/ds, and the 
Lynch-Dahl model [8] for . multiple scattering. We 
assume all particles have the same y. dy/dt is determined 
by dE/ds and the accelerating fields.. In the future, energy 
spread will be added, using Eqs. (14) and (15) below. This 
type of code has the advantage over particle tracking that 
it is much faster (-2 orders of magnitude), and therefore 
useful for preliminary lattice design. It is trivial to 
include space charge in the model, should it become 
important, in the approximation of linear space charge 
forces. Results have been found to agree well in the 
appropriate regime with results from the I COOL tracking 
code of R. C. Fernow. 

We can obtain a linear single particle equation for the Z 
direction in a similar fashion to what was done above for 
the transverse plane by using the linearized magnetic field, 
and linearizing the ionization energy loss and rf terms 
about the position and momentum of the reference 
particle. This gives: 

2 2 3~ R ' ' 3' 2 moe f3o ro [u"' +(2tJzof3zo + f3zof3o +3f3zo Po ro 

+ f3zo, )8'] = q(Ez'} 8 + f3zo(~ dE) 8'. 
f3zo z~z, (){3 ds z~z, 

(13) 

Here 0= Z-Zo. where Z0 is the longitudinal position of the 
reference particle, and ~ is the longitudinal component of 
the accelerating field. Note that to this order, multiple 
scattering does not appear in the longitudinal equation, 



and while Pzo appears as a parameter in the transverse 
equations, the longitudinal dynamics are not otherwise 
coupled to the transverse. We can thus average Eq. (13) 
over all particles in the bunch, getting an equation for the 
Z component of the bunch centroid. Subtracting the 
centroid equation from Eq. (13) and taking moments with 
!;=&. ~ , and ~'. we get equations for the z envelope and 
velocity spread: 

(14) 

~,2' + il( _J!...g_ IL(dE) l ~ . l Mro [op ds Total =«J r (15) 

= . 2 2 3 Ez ~2 • q ( ') -
moPzo c ro z=«J 

where 1C = 2~zO~zO' +~zo~o' + 3 ~zo~o' 'Yo 2 +~z0' /~zo· The 
averages of Eqs. (14) and (15) can be understood to be 
averages over the whole bunch, or over a transverse slice 
if the dynamics of a slice are to be followed. 

3. MOMENT EQUATIONS WITH BENDS 

The single particle equations of motion for sections of 
the lattice with dipole fields can easily be written down in 
the usual fashion. We neglect here Bz due to fringe fields, 
and skew quadrupole components, and assume that y is 
constant within the dipole. If we consider a bend in the 
X-Z plane and linearize the magnetic field about the 
reference orbit, we have the analog to Eq. (2): 

X"= -(~+..!L.C21 )x +...!....8', (16) 
Po Po Po 

where Po=Pof(qByO) is the reference orbit radius of 
curvature, and the primes now signify derivatives with 
respect to s, the distance along the reference orbit. The 
equation has been linearized, so corrections coming from 
the difference between the particle's radius of curvature and 
momentum and that of the reference particle have been 
dropped. The Y equation is unchanged from the case 
without bends, except that skew quadrupole and Bzo terms 
are neglected here, and we assume no material inside the 
dipoles. To this order, the s equation of motion is ~"=0, 
i.e., there is no effect of the fields on the s motion. 

It is now straightforward to derive moment equations, 
as was done above for the case without bends. First the 
average of Eq. (16) is taken, to give the equation for the 
centroid motion. Then this is subtracted from Eq. (16) to 
give an equation for x. This equation will be of the same 
form as Eq. (16), with x~x and o~~. Moments of the 
three equations of motion with the coordinates and 

momenta may then be taken, averaging over a slice of 
beam within a length .£\s. 

4. SUMMARY AND CONCLUSIONS 
We have derived second order moment equations 

describing the beam in the cooling section of a muon 
collider, including the effect of ionization energy loss in 
materials and multiple scattering. A code to compute the 
evolution of the transverse moments along the accelerator 
has been written and tested, and is now ready for use. 
Results agree well with !COOL runs in the appropriate 
regime, and the code is extremely fast-- essentially 
instantaneous. Apertures in X, Y, and Z will be added, to 
simulate approximately the effects of dynamic apertures 
and rf buckets of finite size. The formalism is very 
general, and space charge can be easily included, in the 
approximation of linear space charge forces. The main 
restriction of this theory is the approximation of linearity 
of forces, both in transverse coordinates and in distance 
and momentum difference from the reference particle. 
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