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Abstract. The tree complex is a simplicial complex defined in recent work of Belk, Lanier,
Margalit, and Winarski with applications to mapping class groups and complex dynamics.
This article introduces a connection between this setting and the convex polytopes known
as associahedra and cyclohedra. Specifically, we describe a characterization of these poly-
topes using planar embeddings of trees and show that the tree complex is the barycentric
subdivision of a polyhedral cell complex for which the cells are products of associahedra
and cyclohedra.
Keywords. Associahedra, cyclohedra, planar trees, mapping class groups
Mathematics Subject Classifications. 05C05, 05C10, 20F65, 52B11

Introduction

Convex polytopes which arise from combinatorial structures form a rich area of study with an
increasing number of applications. Associahedra, cyclohedra, and permutahedra are some of the
classic examples [BT94, Sim03, Zie95], while more recent cases include the the use of gener-
alized associahedra in the study of cluster algebras [FR07] and the appearance of amplituhedra
in work on scattering amplitudes [AHBHY18]. In each of these examples, the convex polytope
can be combinatorially defined by describing the partially ordered set of its faces, i.e. the face
poset. The main goal of this article is to introduce a polytope arising from a partial order on a
certain type of trees and examine an associated cell complex.

A marked n-tree (or simply an n-tree) is a tree with marked vertices v1, . . . , vn, along with
some number of unmarked and unlabeled vertices, such that all vertices of valence 1 or 2 are
marked. While there is no stated restriction on the unmarked vertices, one can show that an
n-tree has at most 2n − 2 vertices in total. A planar n-tree is the free isotopy class of a planar
embedding Γ → C, where Γ is an n-tree. In other words, a planar n-tree consists of an n-tree
together with the cyclic counter-clockwise ordering of edges incident to a vertex.

There is a natural partial order on the set of planar n-trees, defined by declaring that Γ1 ⩽ Γ2

if there is a collection of subtrees in Γ1, each of which contains at most one marked vertex,
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such that contracting each subtree to a point yields Γ2. Note that the direction of this partial
order is perhaps the reverse of what you might expect; unlike the poset structure for Outer space
[CV86], for example, contracting a subtree corresponds to moving up in the partial order. Within
this partially ordered set, each planar n-tree has a corresponding lower set which consists of all
elements below that tree in the partial order; upper sets are defined similarly. Our first main
theorem identifies the lower sets as familiar combinatorial objects.

Theorem A (Theorem 3.9). The lower set of a planarn-tree is the face poset of a convex polytope
which can be expressed as a product of associahedra and cyclohedra.

Given a fixed set of points z1, . . . , zn in the complex plane, analogously define a planted n-
tree to be the relative isotopy class of a planar embedding Γ → C where the marked vertex vi is
sent to zi and the images of the marked points are fixed under isotopy. One can similarly define
a partial order by contraction on the set of planted n trees and refer to it as the planted tree poset.

The inspiration for studying n-trees comes in part from complex dynamics. The Hubbard
tree for a postcritically finite polynomial [DH85, DH84] can be viewed as representing a planted
n-tree where the n marked points correspond to the postcritical set for the polynomial. In a
recent article on complex dynamics by Belk, Lanier, Margalit, and Winarski [BLMW22], the
authors define the (simplicial) tree complex as the geometric realization of the planted tree poset
and use this complex to study Hubbard trees.

The pure mapping class group for the n-punctured plane acts naturally on the set of planted
n-trees (and thus the simplicial tree complex), and there is a one-to-one correspondence between
the orbits of this action and the set of planar n-trees. Moreover, this action is equivariant with
respect to the partial order, so each lower set in the planted tree poset may be interpreted us-
ing Theorem A. As a consequence, the simplicial tree complex can be viewed as the result of
subdividing a simpler polyhedral cell complex.

Theorem B (Theorem 4.6). The planted tree poset is the face poset of a cell complex which we
call the polyhedral tree complex. Each cell can be expressed as a product of associahedra and
cyclohedra; in particular, the top dimensional cells are all products of cyclohedra. Furthermore,
the simplicial tree complex is the barycentric subdivision of the polyhedral tree complex.

Finally, define a planted n-tree to be reduced if it has no edges between unmarked vertices.
This leads to an equivalence relation on the set of planted n-trees by declaring that two trees
are equivalent if contracting all the edges between unmarked vertices in each one yields the
same reduced tree. Each equivalence class for this relation is then canonically labeled by a
reduced tree, and the original partial order on planted n-trees induces a partial order on the set
of equivalence classes. The final theorem examines the structure of this poset and demonstrates
a connection with the noncrossing hypertree poset introduced in [McC].

Theorem C (Theorems 5.10 and 5.13). Let Γ be a reduced n-tree with equivalence class [Γ].
Then the lower set of [Γ] is isomorphic to the face poset for a product of simplices and the upper
set of [Γ] is isomorphic to a product of noncrossing hypertree posets.

The combinatorial transition from planted trees to reduced trees has a topological interpre-
tation in which the polyhedral tree complex is analogously transformed into a polysimplicial



combinatorial theory 2 (3) (2022), #8 3

{1, 2, 3}

{1, 2}

{2, 3}

{1, 3}

{1}

{2} {3}

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

{1, 2, 3}

{1, 2}

{2, 3}

{1, 3}

{1}

{2} {3}

Figure 1.1: The face poset of a 2-simplex is isomorphic to Bool∗3, and its order complex is a
barycentrically subdivided 2-simplex.

complex. This resulting complex is closely connected to both the cactus complex [Nek14] and
the dual braid complex [Bra01, BM10]; the details will be given in a future article.

This article begins with some preliminaries on posets in Section 1, followed in Section 2
by the introduction of planar n-trees and their contractions. Section 3 defines associahedra and
cyclohedra and uses them to prove Theorem A. Section 4 concerns planted n-trees and the proof
of Theorem B. Finally, reduced n-trees and are discussed and Theorem C is proven in Section 5.

1. Preliminaries

We begin with a few useful facts and examples regarding partially ordered sets and their asso-
ciated cell complexes. Given a cell complex X , the face poset P (X) is the set of all nonempty
faces of X , partially ordered by inclusion. Given a poset P , the order complex (or geometric
realization) ∆(P ) is the simplicial complex with vertices corresponding to elements of P and a
k-simplex on vertices x1, . . . , xk+1 for each chain x1 ⩽ · · · ⩽ xk+1 in P . These two operations
are not quite inverses of one another, but they are closely related: if X is a polytopal cell com-
plex (its cells are convex polytopes which intersect in smaller-dimensional convex polytopes),
then the simplicial complex ∆(P (X)) is the barycentric subdivision of X . For an in-depth
exploration of these tools, see [Wac07].

The Boolean lattice, denoted Booln, is the set of all subsets of {1, 2, . . . , n}, partially or-
dered by inclusion. As a useful shorthand, let Bool∗n denote the subposet of all nonempty sub-
sets.

Example 1.1. The n-dimensional simplex may be realized as the set of all points
(x1, . . . , xn+1) ∈ Rn+1 with positive entries such that x1 + · · · + xn+1 = 0. Then each face
of dimension k may be described by specifying a nonempty subset of k coordinates which are
nonzero, and it follows that the face poset of the n-simplex is isomorphic to Bool∗n. Furthermore,
the order complex of Bool∗n is a barycentrically subdivided n-simplex. Each subset of size k
labels the barycenter of a k-dimensional face, and each of the n! maximal chains in Bool∗n labels
an n-simplex in the new simplicial cell structure. See Figure 1.1 for an example in dimension 2.
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Figure 2.1: A marked 6-tree.

Definition 1.2. If P is a poset with a, b ∈ P and a ⩽ b, then the interval between a and b,
denoted [a, b], is the subposet of all x ∈ P such that a ⩽ x ⩽ b. The upper set of a, denoted ↑(a),
is the set of all x ∈ P such that a ⩽ x, and the lower set of b, denoted ↓(b), is the set of all x ∈ P
such that x ⩽ b.

Example 1.3. LetA andB be elements of Booln such thatA ⩽ B, |A| = k, and |B| = ℓ. Then
the interval [A,B] consists of all subsets of B which contain A, and so [A,B] is isomorphic
to Boolℓ−k. Similarly, the lower set ↓(A) is isomorphic to Boolk and the upper set ↑(A) is
isomorphic to Booln−k.

2. Planar trees

This section introduces planar n-trees and an associated partial order.

Definition 2.1. A tree is a finite, contractible, 1-dimensional simplicial complex. Connected
subcomplexes of a tree are subtrees and a collection of disjoint subtrees is a subforest. The
number of edges incident to a vertex v is referred to as its valence val(v); a vertex is a leaf if it
has valence 1 and an interior vertex otherwise. Given any two vertices v1 and v2 in a tree, there is
a unique path subcomplex from v1 to v2, which we refer to as a geodesic and denote by γ(v1, v2).

Definition 2.2. Given an integer n ⩾ 3, a marked n-tree (or simply an n-tree) consists of a
tree Γ with a collection of marked vertices v1, . . . , vn which includes each vertex of valence 1
or 2 in Γ; see Figure 2.1 for an example with n = 6. Since every leaf of an n-tree is labeled,
the identity map is the only isomorphism between n-trees which preserves the labels on marked
vertices. Using the Euler characteristic, one can show that an n-tree has between n and 2n− 2
vertices.

Definition 2.3. Let Γ1 and Γ2 be n-trees with marked vertices v1, . . . , vn. A contraction
f : Γ1 → Γ2 is a surjective cellular map with the property that, for all i, f−1(vi) is a subtree
of Γ1 which contains vi. Regarding contractions up to isotopy within each edge, each such map
can be determined in a purely combinatorial manner. In other words, a contraction is obtained
from an n-tree by specifying some number of subtrees, each of which contains at most one
marked vertex, and retracting each subtree to a point.
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In more general cases (e.g. if unmarked vertices of valence 2 were allowed), there may be
several different contractions from one given tree to another. Withn-trees, however, the existence
of contractions is far more restrictive.

Lemma 2.4. Let Γ1 and Γ2 be n-trees. If there is a contraction Γ1 → Γ2, then it is unique.
Consequently, contracting two different subforests of the same n-tree must result in different
trees.

Proof. Suppose that f : Γ1 → Γ2 is a contraction. By definition, f sends each marked vertex
in Γ1 to the corresponding marked vertex in Γ2. We will show that the image of each unmarked
vertex is also completely determined.

If u is an unmarked vertex, then we know that the valence of u is at least three, and so the
complement of u in Γ1 consists of at least three connected components. Fix vi, vj , and vk to
be marked vertices in three distinct connected components of Γ1 − {u}. By construction, we
know that u is the unique vertex which lies in the common intersection of the geodesics γ(vi, vj),
γ(vj, vk), and γ(vi, vk); if there were another, then Γ1 would have a cycle.

Now, since f is a contraction, we know that f sends vi, vj , and vk to the corresponding
vertices in Γ2 and that the images f(γ(vi, vj)), f(γ(vj, vk)), and f(γ(vi, vk)) yield three paths
between these three vertices. Since Γ2 is also a tree, the common intersection of these paths
contains a single point, which must be f(u). Thus, the image of each vertex under f is completely
determined by Γ1 and Γ2, so the contraction is unique.

As a consequence of Lemma 2.4, contractions of a given n-tree correspond exactly to sub-
forests for which each subtree contains at most one marked point.

Definition 2.5. A subtree of an n-tree Γ is unmarked if it contains no marked vertices and
singly-marked if it contains exactly one. That is, a subforest of Γ corresponds to a contraction
of Γ if and only if its components are all unmarked or singly-marked subtrees. If Γ1 → Γ2 is a
contraction of n-trees, define F (Γ1,Γ2) to be the unique subforest of Γ1 consisting of unmarked
and/or singly-marked subtrees which can be contracted to obtain Γ2.

Before moving on, we record a useful corollary of Lemma 2.4 and Definition 2.5.

Corollary 2.6. Let Γ, Γ1, and Γ2 be n-trees.

1. If there are contractions Γ1 → Γ and Γ2 → Γ, then there is a contraction Γ1 → Γ2 if and
only if F (Γ2,Γ) is a subforest of F (Γ1,Γ).

2. If there are contractions Γ → Γ1 and Γ → Γ2, then there is a contraction Γ1 → Γ2 if and
only if F (Γ,Γ1) is a subforest of F (Γ,Γ2).

We are interested in two types of planar embeddings for marked n-trees. First, we consider
the case of planar embeddings up to free isotopy. In Section 4, we instead examine embeddings
up to relative isotopy fixing the marked points.

Definition 2.7. Let Γ be an n-tree. A planar n-tree is a free isotopy class of planar embeddings
ϕ : Γ → C. That is, a planar n-tree is just an n-tree together with a cyclic counter-clockwise or-
dering of the edges incident to each vertex. When the context is clear, we omit explicit references
to embeddings or markings, and instead refer to a planar n-tree simply as Γ.
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Figure 2.2: The planar tree poset Pnr3.

Planar n-trees are distinct from those studied in [BHV01], for example, since we include the
ordering of edges at each vertex.

Definition 2.8. Let ϕ1 : Γ1 → C and ϕ2 : Γ2 → C be planar n-trees. If f : Γ1 → Γ2 is a
contraction such that ϕ1 and ϕ2 ◦ f are isotopic, then we say that f is a planar contraction. If
this is the case, we abuse notation to omit the embedding and write Γ1 ⩽ Γ2. This determines
a partial order on the set of all n-trees which we call the planar tree poset and denote by Pnrn.
See Figure 2.2 for an example when n = 3.

Theorem 2.9. If Γ1 ⩽ Γ2 in Pnrn and the subforest F (Γ1,Γ2) has k edges, then the interval
[Γ1,Γ2] is isomorphic to the Boolean lattice Boolk.

Proof. Let Γ1,Γ2 ∈ Pnrn with Γ1 ⩽ Γ2. By the second part of Corollary 2.6, the planar n-
trees lying between Γ1 and Γ2 in Pnrn correspond exactly to the subforests of F (Γ1,Γ2), each
of which is chosen by selecting a subset of the k edges. This gives a bijection from the interval
[Γ1,Γ2] to the Boolean lattice Boolk, and this is an isomorphism since Γ′ ⩽ Γ′′ in [Γ1,Γ2] if and
only ifF (Γ1,Γ

′) is a subforest ofF (Γ1,Γ
′′) by Corollary 2.6. See Figure 2.3 for an example.

3. Associahedra and cyclohedra

The lower sets in the planar tree poset are closely related to two important types of convex poly-
topes: associahedra and cyclohedra. For an excellent overview of both, see [Dev03, Section 1].

Definition 3.1. Let n ⩾ 3, define zk = eiπk/n for every integer k, and let Pn denote the regular
n-gon obtained by taking the convex hull in C of the points z1, . . . , zn. A straight line segment
between non-adjacent vertices of Pn is called a diagonal, and a partial triangulation of Pn is a
(possibly empty) set of pairwise non-intersecting diagonals. The set Trin of all partial triangu-
lations of Pn is a partially ordered set under reverse containment; given τ1 and τ2 in Trin, we say
that τ1 ⩽ τ2 if τ1 contains τ2. Note that the minimal elements of Trin under this partial order
are the actual triangulations of Pn. Finally, a partial triangulation of P2n is centrally symmetric
if it is invariant under rotation by π. The set of all centrally symmetric elements, denoted Trin,
is a subposet of Tri2n.
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Figure 2.3: An interval in Pnr12. In this figure and several others which follow, we omit the
vertex labels and instead distinguish marked vertices by their location in the plane.

Figure 3.1: The associahedra K4 and K5, with some of the front-facing cells labeled.
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Figure 3.2: The cyclohedra W3 and W4, with some of the front-facing cells labeled.

Definition 3.2. The associahedron Kn is an (n − 2)-dimensional convex polytope with face
poset isomorphic to Trin+1. For example, K3 is a line segment, K4 is a pentagon, and K5 is a
polyhedron with 14 vertices and 9 faces: six pentagons and three squares. See Figure 3.1. In
general, faces of the associahedron may be expressed as products of lower-dimensional associ-
ahedra.

The associahedron was initially given a combinatorial description by Tamari in 1951 before
being rediscovered in a topological context by Stasheff in the 1960s [Sta12]. Associahedra and
their generalizations play important roles in several areas of mathematics, including the studies
of cluster algebras [FR07], A∞-algebras and A∞-categories (such as the Fukaya category of a
symplectic manifold [Aur14]), and moduli spaces of disks [Dev99]. In physics, they also appear
in the studies of open string theory and scattering amplitudes [AHBHY18].

Definition 3.3. The cyclohedronWn is an (n−1)-dimensional convex polytope with face poset
isomorphic to Trin. For example,W2 is a line segment,W3 is a hexagon, andW4 is a polyhedron
with 20 vertices and 12 faces: four hexagons, four pentagons, and four squares. See Figure 3.2.
More broadly, faces of the cyclohedron are products of lower-dimensional associahedra and (at
most one) cyclohedra.

Among the many generalizations of the associahedron, cyclohedra are perhaps the closest
relative. They first appeared in the context of knot invariants, where they were given a description
by Bott and Taubes [BT94]. Realizations of the cyclohedron as a convex polytope later followed
in the work of Markl [Mar99] and Simion [Sim03].

In the planar tree poset, the face posets of associahedra and cyclohedra appear as the lower
sets of particular types of trees.

Definition 3.4. If Γ is a planar n-tree with a unique interior vertex, then Γ is a star. Since each
leaf must be marked, there are two types of stars; Γ is a marked star if the unique interior vertex
is marked and an unmarked star otherwise. Let ∗◦

n denote the unmarked star with n marked
points, labeled 1, . . . , n in counter-clockwise order around the unique unmarked interior vertex.
Let∗•

n denote the marked star with nmarked points: a single interior vertex labeled n, and n−1
leaves labeled 1, . . . , n−1 in counter-clockwise order around the unique marked interior vertex.
See Figure 3.3.
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Figure 3.3: The unmarked star ∗◦
6 and the marked star ∗•

6.

Figure 3.4: A partial triangulation in Tri12 and the associated planar tree in ↓(∗◦
12).

Remark 3.5. The trees which lie below ∗◦
n+1 or ∗•

n+1 in the partial order admit a canonical
planar embedding. Let Γ be a planar n-tree in the lower set ↓(∗◦

n+1). Then each marked point
of Γ is a leaf, so one can see that there is a natural representation of Γ in C where each marked
point labeled i is sent to (zi + zi+1)/2 (i.e. the midpoint of a side of Pn+1) and the entire tree
is contained within the unit disk. Similarly, if Γ is a planar n-tree in ↓(∗•

n+1), then there is
a canonical planar embedding which sends the n (marked) leaves to the n edges of Pn+1 as
above and which sends the unique marked interior vertex to the origin. In both cases above, the
embedding is unique up to isotopy fixing the marked points.

Equivalent versions of the following two lemmas have appeared previously in the literature,
although we prove them here for the sake of completeness.

Lemma 3.6 ([Dev99]). The face poset of the associahedron Kn is isomorphic to ↓(∗◦
n+1).

Proof. Let τ be a partial triangulation in Trin+1; we will construct a corresponding “dual” planar
tree in ↓(∗◦

n+1). For each k ∈ {1, . . . , n+1}, place a marked vertex labeled k at (zk + zk+1)/2.
For each polygonal region of Pn+1 formed by τ , place an unmarked vertex at its barycenter. Add
an edge from each unmarked vertex to the marked vertices labeling the corners of the corre-
sponding polygonal region and to the unmarked vertices labeling adjacent polygonal regions.
The resulting connected planar graph must be a tree since cutting Pn+1 along any diagonal in
τ splits the polygon into two pieces, and this corresponds to deletion of any edge disconnect-
ing the graph. Moreover, this process is reversible since each planar tree in ↓(∗◦

n+1) can be
drawn on Pn+1 by Remark 3.5, from which we may recover the corresponding partial triangu-
lation. Thus, we have defined a bijection ϕ : Trin+1 → Pnrn+1. See Figure 3.4 for an example.
Removing a diagonal in τ corresponds exactly to contracting an edgein ϕ(τ), so ϕ is a poset
isomorphism.

Lemma 3.7 ([Dev03]). The face poset of the cyclohedron Wn is isomorphic to ↓(∗•
n+1).
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Figure 3.5: A centrally symmetric partial triangulation in Tri12 and its associated planar trees
in ↓(∗◦

12) and ↓(∗•
7).

Proof. Let ↓(∗◦
2n) denote the subposet of trees in ↓(∗◦

2n) which are invariant under rotation by
π and note that this subposet is isomorphic to Trin by Lemma 3.6. Each Γ ∈ ↓(∗◦

2n) can be
canonically represented in the polygon P2n, where the center point is either an unmarked vertex
of Γ or the midpoint of an edge in Γ. Either way, delete the center point, take the quotient of the
tree by a π rotation, and replace the missing point with a marked vertex to obtain a new graph
Γ′. The marked vertices labeled k and n+k in Γ are identified to a single marked vertex labeled
k in Γ′. Label the new marked interior vertex by n + 1 and note that Γ′ is a planar tree with
n+ 1 marked points. Moreover, we know that Γ contained a subtree which could be contracted
to obtain∗◦

2n, so by contracting the corresponding subtree of Γ′ (which now contains the marked
point n+ 1), we obtain ∗•

n+1, and thus Γ′ ∈ ↓(∗•
n+1). See Figure 3.5 for an example.

Define ψ : ↓(∗◦
2n) → ↓(∗•

n+1) by ψ(Γ) = Γ′. The quotient by π respects edge-contraction
(so ψ is an order embedding) and can be undone to obtain a centrally symmetric planar tree (so
ψ is a bijection). Therefore, ψ is an isomorphism.

These lemmas provide the necessary tools to examine the lower set ↓(Γ) for an arbitrary tree
Γ ∈ Pnrn.

Definition 3.8. Let Γ be a planar n-tree and let Γ1 be a subtree of Γ. Then the (closed) neighbor-
hood of Γ1 in Γ, denoted nbhd(Γ1), is the smallest subtree containing Γ1 and all of its incident
edges. In particular, if v is a vertex of Γ with valence k, then nbhd(v) is a star. With the appro-
priate labeling, nbhd(v) is isomorphic to either ∗◦

k (if v is unmarked) or ∗•
k (if v is marked).

Theorem 3.9. Let Γ be a planar n-tree with unmarked interior vertices u1, . . . , uk and marked
interior vertices v1, . . . , vℓ. Then

↓(Γ) ∼=
∏

1⩽i⩽k

↓
(∗◦

val(ui)

)
×

∏
1⩽j⩽ℓ

↓
(
∗•

val(vj)

)
and therefore ↓(Γ) is the face poset of a convex polytope which can be expressed as a product
of associahedra and cyclohedra.

Proof. LetΓ be a planar n-tree, let u be an unmarked interior vertex ofΓ, and fix an identification
between nbhd(u) and ∗◦

val(u) as described in Definition 3.8. For each Γ′ ∈ ↓(Γ), we know that
some subtree Γ′

u of Γ′ contracts to u and so nbhd(Γ′
u) contracts to nbhd(u). Abusing notation

slightly, we denote this by writing nbhd(Γ′
u) ∈ ↓(∗◦

val(u)). Similarly, we can see that each interior
marked vertex v of Γ has a corresponding subtree Γ′

v of Γ′ such that nbhd(Γ′
v) ∈ ↓(∗•

val(v)).
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Now, let u1, . . . , uk and v1, . . . , vℓ be the unmarked and marked interior vertices of Γ, re-
spectively. Identify each nbhd(ui) with ∗◦

val(ui)
and each nbhd(vi) with ∗•

val(vj)
as before and

define the function

ψ : ↓(Γ) →
∏

1⩽i⩽k

↓
(∗◦

val(ui)

)
×

∏
1⩽j⩽ℓ

↓
(
∗•

val(vj)

)
by declaring ψ(Γ′) = (nbhd(Γ′

u1
), . . . , nbhd(Γ′

uk
), nbhd(Γ′

v1
), . . . , nbhd(Γ′

vℓ
)). We will show

that ψ is a poset isomorphism.
Given any ui and an element Λi ∈ ↓(∗◦

val(ui)
), we can use the identification fixed previously

to replace nbhd(ui) with Λi, and the resulting planar n-tree will be an element of ↓(Γ) since,
by construction, it can be contracted to Γ. Similarly, we can replace nbhd(vj) with any element
of ↓(∗•

val(vj)
) to obtain an element of ↓(Γ). Moreover, these replacements do not interfere with

one another, so any (k + ℓ)-tuple in the codomain of ψ determines a unique n-tree Γ′ in ↓(Γ).
Finally, note that that ψ(Γ′) returns our original (k+ ℓ)-tuple by construction and therefore ψ is
a bijection.

Next, let Γ′ and Γ′′ be elements of ↓(Γ). We know by the first part of Corollary 2.6 that
Γ′ ⩽ Γ′′ if and only if F (Γ′′,Γ) is a subforest of F (Γ′,Γ). This is equivalent to saying that
Γ′′
ui

⩽ Γ′
ui

and Γ′′
vj

⩽ Γ′
vj

for each i and j, which is then equivalent to saying that nbhd(Γ′′
ui
) ⩽

nbhd(Γ′
ui
) in ∗◦

val(ui)
and nbhd(Γ′′

vj
) ⩽ nbhd(Γ′

vj
) in ∗•

val(vj)
for each i and j. We have thus

shown that Γ′ ⩽ Γ′′ if and only if ψ(Γ′) ⩽ ψ(Γ′′), so ψ is an order embedding and therefore an
isomorphism.

Example 3.10. If Γ is the planar 6-tree depicted in Figure 2.1, then the lower set ↓(Γ) is isomor-
phic to the direct product ↓(∗◦

4)× ↓(∗•
3), which is isomorphic to the face poset for the product

of K3 ×W2, i.e. a hexagonal prism.

Remark 3.11. As Theorem 3.9 suggests, Pnrn is the face poset of a regular cell complex in
which each cell is a convex polytope. As depicted in Figure 2.2, Pnr3 is the face poset of a
1-dimensional complex with 3 edges and 2 vertices (i.e. a theta graph). Meanwhile, Pnr4 is
the face poset of a 2-dimensional complex consisting of 20 2-cells (eight hexagons and twelve
squares), 30 edges, and 12 vertices.

4. Tree complexes

In this section, we consider planar tree embeddings up to relative isotopy fixing the marked
vertices pointwise. This infinite set of trees admits a similar partial order by contraction and
forms the face poset for a contractible cell complex.

Definition 4.1. Fix a set of points P = {z1, . . . , zn} in C, where n ⩾ 3. A planted n-tree is a
relative isotopy class of embeddings ϕ : Γ → C where Γ is an n-tree such that each marked point
vi in Γ is sent to zi in P . Following Definition 2.8, we say that if ϕ1 : Γ1 → C and ϕ2 : Γ2 → C
are planted n-trees and f : Γ1 → Γ2 is a contraction such that ϕ1 and ϕ2 ◦ f are isotopic relative
to the marked points, then f is a planted contraction. If such a contraction exists, we write
Γ1 ⩽ Γ2 and observe that this determines a partial order on the set of all planted n-trees. We
refer to this partially ordered set as the planted tree poset and denote it Ptdn.
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Figure 4.1: A piece of the simplicial tree complex S3.

It is worth noting that the combinatorial structure of the planted tree poset does not depend
on our choice of P . More explicitly, if Ptdn(P ) and Ptdn(P

′) are the posets determined by two
sets P and P ′ of n points in C, then any homeomorphism C → C which takes P to P ′ induces
an isomorphism Ptdn(P ) → Ptdn(P

′).

Definition 4.2. The simplicial tree complex Sn is the order complex of the planted tree poset
Ptdn. For example, S3 is isomorphic to the infinite bipartite tree T2,3, depicted in Figure 4.1.

This complex appeared in recent work of Belk, Lanier, Margalit, and Winarski on complex
dynamics [BLMW22]. In this setting, each postcritically finite complex polynomial (i.e. one in
which the critical points have finite forward orbits) has an associated Hubbard tree. The simpli-
cial tree complex then acts as a useful tool for studying transformations of polynomials via their
Hubbard trees. Using a result of Penner [Pen96], the authors in [BLMW22] describe an embed-
ding of the simplicial tree complex as a spine for the Teichmüller space of the (n+1)-punctured
sphere. As a consequence, they conclude that the simplicial tree complex is contractible. The
focus of this article is to examine the combinatorial structure of the simplicial tree complex and
introduce a simpler polyhedral cell structure.

Any self-homeomorphism of the plane which fixes P pointwise sends each planted n-tree to
another planted n-tree, and the only homeomorphisms which send a tree to itself are those which
are isotopic to the identity. Moreover, if ϕ1 : Γ1 → C and ϕ2 : Γ2 → C are planted n-trees, then
ϕ1 and ϕ2 are freely isotopic if and only if there is a homeomorphism g : C → C such that ϕ1

and g ◦ ϕ2 are isotopic relative to the marked points. In other words, if we let CP denote the n-
punctured plane C−P , then the pure mapping class group PMod(CP ) acts freely on Ptdn, and
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the orbits under this action correspond exactly to planar n-trees. This action is equivariant with
respect to the partial order on the planted tree poset, which is to say that for any g ∈ PMod(CP ),
Γ1 ⩽ Γ2 in Ptdn if and only if gΓ1 ⩽ gΓ2.

Definition 4.3. Define the order-preserving surjective map p : Ptdn → Pnrn by sending each
planted n-tree ϕ : Γ → C to its free isotopy class in Pnrn, and observe that the preimages under
this map are the orbits of the action by PMod(CP ). In particular, the partial order on the planar
tree poset matches the partial order on the orbits: p(Γ1) ⩽ p(Γ2) in Pnrn if and only if gΓ1 ⩽ Γ2

in Ptdn for some g ∈ PMod(CP ).

Our first step is to strengthen an observation from the definition above.

Lemma 4.4. Let Γ1 and Γ2 be planted n-trees. Then p(Γ1) ⩽ p(Γ2) in Pnrn if and only if there
is a unique g ∈ PMod(CP ) such that gΓ1 ⩽ Γ2 in Ptdn.

Proof. Let Γ1 and Γ2 be planted n-trees with planar embeddings ϕ1 : Γ1 → C and ϕ2 : Γ2 → C
respectively. We can see from Definition 4.3 that p(Γ1) ⩽ p(Γ2) in Pnrn if and only if gΓ1 ⩽ Γ2

in Ptdn for some g in the pure mapping class group PMod(CP ); all that remains is to show
that g must be unique. Suppose p(Γ1) ⩽ p(Γ2) and that gΓ1 ⩽ Γ2 and hΓ1 ⩽ Γ2 for some
g, h ∈ PMod(CP ). By Lemma 2.4, both of these inequalities must be realized by the same
contraction f : Γ1 → Γ2. We then know that g ◦ϕ1 is relatively isotopic to ϕ2 ◦f since gΓ1 ⩽ Γ2

and h ◦ ϕ1 is relatively isotopic to ϕ2 ◦ f since hΓ1 ⩽ Γ2. Therefore, g ◦ ϕ1 is isotopic to h ◦ ϕ2

relative to the marked points, and since PMod(CP ) acts freely on the planted tree poset, we may
conclude that g = h.

The preceding lemma implies that p restricts to injective maps on the lower set ↓(Γ) and the
upper set ↑(Γ) (recall Definition 1.2).

Lemma 4.5. Let Γ be a planted n-tree. Then ↓(Γ) is isomorphic to ↓(p(Γ)) and ↑(Γ) is isomor-
phic to ↑(p(Γ)).

Proof. Let Γ be a planted n-tree. By Lemma 4.4, we know that every element of ↓(p(Γ)) has
a unique preimage under p which lies in ↓(Γ). In particular, this lemma tells us that restricting
p to a map ↓(Γ) → ↓(p(Γ)) yields a surjective order embedding, i.e. a poset isomorphism. By
noting that gΓ1 ⩽ Γ2 if and only if Γ1 ⩽ g−1Γ2, we obtain the analogous result for ↑(Γ) as
well.

Now that we have established the connection between planted and planar trees, we are ready
to introduce a simplified cell structure for the simplicial tree complex.

Theorem 4.6 (Theorem B). The planted tree poset Ptdn is the face poset of a regular CW-
complex Pn which we call the polyhedral tree complex, in which each planted n-tree Γ labels a
cell which is isomorphic to the convex polytope labeled by the planar n-tree p(Γ), and gluing
relations are given by the partial order in Ptdn. In particular, the top-dimensional cells are
products of cyclohedra. Consequently, the simplicial tree complex is the barycentric subdivision
of the polyhedral tree complex.
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Figure 4.2: The link of a vertex in P4.

Proof. The first claim follows from the definitions and Lemma 4.5. The fact that top-dimensional
cells can be expressed as products of cyclohedra is a consequence of Theorem 3.9. The final
claim follows from the relationship between order complexes and their face posets.

Since the simplicial tree complex is contractible [BLMW22], we may immediately conclude
the following corollary.

Corollary 4.7. The polyhedral tree complex is contractible and admits a free and cocompact
action by the pure mapping class group for the n-punctured plane. The quotient by this action,
a finite cell complex with Pnrn as its face poset, is thus a classifying space for PMod(CP ).

Example 4.8. To demonstrate the relative simplicity of the polyhedral cell structure, let Γ be a
planted 6-tree such that p(Γ) is the planar 6-tree shown in Figure 2.1. Then Γ labels a hexagonal
prism in the polyhedral tree complex, and the barycentric subdivision of this prism (i.e. the
corresponding subcomplex in the simplicial tree complex) consists of 72 tetrahedra which meet
at a common vertex.

We close the section with two illustrative examples.

Example 4.9. The simplicial tree complex S3 is the bipartite tree T2,3, whereas the polyhedral
tree complex P3 is the regular trivalent tree T3 - see Figure 4.1. The quotient of P3 by the
PMod(CP ) action is the theta graph described in Remark 3.11.

Example 4.10. The polyhedral tree complex P4 is a two-dimensional cell complex which can
be thought of as the universal cover of the complex with Pnr4 as its face poset, described in
Remark 3.11. The link of a vertex in P4 is a graph with five vertices and eight edges - see
Figure 4.2.
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5. Marked and unmarked edges

The final section of this article concerns an equivalence relation on the set of planted n-trees
where elements are considered up to contraction of unmarked edges.

Definition 5.1. Let Γ1 ⩽ Γ2 in Ptdn. If each component in the subforest F (Γ1,Γ2) is singly-
marked, we write Γ1 ⩽m Γ2. If each component in the subforest is unmarked, then we
write Γ1 ⩽u Γ2.

Lemma 5.2. Suppose that Γ1 ⩽ Γ2 in Ptdn. Then there is a unique Γ3 ∈ Ptdn such that
Γ1 ⩽u Γ3 and Γ3 ⩽m Γ2.

Proof. If some subforest of Γ1 can be contracted to obtain Γ2, then we may instead contract only
the unmarked edges to obtain Γ3 ∈ Ptdn such that Γ1 ⩽u Γ3 and Γ3 ⩽m Γ2. Moreover, Γ3 is the
unique tree with this property; if we contracted a proper subset of the unmarked edges to obtain
Γ3, then we would need to contract such an edge in Γ3 to obtain Γ2, meaning that Γ3 ⩽ Γ2, but
Γ3 ̸ ⩽mΓ2.

Lemma 5.3. Suppose that Γu ⩽u Γ and Γm ⩽m Γ in Ptdn. Then the meet Γu ∧ Γm exists in
Ptdn, and Γu ∧ Γm ⩽m Γu and Γu ∧ Γm ⩽u Γm.

Proof. If Γu is obtained from Γ by expanding some collection of unmarked vertices into subtrees
and Γm is obtained from Γ by expanding some collection of marked vertices into subtrees, each
containing exactly one marked point, then these expansions necessarily occur at disjoint sets of
vertices, so they do not interfere with one another and may be performed simultaneously to obtain
Γu ∧ Γm. By construction, we can further see that Γu ∧ Γm ⩽m Γu and Γu ∧ Γm ⩽u Γm.

These lemmas allow us to examine a modified version of the planted tree poset, in which we
consider n-trees up to contraction of unmarked edges.

Definition 5.4. A planted n-tree is reduced if it has no edges between unmarked vertices. For
each planted n-tree Γ, there is a unique reduced tree in ↑(Γ), denoted r(Γ), obtained by contract-
ing all edges between unmarked vertices. Define an equivalence relation on Ptdn by declaring
Γ1 ∼ Γ2 if and only if r(Γ1) = r(Γ2), let [Γ] denote the equivalence class of Γ under this
relation (for which r(Γ) is the maximum element) and let Redn denote the set of equivalence
classes Ptdn/ ∼.

Lemma 5.5. Declaring that [Γ1] ⩽ [Γ2] in Redn if and only if Γ′
1 ⩽ Γ′

2 in Ptdn for some
Γ′
1 ∈ [Γ1] and Γ′

2 ∈ [Γ2] yields a partial order for Redn.

Proof. By Lemma 5.2, we know that if Γ′
1 ∈ [Γ1] and Γ′

2 ∈ [Γ2] with Γ′
1 ⩽ Γ′

2, then there is
some Γ′′

1 ∈ [Γ1] with Γ′′
1 ⩽m Γ′

2. Thus, it suffices to consider contractions involving marked
edges in Ptdn.

It follows immediately from the definition that this relation is reflexive, and anti-symmetry
follows from our remark above: if [Γ1] ⩽ [Γ2], then Γ′

1 ⩽m Γ′
2 for some Γ′

1,Γ
′
2 ∈ Ptdn, and so

Γ′
1 has at least as many edges with exactly one marked endpoint as Γ′

2 does. Since the number
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of such edges is constant in each equivalence class, we know that [Γ2] ⩽ [Γ1] only if Γ′
1 and Γ′

2

actually have the same number of edges with one marked endpoint, in which case [Γ1] = [Γ2].
All that remains is to demonstrate transitivity. Suppose that [Γ1] ⩽ [Γ2] and [Γ2] ⩽ [Γ3] in

Redn. Without loss of generality, we may write Γ1 ⩽m Γ2 and Γ′
2 ⩽m Γ3, where Γ′

2 ∈ [Γ2]. By
Lemma 5.3, we know that Γ1∧Γ′

2 ⩽u Γ1 and Γ1∧Γ′
2 ⩽m Γ′

2. By transitivity of the partial order
for Ptdn, we then have that Γ1 ∧ Γ′

2 ⩽m Γ3, so [Γ1] ⩽ [Γ3] and we are done.

Definition 5.6. Equipped with the partial order from Lemma 5.5, we refer to Redn as the reduced
tree poset.

Remark 5.7. Suppose that Γ1 and Γ2 are reduced n-trees and that [Γ1] < [Γ2] in Redn. There
are three possibilities for the relationship between Γ1 and Γ2.

1. (contraction) If Γ1 < Γ2 in Ptdn, then Γ2 is obtained from Γ1 by contracting one singly-
marked edge.

If Γ2 is not a contraction of Γ1, then there exist Γ′
1 and Γ′

2 with Γ′
1 ⩽u Γ1 and Γ′

2 ⩽u Γ2 such that
Γ′
2 can be obtained from Γ′

1 by contracting some number of singly-marked edges. Since each can
be contracted independently, it suffices to consider the case when there is only one contracted
singly-marked edge e in Γ′

1.

2. (slide) If the unmarked end of e is adjacent to exactly one unmarked vertex, then Γ2 is
obtained from Γ1 by “sliding” some number of edges along e.

3. (split) If the unmarked end of e is adjacent to multiple unmarked vertices, then Γ2 is ob-
tained from Γ1 by “splitting” e into some number of copies with different unmarked end-
points.

Thus, when [Γ1] < [Γ2] in Redn, we know that Γ2 is obtained from Γ1 by a sequence of contrac-
tions, slides, and splits along singly-marked edges. See Figure 5.1.

Remark 5.8. Let Γ be a reduced n-tree and suppose that [Γ] lies in either the lower set or upper set
for [∗•

n] or [∗◦
n]. By Remark 5.7, we then know that Γ is related to either a marked or unmarked

star by a sequence of contractions, slides, and splits. In the same spirit as Remark 3.5, note that
each of these three operations (and their reverses) do not disturb the canonical planar embedding
of a star onto a disk. Thus, Γ can be represented in the plane as a tree with certain marked points
on the unit circle (v1, . . . , vn−1 if Γ is related to ∗•

n and v1, . . . , vn if related to ∗◦
n) and the rest

of the tree on the interior of the unit disk.
For the remainder of this article, we consider the structure of lower sets and upper sets in the

reduced tree poset.

Lemma 5.9. The lower set ↓([∗•
n]) is isomorphic to Bool∗n−1.

Proof. Let [Γ] ∈ ↓([∗•
n]), where Γ is chosen to be the maximum element of its equivalence class.

By Remark 5.8, we may draw Γ so that the marked points v1, . . . , vn−1 are on the boundary of
the unit disk and vn lies at the origin. Then Γ divides the disk into n−1 regions; letΩi denote the
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“split”“slide”

Figure 5.1: A slide and a split for ∗◦
10. The thin lines connecting trees indicate the partial order

in Ptd10, and the relevant singly-marked edge is thicker and colored red.

Figure 5.2: The lower set ↓([∗•
4]), where each equivalence class is represented by its maximal

element and the regions adjacent to the unique interior marked point are shaded green.
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Figure 5.3: These reduced 9-trees correspond to the subsets {1, 3, 5, 8} ⊆ {1, 3, 5, 6, 8} in
Bool∗8, where the relevant regions are shaded green. Note that the second tree can be obtained
from the first by performing a slide.

region which is incident to vi and vi+1. The vertex vn is then incident to some nonempty subset
of {Ω1, . . . ,Ωn−1}, which we can naturally identify with an element of Bool∗n−1. Note that this
subset is actually well-defined on the equivalence class [Γ] since the contraction or expansion
of unmarked edges does not change which regions are incident to vn. Define f : ↓([∗•

n]) →
Bool∗n−1 to be the function which sends [Γ] to this corresponding subset of {1, . . . , n − 1}. If
Γ1 and Γ2 are reduced n-trees such that [Γ1], [Γ2] ∈ ↓([∗•

n]) and [Γ1] ⩽ [Γ2], then Γ2 is obtained
from Γ1 by a sequence of contractions, slides, and/or splits by Remark 5.7, and since each of
these increases the number of regions incident to vn, it follows that f(Γ1) ⊆ f(Γ2) and thus f
is order-preserving.

Next, we build an inverse for f by constructing a reduced n-tree for each nonempty A ⊂
{1, . . . , n − 1}. Begin with v1, . . . , vn−1 labeling points around the boundary of the unit disk
and let vn be at the origin. For each maximal string of consecutive cyclically-ordered elements in
{1, . . . , n−1}−A, introduce a new unmarked vertex near the corresponding boundary vertices,
then connect it to those vertices and vn. For example, if i and i + k (reduced mod n − 1) are
in A, but i+ 1, i+ 2, . . . , i+ k − 1 are not, then we would introduce a single unmarked vertex
associated to this string of elements and connect it to vi+1, vi+2, . . . , vi+k−1 and vn. Finally, we
connect any remaining boundary vertices directly to vn. The result is a reduced planted n-tree
such that vn is adjacent to the desired regions. Moreover, this inverse is order-preserving as
well - see Figure 5.3 for an illustrative example. Therefore, f is an isomorphism from ↓(∗•

n) to
Bool∗n−1 and the proof is complete.

Using Lemmas 3.7 and 5.9, together with the fact that Bool∗n−1 is the face poset for an (n−2)-
simplex, we can see that the combinatorial process of passing from planted n-trees to reduced
n-trees induces a topological transformation of a cyclohedron into a simplex of equal dimension.
This procedure has been described previously by Devadoss: the n-dimensional cyclohedron can
be obtained from the Coxeter simplex for the affine Coxeter group of type Ãn−1 by iteratively
truncating a certain sequence of faces [Dev03].

More generally, Theorem 3.9 and Lemma 4.5 imply that ↓(Γ) is the face poset for a prod-
uct of associahedra and cyclohedra for any planted n-tree Γ. The following theorem gives the
corresponding topological transformation for ↓([Γ]).
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Theorem 5.10 (Theorem C, first claim). Let Γ be a reduced n-tree with marked interior vertices
v1, . . . , vℓ. Then

↓([Γ]) ∼=
ℓ∏

i=1

Bool∗val(vi)

and so the lower set ↓([Γ]) is isomorphic to the face poset for a product of simplices.

Proof. The main idea for this proof is similar to that of Theorem 3.9: the structure of ↓([Γ])
is determined by what the neighborhoods of interior vertices for Γ look like. The additional
wrinkle in this case is that we are now dealing with equivalence classes of trees, so it is not
immediately clear that such an argument is valid.

To that end, note that [∗◦
n] is the unique element of ↓([∗◦

n]) since the only trees below ∗◦
n in

the partial order are obtained by expanding the unique unmarked vertex, and hence lie in the same
equivalence class. So when considering elements of ↓([Γ]), we need only concern ourselves with
marked interior vertices. Note also that the neighborhood of such an interior vertex remains
unchanged under contraction of unmarked edges, so there is a well-defined meaning for the
neighborhoods of marked interior vertices of [Γ].

From here, the proof is identical to that of Theorem 3.9. Since the neighborhoods of interior
vertices are well-defined up to equivalence and the expansions of distinct interior vertices can
be considered independently, we know that ↓([Γ]) is isomorphic to the product of the lower sets
of the neighborhoods of its interior vertices. Finally, we know that ↓([∗◦

n]) is trivial by our
argument above and that ↓([∗•

n])
∼= Bool∗n−1 by Lemma 5.9, so ↓([Γ]) is isomorphic to the face

poset of a product of simplices.

The second half of Theorem C concerns the upper sets of Redn, which can also be con-
nected to a well-understood object: the poset of noncrossing hypertrees. We give a specialized
definition here; more background may be found in [McC].

Definition 5.11. Let n ⩾ 3, define zk = eiπk/n for each integer k, and let V = {z1, . . . , zn}.
A hyperedge is a subset of V with at least two elements and can be drawn in the plane as the
convex hull of its vertices; a hypergraph is a collection of hyperedges on the vertex set V . A
noncrossing hypertree is a hypergraph with no embedded loops such that the intersection of
any pair of hyperedges is either empty or consists of a single vertex. The set of all noncrossing
hypertrees on this vertex set admits a partial order: if σ and τ are noncrossing hypertrees, then
we say that σ ⩽ τ if each hyperedge of σ is a subset of a hyperedge of τ . Denote the partially
ordered set of noncrossing hypertrees by NCHTn.

Lemma 5.12. The upper set ↑([∗◦
n]) is isomorphic to the dual of NCHTn.

Proof. Let [Γ] ∈ ↑([∗◦
n]), where Γ is chosen to be the maximum element of its equivalence

class. By Remark 5.8, we may draw Γ so that the marked points v1, . . . , vn are on the boundary
of the unit disk and the rest of the tree lies in the interior. Since Γ is reduced, we know that each
unmarked vertex u with valence k in Γ has a neighborhood nbhd(u) which is isomorphic to
∗◦

k, up to relabeling. The leaves of nbhd(u) then determine a hyperedge, and the set of all such
hyperedges gives a hypergraph on the vertex set V = {v1, . . . , vn}. In fact, this is a noncrossing
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Figure 5.4: The upper set ↑([∗◦
4]), where each equivalence class is represented by its maximal

element and the corresponding noncrossing hypertree is superimposed.

(since Γ is embedded in the plane) hypertree (since Γ is a tree); let f : ↑([∗◦
n]) → NCHTd

n be the
function which sends [Γ] to the corresponding noncrossing hypertree, where NCHTd

n denotes
the dual of the noncrossing hypertree poset.

Constructing an inverse for f is straightforward. Fix a noncrossing hypertree. For each hy-
peredge with at least three vertices, introduce an unmarked vertex at the barycenter and connect
it to each of the (marked) vertices at the corners via a straight edge. For each hyperedge with
two vertices (i.e. a typical edge), simply leave it as an edge between two marked vertices. Since
we began with a noncrossing hypertree, this graph is an embedded tree, and in particular it is
reduced since no two unmarked vertices are adjacent. So f is a bijection.

Finally, we can see that f is an order embedding. If Γ1 and Γ2 are reduced trees and [Γ1] ⩽
[Γ2] in ↑([∗◦

n]), then by Remark 5.7, this is equivalent to saying that Γ2 can be obtained from
Γ1 via a sequence of contractions, slides, and splits. We can see by definition that each of these
serves to break apart the corresponding hyperedges into smaller pieces, and vice versa. Thus,
[Γ1] ⩽ [Γ2] in ↑([∗◦

n]) if and only if f([Γ1]) ⩽ f([Γ2]) in NCHTd
n, so f is a poset isomorphism.

Theorem 5.13 (Theorem C, second claim). Let Γ be a reduced n-tree with unmarked vertices
u1, . . . , uk. Then

↑([Γ]) ∼=
k∏

i=1

NCHTval(ui).

Proof. The argument is similar to that of Theorem 5.10. Note first that ↑([∗•
n]) is trivial since

no contractions, slides, or splits can be performed without unmarked vertices. So the structure
of ↑([Γ]) is determined entirely by the unmarked vertices of Γ, which are isolated since Γ is
assumed to be reduced.

For each unmarked vertex ui in Γ, the subtree nbhd(ui) can be identified with ∗◦
val(ui)

. As
in the case of Theorem 5.10, these unmarked vertices contribute independently to the structure
of ↑([Γ]). More specifically, we can see that

↑([Γ]) ∼=
k∏

i=1

↑
([∗◦

val(ui)

]) ∼= k∏
i=1

NCHTval(ui),
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where the second isomorphism is due to Lemma 5.12.

Remark 5.14. Each cell in the polyhedral tree complex is a product of associahedra and cyclohe-
dra by Theorem 4.6, so Theorems 5.10 and 5.13 suggest that by passing from planted n-trees to
reduced n-trees, the polyhedral tree complex is transformed into a polysimplicial cell complex
for which each vertex link is described by the poset of noncrossing hypertrees. This transfor-
mation can be viewed on each cell as a truncation of certain faces, but in such a way that the
truncations of adjacent cells are compatible. As it turns out, this resulting complex is isomorphic
to the cactus complex defined in [Nek14] and is homeomorphic to a subspace of the dual braid
complex described in [BM10]. The connections between these three complexes will be made
explicit in a future article.
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