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Post-marketing vaccine safety surveillance aims to detect adverse events following
immunization in a population. Whether certain methods of surveillance are more
precise and unbiased in generating safety signals is unclear. Here, we synthesized
information from existing literature to provide an overview of the strengths,
weaknesses, and clinical applications of epidemiologic and analytical methods used in
vaccine monitoring, focusing on cohort, case-control and self-controlled designs. These
designs are proposed to be evaluated in the EUMAEUS (Evaluating Use of Methods for
Adverse Event Under Surveillance–for vaccines) study because of their widespread use
and potential utility. Over the past decades, there have been an increasing number of
epidemiological study designs used for vaccine safety surveillance. While traditional cohort
and case-control study designs remain widely used, newer, novel designs such as the self-
controlled case series and self-controlled risk intervals have been developed. Each study
design comes with its strengths and limitations, and the most appropriate study design will
depend on availability of resources, access to records, number and distribution of cases,
and availability of population coverage data. Several assumptions have to be made while
using the various study designs, and while the goal is to mitigate any biases, violations of
these assumptions are often still present to varying degrees. In our review, we discussed
some of the potential biases (i.e., selection bias, misclassification bias and confounding
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bias), and ways to mitigate them. While the types of epidemiological study designs are well
established, a comprehensive comparison of the analytical aspects (including method
evaluation and performance metrics) of these study designs are relatively less well studied.
We summarized the literature, reporting on two simulation studies, which compared the
detection time, empirical power, error rate and risk estimate bias across the above-
mentioned study designs. While these simulation studies provided insights on the analytic
performance of each of the study designs, its applicability to real-world data remains
unclear. To bridge that gap, we provided the rationale of the EUMAEUS study, with a brief
description of the study design; and how the use of real-world multi-database networks
can provide insights into better methods evaluation and vaccine safety surveillance.

Keywords: vaccine safety surveillance, methods evaluation, real-world data, study design, bias

INTRODUCTION

Ever since coronavirus disease 2019 (COVID-19) was first
reported in Wuhan, over 263 million cases and 5.2 million
deaths have been reported worldwide (John
HopkinsUniversity, 2021). While good hygiene and public
health measures have been fundamental weapons against
COVID-19, developing a preventative vaccine is critical to
decreasing spread and potentially ending the pandemic.
Therefore, researchers embarked on an unprecedented global
effort to produce several vaccines in record time, advancing from
preclinical studies to emergency use approval within 1 year (Ball,
2021). As of 01 December 2021, over eight billion vaccine doses
had been administered globally (Holder, 2021). At least
26 COVID-19 vaccines have been approved by at least one
country (Basta, 2020), four of which were approved by the
European Medicines Agency (EMA) (European Medicines
Agency EMA, 2021), and three by the United States Food and
Drug Administration (US FDA) (US Food and Drug
Administration FDA, 2021).

Although vaccine safety has been rigorously monitored in
clinical trials, rare adverse events often go undetected as trial
participants are often limited in number and followed for a
relatively short duration under controlled circumstances. For
example, major thromboembolic events and thrombocytopenia
following the AstraZeneca-Oxford (Vaxzevria) vaccine were only
detected when used in a larger population outside the clinical trial
setting (European Medicines Agency EMA, 2020a). Recent data
from the United Kingdom suggests an incidence of 20.7 per
million doses in those aged 18–49 years compared to 10.8 per
million doses in those 50 years and older (UK Medicines and
Healthcare products Regulatory Agency, 2021). Other adverse
events may also go undetected due to the exclusion of certain
subpopulations (e.g., pregnant women or some age groups) in
clinical trials. Thus, efficient routine post-marketing safety
surveillance is increasingly crucial to provide accumulating
real-world evidence, especially when vaccination coverage is
expected to be high and vaccination roll-out is rapid
(European Medicine Agency EMA, 2020b).

In the United States, the Vaccine Adverse Event Reporting
System (VAERS), run by the FDA and the Centers for Disease

Control and Prevention (CDC), is widely used to identify known
and potentially new adverse events following immunization
(AEFI) in a population (Moro et al., 2016; Centers for Disease
Control and Prevention Vaers, 2021). Another well-established
system is the Vaccine Safety Datalink (VSD), a collaborative
project between the CDC and nine health care organizations, that
uses electronic health records (EHRs) and administrative claims
data to monitor vaccine safety and study rare and serious AEFI
(Centers for Disease Control and Prevention VSD, 2021).
Additionally, the Clinical Immunization Safety Assessment
(CISA) network, a partnership between the CDC and six
academic centres with vaccine safety expertise, works to
improve understanding of AEFI at the individual patient-level
(Centers for Disease Control and Prevention Cisa, 2021). The
Post-licensure Rapid Immunization Safety Monitoring System
(PRISM), which is part of the FDA’s Sentinel Initiative, focuses on
vaccine safety using health insurance claims to identify and
evaluate possible safety issues relating to licensed vaccines
(Baker et al., 2013).

In Europe, the following monitoring options for COVID-19
vaccines have been proposed by the EMA: 1) periodic safety
reports; 2) collection of exposure data (including observed-to-
expected analyses); 3) observational research in collaboration
with academic and private partners; and 4) spontaneous
reporting of suspected adverse reactions (European Medicine
Agency EMA, 2020b).

The World Health Organization recently published a safety
surveillance manual specifically for COVID-19 vaccines, of which
four categories of surveillance strategies were identified, including
the following (World Health Organization (WHO), 2021):

1. Passive surveillance–when an AEFI occurs, only then reports
are generated and a network is notified through surveillance
sites. This includes spontaneous self-reporting by patients.

2. Active surveillance–a standard protocol is in place to help
health-care professionals review medical records and identify
suspected cases of AEFI.

3. Cohort event monitoring–health-care professionals are
trained to conduct follow-up on those who have been
vaccinated through defined channels such as phone-calls,
home visits, email etc.
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4. Sentinel surveillance–AESI data is collected only from a
limited network of carefully selected reporting sites.

Since the aim of this review is to provide the rationale of the
EUMAEUS study design, we will therefore be only focusing on
current approaches employed to monitor vaccine safety, using
observational real-world data. The availability of real-world data
is increasingly being recognised as an important useful
complementary data source to monitor for AEFI signals in
real time (Leite et al., 2016). The Observational Health Data
Sciences and Informatics (OHDSI) community is a global
initiative that converts clinical data from EHRs, claims and
registries into the Observational Medical Outcomes
Partnership (OMOP) common data model (CDM). This
standardization of data has allowed researchers to conduct
large-scale patient-level prediction studies (Centers for Disease
Control and Prevention Cisa, 2021), perform electronic
phenotyping (Baker et al., 2013), and characterize diseases,
including newer diseases such as COVID-19 (e.g.,
CHARYBDIS: Characterizing Health Associated Risks, and
Your Baseline Disease In SARS-CoV-2) (Observational Health
Data Sciences and Informatics (OHDSI), 2021; Morales et al.,
2021). OHDSI’s contribution to the scientific community during
this pandemic has included an early study on the safety profile of
hydroxychloroquine, which received attention from the FDA and
EMA in mid-2020 (Lane et al., 2020), and a more recently
published study on the use of repurposed drugs and
adjunctive treatments in COVID-19 involving >300,000
patients spanning across three continents (Prats-Uribe et al.,
2021). In the next phase of COVID-19 related research,
OHDSI is focusing on vaccine safety surveillance (VSS) -
EUMAEUS (Evaluating Use of Methods for Adverse Event
Under Surveillance–for vaccines), which aims to evaluate the
performance of methods across various study designs to identify
vaccine safety signals in a real-world setting. Here, we provide an
overview of the previous knowledge regarding strengths,
weaknesses, and clinical applications of epidemiologic and
analytical methods used in vaccine monitoring that were
selected for evaluation in EUMAEUS, with a brief rationale
and overview of the EUMAEUS study design at the end of
this review.

Review of Epidemiological Designs for
Vaccine Safety Surveillance
In the following sections, we review the various study designs
commonly used in VSS in detail, including strengths, weaknesses,
clinical applications, as well as some of the common types of
confounding and biases associated with these study designs. We
conclude this section of the review by discussing the strengths and
limitations of using real-world data for methods evaluation andVSS.

Types of Common Study Designs in Vaccine
Safety Surveillance
One of the critical aspects of vaccine surveillance is
determining whether the rate of an adverse event following

immunization is greater than would have occurred by chance
alone (i.e., without the immunization). To do this a
comparator population and/or time is required to determine
the baseline rate of disease. In epidemiological studies, the
comparator may be derived from other, non-vaccinated
patients (cohort studies), or from periods of time when the
same individual was not-vaccinated (self-controlled designs).
Here we describe the details of the most common study designs
(i.e., cohort, case-control, self-controlled case series (SCCS),
and self-controlled risk intervals (SCRI)) and their clinical
applications described in literature. Table 1 gives an overview
of each study design, including their advantages, disadvantages
and clinical applications.

Cohort Studies
In observational cohort studies, there are two main temporal
choices of comparator: historical or concurrent. A historical
comparison uses data from previous studies to compute
expected rates to compare to the observed rates of AEFI in the
current vaccination situation (Belongia et al., 2010); while a
concurrent cohort design follows groups of vaccinated and
unvaccinated individuals forward in time and compares the
frequency of the event (i.e., incidence rates, incidence rate
ratio, hazard ratios, risk ratios etc).

Alleged strengths of the historical comparator design
include greater statistical power to detect rare AEFIs due to
a stable comparator based on large sample size, as well as
improved timeliness in detecting potential safety signals by
leveraging retrospective data for analysis. However, there are
several limitations (Mesfin et al., 2019). First, the historical
population must be similar to the vaccinated one in terms of
baseline risk. Second, the design is subject to temporal
confounders, such as seasonality, changing trends in the
detection of AEFIs, and variation in diagnostic or coding
criteria over time. These kinds of biases are of particular
concern in COVID-19 vaccination surveillance since the
frequency of patient visits before the pandemic differs
greatly from during the pandemic when restrictions were in
place. In addition, the transmission of other infectious
diseases are also less likely to occur due to precautionary
measures such as mask wearing, social distancing and
frequent hand washing.

Various clinical projects have applied historical rate
comparisons, including the CDC’s VSD project, which used
background rates to detect safety signals for the adult tetanus-
diphtheria-acellular pertussis (Tdap) vaccine (Yih et al., 2009),
the human papillomavirus vaccine (HPV) (Black et al., 2009;
Wijnans et al., 2013; Barker and Snape, 2014), and a broad range
of pediatric vaccines (Lieu et al., 2007; Yih et al., 2011). Historical
data were used in Europe to detect signals for the influenza A
H1N1 vaccine (Black et al., 2009; Wijnans et al., 2013; Barker and
Snape, 2014) and in Australia to detect signals for the rotavirus
vaccine (Buttery et al., 2011).

An alternative is using the concurrent cohort design. For non-
recurrent events (e.g., sudden infant death syndrome), the
person-time at risk in cases ends with the events; while for
recurrent events (e.g., febrile convulsions), the entire
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observation period is included in the person-time denominators
(Farrington et al., 1995; Whitaker et al., 2009). There are,
however, some caveats—the study design requires a sufficiently
sized control group, which may be challenging to obtain when
high vaccine coverage rates are expected. In addition, as with the
historical comparator design, the vaccinated and unvaccinated
populations are often likely to differ in terms of socioeconomic
status, ethnicity and comorbidities, which may induce bias. In
settings with limited resources (e.g., low-income countries), data
on potential confounding variables are also often either not
collected, or unavailable.

Some examples of concurrent cohort studies in VSS include a
recent study in Western Australia looking at the association
between seasonal influenza vaccination and AEFI (Salter et al.,
2021) and also the CDC’s VSD project, which used a combination
of historic and concurrent cohort study designs to study the
association between HPV4 and AEFI among young women (Gee
et al., 2011).

Case-Control Studies
In a case-control study, a group of cases from the source
population is compared to a control group of event-free
individuals representing the same source population from the
same time-period. Controls are often matched to the cases on one
or more variables at the date of the event, which requires
accounting for this matching at the analysis stage. This design
is best for rare events when data needs to be collected, as it only
utilizes a small sample of data from the entire cohort
(i.e., resource-efficient). While this study design can be
economical for rare events, especially when specific data
collection for included study individuals is required,
identifying an appropriate control group is a potential limiting
factor (Baker et al., 2015). When all data has already been
collected (e.g., in secondary use of existing healthcare data),
there is limited benefit to using case-control over other
designs (Schuemie et al., 2019).

Case-control studies have been used to study the relationship
between autism spectrum disorders and vaccines (Taylor et al.,
2014), inflammatory bowel disease and measles-mumps-rubella
(MMR) (Davis et al., 2001); pervasive development disorder and
MMR (Smeeth et al., 2004), as well as Guillain-Barre syndrome
and influenza A (H1N1) vaccine (Dieleman et al., 2011).

Self-Controlled Designs
Self-Controlled Case Series
The SCCS is a relatively newer study design used to estimate the
relative incidence of rare adverse events after vaccination
(Farrington et al., 1995; Whitaker et al., 2009). In this study
design, incidence rates during exposed time are compared to
incidence rates during unexposed time, but only cases are
included, thus avoiding the need for large population cohorts
or the need for selecting controls. Each case acts as its own
control, thereby adjusting for both measured and unmeasured
confounding variables that do not vary appreciably over time.
Another advantage of the SCCS is that multiple occurrences of
independent events within an individual can be used to inform
the analysis. It is reported to be as powerful as a full cohort
analysis, as non-cases would contribute very little information
about the vaccine effect (Farrington, 2004). SCCS can be
implemented efficiently using data from readily available
sources. Access to quality data (i.e., preferably computerised
vaccination records that can be linked to cases and
ascertainment of cases independent of vaccination status), is
crucial to optimise the use of this study design (Farrington, 2004).

Self-Controlled Risk Interval
Another alternative is the self-controlled risk interval (SCRI)
method. This design includes vaccinated individuals only and
compares the incidence rates during risk and non-risk
timeframes, using only one nominated unexposed risk interval,
defined relative to the time of vaccination (e.g., the period
30–1 day before vaccination, or the period 42–60 days after

TABLE 1 | Overview of Study Designs

Study Design Description Advantages Disadvantages Clinical Applications

Historical Cohort Comparison between observed
incidence of adverse events vs.
expected incidence based on
historical data.

Greater statistical power to detect
rare adverse events; Improved
timeliness in signal detection.

Subject to temporal confounders,
changing trends in detection of
adverse events and variation in
diagnostic/coding criteria over time.

Pediatric vaccines; Tdap vaccine;
HPV vaccine; H1N1 vaccine.

Cohort Comparison of incidence ratio of
adverse events between
vaccinated vs. unvaccinated
population.

Easy to implement-abundant data
available; Use matching/
stratification to control for
confounders.

Confounding by indication/
unmeasured confounders;
Susceptible to misclassification of
exposure.

Intussusception and rotavirus
vaccine; Autism spectrum
disorders and various vaccines.

Case-control Comparison of cases vs.
noncases from the same source
population from the same time-
period.

Uses small data sample from entire
cohort, cost efficient; Uses
matching to control for time-varying
confounders.

Confounding by indication/
unmeasured confounders;
Selection bias; Susceptible to
misclassification of exposure.

Autism spectrum disorders and
various vaccines; IBD and MMR
vaccine; GBS and H1N1 vaccine

Self-controlled case
series (SCCS)/self-
controlled risk
interval (SCRI)

Comparison between incidence
rates in exposed time periods vs.
incidence rates of self-matched
unexposed time periods; SCCS:
cases only; SCRI: vaccinated
persons (only cases informative).

Adjust for time-invariant
confounders; SCCS: Assess
multiple occurrences of
independent events within an
individual; SCRI: Less susceptible to
misclassification of exposure.

Time-varying confounding; Reverse
causality bias.

GBS and H1N1 vaccine; Autism
spectrum disorders and various
vaccines; Seizures and various
vaccines.
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vaccination). The risk interval is the time period immediately
following vaccination, and events that occur during this time-
frame are categorized as exposed events (Salmon et al., 2013;
Grave et al., 2020). This design is ideal for assessing the risk of any
acute, self-limiting events following vaccination, but works less
well for events that do not clearly and rapidly resolve.

While use of both the SCCS and SCRI designs does minimize
selection bias as only the vaccinated individuals are studied, the
trade-off is that the risk inferences are only applicable to the
vaccinated population.

The SCCS and SCRI designs have been used extensively inVSS for
influenza, MMR, and vaccines containing pertussis antigens. They
have also been applied across a wide range of adverse events,
including, but not limited to purpuras (Miller et al., 2001; France
et al., 2008; Stowe et al., 2008), autisms (Taylor et al., 1999; Farrington
et al., 2001; Andrews et al., 2002), seizures (Huang et al., 2010; Klein
et al., 2010), meningitis (Dourado et al., 2000; Miller et al., 2007),
asthmas (Kramarz et al., 2000; Kramarz et al., 2001), Guillain-Barre
syndrome (Salmon et al., 2013; Grave et al., 2020) etc.

One limitation across the types of common epidemiological
designs listed above is that there is often variation in vaccine data
availability, as well as complexities in data access and data linkage
requirements (Duszynski et al., 2021). Generally, there is no one
best study design that is superior over the other. The most
appropriate study design will depend on the specifics of the
particular situation such as availability of resources, access to
records (including how exposure and outcomes are reported), the
number and distribution of cases and availability of population
coverage data.

TYPES OF COMMON BIASES AND
CONFOUNDERS

Several assumptions have to be made while using the various
study designs, and while the goal is to mitigate any biases as much
as possible, violations of these assumptions are often still present
to varying degrees.

Selection Bias
One of the assumptions is that there is equal susceptibility
among all individuals in the population to the disease
(i.e., COVID-19). This may not always be true, as the level
of natural immunity or susceptibility to the disease
(i.e., COVID-19) may differ between those vaccinated and
non-vaccinated. Another possibility of selection bias is related
to the way sampling is done. If the individuals in whom the
vaccine-adverse event association has been analysed differ
from the source population in ways linked to both exposure
to the vaccine and development of the adverse event, the
resulting estimate of association will be biased (Institute of
Medicine US et al., 1994). This is of special concern in the case-
control design, as incorrect sampling may result in a non-
intended biased vaccine coverage (i.e., not representing the
source population). Selection bias may be avoided by sampling
controls in a manner to ensure that they represent the exposure
distribution (i.e., vaccine coverage) in the population.

Misclassification Bias
Exposure Misclassification Bias
Exposure misclassification bias may occur if the vaccine exposure
is not well recorded, leading to a vaccinated person being
classified as unvaccinated or vice versa. This bias may also
occur in the absence of a robust linkage of records for
vaccination status. Generally, differential exposure
misclassification (i.e., differential with respect to outcome
status) is unlikely since exposure assessment (registration of
vaccination) generally precedes the outcome and is unaffected
by it. Problems will only arise if outcomes admitted to hospital are
differentially registered and picked up as vaccinated in some
healthcare settings. This type of bias however, may be
problematic in designs using a contemporary comparator (e.g.,
contemporary cohort design and the case-control design), as
individuals listed as “unexposed” in these study designs maybe
vaccinated, thus biasing the results towards the null.

Outcome Misclassification Bias
In studies of vaccine adverse events, presumptive outcomes are
often identified within a short period around the vaccination
timeframe. Misclassification of these presumptive outcomes may
occur due to miscoding or rule-out diagnoses (Newcomer et al.,
2018), of which no adverse events were presumed to occur in the
absence of further information. One way to mitigate this is to
review all presumed outcomes and then re-analyse data with only
confirmed outcomes (McNeil et al., 2014). Monitoring chronic
vaccine adverse events poses more challenges for addressing
misclassification bias as observation time may span years; and
it would not be feasible to adjudicate the large number of
presumptive outcomes identified in the data sources (Glanz
et al., 2016).

Another potential source of outcome misclassification bias is
diagnostic bias, which occurs when a specific adverse event is
hypothesized and publicized to be linked to a vaccine, leading to
preferentially ascertained cases due to awareness (Rodrigues and
Smith, 1999). Another possibility is that those who have been
vaccinated may be more likely to report possible AEFIs to their
healthcare providers when they occur, as compared to the
unvaccinated population. While the following is recommended
for all study designs, it is of particular importance here, to use
cases diagnosed in an already established information system
before suspicion of the link was raised, and that the diagnoses of
adverse event were done independent of vaccination status. If the
study must be concurrent, cases should be sought within an
established dataset to ensure that ascertainment bias is
minimized, even if diagnosis bias is not completely avoided
(Rodrigues and Smith, 1999).

Generally, misclassification bias is common in cohort and
case-control study designs, but less common in the SCCS (when
restricting to the vaccinated only population), and SCRI study
designs (Baker et al., 2015).

Confounding
Confounding by Indication
Another common type of bias is confounding by indication.
While one might think that the probability of being vaccinated
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is independent from the probability of developing the outcome
(i.e., COVID-19), it is often not the case. Individuals who are
more likely to develop COVID-19 or at higher risk of severe
infection (i.e., older, or with underlying comorbidities) are
often prioritized in vaccination programs (Public Health
England, 2021). To reduce confounding by indication,
various design and analysis methods are used. Design
approaches that have been proposed include comparing
groups with similar prognosis (e.g., use of historical
controls), or restricting the study population on levels of
important confounding variables such as age and sex (Hak
et al., 2002). Confounding by indication may also be mitigated
by using a multivariable regression model or propensity score
adjustments (Hak et al., 2002).

Time-Varying Confounding
Time-varying confounding occurs when confounders change
over time. It often occurs with time-varying variables such as
age, seasonality, and in the context of this pandemic - the
emergence of new variants and rapid policy changes in
vaccination programmes. These changes can be particularly
tricky for cohort and case-control studies as conditions change
during the study period. Time-varying confounding is also of
particular concern in self-controlled study designs, especially if
seasonal effects were not accounted for (Glanz et al., 2006).
Thus, it has been proposed that any time-varying confounders
should be explicitly defined and added to multiple Poisson
regression models (Farrington et al., 1996). One of the
challenge however, is that the form of seasonal variable may
be difficult to be explicitly defined prior to conducting the
analysis when the event is rare due to insufficient
information to estimate the seasonal effect. This can be
mitigated by using data of unexposed cases to fit the seasonal
effect, or using splines for flexibility and regularization for
robustness when power is low, which can be implemented
using the OHDSI SCCS software. The SCRI method allows
minimization of the effects of time-varying confounders by
restricting the control (unexposed) time to a small time-
window close to the time of vaccination.

PRIOR COMPARISONS OF STUDY
DESIGNS AND STATISTICAL METHODS

Few systematic comparisons have been made of important
methods for VSS. McClure et al. performed a simulation study
to compare the above-mentioned four study designs in the
context of VSS, comparing the following parameters: 1)
detection time; 2) empirical power; 3) empirical false positive
error rate, and 4) risk estimate bias (McClure et al., 2008).
Detection time was defined as the first weekly interval where
the log-likelihood ratio (LLR) exceeded the pre-specified upper
bound (using Maximized Sequential Probability Ratio Test -
MaxSPRT), corrected for sequential analysis, in at least 80% of
iterations per design, vaccine pattern and event rate (McClure
et al., 2008). Detection time was shortest in the matched cohort
design, followed by the SCRI, SCCS, and case–control study

design. In their simulation study, the minimum acceptable
empirical power of the LLR was set at 80%, using the
MaxSPRT. The risk-interval design used half of the subjects
used by the cohort design, and its empirical power was
generally within 2% of the cohort design. The SCCS design,
requiring less data for stable estimates, still produced results
within 3% of the cohort design. The authors also reported that the
case–control design consistently underperformed relative to the
other designs. An empirical false positive error rate for each study
design was also calculated, defined as the percentage of simulated
LLRs that exceeded the critical value upper bound when the true
relative rate was null. The authors reported that for the majority
of weeks for any of the study designs, the error rate was measured
as zero, i.e., <1%. Lastly, the risk estimate bias was calculated as
the percent difference of the regression estimate and the true
estimate. For any of the study designs, the mean risk estimate
decreased as monitoring time increased. The risk estimate bias
was smallest for the cohort, followed by the risk-interval and
SCCS designs, with the largest for the case–control design in most
monitoring weeks, incidences and relative risk levels. This should
however, be interpreted with caution as the effects of
misclassification or confounding were not included in this
simulation study.

The same authors later performed a follow-up study, with the
major difference being the simulation of one type of unmeasured
confounding (i.e., seasonality) in the latter (Glanz et al., 2006).
Using 250 case sets of simulated data, the authors constructed
three study designs (compared with the cohort study design) at
three different incident rate ratios with decreasing disease
incidence and simulated two confounding levels for both the
fixed and seasonal confounding (Glanz et al., 2006). Regression
analysis was used to compare the design-specific beta-estimates
across study designs. The authors concluded that when compared
to the cohort study design, the case-control design had lowest
empirical power, highest mean standard errors and highest mean
percent bias in the presence of fixed confounding, but when
seasonal effect was incorporated as a time-varying confounder,
the biased estimates were largely minimized. The SCCS and risk-
interval designs, on the other hand, were comparable to the
cohort design and demonstrated the ability to control for fixed
confounding. The mean percent biases for these designs were,
however, higher than those of the case-control when seasonality
was not accounted for. There were, however, some limitations,
including 1) use of simulated data, which may not be a true
reflection of real-life scenario; and 2) the simplicity of the
simulation using only one vaccination pattern (i.e., MMR) and
one time-varying confounding variable (i.e., seasonality).
Incorporation of various time-varying factors (e.g., health
status and vaccination patterns), as well as adjusting for
various biases and confounders is necessarily to provide more
robust results.

In the following section, we provide the rationale of the
EUMAEUS study, and how the use of real-world multi-
database networks can help bridge the limitations of the above
studies and provide more insights, not only from a
methodological perspective, but also from a clinical perspective
of vaccine safety surveillance.
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RATIONALE OF THE EUMAEUS
STUDY–IMPORTANCE OF USING
REAL-WORLD MULTI-DATABASE
NETWORKS FOR METHODS EVALUATION
AND VACCINE SAFETY SURVEILLANCE

Methods Evaluation
In the previous section, we discussed how comparison of various
performance metrics across various study designs were carried
out using simulated data. The question of how well these metrics
perform in real-world data, however, is largely unexplored.
Therefore, a large-scale empirical evaluation comparing the
various analytical methods, using various types of real-world
data (e.g., claims and EHRs) is important. The EUMAEUS project
within the OHDSI network provides an excellent platform to
address this. One major strength of this project is the use of real
negative controls, which allows evaluating the time to detection in
a timely manner. Other advantages include the ability to explore
the heterogeneity of vaccine uptake across databases, which
allows the effect of different vaccine types or specific patterns
of utilization to be examined (European Network of Centres for
Pharmacoepidemiology and Pharmacovigilance (ENCePP),
2021). In addition, the relatively large sample size also allows
the exploration and comparison of many variants of study

designs commonly used in VSS; as well as the ability to
incorporate advanced statistical methods such as the use of
splines for age and seasonality adjustments for SCCS, or
propensity scores for the comparative cohort design.

Vaccine Safety Surveillance
In addition to the added value of using real-world multi-database
networks such as the OHDSI network for methodological
evaluation, these networks are also useful for VSS. The
relatively large sample size, as compared to use of spontaneous
reports, is of extreme importance when identifying rare AEFI.
Another major advantage is the ability to pool data or results,
which provides insight into the generalisability of findings. In
addition, it is also useful for long-term surveillance of vaccine
safety at a large-scale population level. Another added advantage
is the involvement of experts from various countries to address
issues relating to case definitions, coding in databases and
research practices to increase consistency of results across the
databases.

Challenges and Limitations of Real-World
Multi-Database Networks
There are however, some challenges associated with the use of a
multi-country multi-database networks such as OHDSI. The

FIGURE 1 | The relationship between Type 1 error, Type II error, sensitivity and specificity of a test.
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“observational real-world” aspect of the data present challenges
often not present in simulated data. First, accrual of participants
is often unpredictable and may vary in rate and population
composition over time, depending on availability and supply of
vaccines, as well as policy implementations, etc. Second, it is also
prone to confounding (some of which may vary over time) and
misclassifications, especially if the AEFI is rare (Nelson et al.,
2012). Other challenges include differences in health care
systems and type of vaccines selection; differences in the
mechanisms of how data were collected and generated;
differences in the type and quality of each database
(i.e., primary care data, claims data); as well as differences in
the ethical and governance requirements in each country on
anonymization of data and data sharing (European Network of
Centres for Pharmacoepidemiology and Pharmacovigilance
(ENCePP), 2021). While some of these challenges are
inevitable, many may be overcome or alleviated by full
commitment and good communication between data
partners, good governance practices as well as maintaining
an open-source network to ensure transparency and
accountability.

The EUMAEUS Study
As discussed in the previous sections, use of a multi-country
multi-database network such as the OHDSI network is
extremely valuable for method evaluation and VSS. In this
section, we will present a brief overview of the EUMAEUS
study, which aims to systematically evaluate the performance of
methods (bias, precision and timeliness) across various study
designs to reliably identify vaccine safety signals in real-world
settings, to support efficient safety surveillance for COVID-19
vaccines.

Exposures, Outcomes and Data Sources
To evaluate the performance of method for VSS, we select prior
vaccination for which we already have ample data available. The
exposures of interest in EUMAEUS include six groups of
vaccines, including A (H1N1)pdm09, seasonal flu (Fluvirin),
seasonal flu (Fluzone), seasonal flu (All), zoster (Shingrix), and
human papillomavirus (Gardasil 9), each with specific study
periods. In terms of outcome, we will study the association
between vaccinations and 1) outcomes believed to be unrelated
to any of the vaccines with a similar prevalence and severity to the
suspected AEFI (i.e., negative control outcome), and 2) outcomes
simulated to be caused by the vaccines (i.e., imputed positive
controls) to evaluate method performance. EUMAEUS will be
executed as part of the OHDSI network study, of which we will be
using a combination of administrative claims and EHR databases
from the US. The use of all US-based databases may limit its
generalizability, but an advantage would be less variation in
policies and practices. Details of the databases can be found in
our online protocol (Schuemie, 2021).

Methods Evaluation and Performance Metrics
We proposed four components for VSS, including 1)
construction of a counterfactual (i.e., expected count), 2) a
time-at-risk (TAR) when AEFI may occur; 3) appropriate test

statistic to estimate the difference between observed vs. expected
counts, and 4) a decision rule to classify true safety signals from
non-signals.

For the counterfactual construction, we will be applying a total
of 17 variations (based on evidence in literature) across four study
designs, namely 1) cohort using a contemporary non-user
comparator, 2) historic rates, 3) case-control, and 4) self-
controlled case series (SCCS)/self-controlled risk interval
(SCRI). For example, one of the variations to be used in the
cohort method is anchoring the comparator on a random
outpatient visit using 1-on-1 propensity score matching.

The TAR is the time window relative to the vaccination date,
when outcomes are potentially attributed to the vaccine. TAR
windows will be constructed for both the first and second dose,
using three time-frames: 1–28 days, 1–42 days, and 0–1 day after
vaccination.

To estimate the difference between observed vs expected
counts, we will use the effect-size estimate (e.g., incidence rate
ratio, hazard ratio or odds ratio) and log likelihood ratio.

To differentiate true safety signals from non-signals, we used
the decision rule of applying the critical value for the LLR
computed at an alpha of 0.05 using MaxSPRT. The Poisson
model will be applied for the historical rate study design, and the
binomial model for all other methods.

We will be performing a range of performance metrics to
separate true signals from non-signals across the range of four
study designs mentioned above. Some of the decisions will be
based on Type I or Type II error rates, which will in turn affect the
sensitivity and specificity of the test. The relationship between
Type I error, Type II error, sensitivity and specificity is
summarized in Figure 1.

In addition, we will also be comparing the amount of time to
achieve significant power to identify a true signal using the
different study designs, defined as timeliness. The study period
for each vaccine of interest will be divided into calendar months,
and the performance metrics will be reported for each month.

Further details of the overall study design may be found on our
online protocol (Schuemie, 2021).

CONCLUSION

With the rapid, global COVID-19 vaccine rollout, it is highly
likely that potential safety signals will emerge. It is therefore
crucial to have a VSS system in place to facilitate early detection,
investigation and analysis of any AEFI. Whilst there are many
study designs and statistical methods available, each present
different methodological challenges and are often affected by
different types of biases, some of which may be mitigated through
study design aspects such as matching, stratification or data
restriction, or statistical analysis methods. While there have
been simulation studies done and theoretical arguments
presented to evaluate the performance metrics of some
statistical methods across some different study designs, less is
known on how they perform in a real-world setting. Although
“real-world” observational data are prone to biases, which need to
be identified and addressed as best possible, they remain to date
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the most feasible method to evaluate and quantify vaccine-related
effects as vaccines are approved and reach real populations. We
have here provided a background review and discussion of the
current state of knowledge regarding different methods for VSS
and hope that the EUMAEUS project that we have described, and
which is now ongoing will help to further address some of the
remaining questions involving the how, what and when to
reliably identify vaccine safety signals in real-world settings.
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