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Abstract

Background: Causal mediation analysis can improve understanding of the mechanism s 

underlying epidemiologic associations. However, the utility of natural direct and indirect effect 

estimation has been limited by the assumption of no confounder of the mediator-outcome 

relationship that is affected by prior exposure (which we call an intermediate confounder)–-an 

assumption frequently violated in practice.

Methods: We build on recent work that identified alternative estimands that do not require this 

assumption and propose a flexible and double robust targeted minimum loss-based estimator for 

stochastic direct and indirect effects. The proposed method intervenes stochastically on the 

mediator using a distribution which conditions on baseline covariates and marginalizes over the 

intermediate confounder.

Results: We demonstrate the estimator’s finite sample and robustness properties in a simple 

simulation study. We apply the method to an example from the Moving to Opportunity 

experiment. In this application, randomization to receive a housing voucher is the treatment/

instrument that influenced moving with the voucher out of public housing, which is the 

intermediate confounder. We estimate the stochastic direct effect of randomization to the voucher 

group on adolescent marijuana use not mediated by change in school district and the stochastic 

indirect effect mediated by change in school district. We find no evidence of mediation.

Conclusions: Our estimator is easy to implement in standard statistical software, and we 

provide annotated R code to further lower implementation barriers.
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1 Introduction

Mediation allows for an examination of the mechanisms driving a relationship. Much of 

epidemiology entails reporting exposure-outcome associations w here the exposure may be 

multiple steps removed from the outcome. For example, risk-factor epidemiology 

demonstrated that obesity increases the risk of type 2 diabetes, but biochemical mediators 

linking the two have advanced our understanding of the causal relationship (Kahn, Hull, and 

Utzschneider 2006). Mediators have been similarly important in understanding how social 

exposures act to affect health outcomes. In the illustrative example we consider in this paper, 

the Moving to Opportunity (MTO) experiment randomized families living in public housing 

to receive a voucher that they could use to rent housing on the private market, which reduced 

their exposure to neighborhood poverty (Kling, Liebman, and Katz 2007). Ultimately, being 

randomized to receive a voucher affected subsequent adolescent drug use (Orr et al. 2003; 

Rudolph et al. 2017). In the illustrative example, we test the extent to which the effect 

operates through a change in the adolescent’s school environment.

Causal mediation analysis (Imai, Keele, and Tingley 2010; Valeri and VanderWeele 2013; 

Zheng and van der Laan 2012b) (also called mediation analysis using the counterfactual 

framework (Valeri and VanderWeele 2013)) shares similar goals with the standard mediation 

approaches, e.g., structural equation modeling and the widely used Baron and Kenny 

“product method” approach (Baron and Kenny 1986; Valeri and VanderWeele 2013). They 

all aim to test mechanisms and estimate direct and indirect effects. Advantages of causal 

mediation analysis include that estimates have a causal interpretation (under specified 

identifying assumptions) and some approaches make fewer restrictive parametric modeling 

assumptions. For example, in contrast to traditional approaches, approaches within the 

causal mediation framework (1) allow for interaction between the treatment and mediator 

(VanderWeele 2009), (2) allow for modeling nonlinear relationships between mediators and 

outcomes (VanderWeele 2009), and (3) allow for incorporation of data-adaptive machine 

learning methods and double robust estimation (Zheng and van der Laan 2012b; Tchetgen 

and Shpitser 2014).

However, despite these advantages, the assumptions required to estimate certain causal 

mediation effects may sometimes be untenable; for example, the assumption that there is no 

confounder of the mediator-outcome relationship that is affected by treatment (in the 

literature, such a confounder is referred to as confounding by a causal intermediate 

(Petersen, Sinisi, and van der Laan 2006), a time-varying confounder affected by prior 

exposure (VanderWeele and Tchetgen Tchetgen 2017), or time-dependent confounding by 

an intermediate covariate (van der Laan and Gruber 2012)). For brevity, we will refer to such 

a variable as an intermediate confounder.

There have been recently proposed causal mediation estimands, called randomized (i.e., 

stochastic) interventional direct effects and interventional indirect effects that do not require 

this assumption (Didelez, Dawid, and Geneletti 2006; van der Laan and Petersen 2008; 

Zheng and van der Laan 2012a; VanderWeele, Vansteelandt, and Robins 2014; Vansteelandt 

and Daniel 2017; VanderWeele and Tchetgen Tchetgen 2017; Zheng and van der Laan 
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2017). We build on this work, proposing a robust and flexible estimator for these effects, 

which we call stochastic direct and indirect effects (SDE and SIE)

This paper is organized as follows. In the following section, we review and compare 

common causal mediation estimands, providing the assumptions necessary for their 

identification. Then, we describe our proposed estimator, its motivation, and its 

implementation in detail. Code to implement this method is provided in the Appendix. We 

then provide results from a limited simulation study demonstrating the estimator’s finite 

sample performance and robustness properties. Lastly, we apply the method in a 

longitudinal, randomized trial setting.

2 Notation and causal mediation estimands

Let observed data: O = (W, A, Z, M, Y) with n i.i.d. copies O1, …, On ~ P0, where W is a 

vector of pre-treatment covariates, A is the treatment, Z is the intermediate confounder 

affected by A, M is the mediator, and Y is the outcome. For simplicity, we assume that A, Z, 
M, and Y are binary. In our illustrative example, A is an instrument, so it is reasonable to 

assume that M and Y are not affected by A except through its effect on Z. Mirroring the 

structural causal model (SCM) of our illustrative example, we assume that M is affected by 

{Z, W} but not A, and that Y is affected by {M, Z, W} but not A. We assume exogenous 

random errors: (UW, UA, UZ, UM, UY). This SCM is represented in Figure 1 and the 

following causal models: W = f (UW), A = f (UA), Z = f (A, W, UZ), M = f (Z, W, UM), and 

Y = f (M, Z, W, UY). Note that this SCM (including that UY and UM are not affected by A) 

puts the following assumptions on the probability distribution: P(Y|M, Z, A, W) = P(Y|M, Z, 

W) and P(M|Z, A, W) = P(M|Z, W). However, our approach generalizes to scenarios where 

A also affects M and Y as well as to scenarios where A is not random. We provide details 

and discuss these generalizations in the Appendix. We can factorize the likelihood for the 

SCM reflecting our illustrative example as follows: P(O) = P(Y|M, Z, W)P(M|Z, W)P(Z|A, 

W)P(A)P(W).

Causal mediation analysis typically involves estimating one of two types of estimands: 

controlled direct effects (CDE) or natural direct and indirect effects (NDE, NIE). Controlled 

direct effects involve comparing expected outcomes under different values of the treatment 

and setting the value of the mediator for everyone in the sample. For example the CDE can 

be defined: E(Ya,M − Ya*,m), where Ya,m, Ya*,m, is the counterfactual outcome setting 

treatment A equal to a or a*, respectively (the two treatment values being compared), and 

setting mediator M equal to m. In contrast, the NDE can be defined: E Y a, Ma * − Y a * , Ma * , 

where Y a, Ma * , Y a * , Ma *  is the counterfactual outcome setting A equal to a or a* but this 

time setting Ma* to be the counterfactual value of the mediator had A been set to a* 

(possibly contrary to fact). Similarly, the NIE can be defined: E Y a, Ma − Y a, Ma * . Natural 

direct and indirect effects are frequently used in epidemiology and have the appealing 

property of adding to the total effect (Pearl 2001).

Although the NDE and NIE are popular estimands, their identification assumptions may 

sometimes be untenable. Broadly, identification of their causal effects relies on the 
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sequential randomization assumption on intervention nodes A and M and positivity. Two 

specific ignorability assumptions are required to identify CDEs and NDE/NIEs: (1) A ⊥ 
Ya,m|W and (2) M ⊥ Ya,m|W, A (Pearl 2001). The positivity assumptions are: P(M = m|A = 

a, W) > 0 a.e. and P(A = a|W) > 0 a.e. Two additional ignorability assumptions are required 

to identify NDE/NIEs: (3) A ⊥ Ma|W and (4) Ma* ⊥ Ya,m|W (Pearl 2001). This last 

assumption states that, conditional on W, knowledge of M in the absence of treatment A 
provides no information of the effect of A on Y (Petersen, Sinisi, and van der Laan 2006). 

This assumption is violated when there is a confounder of the M − Y relationship that is 

affected by A (i.e., an intermediate confounder) (Avin, Shpitser, and Pearl 2005; Petersen, 

Sinisi, and van der Laan 2006; VanderWeele and Tchetgen Tchetgen 2017). This assumption 

is also problematic because it involves independence of counterfactuals under separate 

worlds (a and a*) which can never simultaneously exist.

This last assumption that there is no confounder of the mediator-outcome relationship 

affected by prior treatment is especially concerning for epidemiology studies where 

longitudinal cohort data may reflect a data structure in which a treatment affects an 

individual characteristic measured at follow-up that in turn affects both a mediating variable 

and the outcome variable (see (Bild et al. 2012; Eaton and Kessler 2012; Phair et al. 1992) 

for some examples). It is also problematic for mediation analyses involving instrumental 

variables such as randomized encouragement-design interventions where an instrument, A, 

encourages treatment uptake, Z, which then may influence Y potentially through M. Such a 

design is present in the MTO experiment that we will use as an illustrative example. 

Randomization to receive a housing voucher (A) was the instrument that “encouraged” the 

treatment uptake, moving with the voucher out of public housing (Z, which we will call the 

intermediate confounder). In turn, Z may influence subsequent drug use among adolescent 

participants at follow-up (Y), possibly through a change the children’s school environment 

(M). In the illustrative example, our goal was to examine mediation of the effect of receiving 

a housing voucher (A) on subsequent drug use (Y) by changing school districts (M) in the 

MTO data.

There has been recent work to relax the assumption of no intermediate confounder, Ma* ⊥ 
Ya,m|W, by using a stochastic intervention on M (Didelez, Dawid, and Geneletti 2006; van 

der Laan and Petersen 2008; VanderWeele and Tchetgen Tchetgen 2017; VanderWeele, 

Vansteelandt, and Robins 2014; Vansteelandt and Daniel 2017; Zheng and van der Laan 

2017; 2012a). In this paper, we build on the approach described by VanderWeele and 

Tchetgen Tchetgen (2017) in which they defined the stochastic distribution on M as: gM|a,W 

or gM|a*,W, where

gM A, W m, a * , W ≡ gM a * , W (W ) = ∑
z = 0

1
P(M = 1|Z = z, W

)P Z = z A = a * , W .
(1)

(eq. 1 is an example of VanderWeele and Tchetgen Tchetgen (2017)’s work.) In other words, 

instead of formulating the individual counterfactual values of Ma or Ma*, values are 

stochastically drawn from the distribution of M, conditional on covariates W but marginal 
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over intermediate confounder Z, setting A = a or A = a*, respectively. The corresponding 

estimands of interest are the SDE = E(Y a, gM |a * , W ) − E(Y a * , gM |a * , W ), and 

SIE = E(Y a, gM |a, W ) − E(Y a, gM |a * , W ).

Others have taken a similar approach. For example, Zheng and van der Laan (2017) 

formulate a stochastic intervention on M that is fully conditional on the past:

gM Z, A, W m, Z, a * , W ≡ gM Z, a * , W (Z, W ) = P M = 1 Z, A = a * , W (2)

(note that per our SCM, P(M = 1|Z, W) = P(M = 1|Z, A, W), so in our case, gM|Z,a*,W(Z, W) 

= P(M = 1|Z, W).) The corresponding estimands are the stochastic direct and indirect effects 

fully conditional on the past: CSDE = E(Y a, gM |Z, a * , W ) − E(Y a * , gM |Z, a * , W ), and 

CSIE = E(Y a, gM |Z, a, W ) − E(Y a, gM |Z, a * , W ). However, Zheng and van der Laan (2017)’s 

formulation shown in eq. 2 is not useful for understanding mediation under the instrumental 

variable SCM we consider here, as there is no direct pathway from A to M. Because of the 

restriction on our statistical model that P(M|Z, A, W) = P(M|Z, W), gM|Z,a*,W(Z, W) = 

gM|Z,a,W(Z, W), so CSIE’s under this model would equal 0. Thus, in this scenario, the NDE 

and CSDE are very different parameters. We note that it is also because of these restrictions 

on our statistical model stemming from the instrumental variable SCM that the sequential 

mediation analysis approach proposed by VanderWeele and Vansteelandt (2014) would also 

result in indirect effects equal to 0.

Because the CSIE and CSDE do not aid in understanding the role of M as a potential 

mediator in this scenario, we focus instead on VanderWeele and Tchetgen Tchetgen (2017)’s 

SDE and SIE that condition on W but marginalize over Z, thus completely blocking arrows 

into M (similar to an NDE and NIE). The SDE and SIE coincide with the NDE and NIE in 

the absence of intermediate confounders (VanderWeele and Tchetgen Tchetgen 2017).

2.1 SDE and SIE estimands and identification

Our proposed estimator can be used to estimate two versions of the SDE and SIE: (1) fixed 

parameters that assume an unknown, true gM|a*,W; and (2) data-dependent parameters that 

assume known gM|a*,W, estimated from the observed data, which we call ĝM|a*,W. 

Researchers may have defensible reasons for choosing one version over the other, which we 

explain further below. The fixed SDE and SIE can be identified from the observed data 

distribution using the g-computation formula as discussed by VanderWeele and Tchetgen 

Tchetgen (2017), assuming the sequential randomization assumption on intervention nodes 

A and M: (1) A ⊥ Ya,m|W, (2) M ⊥ Ya,m|W, A = a, Z, and (3) A ⊥ Ma|W, for a particular a 
and gM|a*,W. The data-dependent SDE And SIE can be identified similarly but need only the 

first two assumptions, (1) A ⊥ Ya,m|W and (2) M ⊥ Ya,m|W, A = a, Z, because ĝM|a*,W is 

assumed known. If any of the above identification assumptions are violated, then the 

statistical estimands will not converge to their true causal quantities.

The estimand E(Y a, gM |a * W ) can be identified via sequential regression, which provides the 

framework for our proposed estimator that follows. For intervention (A = a, M = ĝM|a*,W), 
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we have QM
g (Z, W ) ≡ ∫m ∈ ℳ∫y ∈ Yp(y |m, Z, W )dμY (y)gm|a * , W dμM(m), where we integrate 

out M under our stochastic intervention ĝM|a*,W, and where M has support ℳ and Y has 

support Y and where dμY(y) and dμM(m) are some dominating measures. This is 

accomplished by evaluating E(Y|M = m, Z = z, W) at each m and multiplying it by the 

probability that M = m under ĝM|a*,W, summing over all m. We then integrate out Z and set 

A = a: QZ
a (W ) ≡ ∫z ∈ ZQM

g (z, W A = a, W )p(z A = a, W )dμZ(z), where Z denotes the support 

of random variable Z and dμZ(z) is some dominating measure. Marginalizing over the 

distribution of W gives the statistical parameter: 

Ψ(P)(a, gM |a * , W ) = ∫w ∈ WQZ
a (w)p(w)dμW (w), where W denotes the support of random 

variable W and dμW(w) is some dominating measure.

In the next section, we propose a novel, robust substitution estimator that can be used to 

estimate both the fixed and parametric versions of the SDE and SIE. Inference for the fixed 

SDE and SIE can be obtained by using the bootstrapped variance, which requires parametric 

models for the nuisance parameters P(A) and P(M|Z, A, W). This is the same inference 

strategy as proposed by VanderWeele and Tchetgen Tchetgen (2017). However, researchers 

may encounter scenarios for which fitting parametric models is unappealing and using 

machine learning approaches is preferred. The data-dependent SDE and SIE with inference 

based on the efficient influence curve (EIC) may be preferable in such scenarios. In contrast 

to the EIC for an assumed known gM|a*,W, the EIC an unknown gM|a*,W is complicated due 

to the dependence of the unknown marginal stochastic intervention on the data distribution. 

Such an EIC would include an M component, the form of which would be more complex 

due to the distribution of M being marginalized over Z. No statistical tools for solving an 

EIC of that form currently exist. Solving the EIC for the the parameter Ψ(P)(a, gM|a*,W) for 

an unknown gM|a*,W is ongoing work.

3 Targeted minimum loss-based estimator

Our proposed estimator uses targeted minimum loss-based estimation (TMLE) (van der 

Laan and Rubin 2006), targeting the stochastic, counterfactual outcomes that comprise the 

SDE and SIE. To our knowledge, it is the first such estimator appropriate for instrumental 

variable scenarios. TMLE is a substitution estimation method that solves the EIC estimating 

equation. Its robustness properties differ for the fixed and data-dependent parameters. For 

the data-dependent SDE and SIE, if either the Y model is correct or the A and M models 

given the past are correct, then one obtains a consistent estimator of the parameter. 

Robustness to misspecification of the treatment model is relevant under an SCM with 

nonrandom treatment; we discuss the generalization of our proposed estimator to such an 

SCM in the Appendix. Note that ĝM|a*,W for the stochastic intervention is not the same as 

the conditional distribution of M given the past, so the first could be inconsistent while the 

latter is consistent. For the fixed SDE and SIE, we also need to assume consistent estimation 

of gM|a*,W, since it does not target gM|a*,W (and is therefore not a full TMLE for the fixed 

parameters).

The estimator integrates two previously developed TMLEs: one for stochastic interventions 

(Muñoz and van der Laan 2012) and one for multiple time-point interventions (van der Laan 
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and Gruber 2012), which is built on the iterative/recursive g-computation approach (Bang 

and Robins 2005). This TMLE is not efficient under the SCM considered, because of the 

restriction on our statistical model that P(Y|M, Z, A, W) = P(Y|M, Z, W). However, it is still 

a consistent estimator if that restriction on our model does not hold (i.e., P(Y|M, Z, A, W) ≠ 

P(Y|M, Z, W)), because the targeting step adds dependence on A.

The TMLE is constructed using the sequential regressions described in the above section 

with an additional targeting step after each regression. The TMLE solves the EIC for the 

target parameter that treats gM|a*,W as given. A similar EIC has been described previously 

(Bang and Robins 2005; van der Laan and Gruber 2012).

The EIC for the parameter Ψ(P)(a, gM|a*,W) for a given gM|a*,W is given by:

D * (a, gM a * , W ) = ∑
k = 0

2
Dk*(a, gM a * , W ),  where 

D0*(a, gM a * , W ) = QZ
a (W ) − Ψ(P)(a, gM a * , W )

D1*(a, gM a*, W ) = I(A = a)
P(A = a|W )(QM

g (Z, W ) − QZ
a (W ))

D2*(a, gM a * , W ) = I(A = a){I(M = 1)gM a * , W + I(M = 0)(1 − gM a * , W )}
P(A = a|W ){I(M = 1)gM z, W + I(M = 0)(1 − gM z, W )}

× (Y − QY (M, Z, W )) .

(3)

Substitution of gM|a*,W = ĝM|a*,W yields the EIC used for the data-dependent parameter 

Ψ(P)(a, ĝM|a*,W). The EIC for the parameter Ψ(P)(a, gM|a*,W) in which the stochastic 

intervention equals the unknown gM|a*,W is an area of future work.

We now describe how to compute the TMLE. In doing so, we use parametric model/

regression language for simplicity but data-adaptive estimation approaches that incorporate 

machine learning (e.g.,van der Laan, Polley, and Hubbard 2007) may be substituted and may 

be preferable (we use such a data-adaptive approach in the illustrative example analysis). We 

note that survey or censoring weights could be incorporated into this estimator as described 

previously (Rudolph et al. 2014). We use notation reflecting estimation of the data-

dependent parameters, but note that estimation of the fixed parameters would be identical–-

in the fixed parameter case, the notation would refer to gM|a*,W instead of ĝM|a*,W.

First, one estimates ĝM|a*,W(W), which is the estimate of gM|a*,W(W), defined in eq. 1, using 

observed data. Consider a binary Z. We estimate gZ|a*,W(W) = P(Z = 1|A = a*, W). We then 

estimate gM|z,W(W) = P(M = 1|Z = z, W) for z ∈ {0, 1}. We use these quantities to calculate 

ĝM|a*,W = ĝM|z=1,WĝZ|a*,W + ĝM|z=0,W(1 − ĝZ|a*,W). We can obtain ĝZ|a*,W(W) from a 

logistic regression of Z on A, W setting A = a*, and ĝM|z,W(W) from a logistic regression of 

M on Z, W, setting Z = {0, 1}. We will then use this stochastic intervention in the TMLE, 

whose implementation is described as follows.

1. Let QY , n(M, Z, W ) be an estimate of QY (M, Z, W ) ≡ E(Y |M, Z, W ). To obtain 

QY , n(M, Z, W ), predict values of Y from a regression of Y on M, Z, W.
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2. Estimate the weights to be used for the initial targeting step:

ℎ1(a) =
I(A = a){I(M = 1)gM |a * , W + I(M = 0)(1 − gM |a * , W )}

P(A = a){I(M = 1)gM |Z, W + I(M = 0)(1 − gM |Z, W )} , where estimates of 

gM|Z,W are predicted probabilities from a logistic regression of M = m on Z and 

W. Let ĥ1,n(a) denote the estimate of h1(a).

3. Target the estimate of QY , n(M, Z, W ) by considering a univariate parametric 

submodel {QY , n(M, Z, W )(ϵ):ϵ} defined as: 

logit(QY , n(ϵ)(M, Z, W )) = logit(QY , n(M, Z, W )) + ϵ. Let ϵn be the MLE fit of ϵ. 

We obtain ϵn by setting ϵ as the intercept of a weighted logistic regression model 

of Y with logit(QY , n(M, Z, W )) as an offset and weights ℎ1, n(a). (Note that this is 

just one possible TMLE.)The update is given by 

QY , n* (M, Z, W ) = QY , n ϵn (M, Z, W ) can be bounded to the [0,1] scale as 

previously recommended (Gruber and van der Laan 2010).

4. Let QM, n
g (Z, W ) be an estimate of QM

g (Z, W ). To obtain QM, n
g (Z, W ), we 

integrate out M to from QY , n* (M, Z, W ). First, we estimate QY , n* (M, Z, W ) setting 

m = 1 and m = 0, giving QY*(m = 1, z, w) and Qγ*(m = 0, z, w). Then, multiply these 

predicted values by their probabilities under ĝM|a*,W(W) (for a ∈ {a, a*}), and 

add them together (i.e., 

QM, n
g (Z, W ) = QY*(m = 1, z, w)gM |a * , W + QY*(m = 0, z, w)(1 − gM a * , W )).

5. We now fit a regression of QM, n
g, * (Z, W ) on W among those with A = a. We call 

the predicted values from this regression QZ, n
a (W ). The empirical mean of these 

predicted values is the TMLE estimate of Ψ(P)(a, gM |a * , W ).

6. Repeat the above steps for each of the interventions. For example, for binary A, 

we would execute these steps a total of three times to estimate: 1) Ψ(P)(1, 

ĝM|1,W), 2) Ψ(P)(1, ĝM|0W), and 3) Ψ(P)(0, ĝM|0,W).

7. The SDE can then be obtained by substituting estimates of parameters Ψ(P)(a, 

ĝM|a*,W) − Ψ(P)(a*, ĝM|a*,W) and the SIE can be obtained by substituting 

estimates of parameters Ψ(P)(a, ĝM|a,W) − Ψ(P)(a, ĝM|a*,W).

8. For the fixed parameters, the variance can be estimated using the bootstrap. For 

the data-dependent parameters, the variance of each estimate from Step 6 can be 

estimated as the sample variance of the EIC (defined above, substituting in the 

targeted fits QY , n* (M, Z, W ) and Qz, n
a, * (W )) divided by n. First, we estimate the 

EIC for each component of the data-dependent SDE/SIE, which we call 

EICΨ(P)(a, gM a * , W ). Then we estimate the EIC for the estimand of interest by 

subtracting the EICs corresponding to the components of the estimand. For 

example EICSDE = EICΨ(P)(a, gM a * , W ) − EICΨ(P)(a * , gM a * , W ). The sample 

variance of this EIC divided by n is the influence curve (IC)-based variance of 

the data-dependent estimator.

Rudolph et al. Page 8

Epidemiol Methods. Author manuscript; available in PMC 2021 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Simulation

4.1 Data generating mechanism

We conduct a simulation study to examine finite sample performance of the TMLE 

estimators for the fixed SDE and SIE and data-dependent SDE and SIE from the data-

generating mechanism (DGM) shown in Table 1. Under this DGM, the data-dependent SDE 

is: SDE = E(Y 1, gM 0, W ) − E(Y 0, gM 0, W ) and the SIE is: 

SIE = E(Y 1, gM |1, W ) − E(Y 1, gM |0, W ). The fixed versions are defined with respect to the 

unknown, true gM|1,W and gM|0,W. Table 1 uses the same notation and SCM as in Section 2, 

with the addition of Δ, an indicator of selection into the sample (which corresponds to the 

MTO data used in the empirical illustration where one child from each family is selected to 

participate).

We compare performance of the TMLE estimator to an inverse-probability weighted 

estimator (IPTW) and estimator that solves the EIC estimating equation (EE) but differs 

from TMLE in that it lacks the targeting steps and is not a plug-in estimator, so its estimates 

are not guaranteed to lie within the parameter space (which may be particularly relevant for 

small sample sizes). Variance for the fixed SDE and SIE parameters is calculated using 500 

bootstrapped samples for each simulation iteration. Variance for the data-dependent SDE 

and SIE is calculated using the EIC. We show estimator performance in terms of absolute 

bias, percent bias, closeness to the efficiency bound (mean estimator standard error (SE) × 

the square root of the number of observations), 95% confidence interval (CI) coverage, and 

mean squared error (MSE) across 1,000 simulations for sample sizes of N=5,000, N=500, 

and N=100. In addition, we consider (1) correct specification of all models, and (2) 

misspecification of the Y model that included a term for Z only.

4.2 Performance

Table 2 gives simulation results under correct model specification for fixed SDE and SIE 

using bootstrap-based variance. Table 3 gives simulation results under correct model 

specification for data-dependent SDE and SIE using IC-based variance. Both Tables 2 and 3 

show that the TMLE, IPTW, and EE estimators are consistent when all models are correctly 

specified, showing biases of around 1% or less under large sample size (N=5,000) and 

slightly larger biases with smaller sample sizes. The 95% CIs for the TMLE and EE 

estimators result in similar coverage that is close to 95%, except for estimation of the SIE 

with a sample size of N=100, which has coverage closer to 90%. Confidence intervals for 

the IPTW estimator for the fixed parameter are close to 95% but are conservative and close 

to 100% for the data-dependent parameter. As expected, IPTW is less efficient than TMLE 

or EE; the TMLE and EE estimators perform similarly and close to the efficiency bound for 

all sample sizes.

Table 4 gives simulation results under misspecification of the outcome model that only 

includes a term for Z for fixed SDE and SIE using bootstrap-based variance. Thus, 

comparing results in Table 4 to Table 2 demonstrates robustness to misspecification of the 

outcome model. As all three of the estimators evaluated are theoretically robust to 
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misspecification of this model, we would expect similar results between the two Tables, and 

we see that is indeed the case.

5. Empirical illustration

5.1 Overview and set-up

We now apply our proposed estimator to MTO: a longitudinal, randomized trial that is 

described above. Because we wish to use machine learning for this empirical illustration, we 

will estimate the data-dependent SDE of being randomized to receive a housing voucher (A) 

on marijuana use (Y) not mediated by change in school district (M) and the data-dependent 

SIE mediated by M among adolescent boys in the Boston site in the presence of an 

intermediate confounder (Z), moving with the voucher out of public housing.

We restrict to adolescents less than 18 years old who were present at interim follow-up, as 

those participants had school data and were eligible to be asked about marijuana use. We 

restrict to boys in the Boston site as previous work has shown important quantitative and 

qualitative differences in MTO’s effects by sex (Sanbonmatsu et al. 2011; Kling, Ludwig, 

and Katz 2005; Orr et al. 2003; Leventhal and Dupéré 2011; Osypuk et al. 2012b; 2012a) 

and by city (Rudolph et al. 2017). We choose to present results from a restricted analysis 

instead of a stratified analysis, as our goal is to illustrate the proposed method. A more 

thorough mediation analysis considering all sexes and sites is the subject of a future paper.

Marijuana use was self-reported by adolescents at the interim follow-up, which occurred 4–7 

years after baseline, and is defined as ever versus never use. Change in school district is 

defined as the school at follow-up and school at randomization being in the same district. 

Numerous baseline characteristics included individual and family sociodemographics, 

motivation for participating in the study, neighborhood perceptions, school-related 

characteristics of the adolescent, and predictive interactions.

We use machine learning to flexibly and data-adaptively model the following relationships: 

instrument to intermediate confounder, intermediate confounder to mediator, and mediator to 

outcome. Specifically, we use least absolute shrinkage and selection operator (lasso) 

(Tibshirani 1996) and choose the model that improves 10-fold cross-validation prediction 

error, while always including age and race/ethnicity and relevant A, Z, and M variables.

5.2 Results

Figure 2 shows the data-dependent SDE and SIE estimates by type of estimator (TMLE, 

IPTW, and EE) for boys in the Boston MTO site (N=228). SDE and SIE estimates are 

similar across estimators. We find no evidence that change in school district mediated the 

effect of being randomized to the voucher group on marijuana use, with null SIE estimates 

(TMLE risk difference: − 0.003, 95% CI: − 0.032, 0.026). The direct effect of randomization 

to the housing voucher group on marijuana use suggests that boys who were randomized to 

this group were 9% more likely to use marijuana than boys in the control group, though this 

difference is not statistically significant (TMLE risk difference: 0.090, 95% CI: −0.065–

0.245).
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6. Discussion

We proposed robust targeted minimum loss-based estimators to estimate fixed and data-

dependent stochastic direct and indirect effects that are the first to naturally accommodate 

instrumental variable scenarios. These estimators build on previous work identifying and 

estimating the SDE and SIE (VanderWeele and Tchetgen Tchetgen 2017). The SDE and SIE 

have the appealing properties of (1) relaxing the assumption of no intermediate confounder 

affected by prior exposure, and (2) utility in studying mediation in the context of 

instrumental variables that adhere to the exclusion restriction assumption (a common 

assumption of instrumental variables which states that there is no direct effect between A 
and Y or between A and M (Angrist, Imbens, and Rubin 1996)) due to completely blocking 

arrows into the mediator by marginalizing over the intermediate confounder, Z. Given the 

restrictions that this assumption places on the statistical model, several alternative estimands 

are not appropriate for understanding mediation in this context as the indirect effect would 

always equal zero (e.g., Tchetgen Tchetgen 2013; VanderWeele and Vansteelandt 2014; 

Zheng and van der Laan 2017).

Inference for the fixed SDE and SIE can be obtained from bootstrapping, using parametric 

models for nuisance parameters. Inference for the data-dependent SDE and SIE can be 

obtained from the data-dependent EIC that assumes known gM |a * , W  estimated from the 

data, and is appropriate for integrating machine learning in modeling nuisance parameters. 

The ability to incorporate machine learning is a significant strength in this case; if using the 

parametric alternative, multiple models would need to be correctly specified (VanderWeele 

and Tchetgen Tchetgen 2017). IC-based variance is possible in estimating the data-

dependent SDE and SIE, because the data-dependent EIC has a form that is solvable using 

existing statistical tools; in contrast, the EIC for the fixed parameters is more complex and is 

not solvable with current statistical tools.

Our proposed estimator for the fixed and data-dependent parameters is simple to implement 

in standard statistical software, and we provide R code to lower implementation barriers. 

Another advantage of our TMLE estimator, which is shared with other estimating equation 

approaches, is that it is robust to some model misspecification. In estimating the data-

dependent SDE and SIE, one could obtain a consistent estimate as long as either the Y 
model or the A and M models given the past were correctly specified. Obtaining a consistent 

estimate of the fixed SDE and SIE would also require consistent estimation of gM|a*,W. In 

addition, our proposed estimation strategy is less sensitive to positivity violations than 

weighting-based approaches. First, TMLE is usually less sensitive to these violations than 

weighting estimators, due in part to it being a substitution estimator, which means that its 

estimates lie within the global constraints of the statistical model. This is in contrast to 

alternative estimating equation approaches, which may result in estimates that lie outside the 

parameter space. Second, we formulate our TMLE such that the targeting is done as a 

weighted regression, which may smooth highly variable weights (Stitelman, De Gruttola, 

and van der Laan 2012). In addition, moving the targeting into the weights improves 

computation time (Stitelman, De Gruttola, and van der Laan 2012).
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However, there are also limitations to the proposed approach. We have currently only 

implemented it for a binary A and M, though extensions to multinomial or continuous 

versions of those variables are possible (Rosenblum and van der Laan 2010; Diaz and 

Rosenblum 2015). Extending the estimator to allow for a high-dimensional M is less 

straightforward, though it is of interest and an area for future work as allowing for high-

dimensional M is a strength of other mediation approaches (Tchetgen Tchetgen 2013; Zheng 

and van der Laan 2017). We also plan to focus future work on developing a full TMLE for 

the fixed SDE and SIE parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Structural causal model reflecting the illustrative example.
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Figure 2: 
Mediated effect estimates and 95% confidence intervals using interim follow-up data from 

adolescent boys in the Boston site of the Moving to Opportunity experiment. The data-

dependent SDE is interpreted as the direct effect of being randomized to receive a housing 

voucher on risk of marijuana use that is not mediated through a change in school district. 

The data-dependent SIE is interpreted as the effect of being randomized to receive a housing 

voucher on marijuana use that is mediated by changing school districts.
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Table 1:

Simulation data-generating mechanism.

W1 ~ Ber(0.5) P(W1 = 1) = 0.50

W2 ~ Ber(0.4 + 0.2W1) P(W2 = 1) = 0.50

Δ ~ Ber(–1 + log(4)W1 + log(4)W2 P(Δ = 1) = 0.58

A = ΔA*, where A* ~ Ber (0.5) P(A = 1) = 0.50

Z = ΔZ*, where Z* ~ Ber(log(4)A – log(2)W2) P(Z = 1) = 0.58

M = ΔM*, where M* ~ Ber(−log(3) + log(10)Z – log(1.4)W2) P(M = 1) = 0.52

Y = ΔY*, where Y* ~ Ber(log(1.2) + log(3)Z + log(3)M − log(1.2)W2 + log(1.2)ZW2) P(Y = 1) = 0.76
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Table 2:

Simulation results for fixed SDE and SIE using bootstrapped-based variance (500 boostrapped samples) under 

correct specification of all parametric models for various sample sizes. 1,000 simulations. Estimation methods 

compared include targeted minimum loss-based estimation (TMLE), inverse probability weighting estimation 

(IPTW), and solving the estimating equation (EE). Bias and MSE values are averages across the simulations. 

The estimator standard error × n should be compared to the efficiency bound, which is 1.07 for the SDE and 

0.24 for the SIE.

Estimand Bias %Bias SE× n 95%CI Cov mse

N=5,000

TMLE

SDE −3.95e-04 −0.58 1.11 94.1 2.50e-04

SIE 5.51e-05 0.17 0.25 94.9 1.29e-05

IPTW

SDE 5.29e-04 0.78 1.69 95.2 3.39e-04

SIE 8.96e-06 0.03 0.42 94.5 5.42e-04

EE

SDE 7.90e-04 1.17 1.11 93.7 2.76e-04

SIE 2.53e-04 0.96 0.25 94.8 1.22e-05

N=500

TMLE

SDE 1.87e-04 0.27 1.31 94.4 2.46e-03

SIE −2.91e-04 −1.10 0.41 94.7 7.89e-04

IPTW

SDE −2.79e-03 −4.12 1.68 94.7 5.60e-03

SIE 1.44e-03 5.45 0.44 95.0 3.64e-04

EE

SDE −1.69e-03 −2.49 1.10 94.0 2.49e-03

SIE 3.22e-04 1.22 0.26 94.0 1.27e-04

N=100

TMLE

SDE 6.78e-03 10.02 1.09 98.4 1.36e-02

SIE −1.58e-03 −5.98 0.25 87.9 1.26e-04

IPTW

SDE −3.20e-03 −4.73 1.68 94.1 2.96e-02

SIE −5.77e-04 −2.18 0.53 95.2 2.02e-03

EE

SDE 2.83e-03 4.18 1.09 94.9 1.19e-02

SIE −5.25e-04 −1.98 0.31 93.0 7.49e-04
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Table 3:

Simulation results for data-dependent SDE and SIE using influence curve-based variance under correct 

specification of all parametric models for various sample sizes. 1,000 simulations. Estimation methods 

compared include targeted minimum loss-based estimation (TMLE), inverse probability weighting estimation 

(IPTW), and solving the estimating equation (EE). Bias and MSE values are averages across the simulations. 

The estimator standard error × n should be compared to the efficiency bound, which is 1.07 for the SDE and 

0.24 for the SIE.

Estimand Bias %Bias SE× n 95%CI Cov mse

TMLE N=5,000

SDE 1.08e-03 1.61 1.11 93.09 2.77e-04

SIE 8.21e-06 0.03 0.24 94.89 1.10e-05

IPTW

SDE 7.87e-04 1.12 2.28 99.40 6.16e-04

SIE 6.51e-06 0.05 1.18 100.00 3.74e-05

EE

SDE 1.20e-03 1.79 1.12 93.71 2.76e-04

SIE 1.85e-05 0.06 0.24 95.21 1.09e-05

N=500

TMLE

SDE 7.55e-04 1.14 1.10 95.50 2.29e-03

SIE −4.33e-04 −1.36 0.23 94.59 1.20e-04

IPTW

SDE 6.28e-03 9.00 2.29 98.80 5.75e-03

SIE −1.90e-03 −6.44 1.19 100.00 3.76e-04

EE

SDE 8.27e-04 1.24 1.11 95.51 2.32e-03

SIE −3.35e-04 −0.92 0.24 94.31 1.24e-04

TMLE N=100

SDE 6.34e-03 8.81 1.07 95.50 1.30e-02

SIE −1.90e-03 −7.85 0.21 87.99 7.45e-04

IPTW

SDE −1.07e-02 −16.87 2.31 99.40 2.84e-02

SIE −1.35e-03 −5.91 1.18 100.00 2.29e-03

EE

SDE 1.29e-03 1.27 1.10 97.01 1.21e-02

SIE 2.44e-04 0.15 0.23 90.12 7.94e-04
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Table 4:

Simulation results for fixed SDE and SIE using bootstrapped-based variance (500 bootstrapped samples) 

under misspecification of the outcome model for various sample sizes. 1,000 simulations. Estimation methods 

compared include targeted minimum loss-based estimation (TMLE), inverse probability weighting estimation 

(IPTW), and solving the estimating equation (EE). Bias and MSE values are averages across the simulations. 

The estimator standard error × n should be compared to the efficiency bound, which is 1.07 for the SDE and 

0.24 for the SIE.

Estimand Bias %Bias SE× n 95%CI Cov mse

N=5,000

TMLE

SDE −2.21e-03 0.16 1.13 95.3 2.38e-04

SIE 1.79e-04 0.678 0.25 95.5 1.23e-05

IPTW

SDE −1.25e-03 −1.85 1.68 93.8 5.76e-04

SIE 4.56e-04 1.72 0.42 93.7 3.59e-05

EE

SDE −1.81e-04 −0.27 1.13 94.8 2.36e-04

SIE 3.07e-04 1.16 0.26 94.3 1.34e-05

N=500

TMLE

SDE 1.58e-03 2.33 1.12 94.6 2.49e-03

SIE 7.00e-05 0.26 0.26 95.1 1.30e-04

IPTW

SDE −3.08e-03 −4.55 1.70 94.8 5.74e-03

SIE 2.25e-04 0.85 0.44 94.5 3.86e-04

EE

SDE 1.86e-03 2.75 1.12 93.1 2.63e-03

SIE −4.24e-04 −1.60 0.26 94.1 1.28e-04

N=100

TMLE

SDE 6.93e-04 1.02 1.11 93.4 1.33e-02

SIE −7.91e-04 −2.99 0.28 90.1 6.99e-04

IPTW

SDE 6.76e-03 9.99 1.77 94.4 3.05e-02

SIE −2.21e-03 −8.37 0.55 94.7 2.09e-03

EE

SDE 4.81e-03 7.10 1.16 93.6 1.28e-02

SIE 1.09e-03 4.12 0.34 93.1 8.85e-04
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