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‡School of Computing Sciences, University of East Anglia, Norwich, UK NR4 7TJ

§Departments of Computational Medicine and Mathematics, UCLA, Los Angeles, CA 90095-1766

Abstract

Cell division is a process that involves many biochemical steps and complex biophysical 

mechanisms. To simplify the understanding of what triggers cell division, three basic models that 

subsume more microscopic cellular processes associated with cell division have been proposed. 

Cells can divide based on the time elapsed since their birth, their size, and/or the volume added 

since their birth—the timer, sizer, and adder models, respectively. Here, we propose unified 

adder-sizer models and investigate some of the properties of different adder processes arising 

in cellular proliferation. Although the adder-sizer model provides a direct way to model cell 

population structure, we illustrate how it is mathematically related to the well-known model in 

which cell division depends on age and size. Existence and uniqueness of weak solutions to our 

2+1-dimensional PDE model are proved, leading to the convergence of the discretized numerical 

solutions and allowing us to numerically compute the dynamics of cell population densities. We 

then generalize our PDE model to incorporate recent experimental findings of a system exhibiting 

mother-daughter correlations in cellular growth rates. Numerical experiments illustrating possible 

average cell volume blowup and the dynamical behavior of cell populations with mother-daughter 

correlated growth rates are carried out. Finally, motivated by new experimental findings, we 

extend our adder model cases where the controlling variable is the added size between DNA 

replication initiation points in the cell cycle.

Keywords

structured populations; adder-sizer model; PDE; cell size control; initiation adder; 35Q80; 92B05; 
92C37

1. Introduction.

How cells regulate and maintain their sizes, as well as sizes of their appendages, is a 

longstanding research topic in cell biology. Besides growth of an individual cell, the size 

distributions within a population of cells are also a quantity of interest. When considering 

proliferating cell populations, individual cell growth is interrupted by cell division events 
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that generate smaller daughter cells. The biological mechanisms that control when and how 

a cell divides are complex and involve many steps such as metabolism, gene expression, 

protein production, DNA replication, chromosomal separation (for eukaryotic cells), and 

fission or cell wall formation [27, 13, 4, 3, 6]. These processes are regulated and may 

involve intricate biochemical signaling.

Despite the complexity of cell growth and the cell cycle, three simple hypotheses for the 

underlying mechanisms of cell division have been proposed. Cell division can be governed 

by cell age a, cell volume x [26], or added volume since birth y [29, 28]. The division 

mechanism employed by a type of cell may be interrogated by tracking the volumes x, 

added volumes y, and ages a during division events. Volume growth of an individual cell 

can be straightforwardly measured and can be modeled by an effective empirical law such 

as ẋ = g a, x, y, t . A commonly used approximation that is supported by observations is the 

exponential growth law g(x) = λx [24].

To describe population-level distributions, PDE approaches have been developed. For 

example, the timer model, in which the cell division rate depends only on age of the cell, is 

described by the classic McKendrick equation for n(a, t), the expected density of cells at age 

a and time t [19, 9]. The McKendrick “transport” equation for the cell density takes the form 

∂tn(a, t) + ∂an(a, t) = −(μ(a) + β(a))n(a, t), in which β(a) and μ(a) are age-dependent birth 

and death rates, respectively. The associated boundary condition n(t, 0) = 2 0
aβ(s)n(s, t)ds

describes the birth of zero-age cells. Fully demographically stochastic versions of the timer 

model have also been recently developed [12, 5, 11].

The timer (or age-dependent) model does not explicitly track cell sizes, but PDE models 

incorporating sizer mechanisms have been developed [22, 8, 23]. In these studies size-

dependent birth rates β(x) are pertinent. Depending on the form of β(x), cells can diverge 

in size x in the absence of death [16]. Existence and uniqueness of weak solutions to timer 

and sizer models have been proved for certain boundary and initial conditions. These types 

of structured population equations can be partially solved using the method of characteristics 

but the boundary conditions can only be reduced to a Volterra-type integral equation [22, 5].

Much like a general growth law g(a, x, y, t) that can depend on age, size, added size, and 

time, the three distinct mechanisms of cell division need not be mutually exclusive. In this 

paper, we mainly focus, at the cell population level, on the cell division mechanism that 

incorporates the added volume, or the so-called adder. This mechanism, in which the cell 

seems to use added size as the factor controlling its division, has been indicated in many 

recent experimental studies. Specifically, apart from the sizer and the timer models, the 

adder mechanism has been recently shown to be consistent with E. coli division [27, 28, 29] 

and can be motivated by an initiator accumulation mechanism distinct from those used to 

justify sizers or timers [28, 4].

We will introduce the PDE model that describes cell population structure under the adder 

mechanism, which we describe as the “adder-sizer” PDE model, and show its connection 

to the classical “timer-sizer” PDE model that involves cell age and size as controlling 

parameters. The proof of the existence and uniqueness of a weak solution to the proposed 
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three-dimensional adder-sizer PDE turns out to be more complex than the proof for the timer 

and/or sizer counterparts [22]. Our proof leads to the convergence of the numerical solutions 

to the adder-sizer PDE, allowing us to numerically evaluate the corresponding structured 

cell populations, facilitating further analysis, exploration of possible “blowup” behavior, 

and generalizations of the model. Stochastic Monte-Carlo simulations of the corresponding 

stochastic process are also generated and compared with numerical results for n(x, y, t) and 

division-event densities.

Next, we propose an extension to the adder-sizer model that incorporates cellular growth 

rates that are correlated across successive generations. Changes in growth rates at the single-

cell level have been explored using stochastic mapping methods [7, 18]. By numerically 

solving the PDE, we found out that the population-averaged growth rates are larger 

when correlations between mother and daughter cell growth rates are larger. Finally, we 

generalized the adder model to include a different two-phase PDE system which could 

describe the latest “initiation-adder” mechanism, which states that the added mechanism 

takes effect on the cell’s size at initiation instead of division in [25]. In contrast to the single-

PDE division adder model, a model describing the initiation-adder mechanism requires two 

coupled PDEs.

To model cell size control, stochastic maps that relate daughter cell sizes to mother cell sizes 

have been developed [17, 21]. These models describe how cell sizes evolve with generation 

and can interpolate among timer, sizer, and adder mechanisms. Kessler and Burov [17] 

assumed stochastic growth which lead to a stochastic map with multiplicative noise. They 

found that an adder mechanism can admit blowup in which the expected cell sizes can 

increase without bound with increasing generation observed experimentally in filamentous 

bacteria. Modi et al. [21] assume additive noise and do not find blowup in an adder model. 

Stochastic maps of generational cell size do not describe population-level distributions in 

size or age.

2. Adder-sizer PDE models.

Here, we introduce adder-sizer PDE models and generalize them to describe recently 

observed characteristics of population-level bacterial cell division. An adder-sizer model 

is one that incorporates a cell division rate β(x, y, t) and a single-cell growth rate g(x, y, t) 
that, instead of depending on a cell’s age a, are functions of cell size x and a cell’s volume 

added since birth y. Such an adder-sizer PDE model can be developed by defining n(x, y, 
t)dxdy as the mean number of cells with size in [x, x+dx] and added volume in [y, y+dy]. As 

cells have finite size and their added volume must be less than total size, n(x ≤ 0, y, t) = n(x, 
y ≥ x, t) = 0. A derivation similar to that given in [20] for the sizer model yields a transport 

equation of the form

∂n(x, y, t)
∂t + ∂[g(x, y, t)n(x, y, t)]

∂x + ∂[g(x, y, t)n(x, y, t)]
∂y = − β(x, y, t)n(x, y, t) (2.1)

for the adder-sizer PDE. Here, we have neglected the effects of death, which can be simply 

added to the right-hand side (RHS) of (2.1).
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To explicitly outline our general derivation, consider the total population flux into and out 

of the size and added size domain Ω shown in Figure 1(a) and define β x′, y′, z′, t dz′ as the 

rate of fission of cells of size x′ and added size y′ to divide into two cells, one with size 

in [z′, z′ + dz′] and the other with size within [x′ − z′, x′ − (z′ + dz′)]. For binary 

fission, conservation of daughter cell volumes requires β x′, y′, z′, t ≡ β x′, y′, x′ − z′, t . 

This differential division function allows mother cells to divide into two daughter cells 

of differing sizes (asymmetric division), a process that has been observed in numerous 

contexts [14, 13, 2]. We also assume that daughter cells must have positive size so 

β x′, y′, z′ = 0, t = β x′, y′, z′ = x′, t = 0.

The change in the number of cells in Ω due to fission can arise in a number of ways. First, 

if a cell in Ω divides, it can only produce two cells with size less than x. Thus, such fission 

events lead to a net change of +1 in the number of cells with y = 0 and size in [0, x]. If a cell 

with size within [0, x] but with added size > y divides, it creates two cells with added size y 
= 0 and size within [0, x], leading to a net change of +2 cells.

For cells with any added size y′ > 0 but with size x′ > x, we have two subcases. If the 

dividing cell has size x < x′ < 2x, it will produce one daughter cell in Ω if a daughter 

cell has size 0 < z′ < x′ − x or x < z′ < x′ as shown in Figure 1(b). If x′ − x < z′ < x, 

both daughter cells have size < x. Finally, if the dividing cell has size x′ > 2x, at most one 

daughter will have size x′ < x (see Figure 1(b)). Upon simplifying the above birth terms by 

using 0
x′dz′ = 0

xdz′ + x
x′dz′ for x′ > x and the symmetry β x′, y′, z′, t = β x′, y′, x′ − z′, t ,

we combine terms to balance proliferation with transport and find

0

x
dx′

0

y
dy′∂n x′, y′, t

∂t +
0

x
dx′g x′, y, t n x′, y, t

+
0

y
dy′g x, y′, t n x, y′, t

=
0

∞
dy′

0

x
dx′

0

x′
dz′β x′, y′z′, t n x′, y′t

+
y

∞
dy′

0

x
dx′

0

x′
dz′β x′, y, z′, t n x′, y′, t

+ 2
0

∞
dy′

x

∞
dx′

0

x
dz′β x′, y′, z′, t n x′, y′, t .

(2.2)

Upon taking the derivatives ∂2
∂x∂y , we find the PDE given in (2.1) where the total division 

rate is defined by β(x, y, t): = 0
xβ (x, y, z, t)dz. For the boundary condition at y = 0, we take 

the derivative ∂/∂x and set y → 0+ to find

g(x, y = 0, t)n(x, y = 0, t) = 2
x

∞
dx′

0

x′
dy′β x′, y′, z = x, t n x′, y′, t . (2.3)

The other boundary condition defined by construction is n(x, x, t) = 0.
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In the special restricted case of symmetric cell division, β (x, y, z, t) = β(x, y, t)δ(z − x/2), and 

boundary condition of the adder-sizer model reduces to

g(x, y = 0, t)n(x, y = 0, t) = 4
0

2x
β 2x, y′, t n 2x, y′, t dy′ . (2.4)

The above derivation provides an explicit boundary condition representing newly born cells 

that may be asymmetric in birth size. Quantities such as the total cell population N(t) and the 

mean total biomass M(t) (the total volume over all cells) can be easily constructed from the 

density n(x, y, t):

N(t) =
0

∞
dx

0

x
dy n(x, y, t), M(t) =

0

∞
dx

0

x
dy xn(x, y, t) . (2.5)

Higher moments of the total volume can also be analogously defined. By applying these 

operations to (2.1) and using the boundary condition (equation (2.3)), we find the dynamics 

of the total population and biomass

dN(t)
dt =

0

∞
dx

0

x
dy β(x, y, t)n(x, y, t), dM(t)

dt =
0

∞
dx

0

x
dy g(x, y, t)n

(x, y, t) .
(2.6)

Finally, we also define the distribution of division events over the size and added size 

variables, accumulated over a time T:

ρd(x, y, T ) = 0
T β(x, y, t)n(x, y, t)dt

0
T dt 0

∞dx′ 0
xdy′β x′, y′, t n x′, y′, t

. (2.7)

2.1. Division probability and connection to timer-sizer model.

In general, the birth rate functions β x, y, z, t  and β(x, y, t) associated with adder-sizer 

models can take many forms that make biological sense. However, some classes of β(x, 
y, t) may allow the adder-sizer model to be transformed into the well-known “sizer-timer” 

structured population model [26]. To illustrate the relationship, we consider a division rate 

function β which depends explicitly only on age a and see how it could be converted to a 

function of size and added size.

For a cell born at time t0, the probability that the cell splits within time [a, a + da] is 

defined by γ a; a da. In the absence of death, to ensure that any single cell will eventually 

split, 0
∞γ(a; a)da = 1. Reasonable choices for γ a; a  are gamma, lognormal, or normal 

distributions. Without loss of generality, we propose a simple gamma distribution for γ a; a :

γ(a; a) = 1
aΓ a /σa

2 exp − aa
σa2

+ a
σa

2
ln aa

σa2
, (2.8)
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where a is the mean division age and σa2 is the variance. This type of distribution can be 

derived from the sum of independent, exponentially distributed ages.

For determinisitic exponential growth g = λx, age a and the parameter a can be explicitly 

expressed in terms of x, y and possibly other fixed parameters,

a(x, y) = 1
λ ln x

x − y , a(x, y) = 1
λ ln x − y + Δ

x − y , (2.9)

in which Δ is the fixed added size parameter that represents the adder mechanism.

With a(x, y) and a(x, y) defined in (2.9), the time-homogeneous division rate function β(x, y) 

can be expressed in terms of x and y by using the splitting probability γ(a(x, y); a(x, y)):

β(x, y) = γ(a(x, y); a(x, y))
1 − 0

a(x, y)da′γ a′; a(x, y)
. (2.10)

Assuming this “hazard function” form of a growth law, cells born at small initial size x(0) = 

x0 = x − y take a longer time to divide, while cells born with large size split sooner. Using 

the gamma distribution, we find a division rate of the form

β(x, y) =
Γ a2(x, y)

σa2
γ(a(x, y); a(x, y))

Γ a2(x, y)
σa2

, a(x, y)a(x, y)
σa2

, (2.11)

where Γ(·, ·) is the upper incomplete gamma function. We plot two examples of the time-

independent rate β(x, y) in Figure 2.

With β(x, y, t) defined, we still need to construct the full fission rate β , which we will 

assume is a product of the overall division rate β(x, y, t) and a differential division 

probability. The simplest model is to assume that the differential division probability h(r) is a 

function of only the ratio r between the size of the daughter cell and that of the mother cell, 

and independent of the cell size just before division. Thus,

β (x, y, z, t) = β(x, y, t)ℎ(z/x)/x, (2.12)

where r ≡ z/x ∈ [0 ,1]. The boundary condition (equation (2.3)) can thus be written in the 

form

g(x, 0, t)n(x, 0, t) = 2
x

∞
dx′

0

1
ds β x′, sx′, t ℎ x/x′ n x′, sx′, t . (2.13)

A reasonable model for h(r = x/x′) is a lognormal form that is symmetric about r = 1/2:
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ℎ r = ℎ0 r + ℎ0 1 − r
Z σr, δ , ℎ0 r = e− −δ + ln r 2

2σr2 e− ln2 1 − r
2σr2 , (2.14)

where the parameters δ and σr determine the bias and spread of the daughter cell size 

distribution, and the normalization constant is Z σr, δ = 0
1 ℎ0(r) + ℎ0(1 − r) dr.

2.2. Numerical implementation and Monte-Carlo simulations.

With the differential birth rate function β  defined, we can now consider the implementation 

of numerical solutions to (2.1) and (2.3) as well as event-based simulations of the 

underlying corresponding stochastic process. Since a typical initial condition may not be 

smooth, a classical solution to (2.1) and (2.3) may not exist. Thus, we provide a proof 

of existence and uniqueness of the weak solution to (2.1) and (2.3) in Appendix A. We 

show convergence of a discrete approximation to our problem, allowing us to confidently 

numerically approximate the weak solution.

The numerical approximation to the weak solution will be based on an upwind finite volume 

scheme in which both x and y are discretized with step size h. We define locally averaged 

functions by

fi + 1
2, j + 1

2
: = 1

ℎ2 iℎ

(i + 1)ℎ
dx

jℎ

(j + 1)ℎ
dy f(x, y, t), (2.15)

where f(x, y, t) can represent n(x, y, t), g(x, y, t), or β(x, y, t). Similarly,

β i + 1
2, j + 1

2
s + 1

2 ℎ, t = ℎ−3
iℎ

(i + 1)ℎ
dx

jℎ
(j + 1)ℎ

dy
kℎ

(k + 1)ℎ
dz β (x, y, z, t) (2.16)

in the domain i, j ≥ 0 and j, k < i. The discretization of the transport equation can be 

expressed as

ni + 1
2, j + 1

2
(t + Δt) − ni + 1

2, j + 1
2
(t)

Δt +
gi + 1, j + 1

2
n i + 1, j + 1

2
− gi, j + 1

2
n i, j + 1

2
ℎ

+
gi + 1

2, j + 1n i + 1
2, j + 1 − gi + 1

2, jn i + 1
2, j

ℎ = − βi + 1
2, j + 1

2
ni + 1

2, j + 1
2
(t),

(2.17)

for 1 ≤ i, j ≤ L, where Lh is the maximum size which we take sufficiently large 

such that ni,j>K(t = 0) = 0, ni≤j = 0. We also set gi + 1
2, i = 0 to prevent density flux 

out of the y < x domain. In (2.17), gi + 1, j + 1
2

t  can be taken as g i + 1 ℎ, j + 1
2 ℎ, t

while n i + 1, j + 1
2

(t) = jℎ
(j + 1)ℎ

dy n i + 1
2 ℎ, y, t  is a finite-volume numerical approximation 

to jℎ
(j + 1)ℎdy n((i + 1)ℎ, y, t). The discretized version of the boundary condition (equation 

(2.3)) can be expressed as
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gi + 1
2, 0ni + 1

2, 0(t) = 2ℎ2
k = i + 1

L

j = 0

k − 1
β k + 1

2, j + 1
2

i + 1
2 ℎ, t nk + 1

2, j + 1
2
(t) . (2.18)

The full explicit discretization scheme for the numerical calculation is provided in Appendix 

B.

Direct Monte-Carlo simulations of the birth process are also performed and compared with 

our numerically computed deterministic distributions (see Appendix C). We construct a list 

of cells and their associated sizes and their sizes at birth. This list is updated at every 

time step Δt. The cell sizes grow according to g(x, y, t). If a cell divides, one daughter 

cell’s initial size z is drawn from the distribution h(z/x) while the other’s is set to x − z. 

The daughter cells then replace the mother cell in the list. Simulations of the underlying 

stochastic process results in, at any given time, a collection of cells, each with a specific size 

and added size. This collection of cells represents a realization of the population that should 

be approximated by the distributions that are solutions to (2.1) and (2.3).

3. Analysis and extensions.

In this section, we numerically investigate the adder-sizer model and plot various cell 

population densities and birth event distributions under different parameter regimes. We 

also show the consistency of numerical solutions of the adder-sizer PDE with results from 

direct Monte-Carlo simulations of the corresponding stochastic process, which demonstrates 

that numerical solutions of the linear PDE model for cell population are in agreement 

with single-cell level stochastic models. After investigating birth rate parameters that can 

lead to blowup of population-averaged cell sizes, we extend the basic adder model to 

include mother-daughter growth rate correlations and processes that measure added size 

from different points in the cell cycle, i.e., an initation-adder model.

3.1. Cell and division event densities.

We evaluated our adder-sizer PDE model by using the division rate given in (2.10) and first 

assuming the simple and well-accepted growth function g(x, y, t) = λx. Figure 3 shows 

the numerical results for the density n x, y, t = n(x, y, t)/N(t) at successive times t = 1, 4, 

12, respectively. Stochastic simulations of the underlying process yield cells populations 

consistent with the deterministic densities derived from the PDE model. In Figure 4, we 

compare the cell densities n x, y, t  to the division event densities ρd(x, y, T) for two different 

differential division functions h(r). As before, the more asymmetric the division the broader 

the cell and event densities.

3.2. Cell volume explosion.

At the single-cell level, a stochastic map model by Kessler and Burov assumed a 

multiplicative noise and predicted that cell sizes can eventually grow without bound, in 

agreement with what was experimentally observed for filamentous bacteria [17]. However, 

stochastic maps of generational cell size do not capture population-level distributions in 

size or age. Within PDE models that describe population distributions, timer and sizer 
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mechanisms have been shown to exhibit blowup depending on properties of the birth rate 

β(a, x) [1, 7, 16]. Analysis of the conditions on full differential division rate β x, y, z, t  that 

result in blowup in the adder-sizer PDE model is more involved. Here, we provide only a 

heuristic argument for sufficient conditions for blowup.

First, we characterize the shape of the densities in the adder-sizer model. In the analogous 

McKendrick equation [15] one can investigate the age profile defined by dividing the 

number density by the total population size. The long term age profile may be stable even 

when the total population size continuously increases. We take a similar approach here by 

analyzing n x, y, t = n x, y, t /N t , where N(t) is given by (2.5). Writing the adder-sizer PDE 

in terms of n, we find

∂n
∂t + n

N
dN
dt + ∂(gn)

∂x + ∂(gn)
∂y = − βn . (3.1)

Integrating this equation over x, y leads to N· /N = 0
∞dx 0

xdy βn, which can be substituted 

into the first term in (3.1) to yield the nonlinear PDE

∂n
∂t + ∂(gn)

∂x + ∂(gn)
∂y = − β +

Ω
βn n . (3.2)

A number of standard approaches may be applied to analyze (3.2). For example, in [15], 

solutions are attempted by controlling the analogous nonlinear integral term. In the adder-

sizer problem, we can define β(t) = Ωβn in the above expression to find a self-consistent 

condition on 〈β(t)〉. One can also assess the steady-state nss by setting 
∂nss

∂t = 0 and 

establishing convergence.

One indication of blowup is a diverging mean cell size 〈x(t)〉 = M(t)/N(t). By multiplying the 

(3.1) by x and integrating (using the boundary condition and symmetry of the β  distribution) 

we find

d x(t)
dt + β(t) x(t) = q(t), (3.3)

in which q t : = Ωgn. If β, g, and n = nss are time-independent and a steady state mean 

cell size exists, we expect it to obey 〈x(∞)〉 = q(∞)/〈β(∞)〉. For the special case of 

deterministic exponential growth g(x) = λx, we can write the time evolution of the mean size 

as

d x(t)
dt = [λ − β(t) ] x(t) , β(t) ≡

0

∞
dx

0

x
dy β(x, y, t)n(x, y, t) . (3.4)

If β(∞) is bounded above by λ, then we expect blowup. For β(∞) that is not bounded, as 

in our example (equation (2.10)), one cannot determine if blowup occurs without a more 

detailed and difficult analysis. Since the precise conditions on β leading to cell volume 
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explosion are difficult to find, we will explore this possible phenomena using numerical 

experiments. We numerically examine the density n(x, y, t → ∞) and the mean cell size 

〈x(t)〉 using the β, β  defined in (2.10), (2.8), and (2.14).

In Figure 5(a) and (b) we plot the marginal distribution 

n(x, t): = x
∞dy n(x, y, t)/ 0

∞dx x
∞dy n(x, y, t) for different values of the division rate 

variability σa at different times. The associated division rates correspond to those plotted 

in Figure 2(a) and (b). In Figure 5(c) we plot the mean cell sizes 〈x(t)〉 = M(t)/N(t) 
corresponding to the distributions in (a) and (b). For sufficiently broad division probabilities 

γ(a) (large σa), the division rates β are small, and 〈x(t)〉 fails to saturate and diverges.

3.3. Mother-daughter growth rate correlation.

Recent experiments indicate that the growth rate of a mother cell is “remembered” by 

its daughter cells. For growth rates of the form g(x, y, t) = λx, the exponential growth 

parameter λ between successive generations i, i + 1 has been proposed to evolve [18, 7]. 

In [18], fluctuations in λ have been discussed at the single-cell level to explore their effects 

on the population-averaged growth rate while in [7], changes in growth rates across two 

consecutive generations are modeled as a Markov process in order to estimate a division rate 

function β. In this subsection, we first introduce a generalized adder-sizer PDE incorporating 

variability in λ and then explore how the mother-daughter growth rate correlation affects the 

population dynamics.

A mother-daughter growth rate correlation between two consecutive generations can be 

described by

λi + 1 = λi − λ R + λ + ξ, (3.5)

where ξ is a random variable, 0 ≤ R < 1 is the successive-generation growth rate correlation, 

and λ  is the mean long-term, or preferred growth rate. Given a growth rate λi of a mother 

cell, (3.5) describes the predicted growth rate λi+1 of its daughter cells. We assume that 

the random variable has mean zero and is distributed according to some probability density 

P(ξ), which vanishes for ξ ≤ 1 − R λ  to ensure that the growth rates remain positive.

To incorporate the memory of growth rates between successive generations in the adder-

sizer PDE model, we extend the cell density in the growth rate variable λ. Thus, n(x, y, t, 
λ) is the density of cells with volume x, added volume y, and growth rate λ. The growth 

function g(x, y, t, λ) is now explicitly a function of the growth rate λ. We propose the 

extended PDE model
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∂n(x, y, t, λ)
∂t + ∂(gn)

∂x + ∂(gn)
∂y

= − β(x, y, t)n(x, y, t, λ),
g(x, 0, t, λ)n(x, 0, t, λ)

= 2
0

∞
dλ′

x

∞
dx′

0

x′
dyβ x′, y, x, t n x′, y, t, λ′ P ξ = λ − Rλ′ − (1 − R)λ ,

β x, y, x′, t = β x, y, x − x′, t ,
n(x, y, 0, λ) = n0(x, y, λ) .

(3.6)

A possible symmetric mean zero distribution that vanishes at −(1 − R)λ  takes on a log-

normal form:

P (ξ) ∝ exp − ln2(ξ + (1 − R)λ)
2σξ

2 − ln2((1 − R)λ − ξ)
2σξ

2 . (3.7)

If we start with one newly born daughter cell at size x0 and growth rate λ0, the initial 

condition in our PDE model would be n0(x, y, λ) = δ(x − x0)δ(y)δ(λ − λ0).

Numerical solutions of (3.6) shown in Figure 6 indicate that although λ  is the same for 

two different cases, R = 0 and R = 0.4, their corresponding mean growth rates 〈λ(t)〉 
converge to different values. For larger correlation R, the daughter cells’ growth rates do 

not deviate much from those of their mothers’ growth rates. This means that the offspring 

of faster growing cells tend to grow faster and the offspring of slower growing cells tend 

to grow slower. Because it takes less time for faster cells to divide, they will produce more 

generations of faster-growing cells, leading to a larger average growth rate defined as

λ(t) = 0
∞dx 0

xdy 0
∞dλ λn(x, y, t, λ)

0
∞dx 0

xdy 0
∞d λn(x, y, t, λ)

. (3.8)

On the other hand, for a fixed mother growth rate λi, smaller correlations R lead to mean 

daughter cell growth rates 〈λi+1〉 that are closer to λ . Since cells with growth rates less 

than λ  will live longer before division, these cells persist in the population longer than those 

with larger λ, pushing the average growth rate 〈λ(t)〉 to values smaller than λ . Figure 6(c) 

explicitly shows that when R = 0, the mean growth rate approaches a value smaller than 

λ = ln2.

3.4. Initiation-Adder model.

Recent experiments suggest a new type of adder mechanism for bacterial cell size control 

[25]. Rather than a fixed volume added between birth and division as the primary control 

parameter, new experimental evidence suggests that the control parameter in E. coli is the 

added volume between successive initiations of DNA replication. Initiation occurs when 

the ori sites in a cell’s genome are separated, leading to DNA replication and segregation. 

The number of ori sites depend on cell type and species, typically one in prokaryotic cells 

and more than one in eukaryotic cells. The initiation-adder model assumes that a cell’s 
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volume per initiation site (the ori site in the genome) tends to add a fixed volume between 

two consecutive initiations. If the number of ori sites in a cell is q, initiation increases the 

number to 2q. Immediately after division and DNA separation, the number of oris decreases 

back to q in each daughter cell.

In this subsection, we generalize the adder PDE model to describe the initiation-adder 

mechanism depicted in Figure 7. We classify all cells into two subpopulations: cells that 

have not yet undergone initiation and cells that have initiated DNA replication but that have 

not yet divided. We define n1(x, y, t)dxdy as the expected number of preinitiation cells in 

with volume in [x, x + dx] and with added volume y < x in [y, y + dy]. Mean postinitiation 

cell numbers with volume in [x, x + dx] and added volume in [y, y + dy] are described by 

n2(x, y, t)dxdy. In the general initiation-adder process, when a preinitiation cell commences 

DNA replication (initiates) can depend on the volume or added volume. Thus, we describe 

transitions from when a preinitiation cell transitions into a postinitiation cell by the rate ki(x, 
y, t). After initiation, the number of ori sites doubles and the added volume is reset to zero 

in the newly formed postinitiation cell. In analogy with the differential division rate in (2.1), 

we define β(x, y, t) as the rate of division of postinitiation cells. Under a general asymmetric 

division event, we assume that the added volume is divided proportionally to the volume of 

the daughter cells, i.e., if the mother cel’s volume is x with added volume y since initiation, 

and if one daughter cell’s volume is z < x and the other daughter cell’s volume is x − z, 

the added volume since division for the first daughter will be set to yz/x while the added 

volume for the second daughter will be y(x − z)/x. The resulting PDE model now involves 

two coupled densities n1 and n2,

∂n1(x, y, t)
∂t + ∂ g1n1

∂x + ∂ g1n1
∂y = − ki(x, y, t)n1+2

x

∞ z
xn2(z, yz/x, t)β (z, x,

yz/x, t)dz,
∂n2(x, y, t)

∂t + ∂ g2n2
∂x + ∂ g2n2

∂y = − β(x, y, t)n2,

n1(x, 0, t) = 0, g2n2(x, 0, t) =
0

x
ki(x, y, t)n1(x, y, t)dy,

β(x, y, t) =
0

x
β (x, z, y, t)dz,

(3.9)

in which we have allowed for different growth rates in tine different cell phases. Both n1 and 

n2 are defined in the domain ℝ+2
y < x × ℝ+. These coupled PDEs are different from 

the PDE associated with the standard “division adder” described in (2.1) and (2.3). Here, the 

added volume is reset to zero not after division, but after initiation.

In [30], a strong size control acting on initiation was proposed where all cells will have 

inititated DNA replication before reaching some fixed volume xi. This hypothesis can be 

implemented in our initiation-adder model by setting ki(x → xi, y, t) → ∞. The probability 

that a cell born at time t0 has not yet initiated, e− t0
t ki(x(s), y(s), s)ds, always vanishes for all (t0, 

xt0, yt0) before some finite time t and x(t) < xi. Thus, n2(x, 0, t) is nonzero only in [0, xi] 
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for all t. If there exists a constant τ0 such that lim
τ τ0

e− t0
t0 + τki(x(s), y(s), s)ds = 0 for all t0, then 

the largest volume that any cell can attain will be eλτ
0xi, leading to strict size control and no 

blowup.

Figure 8 shows numerical solutions to (3.9) using the same birth rate function as that used 

in Figure 3(d)–(f). Note that due to cell size control affecting the preinitiation stage, initial 

daughter cell sizes stay small at initiation and n1 (x, y, t) is more peaked near y ≈ x.

If one takes ki sufficiently large, both daughter cells will nearly instantly initiate DNA 

replication after division. “We have checked numerically that for constant ki = 103, the 

densities n1(x, y, t) are negligible while n2(x, y, t) approaches the density of the division 

adder shown in Figure 3 (for the same differential division functions β ). Thus, the initiation-

adder model converges to the standard division adder model when ki → ∞. This can be seen 

from the first of the equations of (3.9), where n1 can be neglected and is dominated by the 

two terms on the RHS. Substituting ki(x, y, t)n1 ≈ 2 x
∞ dz

x n2(z, yz/x, t) into the integral terms in 

the second equation, we find (2.1) for n2(x, y, t).

4. Summary and conclusions.

In this paper, we used PDE models to describe population dynamical behavior under the 

adder division mechanism. Under certain conditions, this PDE for the adder mechanism 

can also be converted to the well-known size- and age-structured PDE. In the absence of 

death, we motivated models for the differential birth rate function β  (x, y, z, t) that are 

consistent with normalized division probabilities. In Appendix A we showed the existence 

and uniqueness of a weak solution to the PDE model within a time interval [0, T] during 

which the solution’s support can be bounded. One can prove similar results when both time 

and space are unbounded as this problem is related to other first order PDE models that have 

been studied in more detail.

With a weak solution justified, we explored the adder-sizer PDE via numerical experiments 

and Monte-Carlo simulations of the underlying stochastic process. Our results show that 

event-based Monte-Carlo simulations of the discrete process generate sample configurations. 

The observed configurations are consistent with samples from the cell densities numerically 

computed from our PDE model.

When broader differential division rates are used (when cell division is more asymmetric), 

we find, under the same initial conditions, a broader cell density n(x, y, t) and a broader 

event density ρD(x, y, T). We also demonstrate numerically the divergence of the mean cell 

size 〈x(t)〉 = M(t)/N(t). We showed that division probabilities that are broader in age or 

added size (and smaller in magnitude) are more likely to lead to mean cell sizes that explode 

with time.

We then incorporated growth rate correlation between cells of successive generations [17] 

into our adder-sizer PDE model. By extending the dimension of the density function to 

include growth rates and allowing for variability in growth rate as new cells are born, we 
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developed a PDE model that incorporates the stochastic nature of growth rate inheritance 

and that describes evolution of the growth rate distribution of cells. We found that the 

steady-state value of the mean growth rate depends on the correlation of growth rates 

between mother and daughter cells. This dependence arises from a subtle interaction 

between the shape of the growth rate distribution and the distribution of variations in the 

growth rate from one generation to the next.

Finally, we proposed a coupled partial integro-differential equation (PIDE) to model two-

phase cell population dynamics under a new initiation-adder mechanism suggested by recent 

experimental results. In the limit that the initiation rate ki of DNA replication is significantly 

faster than all other time scales in the problem, the numerical solutions of the initiation-

adder model (equation (3.9)) converge to those of the division adder model (equations (2.1) 

and (2.3)). Under proper assumptions that come from experimental findings, we found that 

the initiation adder would also lead to effective cell size control [30].

There are new cellular processes and size control mechanisms that have been recently 

discovered and that can be mathematically modeled. Thus, there are likely general 

mathematical topics that remain to be explored within PDE and PIDE models of structured 

populations. For example, a recent experimental study indicates that an adder mechanism 

may be the result of several consecutive processes in the cell division cycle, suggesting that 

a much more complicated coupled system of PDEs/PIDEs would be required.
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Appendix A.: Existence and uniqueness of a weak solution for the adder-

sizer model.

In this section we show the existence and uniqueness of the solution to the adder-sizer model 

PDE. The full problem is defined as

∂n
∂t + ∂(ng)

∂x + ∂(ng)
∂y = − β(x, y, t)n(x, y, t),

g(x, 0, t)n(x, 0, t) = 2
x

∞
dx′

0

x′
dy β x′, y, x, t n x′, y, t ,

β(x, y, t): =
0

x
β (x, y, z, t)dz,

β x, y, z′, t = β x, y, z − z′, t , β (x, y, 0, t) = 0, n(x, x, t) = 0,
n(x, y, t = 0): = n0(x, y),

(A.1)

where the independent variables (x, y, t) ∈ ℝ2 y < x × ℝ+ .

First, we assume that
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0 < gmin ≤ g ∈ C1 ℝ+ 2 y ≤ x × ℝ+ ,

n0(x, y) ∈ L1 L∞ C1 ℝ+ y < x ,

0 ≤ β ∈ L∞ L1 C1 ℝ+ 3 y < x, z < x × ℝ+ ,

β(x, y, t) ∈ L∞ L1 C1 ℝ+ 2 y ≤ x × ℝ+

(A.2)

and nondimensionalize the size and added size by Δ, the added size parameter defined in 

(2.9). We also impose an additional assumption on g:

|g(x, y, t) | < K(t + x + 1), K < ∞ . (A.3)

We also assume the initial distribution n0(x, y) is compactly supported in (0, Ω) × [0, Ω), 

Ω < ∞. From this assumption and (A.3), the closure of n(x, y, T)’s support is compact for 

any finite time T since n ≠ 0 only when y < x and x(s) ≤ CeKs − (1 + T) from Grönwall’s 

inequality, where C < 1 + T + Ω is given by the initial condition. At any finite time T, the 

support of n(x, y, T) is bounded and we assume it is contained in [0, Ω(T)) × [0, Ω(T)). 

Furthermore, by setting g, β, β = 0 at the given time T when (x, y) is out of the support of 

n, we can assume the closure of g, β, β ’s support to be compact. One can generalize the 

definition of the weak solution n to ℝ+ 2 ∩ y < x × 0, ∞  as in [22].

DEFINITION A.1. Given time T < ∞ and assuming (A.2), for a 

function n ∈ L1 ([0, Ω(T )])2 y < x × [0, T ] , Ω(T ) < ∞ with n(x, y, t) ≠ 0 in 

0, Ω T × [0, Ω(T )), y < x, t ∈ [0, T ], n is said to satisfy the adder-sizer PDE in the weak sense 
in time [0, T] if

−
0

T
dt

0

∞
dx

0

x
dy n(x, y, t) ∂Ψ

∂t + g(x, y, t) ∂Ψ
∂x + g(x, y, t) ∂Ψ

∂y − β(x, y, t

)Ψ(x, y, t) =
0

∞
dx

0

x
dy n0(x, y)Ψ0(x, y) +

0

T
dt

0

∞
dxΨ(x, 0, t)n(x, 0, t

)g(x, 0, t)

(A.4)

holds for all test functions Ψ ∈ C1 ([0, Ω(T )])2 y ≤ x × [0, T ]  satisfying Ψ(x, y, T) ≡ 0, 

Ψ(Ω(T), y, t) = 0 and Ψ(x, x, t) = 0, where we set g, β, β = 0 for x ≥ Ω(T), x ≤ y or x ≤ z. 

Upon using the boundary condition in (A.1), the right-hand-side becomes

0
∞

dx 0
x

dy n0(x, y)Ψ0(x, y) + 2 0
T

dt 0
∞

dx 0
x

dy 0
x

dz Ψ(z, 0, t)β (x, y, z, t)n(x, y, t) .

Note that if n ∈ C1 ℝ+ 2 y < x × ℝ+  is a classical solution to the PDE (equation 

(A.1)), then it must also satisfy (A.4) in any time interval [0, T]. We refer to [22] for a proof 

of the existence and uniqueness of a weak solution of a related, simpler renewal equation. 

However, our adder-sizer PDE is more complicated. The proof of uniqueness requires very 
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different techniques from the sizer PDE; yet the proof of existence is similar to the proof in 

[22].

A.1. Uniqueness.

First, we prove the uniqueness of the solution to (A.4). Assume there are two weak solutions 

n(0) and n(1) for the adder-sizer PDE satisfying (A.4) with the same initial condition 

n0
(0)(x, y) = n0

(1)(x, y). Taking the difference between these purported solutions, we obtain

−
0

T
dt

0

∞
dx

0

x
dy Δn(x, y, t) × ∂Ψ

∂t + g(x, y, t) ∂Ψ
∂x + g(x, y, t) ∂Ψ

∂y − β(x,

y, t)Ψ(x, y, t) = 2
0

T
dt

0

∞
dx

0

x
dy

0

x
dz Ψ(z, 0, t)β (x, y, z, t)Δn(x, y, t),

(A.5)

where Δn = n(1) − n(0).

A.1.1. Adjoint problem.

We consider the adjoint problem for Ψ in the given time interval [0, T] and with a source 

term S(x, y, t):

∂Ψ
∂t + g(x, y, t) ∂Ψ

∂x + g(x, y, t) ∂Ψ
∂y − β(x, y, t)Ψ(x, y, t)

= − 2
0

x
Ψ(z, 0, t)β (x, y, z, t)dz − S(x, y, t), 0 ≤ y < x

Ψ(x, y, T ) = 0, Ψ(Ω(T ), y, t) = 0, Ψ(x, x, t) = 0.

(A.6)

THEOREM A.2. Assume (A.2), and S ∈ C1 [0, Ω(T )]2 × [0, T ] , S(Ω(T ), y, t) = 0, and S = 0 when 

x ≤ y. Then there exists a unique C1 solution to the adjoint problem.

Proof. We can transform the above equation into an ODE along the characteristic line and 

use contraction mapping, which is a standard practice in functional analysis to prove the 

existence and uniqueness of the solution to a PDE problem. On the LHS of (A.6), we apply 

the characteristic line method. Setting X(c, t) = (x(c, t), y(c, t)) on the characteristic lines 

leads to

∂X(c, s)
∂s = (g(x, y, s), g(x, y, s)), t ≤ s ≤ T ,

X(c, t) = xt, yt , 0 ≤ yt < xt, xt − yt = c .

Since we have x(s) − y(s) = xt − yt, the above equation can be simplified to

∂X(c, s)
∂s = g(X(c, s), s), x(c, t) = xt, y(c, t) = xt − c,

where g  (X(c, s), s) = (g(x(c, s), x(c, s) − c, s), g(x(c, s), x(c, s) − c, s)). Once c is fixed and 

xt is given, the above equation becomes an ODE. Given xt, we define
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Ψ(c, s): = Ψ(X(c, s), s)e− tsβ(X(c, v), v)dv,

U(c, z, s): = 2β (X(c, s), z, s)e− tsβ(X(c, v), v)dv,

S(c, s): = S(X(c, s), s)e− tsβ(X(c, v), v)dv .

Thus, along the characteristic line we can write (A.6) as

∂
∂s Ψ(c, s) = −

0

x(c, s)
Ψ(z, 0, s)U(c, z, s)dz − S(c, s) . (A.7)

Since Ψ c, T = 0 and Ψ c, t = Ψ xt, xt − c, t ,

Ψ xt, xt − c, t =
t

T
S(c, s)ds +

t

T
ds

0

x(c, s)
dz Ψ(z, 0, s)U(c, z, s), 0 < c

≤ xt .
(A.8)

We can see that if x ≤ y or xt ≥ Ω(T ), Ψ t, xt, xt − c = Ψ(t, x, x) = 0 since U, S = 0 for c ≤ 0 or 

xt > Ω(T). Using c = xt, (A.8) becomes

Ψ xt, 0, t =
t

T
S xt, s ds +

t

T
ds

0

x xt, s
dz Ψ(z, 0, s)U xt, z, s . (A.9)

From condition (A.3) we obtain x(s) ≤ xt + 1 + T eK(s − t) − (1 + T ) . From condition (A.3), 

we define B = 2‖β ‖∞ < ∞. Next, we choose s = max T − 1
K ln(1 + 1

2B(1 + T )
, T − 1

K ln2, T − 1

such that eK(T − t) ≤ 1 + 1
2B(1 + T )

, s ≤ t ≤ T, and choose xs small enough such that 

xs < min 1, 1
8B(T − s)

. We denote a mapping T defined on the functional space as

T (Ψ) xt, 0, t = t
T

S xt, s ds + t
T

ds 0
x s, xt dz Ψ(z, 0, s)U xt, z, s , t ∈ [s, T ], xt ∈ 0, xs .

It is easy to verify that T is a contraction mapping for Ψ(xt, 0, t) and thus there exists a 

unique solution Ψ0 satisfying (A.6) in D0 defined as D0 = (x, t) ∣ s ≤ t ≤ T , 0 ≤ x ≤ x xs, t . 

We then let xs1 > xs and define D1 = (x, t) ∣ s ≤ t ≤ T , 0 ≤ x ≤ x xs1, t  such that the difference 

of the area between regions D1 and D0 is less than B−1. Next, define a second mapping T1 

by

T1(Ψ) xt, 0, t = t
T

ds x xs, s
x xt, s

dzΨ(z, 0, s)U xt, z, s + I xs, t ,

t ∈ [s, T ], xt ∈ x t, xs , xs1 ,

I xs, t = t
T

dsS xt, s + t
T

ds 0
x xs, s

dzΨ0(z, 0, s)U xt, z, s .
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T1 is also a contraction mapping and we can obtain a Ψ1 on D1 such that T(Ψ1) = Ψ1. 

Denote

Ψ(x, 0, t) =
Ψ0(x, 0, t), (x, t) ∈ D0,
Ψ1(x, 0, t), (x, t) ∈ D1, (A.10)

and it is easy to verify that Ψ is C1 continuous on D0 ∩ D1 by first proving it is continuous 

and then taking the partial derivatives, and Ψ satisfy (A.6) in the region D0 ∪ D1.

Following the same procedure, we can extend Ψ to satisfy (A.6) in the region t ∈ [s, T]. 

Then, for [0, s], we choose an s  close enough to s and use the same strategy by defining T2 

as

T2(Ψ) xt, 0, t =
t

s
drS xt, r +

t

s
dr

0

x xt, r
dz Ψ(z, 0, r)U xt, z, r + I xs, t , t ∈ [s , s],

I t, xs =
s

T
drS xt, r +

s

T
dr

0

x xt, r
dz Ψ(z, 0, r)U xt, z, r .

(A.11)

We finally obtain a unique function Ψ satisfying (A.6) in [0, T] × [0, ∞).

From (A.8), the value of Ψ is determined by S, Ψ(x, 0, t), U and we conclude that there 

exists a unique C1 solution for (A.6).

A.1.2. Uniqueness of weak solution for the adder-sizer model.

From Section A.1.1 we obtain the existence and uniqueness of Ψ of the adjoint problem. 

Given any time T and S x, y, t ∈ C1 ℝ+ × ℝ+ 2
 satisfying the condition in Theorem A.1, 

since we can set g, β, β ’s support to be compact in [0, T], we can find a unique C1 

continuous Ψ satisfying (A.6). By substituting (A.6) into (A.5), we obtain

0

T
dt

0

Ω(T )
dx

0

x
dy Δn(x, y, t)S(x, y, t) = 0 (A.12)

for any S(x, y, t) ∈ C1 ℝ+ × ℝ+ 2
 satisfying S(x ≤ y, t) = S(x ≥ Ω(T), y, t) = 0, which implies 

n ξ 0 a.e. in y < x ≤ Ω(T). So at any given time T the weak solution, if it exists, is unique.

One can also set the condition for β , g weaker even when we define the weak solution 

in unbounded region [0, ∞) × ℝ+ 2 y < x . In [22] such work is done for the renewal 

equation. We do not discuss this generalization in detail here.

A.2. Existence of the weak solution.

We construct a series of functions {ni} with a limit n for this series satisfying (A.6) for 

all test functions Ψ. We use a semidiscrete approximation to discretize the PDE and obtain 

piecewise solutions. As the mesh size becomes smaller, we expect the piecewise solution 

to converge to a function n satisfying (A.4). The idea of constructing a series of piecewise 

constant solutions and proving their convergence to a weak solution is similar to that in [22].
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A.2.1. Semidiscrete approximation for PDE.

We choose a uniform grid with mesh size h > 0 fixed in both x and y axis. We denote

xi, yj = (iℎ, jℎ), xi + 1
2
, yj + 1

2
= i + 1

2 ℎ, j + 1
2 ℎ , j < i ∈ ℕ,

βi + 1
2, j + 1

2
(t) = 1

ℎ2 iℎ

(i + 1)ℎ
dy

jℎ

(j + 1)ℎ
dxβ(x, y, t), j < i ∈ ℕ,

β i + 1
2, j + 1

2
s + 1

2 ℎ, t = 1
ℎ3 iℎ

(i + 1)ℎ
dz

jℎ

(j + 1)ℎ
dy

sℎ

(s + 1)ℎ
dxβ (x, y, z, t), s ≤ i,

gi, j(t) = g(iℎ, jℎ, t), j < i ∈ 1
2ℕ .

(A.13)

Here, βi + 1
2, j + 1

2
(t) = ℎ

s = 0
i

β i + 1
2, j + 1

2
s + 1

2 ℎ, t . Given a fixed time T, we wish to find 

a pointwise solution function nh (t), which takes values on the grid points xi + 1
2

, yj + 1
2

. 

According to our assumption there exists Ω such that the initial value n0 is nonzero within 

the region {(x, y)|y < x, x < Ω}, and from our previous calculation there exists Ω(T) < ∞ 
such that n is nonzero within the region {(x, y)|y < x, x < Ω(T)}. Eventually, we will set h(k) 

= Ω(T)/k and let the mesh size h → 0 by letting k → ∞.

By discretizing (A.1), we expect the pointwise function nh(t) to satisfy the below equations 

for t ∈ [0, T] and 0 < j < i < L (L is the number of discretization grid points along one 

direction):

ℎ2
dni + 1

2, j + 1
2
(t)

dt + ℎ gi + 1, j + 1
2
(t)ni + 1

2, j + 1
2
(t) − gi, j + 1

2
(t)ni − 1

2, j + 1
2
(t)

+ℎ gi + 1
2, j + 1(t)ni + 1

2, j + 1
2
(t) − gi + 1

2, j(t)ni + 1
2, j − 1

2
(t)

+ ℎ2βi + 1
2, j + 1

2
(t)ni + 1

2, j + 1
2
(t) = 0, 0 ≤ j < i − 1

ℎ2
dni + 1

2, j + 1
2
(t)

dt + ℎgi + 1, j + 1
2
(t)ni + 1

2, j + 1
2
(t)

− ℎgi + 1
2, j(t)ni + 1

2, j − 1
2
(t) + ℎ2βi + 1

2, j + 1
2
(t)ni + 1

2, j + 1
2
(t) = 0, 0 ≤ j = i − 1

gi + 1
2, 0(t)ni + 1

2, − 1
2
(t) = 2ℎ2

ℓ = i

L − 1

j = 0

ℓ − 1
β ℓ + 1

2, j + 1
2

i + 1
2 ℎ, t nℓ + 1

2, j + 1
2
(t),

ni + 1
2, j + 1

2
(0) = 1

ℎ2 xi

xi + 1
dy yj

yj + 1
dx n0(x, y), ni + 1

2, i + 1
2
(t) = 0,

(A.14)

where we henceforth omit the h superscript in the proof. In the two-dimensional upwind 

scheme, derivatives in one direction are neglected on neighboring sites in the other 

direction: ni, j ± 1
2

= ni − 1
2, j ± 1

2
, ni ± 1

2, j = ni ± 1
2, j − 1

2
.. The boundary condition n(x, x, t) = 

0 is implemented by ni + 1
2, i + 1

2
(t) = 0 for any t and i.
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We will obtain a uniform bound irrelevant of h for n. All coefficients in the above ODE 

equations are C1 continuous, which means that there exists a unique solution in time [0, T], 

T < ∞.

THEOREM A.3. For t ∈ [0, T] and assuming (A.2) holds, we find the bound

i = 1

L − 1

j = 0

i
|ni + 1

2, j + 1
2
(t)| ≤ eMt

i = 1

L − 1

j = 0

i
|ni + 1

2, j + 1
2
(0)|, (A.15)

where B = 2‖β ‖∞, M = 2B − b, B = ‖β‖∞, and b = mintmini, jβi + 1
2, j + 1

2
(t). The L∞ bound is 

given by nℎ(t)∞ ≤ max 1
gmin

BeMT‖n(0)‖1, nℎ(0)∞ e2g ′t, where β ′ is the L∞ bound of ∂g/∂x, 

∂g/∂y.

Proof. For the summation of n over all grid points , we multiply the first equation in (A.14) 

by sign(ni + 1
2, j + 1

2
) for each i, j ≤ i,

ℎ2 d
dt |ni + 1

2, j + 1
2
(t)| + ℎgi + 1, j + 1

2
(t)|ni + 1

2, j + 1
2
(t)|

+ℎgi + 1
2, j + 1(t)|ni + 1

2, j + 1
2
(t)| + ℎ2βi + 1

2, j + 1
2
(t)|ni + 1

2, j + 1
2
(t)|

≤ ℎgi, j + 1
2
(t)|ni − 1

2, j + 1
2
(t)| + ℎgi + 1

2, j(t)|ni + 1
2, j − 1

2
(t)| .

(A.16)

By multiplying the second equation in (A.14) by sign(ni + 1
2, j + 1

2
) for each i, j ≤ i pair and 

summing over index i = 1
L − 1

j = 0
i − 1 ,

ℎ2
i = 1

L − 1

j = 0

i − 1
|ni + 1

2, j + 1
2

(t)| + ℎ
j = 0

i − 1
gL, j + 1

2
(t)|nL − 1 + 1

2, j + 1
2

(t)|

+ℎ2
i = 1

L − 1

j = 0

i − 1
βi + 1

2, j + 1
2

(t)|ni + 1
2, j + 1

2
(t)| ≤ ℎ

i = 0

L − 1
gi + 1

2, 0(t)|ni + 1
2, − 1

2
(t)| .

We can simplify the above expression to

ℎ2 d
dt i = 1

L − 1

j = 0

i − 1
|ni + 1

2, j + 1
2

(t)| + ℎ2
i = 1

L − 1

j = 0

i − 1
βi + 1

2, j + 1
2

|ni + 1
2, j + 1

2
(t)|

≤ 2ℎ3
i = 0

L − 1
|
ℓ = i

L − 1

j = 0

ℓ − 1
β ℓ + 1

2, j + 1
2

((i + 1/2)ℎ, t)nℓ + 1
2, j + 1

2
(t)|

≤ 2ℎ2
ℓ = 1

L − 1

j = 0

ℓ − 1
|βℓ + 1

2, j + 1
2

(t)||nℓ + 1
2, j + 1

2
(t)| .

We then have
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d
dt i = 1

L − 1

j = 0

i − 1
|ni + 1

2, j + 1
2

(t)| ≤ (2B − b)
i = 1

L − 1

j = 0

i − 1
|ni + 1

2, j + 1
2

(t)|,

which yields

i = 1

L − 1

j = 0

i − 1
|ni + 1

2, j + 1
2
(t)| ≤ eMt

i = 1

L − 1

j = 0

i − 1
|ni + 1

2, j + 1
2
(0)| . (A.17)

(A.17) states that the l1 norms of all the values on the grid points are uniformly bounded 

and independent of h. Next, we estimate the L∞ bound of nh. First, we consider j = 0 and 

assume S(t) = max1 ≤ i ≤ L − 1|ni + 1
2, 1

2
(t)|e−g ′t for t ∈ [0, T]. For the maximum value of S at 

some index i, we find

ℎ2
d|ni + 1

2, 1
2

(t)|

dt + ℎ gi + 1, 1
2

(t)|ni + 1
2, 1

2
(t)| − gi, 1

2
(t)|ni − 1

2, 1
2

(t)|

+ℎ gi + 1
2, 1(t)|ni + 1

2, 1
2

(t)| − gi + 1
2, 0(t)|ni + 1

2, − 1
2

(t)| ≤ 0,

ℎ2
d|ni + 1

2, 1
2

(t)|

dt + ℎgi + 1, 1
2

(t)|ni + 1
2, 1

2
(t)| − gi + 1

2, 0(t)|ni + 1
2, − 1

2
(t)| ≤ 0, i = 1,

and

d |ni + 1
2, 1

2
(t)|e−g ′t

dt + ℎ−1gi + 1
2, 1(t)|ni + 1

2, 1
2

(t)|e−g ′t ≤ ℎ−1gi + 1
2, 0(t)|ni + 1

2, − 1
2

(t)|e−g ′t .

By the assumption that g(x, y, t) ≥ gmin (t) ≥ gmin > 0 and g < K(T + 1 + Ω(T)), we have

d |ni + 1
2, 1

2
|e−g ′t

dt + ℎ−1gmin t |ni + 1
2, 1

2
t |e−g ′t

≤ ℎ−1 gmin t
gmin

max
1 ≤ i ≤ L − 1

|gi + 1
2, 0 t ni + 1

2, − 1
2

t | .
(A.18)

Finally, defining G(t) = ℎ−1
0
tgmin(s)ds yields

d |ni + 1
2, 1

2
(t)|e−g ′teG(t)

dt ≤ 1
ℎ

gmin(t)
gmin

max
1 ≤ i ≤ L − 1

|gi + 1
2, 0(t)ni + 1

2, − 1
2

(t)|eG(t) .

From the L1 bound, we can deduce

max
t

max
1 ≤ i ≤ L − 1

|gi + 1
2

(t)ni + 1
2, − 1

2
(t)| ≤ ℎ2BeMTnℎ(0)1 ≤ BeMT‖n(0)‖1, t > 0,
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and conclude that for the function S(t)eG(t)

S(t)eG(t) ≤ S(0) + 1
gmin

BeMT‖n(0)‖1 eG(t) − 1 , (A.19)

and S(t) ≤ max1 ≤ i ≤ L − 1 ni + 1
2, 1

2
(0), 1

gmin
BeMT‖n(0)‖1 , which then gives the L∞ bound 

for the pointwise solution nh when j = 0.

Now, we estimate |ni + 1
2, j + 1

2
(t)| by first defining

P (t) ≡ max
0 ≤ i ≤ L − 1, 0 ≤ j ≤ i − 1

|ni + 1
2, j + 1

2
(t)|e−2g ′t .

At a fixed time t, specific values of i and j define P(t). If the maximum occurs at j = 0, 

P (t) = S(t)e−g ′t. If the maximum occurs at i – 1 > j > 0, we have

ℎ d
dt |ni + 1

2, j + 1
2
(t)|e−2g ′t

= − gi, j + 1
2
(t)|ni + 1

2, j + 1
2
(t)| − gi + 1, j + 1

2
(t)|ni + 1

2, j + 1
2
(t)| + gi + 1

2, j(t

)|ni + 1
2, j + 1

2
(t)|

−gi + 1
2, j + 1(t)|ni + 1

2, j + 1
2
(t)| + 2ℎg ′|ni + 1

2, j + 1
2
(t)| e−2g ′t ≤ 0,

(A.20)

while if the maximum occurs at j = i – 1 > 0, we have

d
dt |ni + 1

2, j + 1
2
(t)|e−2g ′t

≤ ℎ−1 gi + 1
2, j(t) − gi + 1, j + 1

2
(t) |ni + 1

2, 1
2
(t)| − 2g ′|ni + 1

2, j + 1
2
(t)| e−2g ′t ≤ 0.

(A.21)

In (A.21) and (A.22), i, j are the maximizing indices that define P(t).

For any t ∈ (0, T] we can find a minimum t < t such that P v > S v e−g ′v for 

v ∈ t , t . If t = 0., and since P(t) is nonincreasing from (A.22), P (t) ≤ P (0) = ‖nℎ(0)‖∞. 

If t > t > 0, P (t) ≤ P (t ) ≤ S(t ) ≤ max0 ≤ t ≤ TS(t), while if t = t, P (t) = S(t) ≤ max0 ≤ t ≤ TS(t). 

Thus, P (t) = ‖nℎ(t)‖∞e−2g ′t ≤ max max0 ≤ t ≤ T S(t) , ‖nℎ(0)‖∞  and

‖nℎ(t)‖∞ ≤ max max
0 ≤ t ≤ T

S(t) , ‖nℎ(0)‖∞ e2g ′t, (A.22)

giving the second conclusion in Theorem A.2 that the L∞ bound is uniform and independent 

of h.
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A.2.2. Existence of the weak solution.

For a given time T < ∞, we can take the grid size h(k) = Ω(T)/k → 0 by letting the integer 

k → ∞. Spatially piecewise constant functions can then be defined based on the sequence of 

vector functions {nh(k)}. By setting ni + 1
2, i + 1

2

ℎ t = 0, we define nh(x, y, t), βh, and β ℎ as

nℎ(x, y, t) =
i = 0

k − 1

j = 0

i − 1
ni + 1

2, j + 1
2

ℎ (t)1(iℎ ≤ x < (i + 1)ℎ, jℎ ≤ y < (j + 1)ℎ),

βℎ(x, y, t) =
i = 0

k − 1

j = 0

i
βi + 1

2, j + 1
2

(t)1(iℎ ≤ x < (i + 1)ℎ, jℎ ≤ y < (j + 1)ℎ),

β ℎ(x, y, z, t) =
i = 0

k − 1

j = 0

i − 1

ℓ = 0

i − 1
β i + 1

2, j + 1
2

ℓ + 1
2 ℎ, t 1(iℎ ≤ x < (i + 1)ℎ, jℎ

≤ y < (j + 1)ℎ, ℓℎ ≤ z < (ℓ + 1)ℎ),
nℎ(x, 0, t) = ni + 1

2, − 1
2

ℎ (t), iℎ ≤ x < (i + 1)ℎ,

where above, h = h(k) and 1 is the indicator function. Since there is an upper bound for both 

β and β , and both β, β  are continuous, we have the following result:

lim
k ∞

βℎ(k)(x, y, t) β(x, y, t) a.e. 0 ≤ βℎ(k) ≤ ‖β‖∞ < ∞,

lim
k ∞

β ℎ(k)(x, y, z, t) β(x, y, z, t) a.e. 0 ≤ β ℎ(k) ≤ ‖β ‖∞ < ∞,

lim
k ∞

nℎ(k)(x, y, 0) n(x, y, 0)a.e.

Then, we can apply Theorem A.2 to the piecewise constant solutions nh(k) of (A.14).

COROLLARY A.4. Under the conditions of Theorem A.2, for any t ∈ [0, T] and any h,

0

Ω(T )
dy

0

Ω(T )
dx|nℎ(x, y, t)| ≤ eMt

0

Ω(0)
dy

0

Ω(0)
dx|nℎ(x, y, 0)| (A.23)

and

‖nℎ(t)‖∞ ≤ max |n(0) |∞ , BeMT |n(0)|1 e2g ′t, (A.24)

where B, M, g ′ are defined in Theorem A.2. The proof is the direct consequence of Theorem 
A.2.

The sequence of piecewise constant functions {nh(k)} is uniformly bounded and 

nℎ(k) ∈ L1 L∞ [0, Ω(T )]2 y < x × [0, T ) , so nh(k) are all L2 functions. There exists a 

function n ∈ L2 [0, Ω(T )]2 y < x × [0, T )  and a subsequence ki → ∞ that satisfies nh(ki) 

→ n. Since L2([0, Ω(T)]2 ∩ {y < x} × [0, T)) implies L1 integrability, we can deduce that n 
is an L1 function as desired.
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To prove nh(ki) → n, we need only to verify that there exists a subsequence nh(ki) such that 

for all test functions

f ∈ L2, 0
T

dt 0
Ω(T )

dx 0
x

dy nℎ ki f 0
T

dt 0
Ω(T )

dx 0
x

dy nf .

Since L2 space is separable, we have a countable set of basis function {bi(x, y, t)} 

for the space L2 [0, Ω(T )]2 y < x × [0, T ) . Thus, every nh(k) can be decomposed as 

nℎ(k) = i = 1
∞ αikbi. The sequence {nh(k)} is uniformly L∞ bounded, so αk

2 are all uniformly 

bounded. We can then select a subsequence {nh(ki)} from {nh(k)} satisfying limi ∞αj
ki = αj

so that i = 1
∞ αj2 < ∞. If we set n = i = 1

∞ αibi, then, by decomposing any test function 

Ψ ∈ L2 [0, Ω(T )]2 y < x × [0, T )  by Ψ = i = 1
∞ γibi, we have

lim
i ∞ 0

T
dt

0

Ω(T )
dx

0

x
dy nℎ ki − n Ψ =

s = 1

∞
αs

ki − αs γs = 0, (A.25)

which gives the result nℎ ki n.

We can show that n is a weak solution by multiplying the first two equations of (A.14) by a 

test function Ψ ∈ C1 [0, Ω(T )]2 × [0, T ) , Ψ(x, y, T ) = 0, Ψ(x, y, t) = 0, y ≥ x for which

Ψi + 1
2, j + 1

2
(t) ≡ 1

ℎ2 xi

xi + 1
dx yj

yj + 1
dy Ψ(x, y, t), j ≤ i .

For a given L ∈ ℕ+ and ℎ = Ω T
L ,

0

T

dt
i = 1

L − 1

j = 0

i − 1
ℎ2

dni + 1
2, j + 1

2

ℎ (t)

dt Ψi + 1
2, j + 1

2
(t)

+ℎ gi + 1, j + 1
2

(t)ni + 1
2, j + 1

2

ℎ (t) − gi, j + 1
2

(t)ni − 1
2, j + 1

2

ℎ Ψi + 1
2, j + 1

2
(t)

+ℎ gi + 1
2, j + 1(t)ni + 1

2, j + 1
2

ℎ (t) − gi + 1
2, j(t)ni + 1

2, j − 1
2

ℎ Ψi + 1
2, j + 1

2
(t)

+ℎ2βi + 1
2, j + 1

2
(t)ni + 1

2, j + 1
2

ℎ Ψi + 1
2, j + 1

2
(t)

=

0

T

dt
i = 1

L − 1
ℎgi + 1

2, i(t)ni + 1
2, i − 1

2

ℎ (t)Ψi + 1
2, i − 1

2
(t), ni + 1

2, i + 1
2

ℎ = 0.

Integrating the above equation by parts with respect to time, we find
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0

T

dt
i = 1

L − 1

j = 0

i − 1
ℎ2ni + 1

2, j + 1
2

ℎ (t)
dΨi + 1

2, j + 1
2
(t)

dt

+ℎ
i = 1

L − 2

j = 0

i − 1
gi + 1, j + 1

2
(t)ni + 1

2, j + 1
2

ℎ (t) Ψi + 3
2, j + 1

2
(t) − Ψi + 1

2, j + 1
2
(t)

+ℎ
i = 1

L − 1

j = 0

i − 2
gi + 1

2, j + 1(t)ni + 1
2, j + 1

2

ℎ (t) Ψi + 1
2, j + 3

2
(t) − Ψi + 1

2, j + 1
2
(t)

= − ℎ2
i = 1

L − 1

j = 0

i − 1
ni + 1

2, j + 1
2

ℎ (0)Ψi + 1
2, j + 1

2
(0) − ℎ

0

T
dt

i = 1

L − 1
gi + 1

2, 0(t

)ni + 1
2, − 1

2

ℎ (t)Ψi + 1
2, 1

2
(t)

−
0

T
dt

i = 1

L − 1
ℎgi + 1

2, i(t)ni + 1
2, i − 1

2

ℎ (t)Ψi + 1
2, i − 1

2
(t)

+ℎ
0

T
dt

j = 0

L − 2
gL, j + 1

2
(t)nL − 1

2, j + 1
2

ℎ (t)ΨL − 1
2, j + 1

2
(t)

+
i = 1

L − 1

j = 0

i − 1
ℎβi + 1

2, j + 1
2
(t)ni + 1

2, j + 1
2

ℎ (t)Ψi + 1
2, j + 1

2
(t) .

(A.26)

Since Ψi + 3
2, j + 1

2
(t) − Ψi + 1

2, j + 1
2

(t) =
iℎ
(i + 1)ℎ

dx jℎ
(j + 1)ℎ

dy
x
x + ℎ

ds ∂Ψ
∂s (s, y, t),, |nh| is 

uniformly bounded while g is C1 continuous. From above we can pick a subsequence 

in nℎ k , denoted by nh(ki) → n. We use nh = nh(ki) in the above formula. Since 

Ψ ∈ C1[0, T ] × [0, Ω(T )]2, given any Ψ we have a positive upper bound R Ψ < ∞ for Ψ and 

any of its first derivatives. Thus,

∣
0

T
dt

i = 1

L − 1

j = 0

i − 1
ℎ2n

i + 1
2, j + 1

2

ℎ ki
(t)

dΨi + 1
2, j + 1

2
(t)

dt

−
0

T
dt

0
Ω(T )

dx
0

x
dy nℎ ki (x, y, t)∂Ψ(x, y, t)

∂t ∣

≤
0

T
dt

i = 1

L − 1

iℎ

(i + 1)ℎ
dx

iℎ

x
dy|nℎ ki (x, y, t)∂Ψ(x, y, t)

∂t | .

As ℎ 0, |
0

T
dt

i = 0

L − 1
iℎ
(i + 1)ℎdx

iℎ
x dynℎ ki (x, y, t)∂Ψ(x, y, t)

∂t | 0 since  ∂Ψ
∂t  and nℎ ki  are all 

bounded. Moreover,

0

T
dt

0

Ω(T )
dx

0

x
dy ℎ2nℎ ki (x, y, t)∂Ψ(x, y, t)

∂t

0

T
dt

0

Ω(T )
dx

0

x
dy ℎ2n(x, y, t)∂Ψ(x, y, t)

∂t
(A.27)
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so that the first term in (A.26) tends to the limit in (A.28). By the same procedure and using 

the condition that g is uniformly continuous in 0, T × 0, Ω t 2 gisC1 , it is easy to verify 

that the second and third terms on the LHS of (A.26) tend to 0
T dt 0

Ω(T )dx 0
xdy (gn)(x, y, t) ∂Ψ

∂x

and 0
T dt 0

Ω(T )dx 0
xdy (gn)(x, y, t) ∂Ψ

∂y , respectively.

It is also easy to verify that the first and second terms on the RHS of (A.26) tend to 

− 0
T dt 0

Ω(T )dx 0
xdy n(x, y, 0)Ψ(x, y, 0) and

−2 0
T

dt 0
∞

dx 0
x

dy 0
x

dz Ψ(z, 0, t)β (x, y, z, t)n(x, y, t),

respectively. The third term on the RHS of (A.26)

ℎ
0

T
dt

i = 1

L − 1
gi + 1

2, i(t)ni + 1
2, i − 1

2

ℎ (t)Ψi + 1
2, i − 1

2
(t)

tends to 0 since Ψ is C1 continuous and is 0 on the boundary x = y. Since Ψ is continuous 

and is 0 at x = Ω(T),

ℎ
0

T

j = 0

L − 2
gL, j + 1

2
(t)nL − 1

2, j + 1
2

ℎ (t)ΨL − 1
2, j + 1

2
(t)dt 0 as ℎ 0.

Finally, the last term on the RHS of (A.26)

0

T

i = 1

L − 1

j = 0

i − 1
ℎ2βi + 1

2, j + 1
2

(t)ni + 1
2, j + 1

2

ℎ (t)Ψi + 1
2, j + 1

2
(t)dt

0
T

dt 0
Ω(T )

dx 0
x

dy β(x, y, t)n(x, y, t)Ψ(x, y, t) .

By passing to the limit h → 0, we conclude that n exactly satisfies the condition of a weak 

solution in (A.4). Since the numerical solution obtained by the scheme in Appendix B is 

a discretization in time for the ODE system (A.14) it is an approximation to the solution 

of (A.14). Provided h, Δt → 0 satisfies the CFL condition 2‖g‖∞Δt < h, and we conclude 

that at least a subsequence of the numerical solutions converge to the unique weak solution 

of (A.1). Furthermore, recently, the existence to an eigenpair of the adder-sizer PDE (A.1) 

under specific smooth conditions satisfied by the coefficients g, β, β  has been proved in [10], 

allowing for studying asymptotic behavior of the solution.

Appendix B.: Numerical scheme.

We denote
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u(t) = n1(t), n2(t), …, nL − 1(t) T,

where nj(t) = n1
2, j − 1

2
, n1 + 1

2, j − 1
2

, …, nL − 1
2, j − 1

2
  and ni≤j = 0. Equations (2.17) and (2.18) 

can then be written in the form u(t + Δt) = A(t)u(t), where

A(t) =

B1 + C1 C2 C3 C4 ⋯ CL − 2 CL − 1
D2 B2 0 0 ⋯ 0 0
0 D3 B3 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ BL − 2 0
0 0 0 0 ⋯ DL − 1 BL − 1

(B.1)

is made up of the following L – 1 L × L matrices:

Bi =
0(i × i) 0((L − i) × i)

0(i × (L − i)) bi
,

Ci =
0(1 × i) 0((L − 1) × i)

0(1 × (L − i)) ci
,

and Di =
0(i × i) 0((L − i) × i)

0(i × (L − i)) di
,

in which bi is a lower bidiagonal matrix with diagonal

diag bi = 1 − 1
ℎgj + 1, i − 1

2
(t)dt − 1

ℎgj + 1
2, i(t)dt − βj + 1

2, i − 1
2
(t)dt, j = i, i

+ 1, …, L − 1,
(B.2)

and lower off diagonal bi −1 = gj, i − 1
2

(t)dt
ℎ , j = i + 1, …, L − 1,

ci sj = β i − 1
2 + j, i − 1

2
s + 1

2 ℎ, t dt, i + j − s − 1 > 0, i + j ≤ L,

0 otherwise, 
(B.3)

and di is a diagonal matrix diag di = gj + 1
2, i − 1(t)dt

ℎ , j = i, i + 1, …, L − 1.

Appendix C.: Monte-Carlo simulations.

In this section we describe the implementation of our Monte-Carlo simulations of the 

process underlying the adder-sizer mechanism. Suppose we have a list of cells at time t 
denoted by S t = c1 xi, yi, t, b1 , …, ci xi, yi, t, bi , where xi is cell ci’s volume and yi is its 

added volume. The cell’s division factor bi is determined at birth, which is drawn from a 

uniform distribution U(0, 1).
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Suppose we have a β of the form 2.10 and β  of the form 2.12. We set the maximum 

allowable time step to Δt = 0.01 and determine the next state of the system at time t’ by the 

following

• Step 1: For each cell i, calculate its age ai at time t by the exponential growth 

law dx
dt = λx. We require that Gi = 0

aiγ a′ da′ < bi at the beginning of each step 

for every i.

• Step 2: For each cell, calculate Gi = 0
ai + Δtγ a′ da′. If Gi ≥ bi, then we numerical 

calculate a Δti such that 0
ai + Δtiγ a′ da′ ≈ bi.

• Step 3: Choose the smallest Δti among all possible Δti’s as the new time step, set 

time t′ = t + Δti, and let all cells gain an extra volume λxiΔti. If there is no such 

Δti, which means Gi < bi for every i, go to step 5.

• Step 4: Remove cell i from S(t′), record its volume x at t′, and generate the 

random numbers r from the distribution h(r) and bm, bm+1 from U(0, 1). Then, 

add two new cells in S(t′) labeled by cm(rx, 0, t, bm) and cm+1(x − rx, 0, t, bm+1).

• Step 5: If Gi < bi for all i, set t = t′ and let all cells gain an extra volume λxiΔti.

• Step 6: Return to step 1 until t′ > tmax, the maximum time of the simulation.

Here, we set the initial added volume of all cells to zero so the condition in step 1 above 

is automatically satisfied at t = 0. For our runs, we used 10 cells of initial volume 0.5 and 

tmax = T is the same as the maximum time for the numerical PDE experiments. We can 

also generalize the algorithm to incorporate the mother-daughter growth rate correlation by 

including a new label λi to each cell.
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Fig. 1. 
The size and added-size state space for cell populations. The expected total number of cells 
at time t with added size within [0, y] and volume (or “size”) within [0, x] is defined as N(x, 
y, t). Over an increment in time dt, the domain Ω = [0, y] × [0, x] infinitesimally distorts 
Ω → Ω + dΩ through the growth increment gdt. The total population within this distorted 
domain changes only due to birth and death. Cells within Ω that divide always give rise to 
two daughters within Ω leading to a net change of +1 cell. (b) The z′ and x′ domains of the 
differential birth rate function β x′, y′, z′, t . Cells outside of Ω can contribute a net +1 or +2 

cells in Ω depending on the division patterns defined in the depicted regions.
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Fig. 2. 
The size and added-size dependent rate β(x,y) constructed using a gamma distribution for 
the splitting probability γ (equations (2.8) and (2.10)). We show projections at fixed values 
of x. In (a) the parameters are σa = 0.2, while in (b) σa = 1. Note the difference in scale and 
that γ(a) with a higher standard deviation leads to a lower overall cell division rate β. When 
x is large, a defined in (2.9) is small and a nonzero division rate β(x, y → 0) > 0 arises 
indicating that large newborn cells divide quickly to control size across the population. This 
particular feature arises from our construction of β as a hazard function. Modifying birth 
rate at small values of y so that β(x, y = 0) → 0 will not qualitatively change the predicted 
densities as long as the birth rate peak persists at small y.
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Fig. 3. 
Numerically computed densities n x, y, t = n(x, y, t)/N(t) using g(x, y, t) = λx and β x, y, z, t
defined by (2.10), (2.8), and (2.14). For all plots, we use σa = 0.1 in γ(a) (equation (2.8))) 

and rescale size in units of Δ. In (a)–(c), we use the sharp, single-peaked differential division 
function h(r) shown in the inset (σr = 0.1, δ = 0) and plot β x, y, 4 , β x, y, 12 , and β x, y, 12 , 

respectively. In (d)–(f), we plot the densities using a broad (in fact, double-peaked) 
differential division function h(r) with parameters σr = 0.2, δ = 0.7. In all calculations, 
we assumed an initial condition corresponding to a single newly born (y = 0) cell with size 
x = 1. For more asymmetric cell division in (d)–(f), the density spreads faster. In these cases, 
the densities closely approach a steady-state distribution by about t = 12. Also shown in 
each plot are realizations of Monte-Carlo simulations of the discrete process. Individual cells 
are represented by blue dots, which accurately sample the normalized continuous densities 
n x, y, t .
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Fig. 4. 
Comparison of cell densities n x, y, t  and cell division event densities ρd(x, y, T) (equation 

(2.7)). The standard deviation σa = 0.1 is used in all calculations. In (a) and (b) we plot 
n x, y, t = 12  and ρd(x, y, T) using σr = 0.2, δ = 0 while in (c) an (d) we used a broader 
differential division function in which σr = 0.3, δ = 0.7. Realizations from Monte-Carlo 
simulations are overlayed. In (b) and (d), divisions are accumulated up to time T = 12.
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Fig. 5. 
(a) Size distributions n x, t  for σa = 0.2 at times t = 1, 2, 4, 10. (b) n x, t = 1, 2, 4, 10  for σa 

= 1, σr = 0.1, and (δ = 0. (c) The corresponding mean cell sizes 〈x(t)〉. The curve associated 
with the σa = 0.2 saturates while the one corresponding to σa = 1 exhibits blowup. However, 
the blowup is suppressed if a death term (μ = ln 2) is included.
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Fig. 6. 
Population-level evolution of cellular growth rate. Parameters used are λ = ln2 σa = 0.2, σr 

= 0.1, δ = 0. (a)–(b) The marginalized density n λ, t  as a function of growth rate λ for no 
correlation (R = 0) and initial growth rate λ = 0.55. The peak in the distribution broadens 
as the mean evolves toward the preferred mean value λ = ln2. (c) The evolution of the mean 
〈λ(t)〉 for different values of correlation R. Note that the steady-state values 〈λ(∞)〉 depend 
on the correlation R.
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Fig. 7. 
Schematic for the initiation-adder process. DNA replication is initiated (indicated by the red 
dot) before copied DNA is segregated and cells divide. In this example, q = 1 and y2 is an 
added volume per origination site for two origination sites. The density of cells with q = 1 

copy of DNA (before DNA replication initiation) is denoted n1 (x, y, t) while the density of 
cells postinitiation is denoted n2(x, y, t), where y denotes the volume added after initiation. 
The factor that controls y1 + y2 in the initiation-adder model is the volume Δ added 
between successive initiation events, rather than between successive cell divisions. Thus, 
the controlled variable (added volume in this case) spans the preinitiation and postinitiation 
states.
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Fig. 8. 
Normalized densities of preinitiation cell populations n1 and postinitiation cell populations 

n2 at various fixed times t = 1, 2, 12. Here, we used ki(x) = p(x)/ 1 − 0
xp x′ dx′  with 

p x ∼ N 1, 0.1  and the same β x′, y′, z′, t . that used in Figure 3(d)–(f). (a)–(c) shows 
the normalized densities n1 x, y, t ≡ n1 x, y, t /N t  where N t = dy dx n1 + n2 . (d)–(f) 

shows the normalized postinitiation density n2 x, y, t . For the ki used in this example, 

the preinitiation densities span larger volume and added volumes. The densities are 
indistinguishable from those at steady state after about t = 2.
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