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Abstract—A framework for ground vehicle localization that
uses cellular signals of opportunity (SOPs), a digital map,
an inertial measurement unit (IMU), and a global navigation
satellite system (GNSS) receiver is developed. This framework
aims to enable localization in urban environment where GNSS
signals could be unusable or unreliable. The proposed framework
employs an extended Kalman filter (EKF) to fuse pseudorange
observables extracted from cellular SOPs, IMU measurements,
and GNSS-derived position estimates (when available). TheEKF
is coupled with a closed-loop map-matching approach. The
framework assumes the positions of the cellular towers to be
known and it estimates the vehicle’s states (position, velocity,
orientation, and IMU biases) along with the difference between
the vehicle-mounted receiver clock error states (bias and drift)
and each cellular SOP clock error states. Experimental results
with cellular long-term evolution (LTE) SOPs are presented,
evaluating the efficacy and accuracy of the proposed framework
in a deep urban area with a limited sky view. The experimental
results demonstrate a position root-mean squared error (RMSE)
of 2.8 m over a 1380 m trajectory during which GNSS signals are
available and an RMSE of 3.12 m over the same trajectory during
which GNSS signals were unavailable for 330 m. Moreover,
compared to localization with a traditional GNSS-IMU integrated
systems, it is demonstrated that the proposed framework reduces
the position RMSE by 22% whenever GNSS signals are available
and by 81% whenever GNSS signals are unavailable.

I. I NTRODUCTION

Localization technologies for navigation and ground vehi-
cle autonomy levels have been evolving hand in hand. Ten
years ago, ground vehicle localization systems for navigation
consisted of a GPS receiver, wheel odometer, and an inertial
measurement unit (IMU). Localization errors larger than lane-
level and periodic dropouts of the navigation solution were
tolerable to the driver who had to follow the path drawn on
the GPS navigation system. Although localization and some
form of path planning from a start location to a desired
destination were performed autonomously, the driver had to
steer the car, control acceleration, avoid obstacles, change
lanes, etc. Today, as ground vehicles evolve by incorporating
autonomous-type driving technologies (e.g., cruise control,
active steering, collision avoidance, lane detection, etc.) the
requirements on localization and navigation technologiesbe-
come more stringent, necessitating the need of additional
sensors (lidar, vision, radar, etc.). Large errors become less
tolerable and consistent availability of the navigation solution
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is critical. For example, it is not enough to estimate on which
freeway the vehicle is driving as certain autonomous actions
require lane-level localization. This is crucial for intersections,
exiting or entering a freeway, or at a junction of different
freeways or streets. Moreover, when entering the freeway
for instance, the navigation solution must be continuously
available to ensure the safety of passengers and other drivers.
Looking ahead, as ground vehicles get endowed with full
autonomy, robustness and accuracy of their localization and
navigation system become of paramount importance. Without
a human driver-in-the-loop, one expects not to question the
availability of the localization and navigation system andto
establish predictable performance of such systems in different
driving scenarios.

Despite the promise of global navigation satellite system
(GNSS) signals as an accurate sensing modality, in GNSS-
challenged environments (e.g., deep urban streets) these sig-
nals suffer from different error sources, including signalblock-
age due to limited sky view and multipath, in addition to
nominal GNSS errors, uncertainties in satellite clocks and
positions, signal propagation delays in the ionosphere and
troposphere, user receiver noise, etc. In such conditions,it
is imperative to continuously monitor the integrity of GNSS
signals. Integrity monitoring refers to the capability of the
system to detect GNSS anomalies and warn the user when
the system should not use GNSS measurements [1]. Integrity
monitoring frameworks are divided into internal and exter-
nal categories [2]. External methods leverage a network of
ground monitoring stations to monitor the transmitted signals,
while internal methods (e.g., receiver autonomous integrity
monitoring (RAIM)) typically use the redundant information
within the transmitted navigation signals. As shown in [3],
the navigation framework can be coupled with these integrity
monitoring methods to detect GNSS unreliability and un-
availability. In addition to unavailability due to anomalies,
GNSS signals may become unavailable in jamming or spoofing
situations. It is also often the case that GNSS receivers lose
track of the signals in multipath or non-line-of-sight (NLOS)
environments, making the GNSS position solution unreliable.
In such cases, an integrity monitoring system would alert the
user of an unreliable or unavailable position solution. Such
integrity monitoring frameworks can be adapted for cellular-
based navigation, the details of which can be found in [4].

Traditional vehicular localization and navigation technolo-
gies were heavily dependent on GNSS receivers. Over the
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past decade, these systems evolved by coupling GNSS re-
ceivers with on-board sensors, such as IMUs. Moreover, such
navigation systems may have access to proximity localization
techniques (e.g., lidar, camera, and radar), which providelocal
position information and aid in collision avoidance. Map-
matching techniques have also been developed to match the
navigation solution obtained by the navigation system to a
point in the digital map [3], [5], [6]. More recently, signals
of opportunity (SOPs) have been fused with GNSS receivers
to complement the GNSS navigation solution [7] or as an
alternative to GNSS [8].

This paper considers for the first time the fusion of some
of the above readily available off-the-shelf technologiesto
achieve a highly robust and accurate navigation solution inur-
ban environments by complementing the individual technolo-
gies’ desirable attributes. Specifically, the developed system
uses:

• GNSS: GNSS can provide meter-level and submeter-
level accurate navigation solution using code and carrier
phase measurements, respectively, in a global frame.
However, GNSS signals are highly attenuated indoors
and in deep urban canyons, which makes them practically
unusable in these environments. Moreover, GNSS signals
are sensitive to multipath and susceptible to intentional
interference (jamming) and counterfeit signals (spoofing),
which can wreak havoc in military and civilian applica-
tions.

• IMU : While IMU sensors provide an accurate short-
term navigation solution, one cannot rely on them as
a standalone, accurate solution for long-term navigation.
This is due to the fact that the noisy outputs of IMUs are
integrated through an inertial navigation system (INS),
causing pose estimation errors to accumulate over time
[9], [10]. The accumulated error rate is dependent on the
quality of the IMU. These errors compromise the safe
and efficient operation requirements for ground vehicle
navigation in urban environments. Thus, for long-term
navigation, an IMU sensor becomes unreliable, and an
aiding source is needed to correct its drift and improve
the navigation solution.

• Cellular SOPs: Cellular base transceiver stations (BTSs)
are abundant and available in several bands, aggregating
to tens of MHz of usable cellular radio frequency spec-
trum, making them robust against jamming and spoofing
attacks or service outage in certain bands or providers.
The cellular system BTS configuration, by construction of
the hexagonal cells, possesses favorable geometry, which
yields low horizontal dilution of precision (HDOP). The
received carrier-to-noise ratio from nearby cellular BTSs
is commonly tens of dBs higher than that of GNSS space
vehicle (SV) signals, making these signals usable for
localization purposes in urban environments. However,
due to the low elevation angles of cellular towers com-
pared to GNSS SVs, received cellular signals are affected
by multipath (e.g., due to buildings, trees, poles, other
vehicles, etc.). Nevertheless, cellular signals have a large
bandwidth (up to 20 MHz), which is useful to the receiver

in detecting and alleviating multipath effects, leading to
precise time-of-arrival (TOA) estimates and in turn a
precise navigation solution.

• Map-matching: Map-matching for ground vehicle nav-
igation has been extensively studied [11]–[14]. It has
been shown that a map-matching framework can provide
integrity provision at the lane-level [3]. Map-matching
can also correct sensor errors [15]–[17]. Moreover, due
to the fact that the errors in digital maps are typically
smaller than sensor errors, the digital map information
can be used to correct the accumulated error in dead-
reckoning (DR)-type sensors (e.g., IMUs) [18]. However,
digital maps can have displacement errors.

This article presents a robust vehicular localization frame-
work for navigating in both GNSS-available and GNSS-
denied urban environments. The article is written in a tutorial
fashion with sufficient details about the proposed system and
points to references for the interested reader to probe for
further details. The proposed framework was tested in different
driving scenarios with a comparable performance (within 2-3
meters) of that of an expensive high-end system: one that uses
a dual-frequency GNSS with real-time kinematic (RTK) and a
tactical-grade IMU. The proposed approach does not rely on
GNSS for ground vehicle navigation in urban environments.
Instead, it exploits the abundance of ambient cellular SOPsin
such environments. It is worth noting that GNSS suffers from
other issues beyond lack of coverage such as severe multipath
and susceptibility to jamming and spoofing. However, the
focus of this paper is to develop a low-cost system that
performs well without GNSS, which could be unavailable or
unreliable for whatever reason.

The proposed system uses a computationally efficient ex-
tended Kalman filter (EKF) to fuse digital map data, IMU data,
GNSS-derived position estimate, and cellular SOP pseudor-
anges. When GNSS signals are unavailable or compromised,
the framework extracts navigation observables from cellular
signals and fuses them with IMU and map data and con-
tinuously estimates the vehicle’s states for subsequent time
as it navigates without GNSS signals. When GNSS signals
are available, the navigation solution is obtained by fusing
the IMU data, map data, cellular signals, and GNSS-derived
position estimate. In both modes, a closed-loop map-matching
approach is developed, where the refined vehicle position
estimate obtained from fusing cellular SOP pseudoranges,
IMU, GNSS-derived position estimate (if GNSS is available),
and digital road maps is used in a feedback to correct estimates
of the receiver and cellular SOP clock error states. It is
worth noting that the proposed framework does not specifically
assume RTK-type GNSS-derived position estimates. Instead,
it considers a low-cost GNSS receiver producing a meter-level
accurate navigation solution.

Fig. 1 illustrates a high-level diagram of the proposed
ground vehicle localization system. Fig. 1(a) illustratesa
block diagram of the cellular-aided IMU framework. Fig.
1(b) demonstrates the proposed closed-loop map-matching ap-
proach with inputs being GNSS signals, cellular SOP signals,
IMU data, and digital road network and the output being
the refined navigation solution. In contrast to existing map-
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Fig. 1. (a) A high-level diagram of the cellular-aided IMU framework
where an IMU sensor is used in a loosely-coupled fashion. (b)The proposed
closed-loop map-matching approach. The algorithm is closed-loop where the
navigation solution is fed back to correct estimates of the receiver and cellular
SOPs clock error states.

matching approaches, the proposed algorithm is closed-loop,
where the navigation solution is fed back to correct estimates
of the receiver and cellular SOPs clock error states. Note that
the problems of localization and navigation are not isolated
from each other, but rather closely linked. If a vehicle does
not know its exact position at the start of a planned trajectory,
it will encounter problems in reaching the destination [19].
Hence, in the sequel, the term navigation is used to capture
both localization and navigation purposes.

To evaluate the performance of the proposed ground vehicle
navigation algorithm, two experimental tests were performed
using ambient cellular long-term evolution (LTE) SOPs in
(1) an urban environment where signal attenuation severely
affects the received pseudoranges and (2) an environment
where SOPs have poor geometric diversity. Experimental
results with the proposed method are presented illustrating
a close match between the vehicle’s true trajectory and the
estimated trajectory using the cellular-aided IMU + map data,
particularly in a GNSS-denied environment with a limited
line-of-sight (LOS) to the open sky. The experimental results
demonstrate a position root-mean squared error (RMSE) of
2.8 m over a 1380 m trajectory with available GNSS signals
and an RMSE of 3.12 m over the same trajectory during
which GNSS signals were unavailable for 330 m. Moreover,
it is demonstrated that incorporating the proposed algorithm
reduces the position RMSE by 22% and 81%, in GNSS-
available and GNSS-denied environments, respectively, from
the RMSE obtained by a GNSS-IMU navigation solution.

The remainder of this article is organized as follows. Section

II describes the dynamic models for the IMU and SOPs as
well as the model for the digital map. Section III proposes an
EKF-based framework for fusing IMU, GNSS-derived posi-
tion estimate, digital map, and cellular pseudoranges in both
GNSS-available and GNSS-denied environments. Section IV
provides the experimental results and the performance analysis
of the proposed framework in deep urban environment with
a limited LOS to the open sky. Section V gives concluding
remarks.

II. NAVIGATION FRAMEWORK MODEL DESCRIPTION

This section describes the models of the different compo-
nents of the vehicular navigation framework: IMU, cellular
SOP, GNSS receiver, and digital map.

A. IMU Measurement Model

An IMU produces measurements of angular rate and spe-
cific force. In order to use these measurements, the IMU’s
orientation, position, velocity, and measurement biases must
be estimated. In this work, an IMU state vectorxv consisting
of 16 states is used and is given by

xv =
[

I
Gq̄

T , pT

v , ṗT

v , bTg , bTa

]T

, (1)

where I
Gq̄ is a four-dimensional (4-D) unit quaternion rep-

resenting the IMU’s orientation (i.e., rotation from a global
frameG to the IMU’s body frameI), where frameG is set to
be an inertial frame, such as the Earth-centered inertial frame;
pv , [pv,x, pv,y, pv,z]

T and ṗv are the three-dimensional (3-
D) position and velocity of the vehicle, respectively, expressed
in G; andbg andba are the 3-D gyroscope and accelerometer
biases, respectively. The IMU’s measurements of the angular
rateω and specific forcea are available everyT seconds and
can be modeled as

ω = Iω + bg + ng, (2)

a = R[IkG q̄]
(

GaI −
Gg

)

+ ba + na, (3)

respectively, whereIω is the IMU’s true rotation rate;ng

is a measurement noise vector, which is modeled as a white
noise sequence with covarianceQg; R[IkG q̄] is the equivalent
rotation matrix of IkG q̄; GaI is the IMU’s true acceleration
in frame G; and na is a measurement noise vector, which
is modeled as a white noise sequence with covarianceQa.
The evolution of the gyroscope and accelerometer biases are
modeled as random walks, i.e.,ḃa = wa andḃg = wg, where
wa andwg are modeled as zero-mean random vectors with
covariancesσ2

wa
I3×3 andσ2

wg
I3×3, respectively, whereIn×n

denotes ann×n identity matrix. The equivalent rotation matrix
R[q̄] of the quaternion vector̄q = [q0, qv1 , qv2 , qv3 ]

T is

R[q̄] = [r1, r2, r3] , r1 =





q20 + q2v1 − q2v2 − q2v3
2(qv1qv2 − q0qv3)
2(qv1qv3 + q0qv2)



 ,

r2 =





2(qv1qv2 + q0qv3)
q20 − q2v1 + q2v2 − q2v3
2(qv2qv3 − q0qv1)



 ,
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r3 =





2(qv1qv3 − q0qv3)
2(qv2qv3 + q0qv1)

q20 − q2v1 − q2v2 + q2v3



 .

The measurements in (2)-(3) will be used in the EKF
to perform a time update of the estimate ofxv between
measurement updates. This will be discussed in Subsection
III-A.

B. GNSS Receiver Measurement Model

The GNSS receiver is assumed to estimate the receiver’s
3-D position according to

p̂GNSS = pGNSS +wGNSS,

where pGNSS , [pGNSSx
, pGNSSy

, pGNSSz
]T is the

true receiver position,wGNSS models the uncertainty
about this estimate, which is modeled as a zero-
mean Gaussian random vector with a covariance
Σg = diag

[

σ2
GNSS,x, σ

2
GNSS,y, σ

2
GNSS,z

]

. To account
for the effect of multipath in urban environment navigation,
ΣGNSS consists of nominal errors (e.g., uncertainties in
satellite clocks and positions, propagation delays in the
ionosphere and troposphere, receiver noise, etc.) as well as
multipath, i.e.,

Σg = ΣGNSS,nom +ΣGNSS,mp,

where ΣGNSS,nom is the covariance of the estimated error
due to nominal errors, andΣGNSS,mp is the covariance of
the estimated error due to multipath, which can be obtained
from multipath models [20], [21].

C. Cellular SOP Received Signal Model

Cellular towers transmit signals for synchronization and
channel estimation purposes. These signals can be used to
deduce the pseudorange between the transmitting tower and
the receiver. In code division multiple-access (CDMA) sys-
tems, a pilot signal consisting of a pseudorandom noise (PRN)
sequence, known as the short code, is modulated by a carrier
signal and broadcast by each BTS for synchronization pur-
poses [22]. Therefore, by knowing the short code, the receiver
may measure the code phase of the pilot signal as well as its
carrier phase; hence, forming a pseudorange measurement to
each BTS transmitting the pilot signal [23], [24].

Two types of positioning techniques can be defined for LTE,
namely network-based and user equipment (UE)-based posi-
tioning. In network-based positioning, a positioning reference
signal (PRS) is broadcast by the evolved Node B (eNodeB)
[25]. The UE uses the PRS to measure the pseudoranges
to multiple eNodeBs and transfers the measurements to the
network, where the location of the UE is estimated. Over the
past few years, research has focused on UE-based positioning
techniques, where the broadcast reference signals, namelypri-
mary synchronization signal (PSS), secondary synchronization
signal (SSS), and cell-specific reference signal (CRS) wereex-
plained for navigation purposes [26]. Among these sequences,
it was demonstrated that the CRS yields the most precise
positioning due to its large transmission bandwidth [27]. CRS

is transmitted to estimate the channel between the UE and
the eNodeB and could have a bandwidth up to 20 MHz.
Several techniques have been proposed to extract the TOA
from the CRS such as (1) threshold-based approaches [28],
[29], (2) super resolution algorithm [30], and (3) software-
defined receivers [31], [32]. Experimental results have shown
meter-level positioning accuracy using standalone LTE CRS
signals (i.e., without fusing other sensors).

In a very dynamic environment, e.g., for a moving receiver,
channel coherence time is relatively small (less than the
measurement’s sampling time). Therefore, in a line of sight
(LOS) condition, the pseudorange error due to the multipath
can be modeled with a zero mean white Gaussian sequence and
an additive Gaussian noise model is valid for LTE pseudorange
measurements. In a NLOS scenario, the receiver tracks the
multipath signal instead of the LOS. Therefore, a nonzero
bias must be added to the pseudorange measurement model.
Research have proposed multiple NLOS identification methods
including cooperative and noncooperative techniques [33].
When a NLOS measurement is detected, the receiver can either
exclude the measurement from the measurement set or it can
reduce its weight to decrease the error due to the NLOS signal
[33]. NLOS identification is out of the scope of this research
and all measurements are considered to be LOS.

A model of the LOS pseudorange made by the receiver on
then-th cellular SOP is given by [34]

zsop,n(k) =
∥

∥pv(k)− psop,n

∥

∥

2

+ c · [δtr(k)− δtsop,n(k)] + vsop,n(k),

n =1, . . . , Nsop,

whereNsop is the total number of available cellular SOPs;
psop,n and δtsop,n are the 3-D position vector and the clock
bias of then-th cellular SOP transmitter, respectively; and
vsop,n is the measurement noise, which is modeled as a zero-
mean white Gaussian sequence with varianceσ2

sop,n. Note
that the pseudorange measurement noise variance includes
both the effect of noise and multipath error. Since cellularSOP
transmitters are stationary, their positions

{

psop,n

}Nsop

n=1
could

be readily obtained, e.g., from cellular tower location databases
or by mapping thema priori [35], [36]. The proposed frame-
work assumesa priori knowledge of

{

psop,n

}Nsop

n=1
. Note that

in general, some cellular SOP transmitter positions tend to
overlap, due to having base stations from multiple carrier
providers on the same physical tower. In this paper, only one
cellular SOP is taken from a physical tower location; hence,
{

psop,n

}Nsop

n=1
are all different. By virtue of the hexagonal

cellular system structure, cellular SOPs from different tower
locations tend to be distributed fairly uniformly around the
receiver, which significantly reduces the dilution of precision
[36]. Optimal performance is obtained when the SOPs form a
regular polygon around the receiver whenNsop ≥ 3 [37]. It
was observed from several data sets of LTE signals recorded
in vehicular environments that typical values ofNsop vary
between 3 and 5 for each operator. The 3GPP2 protocol
requires cellular base stations to be synchronized to within
10µs from GPS time [38]. Cellular base stations are typically
equipped with GNSS receivers to meet this synchronization
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requirement. While this level of synchronization is acceptable
for communication purposes, it might introduce significant
errors (on the order of tens of meters) in the pseudorange
measurements if not accounted for properly, which in turn
introduces large errors in the navigation solution. Therefore,
each cellular SOP is assumed to have its own clock er-
ror states, namely clock bias and drift. Moreover, the SOP
clock biases are stochastic and dynamic; hence, they must be
continuously estimated. The vehicle-mounted receiver clock

error state vector isxclk,r ,

[

δtr, δ̇tr

]T

, where δ̇tr is the
receiver’s clock drift, and then-th cellular SOP clock error

state vector isxclk,sop,n ,

[

δtsop,n, δ̇tsop,n

]T

, where δ̇tsop,n
is the transmitter’s clock drift [39]. The discrete-time dynamics
of xclk,r andxclk,sop,n are given by

xclk,r(k + 1) = Fclkxclk,r(k) +wclk,r(k), (4)

xclk,sop,n(k + 1) = Fclkxclk,sop,n(k) +wclk,sop,n(k), (5)

where wclk,r and wclk,sop,n are zero-mean white random
sequences with covariancesQclk,r andQclk,sop,n, respectively,
and

Fclk =

[

1 T
0 1

]

,

Qclk,r =

[

Sw̃δt,r
T + Sw̃δ̇t,r

T 3

3
Sw̃δ̇t,r

T 2

2

Sw̃δ̇t,r

T 2

2
Sw̃δ̇t,r

T

]

,

whereT is the sampling time,Sw̃δt,r
and Sw̃δ̇t,r

are the
power spectra of the continuous-time equivalent process noise
driving the vehicle-mounted receiver’s clock bias and drift,
respectively, andQclk,sop,n has the same form asQclk,r except
that Sw̃δt,r

and Sw̃δ̇t,r
are replaced with then-th cellular

SOP-specific spectraSw̃δt,sop,n
and Sw̃δ̇t,sop,n

, respectively.
The power spectra can be related to the power-law coeffi-
cients {hα}

2

α=−2, which have been shown through labora-
tory experiments to characterize the power spectral density
of the fractional frequency deviationy(t) of an oscillator
from nominal frequency, namely,Sy(f) =

∑2

α=−2 hαf
α

[40], [41]. It is common to approximate such relationships
by considering only the frequency random-walk coefficient
h−2 and the white frequency coefficienth0, which lead
to Sw̃δt,r

≈ h0,r/2
(

Sw̃δt,sop,n
≈ h0,sop,n/2

)

and Sw̃δ̇t,r
≈

2π2h−2,r

(

Sw̃δ̇t,sop,n
≈ 2π2h−2,sop,n

)

[42], [43].
Since the SOP pseudorange measurement is parameterized

by the difference between the receiver’s and the SOP’s clock
biases [39], one only needs to estimate the difference in
clock biases and clock drifts. Hence estimatingxclk,r and
xclk,sop,n individually is unnecessary in this framework; in-
stead, the difference∆xclk,sop,n = c · (xclk,r − xclk,sop,n) ,
[

c∆δtsop,n, c∆δ̇tsop,n

]T

is estimated, wherec∆δtsop,n ,

c · [δtr − δtsop,n]
T andc∆δ̇tsop,n , c ·

[

δ̇tr − δ̇tsop,n

]T

. The
augmented clock error state is defined as

xclk,sop ,

[

∆xT

clk,sop,1, . . . ,∆xT

clk,sop,Nsop

]T

. (6)

It can be readily seen thatxclk,sop evolves according to the
discrete-time dynamics

xclk,sop(k + 1) = Φclkxclk,sop(k) +wclk,sop(k), (7)

whereΦclk , diag [Fclk, . . . ,Fclk] and wclk,sop is a zero-
mean white random sequence with covarianceQclk,sop given
by

Qclk,sop =

c2











Qclk,sop,r,1 Qclk,r . . . Qclk,r

Qclk,r Qclk,sop,r,2 . . . Qclk,r

...
...

. . .
...

Qclk,r Qclk,r . . . Qclk,sop,r,Nsop











.

where

Qclk,sop,r,i , Qclk,sop,i +Qclk,r, for i = 1, · · · , Nsop.

D. Map Model

Digital maps provide geographical data and location in-
formation, which can be used for aligning noisy traces and
displaying traversed trajectories. Digital maps are extensively
used in modern navigation systems for accurate vehicle guid-
ance and advanced driver-assistance systems (ADAS) func-
tions. To this end, geographical information systems (GISs)
are employed to snap the recorded vehicle trajectory trace to
the digital road map using map-matching techniques. Map-
matching is the process of associating the vehicle’s navigation
solution with a spatial road map [3], [44]. Map-matching
algorithms enhance the navigation solution by incorporating
precise road network data anda priori information of road
features [14]. Map suppliers have dedicated considerable atten-
tion recently to develop highly accurate digital maps to meet
the requirements of autonomous vehicle navigation in urban
environments and intelligent transportation systems [45].

The map used in proposed framework is developed based
on an Open Street Map (OSM) database [46] of Riverside,
California, U.S.A. OSM is built by a community of mappers
that contribute and maintain roads, trails, and railway sta-
tions information. A MATLAB-based parser was developed
to extract the road coordinates and interpolate map-matched
positions between two successive points with a distance greater
than a specified threshold. The elevation profile of the road
is obtained using Google Earth. Fig. 2 summarizes the steps
to extract map-matched points from a digital map. Fig. 2(a)
shows the navigation environment in Riverside, California,
U.S.A. Fig. 2(b) demonstrates the same area in OSM database,
which is downloadable from the OSM website [46]. Fig. 2(c)–
(e) show the steps to process the map data and to extract
the coordinates of the road. Finally, Fig. 2(f) illustratesthe
map-matched points before and after interpolation. This area
contains 144,670 map-matched points and 185 roads, which
are presented in Fig. 2(f) using red circles and blue lines,
respectively.

Some approaches in the literature consider the maps to
be errorless (e.g., [47], [48]); however, in the proposed ap-
proach, a 3-D map displacement errorwm is incorporated
to account for inaccuracies in the map, which is modeled
as a zero-mean random vector with covarianceΣm =
diag

[

σ2
mx

, σ2
my

, σ2
mz

]

. To find the map-matched vehicle’s
position at time-stepk, while accounting for the map displace-
ment error, the proposed model finds the closest Mahalanobis
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(b)

(c)

(.osm file)

(d)

(f)(a)

Extract road
coordinates

Interpolate

digital map

(e)

Export the road
data from the

points

Fig. 2. Steps to extract the map-matched points from a digital map:
(a) The navigation environment, (b) OSM digital map, available at:
www.openstreetmap.org, (c) exporting the .osm file which contains road
data, (d) MATLAB-based parser to extract road data from the .osm file,
(e) processing the digital map, including extracting the road coordinates and
interpolating points between successive map-matched points with a distance
greater than a specified threshold, and (f) the map-matched points before (top)
and after (bottom) interpolation.

distance on the map to the estimated vehicle’s position at
time-stepk. The Mahalanobis distance provides a powerful
method of measuring how similar some set of observations is
to an ideal set of observations with some known mean and
covariance. This is discussed in Subsection III-C.

III. D ATA FUSION AND MAP-MATCHING FRAMEWORK

This section describes an EKF-based framework to fuse
IMU measurements with GNSS and cellular pseudoranges to
estimate the vehicle’s states (1) and clock error states (6).
The framework also employs a closed-loop map-matching
step to refine the estimates of the clock error states. A
vehicle equipped with an IMU described in Subsection II-A
is assumed to navigate in an environment comprisingNsop

cellular SOP transmitters with fully known locations. The
framework provides a robust and accurate navigation with and
without GNSS signals by exploiting ambient cellular SOPs. In
contrast to traditional approaches, which employ an integrated
GNSS-IMU systems with a digital map, the proposed frame-
work deals with a unknown dynamic, stochastic error states
of cellular SOPs by simultaneously estimating them. These
estimates are further refined via a closed-loop map-matching
step. The EKF time and measurement update steps are outlined
next, followed by the map-matching correction step.

A. EKF Time Update

In this subsection, the EKF time update step is described.
The EKF’s vectorx consists of the vehicle’s statexv (1) and
the clock error states (6), i.e.,

x =
[

xT

v ,x
T

clk,sop

]T

.

The cellular SOPs are assumed to be stationary with
known positions

{

psop,n

}Nsop

n=1
. Between measurement updates

(whether from GNSS or cellular signals), the IMU’s sampled
measurements of the angular velocityω and linear accel-
eration a are used to perform a time update ofx̂(k|j) ,

E

[

x(k)
∣

∣

∣
{z(i)}ji=1

]

, for k > j to get the predicted states

x̂(k + 1|j) and corresponding prediction error covariance
P(k + 1|j). The time update of the orientation state estimate
is given by

Ik+1|j

G
ˆ̄q =

Ik+1

Ik
ˆ̄q ⊗

Ik|j

G
ˆ̄q, (8)

where Ik+1

Ik
ˆ̄q represents the estimated relative rotation of the

IMU from time-step k to k + 1. In (8), ⊗ denotes the
quaternion multiplication operator, which operates on two
quaternion vectorsq1 , [q0,1, qv1,1, qv2,1, qv3,1] and q2 ,

[q0,2, qv1,2, qv2,2, qv3,2] to yield

q1 ⊗ q2 = [q0,1q0,2 − qv1,1qv1,2 − qv2,1qv2,2 − qv3,1qv3,2,

q0,1qv1,2 + qv1,1q0,2 + qv2,1qv3,2 − qv3,1qv2,2,

q0,1qv2,2 − qv1,1qv3,2 + qv2,1q0,2 + qv3,1qv1,2,

q0,1qv3,2 + qv1,1qv2,2 − qv2,1qv3,2 + qv3,1q0,2 ]T .

The value ofIk+1

Ik
ˆ̄q is found by integrating the measurements

ω(k) andω(k + 1) using a fourth order Runge-Kutta, which
yields

Ik+1

Ik
ˆ̄q = q̄0 +

T

2
(d1 + 2d2 + 2d3 + d4) ,

d1 =
1

2
Ω (ω̂(k)) q̄0, d2 =

1

2
Ω
(

ˆ̄ω(k)
)

(

q̄0 +
1

2
Td1

)

,

d3 =
1

2
Ω
(

ˆ̄ω(k)
)

(

q̄0 +
1

2
Td2

)

,

d4 =
1

2
Ω (ω̂(k + 1))

(

q̄0 +
1

2
Td3

)

,

ˆ̄ω(k) =
1

2
(ω̂(k) + ω̂(k + 1)) , q̄0 = [ 1, 0, 0, 0]

T
,

whereω̂ = ω − b̂g and

Ω(ω) =

[

0 ωT

ω ⌊ω×⌋

]

,

⌊ω×⌋ =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 , ω = [ωx, ωy, ωz]
T.

The time update of the velocity estimate is computed using
the trapezoidal integration according to

ˆ̇pv(k+1|j) = ˆ̇pv(k|j)+
T

2
[ŝ(k) + ŝ(k + 1)]+T Gg(k), (9)

where ŝ(k) , RT

q̂ (k)â(k), â(k) , a(k) − b̂a(k|j) and

Rq̂(k) , R
[

Ik|j

G
ˆ̄q
]

. The time update of the position estimate
is given by

p̂v(k + 1|j) = p̂v(k|j) +
T

2

[

ˆ̇pv(k + 1|j) + ˆ̇pv(k|j)
]

. (10)

The time update of the gyroscope and accelerometer biases
estimates is given by

b̂g(k + 1|j) = b̂g(k|j), b̂a(k + 1|j) = b̂a(k|j). (11)



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE 7

The time update of the clock error state estimate is readily
deduced from (7) to be given by

x̂clk,sop(k + 1|j) = Φclkx̂clk,sop(k|j). (12)

The time update of the prediction error covariance is given by

P(k + 1|j) = F(k)P(k|j)FT(k) +Q(k), (13)

F(k) , diag [ΦB(k + 1, k), Φclk] ,

Q(k) , diag [QdB
(k), Qclk,sop] .

The discrete-time INS state transition matrixΦB and process
noise covarianceQdB

are computed using standard INS equa-
tions as described in [49], [50].

Remark The four-dimensional quaternion vector is an
over-determined representation of the orientation state.To
avoid singularities due to this over-determined representation,
the estimation error covariance of the three Euler angles is
maintained in the EKF. Therefore, the block pertaining to the
orientation state inP(k|j) is 3× 3.

B. EKF Measurement Update

When GNSS signals are available, the EKF measurement
update stage corrects the time updated states with (i) cellular
SOP pseudoranges, (ii) digital map data, and (iii) the estimated
vehicle’s position obtained from the GNSS navigation solution
p̂GNSS.

Here, the measurement vectorZ(k) consists of̂pGNSS and
{zsop,n}

Nsop

n=1
, wherezsop,n is the pseudorange drawn from the

n-th cellular SOP transmitter.
When GNSS signals become unavailable, the measurement

update stage only uses (i) cellular SOP pseudoranges and
(ii) digital map data. Here,Z(k) only includes cellular SOP
measurements,{zsop,n}

Nsop

n=1
.

Next, the corrected state estimatex̂(k+1|k+1) and associ-
ated estimation error covarianceP(k + 1|k + 1) is computed
using the standard EKF measurement update equations [40].
The expressions of the corresponding measurement Jacobian
H and the measurement noise covarianceΣs are demonstrated
in Fig. 3.

C. Map-Matching and Closed-Loop Clock Error State Cor-
rection

Assuming that the digital map comprisesLN locations, de-

noted
{

ln , [pmxn
, pmyn

, pmzn
]T
}LN

n=1
, the position estimate

p̂v(k|k) is map-matched to yield̂pm(k|k) according to

p̂m(k + 1|k + 1) = min
ln
‖p̂v(k + 1|k + 1)− ln‖Σm

, (14)

where

‖p̂v(k + 1|k + 1)− ln‖Σm
=

√

[p̂v(k + 1|k + 1)− ln]TΣm
−1[p̂v(k + 1|k + 1)− ln].

The estimateŝpv(k+1|k+1) andp̂m(k+1|k+1) are fed
back to correct the clock bias state estimates according to

c∆δ̂tsop,n(k + 1|k + 1)←−c∆δ̂tsop,n(k + 1|k + 1)

+ ∆corr,n(k + 1), (15)

where

∆corr,n(k + 1) =‖p̂v(k + 1|k + 1)− psop,n‖
2

− ‖p̂m(k + 1|k + 1)− psop,n‖
2
. (16)

Finally, the map-matched estimatep̂m(k+1|k+1) is used
to replace the estimatêpv(k + 1|k + 1), i.e.,

p̂v(k + 1|k + 1)←− p̂m(k + 1|k + 1).

Fig. 3 summarizes the architecture of the proposed naviga-
tion framework.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed ground vehicle
navigation framework, two experimental tests were performed
in (1) an urban environment in which GNSS signals get
attenuated and become unreliable and (2) an environment
in which signals from only 2 cellular LTE towers are used.
In both experiments, a ground vehicle was equipped with
following hardware and software setup:

• Two consumer-grade 800/1900 MHz cellular omnidirec-
tional Laird antennas [51].

• A Septentrio AsteRx-i V integrated GNSS-IMU, which is
equipped with a dual-antenna, multi-frequency GNSS re-
ceiver and a Vectornav VN-100 micro-electromechanical
system (MEMS) IMU. The AsteRx-i V allows access to
the raw measurements from this IMU, which was used for
the time update of the orientation, position, and velocity
as described in Section III-A. Septentrio’s post-processing
software development kit (PP-SDK) was used to process
carrier phase observables collected by the AsteRx-i V
and by a nearby differential GPS base station to obtain
a carrier phase-based navigation solution. This integrated
GNSS-IMU real-time kinematic (RTK) system [52] was
used to produce the ground truth results with which the
proposed navigation framework was compared.

• A dual-channel National Instrument (NI) universal soft-
ware radio peripheral (USRP)-2954R driven by GPS-
disciplined oscillator (GPSDO) [53]. This was used to
simultaneously down-mix and synchronously sample cel-
lular LTE signals at 10 mega-samples per second (MSPS).

• A laptop computer to store the sampled cellular signals.
These samples were then processed by the Multichannel
Adaptive TRansceiver Information eXtractor (MATRIX)
software-defined radio (SDR) [29], [54], [55], developed
by the Autonomous Systems Perception, Intelligence, and
Navigation Laboratory at the University of California,
Riverside.

In both experiments, the ground vehicle was assumed to
have initial access to GNSS signals. This enabled estimating
the initial difference between the vehicle-mounted receiver’s
clock bias and the clock biases of each LTE eNodeB in the
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2
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[
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]
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HGNSS =
[
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]

H = HSOP H =
[

H
T

SOP; H
T

GNSS

]T

P(k + 1jk + 1) = [I �K(k + 1)H(k + 1)]P(k + 1jk)
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Equations (5)-(10)
Time update

SOP
n-th cellular
SOP

position estimate

estimate

Z(k) =
[

zsop;1(k); : : : ; zsop;Nsop
(k); p̂GNSS

T(k)
]T

zsop;n(k)

psop;n

Σs = diag
[

σ
2
sop;1; : : : ; σ

2
sop;Nsop

;Σg

]

rs =
h

p
T

sop;1; : : : ;p
T

sop;Nsop

iT

νsop(k + 1jk) = Z(k + 1) � g( x̂(k + 1jk))

K(k + 1) = P(k + 1jk)HT(k + 1)S�1 (k + 1)

S(k + 1) = H(k + 1)P(k + 1jk)HT(k + 1) +Σs

gn(x̂(k + 1jk)) = kp̂v(k + 1) � p sop;nk2 + c∆δ̂tsop;n(k + 1)

g(x̂(k + 1jk)) =
[

g1(x̂(k + 1jk)); : : : ; gNsop
(x̂(k + 1jk))

]T

∆corr;n(k + 1)

∆corr;n(k + 1) Equation (16)

p̂m(k + 1jk + 1)

Fig. 3. The architecture of the proposed EKF-based approachin situations where GNSS signals are available and unavailable. (a) EKF time step, (b)
EKF measurement update step, (c) measurement update without GNSS signals, (d) measurement update with GNSS signals, (e) corrected state estimate and
associated estimation error covariance, (f) calculating the clock difference correction, (g) refining the vehicle’s estimated position using the map data, and (h)
map-matched vehicle’s position estimate.

environment{∆x̂clk,sop,n(0| − 1)}
Nsop

n=1
. Moreover, the initial

estimates of the vehicle’s orientationIGˆ̄qv(0| − 1), position
p̂v(0| − 1), and velocity ˆ̇pv(0| − 1) were obtained from
the GNSS-IMU system. The gyroscopes’ and accelerometers’
bias estimates;̂bg(0| − 1) and b̂a(0| − 1), respectively; were
initialized by averaging 5 seconds of gravity-compensated
IMU measurements at a sampling period ofT = 0.01 seconds,
while the vehicle wasstationary. The initial uncertainties as-
sociated with these state estimates were set toPI

Gq̄v
(0|−1) =

(1× 10−3)I3×3, Ppv
(0| − 1) = blkdiag [3 I2×2, 0], Pṗv

(0| −
1) = blkdiag [0.5 I2×2, 0], Pbg

(0|−1) =
(

3.75× 10−9
)

I3×3,
Pba

(0| − 1) =
(

9.6× 10−5
)

I3×3, andP∆xclk,sop,n
(0| − 1) =

diag [3, 0.3], where blkdiag(·) and diag(·) denote a block-
diagonal and a diagonal matrix, respectively. The value of
Σg was set todiag [5, 5, 5] m2 and the SOP measurement

noise variances are calculated empirically while the vehicle
has access to GNSS signals according to

σ2
sop,n ≈

1

kcutoff

kcutoff−1
∑

k=0

v̂′2sop,n(k),

wherekcutoff is the time GNSS signals were cutoff and

v̂′sop,n(k) ,zsop,n(k)−
∥

∥p̂GNSS(k)− psop,n

∥

∥

2

− c∆̂δtsop,n. (17)

Note that (17) assumes that̂v′sop,n is a stationary white
sequence. However, in practice, these processes are not neces-
sarily white and therefore a variance inflation factor is needed
to account for the colored noise. Hence,σ2

sop,n ← ασ2
sop,n,

whereα is the inflation factor, which was chosen to be two
in the experiments presented in this paper.
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The following subsections present the navigation results in
each of the two environments.

A. Environment 1

The first experiment was conducted in an urban environ-
ment: downtown Riverside, California, USA. The vehicle
traversed a trajectory of 1380 m in 190 s. The traversed
trajectory within this environment was surrounded by tall trees
and buildings, which attenuates received cellular and GNSS
signals. In fact, due to the low elevation angles of cellular
towers compared to GNSS satellites, LOS obstructions (e.g.,
buildings, trees, poles, other vehicles, etc.) between thetower
and the vehicle-mounted receiver are prevalent. Fig. 5 shows
the environment and experimental hardware setup. Over the
course of the experiment, the receiver was listening to 5
eNodeBs corresponding to the U.S. cellular provider AT&T
with the characteristics summarized in Table I. It has been
shown that the pseudorange measurement noise variance and
multipath error is lower for signals with higher transmission
bandwidth [55]. Therefore, LTE signals with a 20 MHz band-
width can provide more accurate pseudorange measurements
compared to LTE signals with a 10 MHz bandwidth. Note
that the transmission bandwidth of LTE signals is not unique
and depends on the LTE network provider. Fig. 4(a) shows
the LTE pseudorange (solid lines) and actual range (dashed
lines) variations and Fig. 4(b) shows empirical cumulative
distribution function (CDF) of LTE pseudoranges for eNodeBs
1–5. The standard deviations of the pseudoranges for eNodeBs
1–5 were calculated to be 9.19, 3.61, 4.18, 7.75, and 6.01 m,
respectively.

TABLE I
LTE ENODEBS CHARACTERISTICS USED IN ENVIRONMENT1

eNodeB
Carrier

frequency (MHz)
Cell ID

Bandwidth

(MHz)

1 1955 216 20∗

2 739 319 10

3 739 288 10

4 739 151 10

5 739 232 10

* 1024 middle subcarriers used instead of 2048

The performance of the proposed navigation framework is
studied in two scenarios.

The first scenario compares the performance against three
existing approaches:

(I) GPS-only: this emulates a low-cost technology, which
only uses GPS pseudoranges to estimate the vehicle’s
states.

(II) GPS-IMU: this approach fuses GPS produced positions
with an IMU, which exhibits< 10 degrees per hour gy-
roscope bias stability (such IMU is typically considered
a tactical-grade), in a loosely coupled fashion to estimate
the vehicle’s state.

(b)

(a)

Fig. 4. (a) LTE pseudorange (solid lines) and actual range (dashed lines)
variations and (b) empirical cumulative distribution function (CDF) of the
LTE pseudoranges for eNodeBs 1–5

(III) GPS-IMU-Map-Matching: this emulates an existing
high-end vehicular navigation system, which map-
matches the estimated vehicle’s position from the GPS-
IMU system produced in the second approach above.

The second scenario studies the performance of the pro-
posed framework in the absence of GNSS signals. To this end,
the GPS navigation solution̂pGNSS was discarded in a portion
of the vehicle’s trajectory to emulate GNSS unavailability(see
Fig. 3).

Throughout the experimental test, the PP-SDK was config-
ured to produce a navigation solution at 1 Hz from GPS L1
C/A measurements only to emulate a low-cost, low-quality
GPS receiver. In contrast, the ground-truth against which the
proposed framework and the three approaches above were
compared was produced with the expensive, high-end GNSS-
IMU RTK Septentrio AsteRx-i V system.

1) Scenario 1: Comparison Against Existing Technologies:
In the first scenario, GPS signals were available along the
entire trajectory. Fig. 6 shows the vehicle’s ground truth
trajectory versus its estimated trajectory from GPS-only,GPS-
IMU, and proposed framework. Table II compares the nav-
igation performance of the proposed framework versus that
of the three approaches: GPS-only, GPS-IMU, GPS-IMU-
Map. It can be seen from these results that the proposed
framework outperforms all three approaches. Most notable,
the proposed framework, which was a standard GPS receiver
whose navigation solution is loosely-coupled with cellular
pseudoranges and a closed-loop map-matching, outperforms
a high-end vehicular navigation system that uses an expensive
tightly-coupled GPS-IMU system with map-matching.

2) Scenario 2: Performance when GNSS Signals are Un-
available: In this scenario, the proposed framework’s perfor-
mance in the absence of GNSS signals was evaluated. To this
end, the navigation solution obtained from the GPS receiver
was discarded over a portion of 330 m from the total trajectory
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eNodeB 1

eNodeB 2

eNodeB 3
eNodeB 4

eNodeB 5
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Storage

(a)

(b)

GNSS antennas

Multi-frequency
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VN-100 IMUAsteRx-i
module

Integrated
GNSS-IMU

Fig. 5. The experimental environment and the experimental setup. (a) The environment layout, LTE SOP positions, and thetrue vehicle trajectory. As can be
seen, the traversed path was surrounded by the tall trees andthe received signal experienced severe attenuation effect. Image: Google Earth. (b) Experimental
hardware and software setup. The LTE antennas were connected to a dual-channel NI USRP-2954R driven by a GPSDO. The stored LTE signals were
processed via the MATRIX SDR.

TABLE II
NAVIGATION PERFORMANCECOMPARISON IN AN URBAN ENVIRONMENT

Navigation

Solution

Position

RMSE

Mean

distance

error

Max.

distance

error

GPS only 5.61 m 6.18 m 13.30 m

GPS-IMU 4.01 m 4.53 m 10.38 m

GPS-IMU-map 3.03 m 3.54 m 8.40 m

Proposed framework 2.80 m 3.41 m 8.09 m

Improvement

over GPS-IMU
30.17% 24.72% 22.06%

to emulate GPS unavailability. Fig. 7 shows the portion of the
vehicle’s trajectory where GPS signals were unavailable. The
vehicle’s estimated trajectory from the proposed framework
is also shown versus the vehicle’s estimated trajectory from
the GPS-IMU system. In order to differentiate the influence

of the map-matching from the use of LTE measurements, the
GPS-IMU-LTE solution (i.e., the proposed framework without
map-matching) is also demonstrated in Fig. 7. Table III com-
pares the navigation performance of the proposed framework
versus that of the GPS-IMU and GPS-IMU-LTE systems. The
following may be concluded from this test scenario. First,
as expected, when GPS signals were unavailable, the IMU’s
solution drifted due to the lack of aiding corrections from GPS
signals (red line in Fig. 7). Note that the vehicle came to a
stop at the stoplight for 9 seconds, during which the IMU’s
solution drifted forward and to the right. Subsequently, the
IMU’s solution continued to drift after the vehicle resumed
its forward motion. This error accumulation due to this drift
is particularly hazardous for semi-autonomous or fully au-
tonomous ground vehicles. In contrast, the GPS-IMU-LTE
solution (green line in Fig. 7) did not exhibit such drift as
cellular signals were used as an aiding source to the IMU.
Second, the effect of map-matching on the achieved accuracy
can be investigated by comparing the GPS-IMU-LTE solution
and the proposed solution (yellow line in Fig. 7). As can be
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GPS-IMU
GPS-only
Ground truth

Proposed framework

Fig. 6. Experimental results in an urban environment. The vehicle’s estimated
trajectory with our proposed framework is compared againstthe estimated
trajectory with a GPS-only and a GPS-IMU system. The ground-truth was
obtained with an expensive GPS-IMU system with RTK. Experimental results
indicate a 2.80 m RMSE for the proposed approach. Image: Google Earth.

seen, the proposed closed-loop framework (i.e., map-matching
with clock difference correction) improves the GPS-IMU-LTE
solution. The estimated position RMSE using the GPS-IMU-
LTE solution was found to be 4.13 m, whereas the estimated
position RMSE using the proposed framework was 3.12 m.

TABLE III
NAVIGATION PERFORMANCECOMPARISON WITHOUTGPSSIGNALS

Navigation

Solution

Position

RMSE

Mean

distance

error

Max.

distance

error

GPS-IMU 8.37 m 14.87 m 57.12 m

GPS-IMU-LTE 4.13 m 5.66 m 12.38 m

Proposed framework 3.12 m 4.22 m 10.67 m

Improvement

over GPS-IMU
62.72% 71.6% 81.32%

GPS-IMU-LTE
GPS-IMU

GPS unavailable

GPS available

Proposed framework

Ground truth

Fig. 7. Vehicle’s estimated trajectory from the GPS-IMU system versus our
proposed framework when GPS signals become unavailable andthen available
are specified. As can be seen, the GPS-IMU solution drifts in the absence of
GPS signals. In contrast, our proposed framework does not exhibit such drift
as cellular signals are used as an aiding source to the IMU. Image: Google
Earth.

B. Environment 2

In order to assess the performance of the proposed frame-
work in the case where a small number of cellular towers
are available, the second experiment was conducted in a
challenging environment in downtown Riverside, California.
Here, an urban street with multiple junctions was chosen. The
drive test included 15 s of a GNSS cutoff condition. The streets
were surrounded by tall buildings from both sides and only 2
LTE towers were available in the environment. Over the course
of the experiment, the vehicle-mounted receiver traverseda
total trajectory of 345 m while simultaneously listening to
2 LTE SOPs corresponding to the U.S. cellular providers T-
Mobile and AT&T. Table IV summarizes the LTE eNodeBs
characteristics used in Experiment 2.

TABLE IV
LTE ENODEBS CHARACTERISTICS USED IN ENVIRONMENT2

LTE

SOP
Operator

Carrier

frequency (MHz)
Cell ID

Bandwidth

(MHz)

1 T-Mobile 2145 79 20

2 AT&T 1955 350 20

Fig. 8 shows the experimental environment, the location
of the LTE towers, and the vehicle’s ground truth trajectory
versus that estimated with the proposed framework and that
estimated with the GPS-IMU system. To evaluate the perfor-
mance of the proposed framework in the absence of GNSS
signals, while using signals from only 2 LTE SOPs, the nav-
igation solution obtained from the GPS receiver is discarded
over a portion of 40 m of the total trajectory to emulate GPS
unavailability. Table V summarizes the navigation performance
in this environment. It can be seen that the proposed approach
yielded a 32% reduction in the position RMSE and a 43%
reduction in the maximum distance error, despite using a very
limited number of cellular SOPs.

TABLE V
NAVIGATION PERFORMANCECOMPARISON WITHOUTGPSSIGNALS

Navigation

Solution

Position

RMSE

Mean

distance

error

Max.

distance

error

GPS-IMU 5.10 m 4.75 m 8.96 m

Proposed framework 3.43 m 4.18 m 5.03 m

Improvement

over GPS-IMU
32% 18% 43%

V. CONCLUSION

This article presented a novel framework for vehicular
navigation in urban environments. The framework uses an
IMU, cellular signals, and GNSS signals (when available),
along with closed-loop map-matching. On one hand, when
GNSS signals are unavailable, the proposed framework uses
cellular signals as an aiding source to the IMU, bounding the
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eNodeB 1

Start point

eNodeB 2

Start point
Stop point

GPS cutoff

GPS back in
RMSE = 3.43 m

RMSE = 5.1 m

Ground truth
GPS-IMU
Proposed framework

GPS-IMU

Proposed framework

Fig. 8. The second experimental environment layout, LTE SOPpositions, true
vehicle trajectory, and the different navigation solutions, where the estimated
vehicle position obtained from GPS-IMU and the proposed method are shown
using yellow and red lines, respectively. Over the course ofthe experiment,
the vehicle-mounted receiver traversed a total trajectoryof 345 m in an
urban streets while listening to only 2 LTE SOPs simultaneously. It is worth
mentioning that in the experiment area, the LTE towers were obstructed by
the buildings and the first LTE tower was far from the vehicle,and a large
portion of the vehicle’s trajectory had no clear LOS to this LTE towers. As can
be seen, the estimated position using the proposed framework follows closely
the ground truth trajectory during the drive. Experimentalresults indicate a
3.43 m RMSE for the proposed approach. Image: Google Earth.

IMU drift, and producing an accurate estimate of the vehicle’s
state. On the other hand, when GNSS signals are available,
the proposed framework fuses estimates from the GNSS
receiver with cellular measurements to produce an estimate
that is within a few meters of the estimate produced by a
very expensive, high-end GNSS-IMU system with RTK and
map-matching. Experimental results in 2 urban environments
are presented demonstrating the accuracy of the proposed
framework versus existing technologies. It was demonstrated
that the proposed framework achieved a position RMSE of
2.8 m over a trajectory of 1380 m while GNSS signals were
available and a position RMSE of 3.12 over the same trajectory
while GNSS signals were not available for 330 m. In addition,
the robustness of the proposed framework to having a limited
number of cellular towers (only 2) was demonstrated, showing
a position RMSE of 3.43 m over a trajectory of 345 m, during
which GNSS signals were unavailable for 40 m.
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