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Abstract—A framework for ground vehicle localization that
uses cellular signals of opportunity (SOPs), a digital map,
an inertial measurement unit (IMU), and a global navigation
satellite system (GNSS) receiver is developed. This framewk
aims to enable localization in urban environment where GNSS
signals could be unusable or unreliable. The proposed franveork
employs an extended Kalman filter (EKF) to fuse pseudorange
observables extracted from cellular SOPs, IMU measuremest
and GNSS-derived position estimates (when available). ThHeKF
is coupled with a closed-loop map-matching approach. The
framework assumes the positions of the cellular towers to be
known and it estimates the vehicle’s states (position, veddy,
orientation, and IMU biases) along with the difference betveen
the vehicle-mounted receiver clock error states (bias and rift)
and each cellular SOP clock error states. Experimental redts
with cellular long-term evolution (LTE) SOPs are presented
evaluating the efficacy and accuracy of the proposed framewk
in a deep urban area with a limited sky view. The experimental
results demonstrate a position root-mean squared error (RNSE)
of 2.8 m over a 1380 m trajectory during which GNSS signals are
available and an RMSE of 3.12 m over the same trajectory durig
which GNSS signals were unavailable for 330 m. Moreover,
compared to localization with a traditional GNSS-IMU integrated
systems, it is demonstrated that the proposed framework regces
the position RMSE by 22% whenever GNSS signals are available
and by 81% whenever GNSS signals are unavailable.

I. INTRODUCTION

Kimia ShamaeiQudent Member, |EEE,

is critical. For example, it is not enough to estimate on Wwhic
freeway the vehicle is driving as certain autonomous astion
require lane-level localization. This is crucial for irgections,
exiting or entering a freeway, or at a junction of different
freeways or streets. Moreover, when entering the freeway
for instance, the navigation solution must be continuously
available to ensure the safety of passengers and othergrive
Looking ahead, as ground vehicles get endowed with full
autonomy, robustness and accuracy of their localizatiah an
navigation system become of paramount importance. Without
a human driver-in-the-loop, one expects not to question the
availability of the localization and navigation system aod
establish predictable performance of such systems inrdiffe
driving scenarios.

Despite the promise of global navigation satellite system
(GNSS) signals as an accurate sensing modality, in GNSS-
challenged environments (e.g., deep urban streets) thgse s
nals suffer from different error sources, including signlalck-
age due to limited sky view and multipath, in addition to
nominal GNSS errors, uncertainties in satellite clocks and
positions, signal propagation delays in the ionosphere and
troposphere, user receiver noise, etc. In such conditibns,
is imperative to continuously monitor the integrity of GNSS
signals. Integrity monitoring refers to the capability dfet

Localization technologies for navigation and ground vehsystem to detect GNSS anomalies and warn the user when
cle autonomy levels have been evolving hand in hand. Tgie system should not use GNSS measurements [1]. Integrity
years ago, ground vehicle localization systems for naidgat monitoring frameworks are divided into internal and exter-
consisted of a GPS receiver, wheel odometer, and an inerfial categories [2]. External methods leverage a network of

measurement unit (IMU). Localization errors larger thamela

ground monitoring stations to monitor the transmitted algn

level and periodic dropouts of the navigation solution wefghile internal methods (e.g., receiver autonomous intggri
tolerable to the driver who had to follow the path drawn omonitoring (RAIM)) typically use the redundant informatio
the GPS navigation system. Although localization and somgthin the transmitted navigation signals. As shown in [3],
form of path planning from a start location to a desirethe navigation framework can be coupled with these integrit
destination were performed autonomously, the driver had fonitoring methods to detect GNSS unreliability and un-
steer the car, control acceleration, avoid obstacles, ggharwailability. In addition to unavailability due to anomesi
lanes, etc. Today, as ground vehicles evolve by incorpm@atiGNSS signals may become unavailable in jamming or spoofing
autonomous-type driving technologies (e.g., cruise @ntrsijtuations. It is also often the case that GNSS receivers los

active steering, collision avoidance, lane detection,) dtee
requirements on localization and navigation technolobgies

track of the signals in multipath or non-line-of-sight (NBp
environments, making the GNSS position solution unreéiabl

come more stringent, necessitating the need of additionalsuch cases, an integrity monitoring system would alest th
sensors (lidar, vision, radar, etc.). Large errors becoess | yser of an unreliable or unavailable position solution. FSuc

tolerable and consistent availability of the navigatiofuton
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integrity monitoring frameworks can be adapted for cetula

based navigation, the details of which can be found in [4].
Traditional vehicular localization and navigation teclmo

gies were heavily dependent on GNSS receivers. Over the



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE 2

past decade, these systems evolved by coupling GNSS re- in detecting and alleviating multipath effects, leading to
ceivers with on-board sensors, such as IMUs. Moreover, such precise time-of-arrival (TOA) estimates and in turn a
navigation systems may have access to proximity locatinati precise navigation solution.

techniques (e.g., lidar, camera, and radar), which prdeicks o Map-matching: Map-matching for ground vehicle nav-
position information and aid in collision avoidance. Map- igation has been extensively studied [11]-[14]. It has
matching techniques have also been developed to match the been shown that a map-matching framework can provide
navigation solution obtained by the navigation system to a integrity provision at the lane-level [3]. Map-matching
point in the digital map [3], [5], [6]. More recently, sigrsal can also correct sensor errors [15]-[17]. Moreover, due
of opportunity (SOPs) have been fused with GNSS receivers to the fact that the errors in digital maps are typically
to complement the GNSS navigation solution [7] or as an smaller than sensor errors, the digital map information

alternative to GNSS [8]. can be used to correct the accumulated error in dead-
This paper considers for the first time the fusion of some reckoning (DR)-type sensors (e.g., IMUs) [18]. However,
of the above readily available off-the-shelf technologies digital maps can have displacement errors.

achieve a highly robust and accurate navigation solutiairin ~ This article presents a robust vehicular localization #am
ban environments by complementing the individual technolork for navigating in both GNSS-available and GNSS-

gies’ desirable attributes. Specifically, the developesteay denied urban environments. The article is written in a fator
uses: fashion with sufficient details about the proposed systeth an

points to references for the interested reader to probe for
o« GNSS GNSS can provide meter-level and submetefurther details. The proposed framework was tested in wdiffe
level accurate navigation solution using code and carrigriving scenarios with a comparable performance (withi® 2-
phase measurements, respectively, in a global franmeters) of that of an expensive high-end system: one that use
However, GNSS signals are highly attenuated indoossdual-frequency GNSS with real-time kinematic (RTK) and a
and in deep urban canyons, which makes them practicaffjctical-grade IMU. The proposed approach does not rely on
unusable in these environments. Moreover, GNSS sign@8ISS for ground vehicle navigation in urban environments.
are sensitive to multipath and susceptible to intentionaistead, it exploits the abundance of ambient cellular S@Ps
interference (jamming) and counterfeit signals (spoofingguch environments. It is worth noting that GNSS suffers from
which can wreak havoc in military and civilian applica-other issues beyond lack of coverage such as severe multipat
tions. and susceptibility to jamming and spoofing. However, the
o IMU: While IMU sensors provide an accurate shortfocus of this paper is to develop a low-cost system that
term navigation solution, one cannot rely on them gserforms well without GNSS, which could be unavailable or
a standalone, accurate solution for long-term navigatiomareliable for whatever reason.
This is due to the fact that the noisy outputs of IMUs are The proposed system uses a computationally efficient ex-
integrated through an inertial navigation system (INS)ended Kalman filter (EKF) to fuse digital map data, IMU data,
causing pose estimation errors to accumulate over tifBNSS-derived position estimate, and cellular SOP pseudor-
[9], [10]. The accumulated error rate is dependent on tlamges. When GNSS signals are unavailable or compromised,
quality of the IMU. These errors compromise the safthe framework extracts navigation observables from cailul
and efficient operation requirements for ground vehickignals and fuses them with IMU and map data and con-
navigation in urban environments. Thus, for long-terrinuously estimates the vehicle’'s states for subsequem ti
navigation, an IMU sensor becomes unreliable, and ais it navigates without GNSS signals. When GNSS signals
aiding source is needed to correct its drift and improw&re available, the navigation solution is obtained by fgsin
the navigation solution. the IMU data, map data, cellular signals, and GNSS-derived
« Cellular SOPs Cellular base transceiver stations (BTSs)osition estimate. In both modes, a closed-loop map-madchi
are abundant and available in several bands, aggregatapgproach is developed, where the refined vehicle position
to tens of MHz of usable cellular radio frequency speestimate obtained from fusing cellular SOP pseudoranges,
trum, making them robust against jamming and spoofinylu, GNSS-derived position estimate (if GNSS is available)
attacks or service outage in certain bands or provideemd digital road maps is used in a feedback to correct estBnat
The cellular system BTS configuration, by construction ajf the receiver and cellular SOP clock error states. It is
the hexagonal cells, possesses favorable geometry, whiabrth noting that the proposed framework does not spedifical
yields low horizontal dilution of precision (HDOP). Theassume RTK-type GNSS-derived position estimates. Instead
received carrier-to-noise ratio from nearby cellular BTSis considers a low-cost GNSS receiver producing a metestlev
is commonly tens of dBs higher than that of GNSS spaeecurate navigation solution.
vehicle (SV) signals, making these signals usable for Fig. 1 illustrates a high-level diagram of the proposed
localization purposes in urban environments. Howeveground vehicle localization system. Fig. 1(a) illustrates
due to the low elevation angles of cellular towers conblock diagram of the cellular-aided IMU framework. Fig.
pared to GNSS SVs, received cellular signals are affect&fb) demonstrates the proposed closed-loop map-matching a
by multipath (e.g., due to buildings, trees, poles, oth@roach with inputs being GNSS signals, cellular SOP signals
vehicles, etc.). Nevertheless, cellular signals havegelanMU data, and digital road network and the output being
bandwidth (up to 20 MHz), which is useful to the receivethe refined navigation solution. In contrast to existing map
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R Vehicle's Il describes the dynamic models for the IMU and SOPs as
] igital map —! '—» navigation o .

R solution well as the model for the digital map. Section Il proposes an
R """ i EKF-based framework for fusing IMU, GNSS-derived posi-

' e on : ;1 M 1 tion estimate, digital map, and cellular pseudoranges ih bo
V! ' la— ' . . . .
| [Recover arg ke ugﬁe 1+ | GPS | 1 GNSS-available and GNSS-denied environments. Section IV
o navigation | |cellular clock| | Lo ol ' provides the experimental results and the performancgsisal

! m — g r 1 . . .

) Sl L L L= ¢ of the proposed framework in deep urban environment with

Loosely-coupled a limited LOS to the open sky. Section V gives concluding

(T extended Kalman filter | ___________! remarks.
IMU data T Sampled signals
Radi
IMU Y s ; [I. NAVIGATION FRAMEWORK MODEL DESCRIPTION
() This section describes the models of the different compo-

___________________________________________________________ nents of the vehicular navigation framework: IMU, cellular
( SOP, GNSS receiver, and digital map.
GNSS signals é

) (if available) " Cellular
AN , signals

/ . ,
/. Receiver & cellular SOPs
/ clock error estimates

A. IMU Measurement Model
An IMU produces measurements of angular rate and spe-

Y e o Nggliugtaigr?n cific force. In order to use these measurements, the IMU’s
& Tyt Map-matching o semees “ orientation, position, velocity, and measurement biasestm
IMU - - s~ —_— be estimated. In this work, an IMU state vectgr consisting

(b) ----------------------------- of 16 states is used and is given by
Fig. 1. (a) A high-level diagram of the cellular-aided IMUafework xz, = |Lq", pl, pI , b;]r , baT}T’ 1)
where an IMU sensor is used in a loosely-coupled fashionT(ig) proposed :

closed-loop map-matching approach. The algorithm is diésep where the I~ - . . . .
navigation solution is fed back to correct estimates of #ueiver and cellular where.Gq IS a four-dlmenspnal .(4'D) Un'F quaternion rep-
SOPs clock error states. resenting the IMU’s orientation (i.e., rotation from a gibb

frameG to the IMU’s body framel), where frameZ is set to

be an inertial frame, such as the Earth-centered inertiahdy,
matching approaches, the proposed algorithm is closeul-lop, 2 [py,m,py,y,pu,z]T andp, are the three-dimensional (3-
where the navigation solution is fed back to correct eséatp) position and velocity of the vehicle, respectively, esgsed
Of the I’ecelvel’ a.nd Ce||u|al‘ SOPs C|0Ck error states. Naie ﬂh" G, and b(] and ba are the 3-D gyroscope and accelerometer
the problems of localization and navigation are not isdlatgjases, respectively. The IMU’'s measurements of the angula

from each other, but rather closely linked. If a vehicle doggte, and specific force are available ever§’ seconds and
not know its exact position at the start of a planned trajg¢to can be modeled as

it will encounter problems in reaching the destination [19]
Hence, in the sequel, the term navigation is used to capture w="w+by +ny, (2)
both localization and navigation purposes.  ilea1 (G G

To evaluate the performance of the proposed ground vehicle a=Rl;d] ( ar— g) b+ 1, )
navigation algorithm, two experimental tests were perfedim respectively, wherdw is the IMU’s true rotation raten,
using ambient cellular long-term evolution (LTE) SOPs iiis a measurement noise vector, which is modeled as a white
(1) an urban environment where signal attenuation severelyise sequence with covarian€g,; R[%q] is the equivalent
affects the received pseudoranges and (2) an environmgihtion matrix ofgfq; Ga; is the IMU’s true acceleration
where SOPs have poor geometric diversity. Experimenial frame G; and n, is a measurement noise vector, which
results with the proposed method are presented illusratiiz modeled as a white noise sequence with covariddge
a close match between the vehicle’s true trajectory and tifee evolution of the gyroscope and accelerometer biases are
estimated trajectory using the cellular-aided IMU + mapadatmodeled as random walks, i.é, = w, andb, = w,, where
particularly in a GNSS-denied environment with a limitedy, andw, are modeled as zero-mean random vectors with
line-of-sight (LOS) to the open sky. The experimental I’EU'CovarianCGSTia:[ng and gfuglgxg, respectively, wherd,, .,
demonstrate a position root-mean squared error (RMSE) dénotes am xn identity matrix. The equivalent rotation matrix
2.8 m over a 1380 m trajectory with available GNSS signaig[g] of the quaternion vectog = [¢o, Gu, s Gvs» Gos ] | IS
and an RMSE of 3.12 m over the same trajectory during

2 2 2 2
which GNSS signals were unavailable for 330 m. Moreover, _ Q0 + Qoy ~ Qoy ~ o,
it is demonstrated that incorporating the proposed alyarit Rlg = [ri, r2oms], o= | 2(00, G0, — Godus) |
reduces the position RMSE by 22% and 81%, in GNSS- 2(qv1 Gos + 9090 )

available and GNSS-denied environments, respectivebyn fr 2(GoyGoy + G0Gus)
the RMSE obtained by a GNSS-IMU navigation solution. ro=| - ql2 :_ Q2 —SqQ
The remainder of this article is organized as follows. Secti 2((]71;(]1712 _i;()qvl)v?’
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2(qv1 Qs — 909vs) is transmitted to estimate the channel between the UE and
T3 = 22(%22%3 +2‘10‘1v1 )2 : the eNodeB and could have a bandwidth up to 20 MHz.
Q0 — Qv ~ Qop T oy Several techniques have been proposed to extract the TOA

The measurements in (2)-(3) will be used in the EKffom the CRS such as (1) threshold-based approaches [28],
to perform a time update of the estimate of between [29], (2) super resolution algorithm [30], and (3) software

measurement updates. This will be discussed in Subsectftfifined receivers [31], [32]. Experimental results haveasho
I1I-A. meter-level positioning accuracy using standalone LTE CRS

signals (i.e., without fusing other sensors).
_ In a very dynamic environment, e.g., for a moving receiver,
B. GNSS Receiver Measurement Mode! channel cyoh)e/rence time is relativegly small (Iessg than the

The GNSS receiver is assumed to estimate the receivafigasurement’s sampling time). Therefore, in a line of sight
3-D position according to (LOS) condition, the pseudorange error due to the multipath
can be modeled with a zero mean white Gaussian sequence and
an additive Gaussian noise model is valid for LTE pseudagang
where pangs = [pGNSSm7pGNSSy7pGNSSZ]T is the measurements. In a NLOS scenario, the receiver tracks the
true receiver position,wgnss Models the uncertainty multipath signal instead of the LOS. Therefore, a nonzero
about this estimate, which is modeled as a zerdias must be added to the pseudorange measurement model.
mean Gaussian random vector with a covariandesearch have proposed multiple NLOS identification method
¥, = diag [aQGNSS@,UQGNSS,y,UQGNSS,Z] To account including cooperative and noncooperative techniques.[33]
for the effect of multipath in urban environment navigationWhen a NLOS measurement is detected, the receiver can either
Yanss consists of nominal errors (e.g., uncertainties iaxclude the measurement from the measurement set or it can
satellite clocks and positions, propagation delays in tieduce its weight to decrease the error due to the NLOS signal
ionosphere and troposphere, receiver noise, etc.) as well[33]. NLOS identification is out of the scope of this research
multipath, i.e., and all measurements are considered to be LOS.

A model of the LOS pseudorange made by the receiver on
Xy = XGNsS,nom + BGNSS,mp; the n-th cellular SOP is given by [34]

where Xanss nom 1S the covariance of the estimated error 5 (k) = || (k) — ||
v . . sop,n = 1|Po psop,n 2

due to nominal errors, an&¢nss mp IS the covariance of St (k) — 8 X X

the estimated error due to multipath, which can be obtained + ¢ [0tr (k) = Otsop,n(k)] + vsop,n (k)

from multipath models [20], [21]. n=1,..., Nsop,

DGNss = Panss + WGNSS,

where Ny, is the total number of available cellular SOPs;
C. Cellular SOP Received Signal Model Dsop,n @NA dtsop, , are the 3-D position vector and the clock

Cellular towers transmit signals for synchronization an@ias of then-th cellular SOP transmitter, respectively; and
channel estimation purposes. These signals can be usedste.» iS the measurement noise, which is modeled as a zero-
deduce the pseudorange between the transmitting tower &@n White Gaussian sequence with variangg,, .. Note
the receiver. In code division multiple-access (CDMA) Syst;hat the pseudorange measurement noise variance includes
tems, a pilot signal consisting of a pseudorandom noise {PRRPt the effect of noise and multipath error. Since cellgi@P
sequence, known as the short code, is modulated by a carti@apsmitters are stationary, their pOSitiO{'ﬂsop,n}n:f could
signal and broadcast by each BTS for synchronization pipe readily obtained, e.g., from cellular tower locatioredses
poses [22]. Therefore, by knowing the short code, the recei@r by mapping thena priori [35], [36]. The pjgoposed frame-
may measure the code phase of the pilot signal as well asviterk assumes priori knowledge Of{psopyn}n:f. Note that
carrier phase; hence, forming a pseudorange measuremernintgeneral, some cellular SOP transmitter positions tend to
each BTS transmitting the pilot signal [23], [24]. overlap, due to having base stations from multiple carrier

Two types of positioning techniques can be defined for LTRyoviders on the same physical tower. In this paper, only one
namely network-based and user equipment (UE)-based pasitlular SOP is taken from a physical tower location; hence,
tioning. In network-based positioning, a positioning refece {psop,n}fj:f are all different. By virtue of the hexagonal
signal (PRS) is broadcast by the evolved Node B (eNodeBgllular system structure, cellular SOPs from differenten
[25]. The UE uses the PRS to measure the pseudoranfgestions tend to be distributed fairly uniformly aroundeth
to multiple eNodeBs and transfers the measurements to tkeeeiver, which significantly reduces the dilution of psicn
network, where the location of the UE is estimated. Over tja6]. Optimal performance is obtained when the SOPs form a
past few years, research has focused on UE-based posifiomggular polygon around the receiver whéf,, > 3 [37]. It
techniques, where the broadcast reference signals, ngmely was observed from several data sets of LTE signals recorded
mary synchronization signal (PSS), secondary synchrtiaiza in vehicular environments that typical values df,, vary
signal (SSS), and cell-specific reference signal (CRS) were between 3 and 5 for each operator. The 3GPP2 protocol
plained for navigation purposes [26]. Among these sequenceequires cellular base stations to be synchronized to mvithi
it was demonstrated that the CRS yields the most precit@ s from GPS time [38]. Cellular base stations are typically
positioning due to its large transmission bandwidth [2RSC equipped with GNSS receivers to meet this synchronization
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requirement. While this level of synchronization is acety¢ where @, 2 diag [Fey, ..., Feai] and Welk sop IS @ ZETO-

for communication purposes, it might introduce significarthean white random sequence with covariag: sop given
errors (on the order of tens of meters) in the pseudoranige
measurements if not accounted for properly, which in turn

introduces large errors in the navigation solution. Thenesf clk,sop —
each cellular SOP is assumed to have its own clock er- Qelk sop,r 1 Qalk,r Qeix.r
ror states, namely clock bias and drift. Moreover, the SOP ., Qeik,r Qalksop,r2 - Qeik,r
clock biases are stochastic and dynamic; hence, they must b& : : : :
continuously estimated. The vehicle-mounted receiveckclo Q ' ' '
. T . clk,r chk,r chk,sop,r,NSOP

error state vector iscx,r £ 6tr,6tTJ , Wheredt, is the where
receiver’s clock drift, and thei-th cellular TSOP clock error .
state vector isvclk,sop,n £ 6tsop,na Stsop,n , Wheregtsop,n chk,sop,r,i = chk,sop,i + chk,'r‘a for i = 1. aNsop-
is the transmitter’s clock drift [39]. The discrete-timerymics
of Tep, and Tk sop.n are given by D. Map Model

Tener (b + 1) = Fonener (k) + wene (k) (4) Digital maps provide geographical data and location in-

formation, which can be used for aligning noisy traces and
Teesopn (K + 1) = Feneicsop.n (k) + Wtk sop.n (k). (5) displaying traversed trajectories. Digitgl m%ps ar)é esitety
where wei,» and we sop,n are zero-mean white randomysed in modern navigation systems for accurate vehicle-guid
sequences with covariano®iy,» andQcix sop,n, respectively, ance and advanced driver-assistance systems (ADAS) func-
and tions. To this end, geographical information systems (&ISs
Fox = [ (1) 7; } , are employed to snap the recorded vehicle trajectory trace t
the digital road map using map-matching techniques. Map-

Sas,, T + Sa, T?% S, T; matching is the process of associating the vehicle’s ntiviga
Qei,r = g [ Sf’r 7| solution with a spatial road map [3], [44]. Map-matching
Wie r 2 Wit

. ) ) algorithms enhance the navigation solution by incorpocati
whereT' is the sampling timeS;,,, and Sg; =~ are the precise road network data armdpriori information of road
power spectra of the continuous-time equivalent proce&®nOfeatyres [14]. Map suppliers have dedicated consideratsie-a
driving _the vehicle-mounted receiver’s clock bias and tdrifijo, recently to develop highly accurate digital maps to tnee
respectively, an@eix sop,» has the same form &3, €XCePt the requirements of autonomous vehicle navigation in urban
that Sg,,, and Sy, —are replaced with ther-th cellular epyironments and intelligent transportation systems.[45]
SOP-specific spectr&y,, .., , and Sa;, . . respectively.  The map used in proposed framework is developed based
T.he powerQSpectra can be related to the power-law coeffiy an Open Street Map (OSM) database [46] of Riverside,
cients {ha},__,, which have been shown through laboracyjifornia, U.S.A. OSM is built by a community of mappers
tory experiments to characterize the power spectral densjiat contribute and maintain roads, trails, and railway sta
of the fractional frequency deviatiop() of an oscillator tions information. A MATLAB-based parser was developed
from nominal frequency, namel,(f) = >.._ 5%af" to extract the road coordinates and interpolate map-matche
[40], [41]. It is common to approximate such relationshipgositions between two successive points with a distancateyre
by considering only the frequency random-walk coefficiehan a specified threshold. The elevation profile of the road
h—s and the white frequency coefficientty, which lead s optained using Google Earth. Fig. 2 summarizes the steps
0 S5, A hor/2 (Stsopn & hosopn/2) aNd Sz~ 1o extract map-matched points from a digital map. Fig. 2(a)
2m2h_o, S, o P 2m2h_2 sopn ) [42], [43]. shows the navigation environment in Riverside, California
Since the SOP pseudorange méasurement is parameteri2&dA. Fig. 2(b) demonstrates the same area in OSM database,
by the difference between the receiver’s and the SOP’s clogkich is downloadable from the OSM website [46]. Fig. 2(c)—-
biases [39], one only needs to estimate the difference (@ show the steps to process the map data and to extract
clock biases and clock drifts. Hence estimating, , and the coordinates of the road. Finally, Fig. 2(f) illustratiee

Tk sopn INdividually is unnecessary in this framework; in-map-matched points before and after interpolation. Thés ar
stead, the differencAzcik sop.n = ¢ - (Telk.r — Telksopn) = contains 144,670 map-matched points and 185 roads, which
Lelk sop, ; ;50p,

are presented in Fig. 2(f) using red circles and blue lines,

respectively.

¢+ [0t — Staopn] " ANdcAStyopn 2 - |6ty — 5tsop,nj| .The  Some approaches in the literature consider the maps to
be errorless (e.g., [47], [48]); however, in the proposed ap

[cAzStsopyn,cAStsop_,n] is estimated, where:Adty,,, =

augmented clock error state is defined as / o
proach, a 3-D map displacement errat,, is incorporated

-
Telk sop = {Aw5k7sop,1,,_,7AwCle7sop,Nsop} ) (6) to account for inaccuracies in the map, whiqh is modeled
. . as a zero-mean random vector with covariarEg, =
It can be readily seen that. so, €volves according to the ding [O_gm o2 o2 } To find the map-matched vehicle’s
H R H H > 1 17- y? z " ) . .
discrete-time dynamics position at time-steg, while accounting for the map displace-
Zelk,sop(k + 1) = ook sop (k) + Weksop(k), (7) ment error, the proposed model finds the closest Mahalanobis
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I = (whether from GNSS or cellular signals), the IMU’s sampled
fga'ftgftﬁg;g ;‘gzdL_ ‘ measurements of the angular vel_oc'u,y and linear accel-
?-ilst:: H;:)P § erationa are used to perform a time update #fk|j) £
IQ T ‘\ E {m(k) ){z(i) gzl], for £ > j to get the predicted states
(b) O N &(k + 1]j) and corresponding prediction error covariance
Interpolate i | Extract road P(k + 1|j). The time update of the orientation state estimate
points 1 coordinates . .
,,,,,,,, (o 1S given by , ,
dMa=1tae da ®)

- — . Wheref’;+ 'q represents the estimated relative rotation of the
IMU from time-step k£ to k£ + 1. In (8), ® denotes the

, T guaternion multiplication operator, which operates on two
quaternion vectorsy; = [qo.1, v .1, Qvs,1,dvs,1] @NA g5 =
[QO,Za QU1,27 %}2,27 %}3,2] to yleld

e Aoy

(a) q, ® q, = [%,1(10,2 — Quy,19v1,2 — Quy,19vs,2 — Gus,19v3,2,

Fig. 2. Steps to extract the map-matched points from a tligitap: q0,19v,,2 + Qv1,190,2 + Qua,1Gvs,2 — Qus,1Gv,,2,
(@) The navigation environment, (b) OSM digital map, avdéa at: _

www.openstreetmap.org, (c) exporting the .osm file whicmtains road 90,19v2,2 ~ Qu1,1Gv3,2 T G2,190,2 + G190, 25
data, (d) MATLAB-based parser to extract road data from tham. file,
(e) processing the digital map, including extracting thadreoordinates and
interpolating points between successive map-matchedsuiith a distance PR . .
greater than a specified threshold, and (f) the map-matcbiedshefore (top) The value Ofék qis found by integrating the measurements

and after (bottom) interpolation. w(k) andw(k + 1) using a fourth order Runge-Kutta, which
yields

T
QO,1QU3,2 + Qvl,qug,Z - qu,lqv3,2 + qU3,1q0,2 ]

distance on the map to the estimated vehicle’s position &tz _ -
time-stepk. The Mahalanobis distance provides a powerfuﬁ’“

|
o~
S
+

T
5 (d1 + 2d> +2d3 —|—d4),

method of measuring how similar some set of observationsis ; _ 19 (k) a dy — 19 Sk < 1 )
) . ; =z ; =z +-Td; |,
to an ideal set of observations with some known mean and 2 (©(k) 2 272 (k) { 2o '
covariance. This is discussed in Subsection IlI-C. 1 . _ 1
ds = 59 (w(k)) (@ + 5Td2 ,

I1l. DATA FUSION AND MAP-MATCHING FRAMEWORK 1 1

This section describes an EKF-based framework to fuse %4 = §Q (@(k+1)) (qO T §Td3) ’
IMU measurements with GNSS and cellular pseudoranges to 1 . A - T
estimate the vehicle's states (1) and clock error states (8Y(k) = 5 (@(k) +@(k+1)), gy =[1,0,0,0]",

The framework also employs a closed-loop map-matchi% . .
step to refine the estimates of the clock error states. erew = w —b, and
vehicle equipped with an IMU described in Subsection II-A

is assumed to navigate in an environment comprishig, Qw) = [O w’ ]

cellular SOP transmitters with fully known locations. The T w |wx]|?

framework provides a robust and accurate navigation with an 0 —w. wy

without GNSS signals by exploiting ambient cellular SOmPs. | lwx| = | w. 0 —w.|, w= [wm,wy,wz]T
contrast to traditional approaches, which employ an gt —wy  we 0

GNSS-IMU systems with a digital map, the proposed frame-

work deals with a unknown dynamic, stochastic error stateshe time update of the velocity estimate is computed using
of cellular SOPs by simultaneously estimating them. The#e trapezoidal integration according to

estimates are further refined via a closed-loop map-magchin, . T . c

step. The EKF time and measurement update steps are outlinBd(* +117) = P, (klj) + 5 [8(k) + 8(k + 1)]+T g (k). (9)
next, followed by the map-matching correction step. . a . . a . _
where §(k) = RqT(k)a(k), a(k) = a(k) — by(k|j) and

A. EKF Time Update R;(k) R [g”f]}. The time update of the position estimate

In this subsection, the EKF time update step is described.9Ven by

The EKF's vectore consists of the vehicle’s state, (1) and . . N~ T Y .
the clock error states (6). 16 Bu(k + 117) = by (klj) + 5 [Pk + 115) + By (klj)] . (20)

— [T T T The time update of the gyroscope and accelerometer biases
T = [mvamclk,sop} . . . .
estimates is given by
The cellular SOPs are assumed to be stationary with

known positionﬁpsop)n}ﬁ:f. Between measurement updates  Pg(k +117) = by(k[5),  ba(k +1]j) = ba(klj).  (11)
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The time update of the clock error state estimate is readilyThe estimate®, (k+1|k+1) andp,,,(k+1|k+1) are fed

deduced from (7) to be given by back to correct the clock bias state estimates according to
Eetsop(k + 15) = Pencenc.sop (k]7). (12) cAdtsopn(k 4 1|k + 1) <—cAdteopn(k + 1|k + 1)
+ Acorr,n(k + 1), (15)

The time update of the prediction error covariance is given b

T where
P(k+1]j) = F(k)P(Ej)F " (k) + Q(k), (13) )
Acorrm(k + 1) :Hpv(k + 1|k + 1) - psop,n”2

F(k) 2 diag [®p(k + 1, k), Be . — 12y, (k + 1k +1) = peop nll - (16)

Q(k) = diag [Qa, (k), Qelsop) - Finally, the map-matched estimapg, (k + 1|k + 1) is used

) ] » to replace the estimate,(k + 1|k + 1), i.e.,
The discrete-time INS state transition matfisg and process

noise covarianc€),,, are computed using standard INS equa- p,(k+1k+1)«—p, (k+1lk+1).
tions as described in [49.]’ [50]2 . . Fig. 3 summarizes the architecture of the proposed naviga-
Remark The four-dimensional quaternion vector is an.
. . . . tion framework.
over-determined representation of the orientation state.
avoid singularities due to this over-determined represent,
the estimation error covariance of the three Euler angles is
maintained in the EKF. Therefore, the block pertaining te th To evaluate the performance of the proposed ground vehicle
orientation state iP(k|j) is 3 x 3. navigation framework, two experimental tests were perm
in (1) an urban environment in which GNSS signals get
attenuated and become unreliable and (2) an environment
B. EKF Measurement Update in which signals from only 2 cellular LTE towers are used.
When GNSS signals are available, the EKF measuremdmtboth experiments, a ground vehicle was equipped with
update stage corrects the time updated states with (i)laellufollowing hardware and software setup:
SOP pseudoranges, (i) digital map data, and (iii) the edtéoh  « Two consumer-grade 800/1900 MHz cellular omnidirec-

IV. EXPERIMENTAL RESULTS

vehicle’s position obtained from the GNSS navigation sotut tional Laird antennas [51].

PaNss- « A Septentrio AsteRx-i V integrated GNSS-IMU, which is
Here, the measurement vectBi(k) consists ofpqngg and equipped with a dual-antenna, multi-frequency GNSS re-

{zsopyn}g:f, wherezg.p,» is the pseudorange drawn from the  ceiver and a Vectornav VN-100 micro-electromechanical

n-th cellular SOP transmitter. system (MEMS) IMU. The AsteRx-i V allows access to

When GNSS signals become unavailable, the measurement the raw measurements from this IMU, which was used for
update stage only uses (i) cellular SOP pseudoranges and the time update of the orientation, position, and velocity
(i) digital map data. HereZ (k) only includes cellular SOP as described in Section IlI-A. Septentrio’s post-proagssi

measurements{,zsop,n}g;°f. software development kit (PP-SDK) was used to process
Next, the corrected state estimatg:+ 1|k +1) and associ- carrier phase observables collected by the AsteRx-i V
ated estimation error covarian®k + 1|k + 1) is computed and by a nearby differential GPS base station to obtain

using the standard EKF measurement update equations [40]. a carrier phase-based navigation solution. This intedrate
The expressions of the corresponding measurement Jacobian GNSS-IMU real-time kinematic (RTK) system [52] was
H and the measurement noise covarialigeare demonstrated used to produce the ground truth results with which the
in Fig. 3. proposed navigation framework was compared.
« A dual-channel National Instrument (NI) universal soft-
ware radio peripheral (USRP)-2954R driven by GPS-

C. Map-Matching and Closed-Loop Clock Error State Cor- disciplined oscillator (GPSDO) [53]. This was used to
rection simultaneously down-mix and synchronously sample cel-
Assuming that the digital map comprisés; locations, de- lular LTE signals at 10 mega-samples per second (MSPS).

« A laptop computer to store the sampled cellular signals.
These samples were then processed by the Multichannel
Adaptive TRansceiver Information eXtractor (MATRIX)
software-defined radio (SDR) [29], [54], [55], developed

L
noted{ln £ [pm%,pmyn,pmzn]T}nil, the position estimate
P, (k|k) is map-matched to yiel@,, (k|k) according to

. IESITIN by the Autonomous Systems Perception, Intelligence, and
k+1lk+1) = E+1k+1) -1, , (14 o . . e
P | ) I?in|‘p”( | ) =, (14) Navigation Laboratory at the University of California,
where Riverside.
In both experiments, the ground vehicle was assumed to
D, (k + 1k +1) =L, = have initial access to GNSS signals. This enabled estigatin

the initial difference between the vehicle-mounted reeesv

2 _ 7T —175 _
\/[pv(k F 1R+ 1) =078 [y (k + 1k +1) = 1] clock bias and the clock biases of each LTE eNodeB in the
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i EKF L | Hongs = [014, 1153, 01042, I EKF :

i Time update ; gy . [H,, H,] a :_?lfaéqr_e_njgnt_};uad_a_t_e]_,:

b T s = d1ag |Dsop1, + -+ 5 Nsop N, |

Time update : :H 7 01:X4 1“:“*1 01:><_t) 1, , = Peon 2o 1

Equations (5)-(10) I - T o, P Peopn DR, '

b 1x4 80P, Nsop 1x9 hSOp.n = [1 0] ]

@ .~ [y T
lGNSS unavailable lGNSS available

Ponss(®) - N

0@ % b @ Zeopu () :
* I L . P A T  GNSS-based | !
a t| n-th cellular ~( ] i | n-th cellular “~. K position :
3 | SOP ] 1| SOP N estimate '
= ‘| Location: Dsopn b ] i | Location: Psop,n i ;
S : [ ) b :
9 ! - '
= ] N T i H ~ T!
S FZ(k) = [zop.1 (k) -+ Zeop iy ()] L Z(R) = [zo0pa(k)s - s Zop Ny (B): Poxss” (B)]
5 ! b T '
2 +H = Hsop i 1 H=[Hiop, Hixss) :
9 i : . h . - !
< Ezs = diag [Ugsop.,lv oo 70'2s0p.1\‘1up] | | 3, = diag [0—2501),17 coog UZSOuva E!I] :
) ' T b T :
O ' T T b T T 1
) :'I‘S = |:psop.17 500 7pSOD~NsoJ 1 1 Ts = |:psop‘1) oo 7psnp,Nmp] 1
VP(k+ 1)k +1) = I -K(k + DH(k + 1)]P(k + 1|k) 1 ° Map data
E x(k+ 1k +1) :a“c(k+1\k)+}<(k+1)u50},(k+1|k) . Map-mathced
¢ Vsop(k + 1K) = Z(k + 1) ~g(2(k +1|k)) _ ~ position estimate T o
L g(@(k+1]k) = [ou(@(k +1[K), .. gn.,, (2(k + 1[K))] 1 PN 2
b gn(@(k+ 1K) = [y(k +1) - wopll2 + cAStsopn(k +1) 1 4 A
CK(k+1) =Pk + 1E)H (k+1)S ! (k+1) : m S 1
VS(k+1) =H(k+ )Pk + 1/k)H  (k + 1) + 1 / /
[ Rt Fo-~-=-=--=-=--- ] J e £ ¢ L
] 1 Clock difference ! b o . d .
! : correétiorn ; L E BT ;
! eAdtaopn(k + 1k +1) = i L py(k+ Lk +1) = | ; S
¢ cAStsopn(k + 1)k + 1)+ re—t— Pu(k +1lk+1) : 3
{ Acorenll +1) b Q |
E ACOH',?I(k+ 1)<—Equation (16) E E \\ — ] Royal Wholesale Electic A ’ J
--------------------------- [ =
®) (&) (h)

Fig. 3. The architecture of the proposed EKF-based appraadituations where GNSS signals are available and unéeilda) EKF time step, (b)
EKF measurement update step, (c) measurement update tvEMNBS signals, (d) measurement update with GNSS signdlsofeected state estimate and
associated estimation error covariance, (f) calculatimgdock difference correction, (g) refining the vehiclesimated position using the map data, and (h)
map-matched vehicle’s position estimate.

environment{ AZcix sop.n (0] — 1)}5:[:{’. Moreover, the initial noise variances are calculated empirically while the Jehic

estimates of the vehicle's orientatigng, (0| — 1), position has access to GNSS signals according to
p,(0] — 1), and velocity p,(0] — 1) were obtained from

kcutots —1
the GNSS-IMU system. The gyroscopes’ and accelerometers’ sopn L Z 02 (),
bias estimatesh,(0| — 1) and b, (0| — 1), respectively; were T kewort P

initialized by averaging 5 seconds of gravity-compensat%erek
IMU measurements at a sampling periodlof= 0.01 seconds,
while the vehicle wastationary. The initial uncertainties as- Vopn (k) Zzsop,n (k) = ||Panss (k) = Psop.nl,
sociated with these state estimates were s#titg (0| —1) = A

g ) e 0l — cAdtsop - a7
(1 x 10 )13X3, va (Ol — 1) = blkdlag [312><2,0], Ppu (O| —
1) = blkdiag [0.5 Ix2,0], Py, (0|—1) = (3.75 x 107°) Isx3, Note that (17) assumes that,,, is a stationary white
Py, (0] —1) = (9.6 X 10*5) Isys, andPag,, .., (0] —1) = sequence. However, in practice, these processes are res-nec
diag[3,0.3], where blkdiag(-) and diag(-) denote a block- sarily white and therefore a variance inflation factor isdwesk
diagonal and a diagonal matrix, respectively. The value & account for the colored noise. Heneé,,, ,, < ao?sop n,
3, was set todiag[5,5,5] m*> and the SOP measuremenwherea is the inflation factor, which was chosen to be two

in the experiments presented in this paper.

cutoft 1S the time GNSS signals were cutoff and
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The following subsections present the navigation resalts 40
each of the two environments. Emo_ .
2 T ;\ui -
o . —— —m—]
© T |
. £ 2000|- _____——/’):" ———— —eNodeB1 nl
A. Environment 1 s [ - *emegg
2 1000 " enoce
The first experiment was conducted in an urban enviroe ——~ oo
ment: downtown Riverside, California, USA. The vehicl O 20 4 8 8 10 120 140 100 180 200
traversed a trajectory of 1380 m in 190 s. The traversc _. Time [s]
trajectory within this environment was surrounded by tades (a)
and buildings, which attenuates received cellular and GN¢ ! ‘ /V T
signals. In fact, due to the low elevation angles of cellulz w 08F / ]
towers compared to GNSS satellites, LOS obstructions,(e. Sos- f
g . 3 —eNodeB1
buildings, trees, poles, other vehicles, etc.) betweertdwer = . —eNodeB2
and the vehicle-mounted receiver are prevalent. Fig. 5 sho § o f _zzggzgj
the environment and experimental hardware setup. Over 1 / eNodeB5
course of the experiment, the receiver was listening to % 0 o o 10 20 30 2
eNodeBs corresponding to the U.S. cellular provider AT&. Pseudorange error [m]
with the characteristics summarized in Table I. It has been (b)

shown that the pseudorange measurement noise variance a§ids. (a) LTE pseudorange (solid lines) and actual rangsHed lines)
multipath error is lower for signals with higher transmissi variations and (b) empirical cumulative distribution ftina (CDF) of the
bandwidth [55]. Therefore, LTE signals with a 20 MHz band="E Pseudoranges for eNodeBs 1-5

width can provide more accurate pseudorange measurements

compared to LTE signals with a 10 MHz bandwidth. Not
that the transmission bandwidth of LTE signals is not uniqu
and depends on the LTE network provider. Fig. 4(a) shows
the LTE pseudorange (solid lines) and actual range (dashed
lines) variations and Fig. 4(b) shows empirical cumulative i _
distribution function (CDF) of LTE pseudoranges for eNodeB "€ second scenario studies the performance of the pro-
1-5. The standard deviations of the pseudoranges for eNod@85ed framework in the absence of GNSS signals. To this end,
1-5 were calculated to be 9.19, 3.61, 4.18, 7.75, and 6.01 f¢ GPS navigation solutigh:ss was discarded in a portion

) GPS-IMU-Map-Matching: this emulates an existing
high-end vehicular navigation system, which map-
matches the estimated vehicle’s position from the GPS-
IMU system produced in the second approach above.

respectively. of the vehicle’s trajectory to emulate GNSS unavailabilgge
Fig. 3).
TABLE | Throughout the experimental test, the PP-SDK was config-
LTE ENODEBS CHARACTERISTICS USED IN ENVIRONMENTL ured to produce a navigation solution at 1 Hz from GPS L1
- . C/A measurements only to emulate a low-cost, low-quality
eNodeB Carrier Cell [p  B2Ndwidth GPS receiver. In contrast, the ground-truth against wHbeh t
frequency (MHZz) (MHz) proposed framework and the three approaches above were
1 1955 216 20 compared was produced with the expensive, high-end GNSS-
2 739 319 10 IMU RTK Septentrio AsteRx-i V system.
3 739 288 10 1) Scenario 1: Comparison Against Existing Technologies:
In the first scenario, GPS signals were available along the
4 739 151 10 ) . . e
entire trajectory. Fig. 6 shows the vehicle’s ground truth
5 739 232 10

trajectory versus its estimated trajectory from GPS-0BRS-

* 1024 middle subcarriers used instead of 2048 IMU, and proposed framework. Table Il compares the nav-
igation performance of the proposed framework versus that
of the three approaches: GPS-only, GPS-IMU, GPS-IMU-

The performance of the proposed navigation framework figap. It can be seen from these results that the proposed

studied .in two sceparios. . framework outperforms all three approaches. Most notable,
The first scenario compares the performance against th{gg proposed framework, which was a standard GPS receiver
existing approaches: whose navigation solution is loosely-coupled with celtula

() GPS-only: this emulates a low-cost technology, whichseudoranges and a closed-loop map-matching, outperforms
only uses GPS pseudoranges to estimate the vehicle’bigh-end vehicular navigation system that uses an exgensi
states. tightly-coupled GPS-IMU system with map-matching.

(I GPS-IMU: this approach fuses GPS produced positions2) Scenario 2: Performance when GNSS Sgnals are Un-
with an IMU, which exhibits< 10 degrees per hour gy- available: In this scenario, the proposed framework’s perfor-
roscope bias stability (such IMU is typically considerethance in the absence of GNSS signals was evaluated. To this
a tactical-grade), in a loosely coupled fashion to estima¢ed, the navigation solution obtained from the GPS receiver
the vehicle’s state. was discarded over a portion of 330 m from the total trajgctor
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AN

10

LabVIEW-based LTE SDR

B |

L 55| 1]

? =]kl i
|

GNSS antennas

GNSS-IMU

Fig. 5. The experimental environment and the experimermaips (a) The environment layout, LTE SOP positions, andrilne vehicle trajectory. As can be
seen, the traversed path was surrounded by the tall treethamdceived signal experienced severe attenuation effeage: Google Earth. (b) Experimental
hardware and software setup. The LTE antennas were codnézta dual-channel NI USRP-2954R driven by a GPSDO. The dthi& signals were

processed via the MATRIX SDR.

TABLE Il
NAVIGATION PERFORMANCECOMPARISON IN AN URBAN ENVIRONMENT
L . Mean Max.
Navigation Position . .
. distance distance
Solution RMSE
error error
GPS only 5.61m 6.18 m 13.30m
GPS-IMU 401 m 453 m 10.38 m
GPS-IMU-map 3.03m 354 m 8.40 m
Proposed framework  2.80 m 341 m 8.09 m
| t
mprovemen 30.17%  2472%  22.06%
over GPS-IMU

of the map-matching from the use of LTE measurements, the
GPS-IMU-LTE solution (i.e., the proposed framework withou
map-matching) is also demonstrated in Fig. 7. Table Il com-
pares the navigation performance of the proposed framework
versus that of the GPS-IMU and GPS-IMU-LTE systems. The
following may be concluded from this test scenario. First,
as expected, when GPS signals were unavailable, the IMU’s
solution drifted due to the lack of aiding corrections froR&
signals (red line in Fig. 7). Note that the vehicle came to a
stop at the stoplight for 9 seconds, during which the IMU’s
solution drifted forward and to the right. Subsequentlye th
IMU’s solution continued to drift after the vehicle resumed
its forward motion. This error accumulation due to this drif
is particularly hazardous for semi-autonomous or fully au-
tonomous ground vehicles. In contrast, the GPS-IMU-LTE

to emulate GPS unavailability. Fig. 7 shows the portion ef thsolution (green line in Fig. 7) did not exhibit such drift as
vehicle’s trajectory where GPS signals were unavailabhe Tcellular signals were used as an aiding source to the IMU.
vehicle’s estimated trajectory from the proposed framéwoBecond, the effect of map-matching on the achieved accuracy
is also shown versus the vehicle’s estimated trajectorgnfrocan be investigated by comparing the GPS-IMU-LTE solution
the GPS-IMU system. In order to differentiate the influencand the proposed solution (yellow line in Fig. 7). As can be
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B. Environment 2

In order to assess the performance of the proposed frame-
work in the case where a small humber of cellular towers
are available, the second experiment was conducted in a
challenging environment in downtown Riverside, Califarni
Here, an urban street with multiple junctions was chosee. Th
drive test included 15 s of a GNSS cutoff condition. The $tree
were surrounded by tall buildings from both sides and only 2
o 3 S LTE towers were available in the environment. Over the opurs

— Ground truth ?",gf\, > ek \ e of the experiment, the vehicle-mounted receiver traveised
| _SPS-only r : : § RS total trajectory of 345 m while simultaneously listening to
| Proposed framework § A it : | 14 2 LTE SOPs corresponding to the U.S. cellular providers T-

=i : X Mobile and AT&T. Table IV summarizes the LTE eNodeBs
characteristics used in Experiment 2.

TABLE IV
LTE ENODEBS CHARACTERISTICS USED IN ENVIRONMENT

Fig. 6. Experimental results in an urban environment. Thecke's estimated - -
trajectory with our proposed framework is compared agaihst estimated LTE Operator Carrier Cell ID Banawidth
trajectory with a GPS-only and a GPS-IMU system. The growath was SOP frequency (MHz) (MHz)
obtained with an expensive GPS-IMU system with RTK. Experital results -
indicate a 2.80 m RMSE for the proposed approach. Image: iBdggyth. 1 T-Mobile 2145 79 20

2 AT&T 1955 350 20

seen, the proposed closed-loop framework (i.e., map-rimgtch

with clock difference correction) improves the GPS-IMUET  Fig. 8 shows the experimental environment, the location

solution. The estimated position RMSE using the GPS-IMW{ the LTE towers, and the vehicle’s ground truth trajectory

LTE solution was found to be 4.13 m, whereas the estimatedrsus that estimated with the proposed framework and that

position RMSE using the proposed framework was 3.12 mestimated with the GPS-IMU system. To evaluate the perfor-
mance of the proposed framework in the absence of GNSS

TABLE Il signals, while using signals from only 2 LTE SOPs, the nav-
NAVIGATION PERFORMANCECOMPARISON WITHOUTGPSSIGNALS igation solution obtained from the GPS receiver is discdrde
Mean Max. over a portion of 40 m of the total trajectory to emulate GPS
Navigation Position . unavailability. Table V summarizes the navigation perfance
. distance distance . . .
Solution RMSE in this environment. It can be seen that the proposed approac
error error yielded a 32% reduction in the position RMSE and a 43%
GPS-IMU 837m 1487m 57.12m reduction in the maximum distance error, despite using g ver
GPS-IMU-LTE 413m 566m 1238 m limited number of cellular SOPs.
Proposed framework  3.12 m 422m 10.67 m
Improvement TABLE V
P 62.72% 71.6% 81.32% NAVIGATION PERFORMANCECOMPARISON WITHOUTGPSSIGNALS
over GPS-IMU
_ . Mean Max.
Navigation Position . .
] distance distance
Solution RMSE
: L error error
B CPS avaiable 1§ g GPS-IMU 510m 475m  8.96m
] Proposed framework  3.43 m 4.18 m 5.03m
Improvement
P 32% 18%  43%
over GPS-IMU
- Y
— Ground uth V. CONCLUSION
— GPS-IMU
Proposed framework This article presented a novel framework for vehicular

Fig. 7. Vehicle’s estimated trajectory from the GPS-IMUtsys versus our navigation in urban environments. The framework uses an
proposed framework when GPS signals become unavailabléhendwailable  IMU, cellular signals, and GNSS signals (when available),
are specified. As can be seen, the GPS-IMU solution drifthénabsence of along with closed-loop map-matching. On one hand, when
GPS signals. In contrast, our proposed framework does robiexsuch drift . .

as cellular signals are used as an aiding source to the IMdgémGoogle GNSS S|gnals are unavailable, the proposed framework uses

Earth. cellular signals as an aiding source to the IMU, bounding the
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Fig. 8. The second experimental environment layout, LTE $@gtions, true
vehicle trajectory, and the different navigation soluipwhere the estimated
vehicle position obtained from GPS-IMU and the proposechoatare shown
using yellow and red lines, respectively. Over the courséhefexperiment, [12]
the vehicle-mounted receiver traversed a total trajecwiy345 m in an
urban streets while listening to only 2 LTE SOPs simultasgout is worth
mentioning that in the experiment area, the LTE towers wéastracted by

the buildings and the first LTE tower was far from the vehided a large [13]
portion of the vehicle’s trajectory had no clear LOS to thisELtowers. As can

be seen, the estimated position using the proposed frarkdoliows closely

the ground truth trajectory during the drive. Experimentsults indicate a [14]
3.43 m RMSE for the proposed approach. Image: Google Earth.

IMU drift, and producing an accurate estimate of the velsclell®]
state. On the other hand, when GNSS signals are available,
the proposed framework fuses estimates from the GN$$]
receiver with cellular measurements to produce an estimate
that is within a few meters of the estimate produced by ]
very expensive, high-end GNSS-IMU system with RTK and
map-matching. Experimental results in 2 urban environsient
are presented demonstrating the accuracy of the proporcl%ii
framework versus existing technologies. It was demorexrat
that the proposed framework achieved a position RMSE of
2.8 m over a trajectory of 1380 m while GNSS signals wer:
available and a position RMSE of 3.12 over the same trajgctor
while GNSS signals were not available for 330 m. In additiongo]
the robustness of the proposed framework to having a limited
number of cellular towers (only 2) was demonstrated, shgwin

a position RMSE of 3.43 m over a trajectory of 345 m, duringj]
which GNSS signals were unavailable for 40 m.

[22]
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