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Analysis-rcs-data: Open-Source
Toolbox for the Ingestion,
Time-Alignment, and Visualization of
Sense and Stimulation Data From the
Medtronic Summit RC+S System
Kristin K. Sellers1*†, Ro’ee Gilron1†, Juan Anso1†, Kenneth H. Louie1,
Prasad R. Shirvalkar2, Edward F. Chang1, Simon J. Little3‡ and Philip A. Starr1‡

1 Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States,
2 Department of Anesthesiology (Pain Management), Neurology, and Neurological Surgery, University of California,
San Francisco, San Francisco, CA, United States, 3 Department of Neurology, University of California, San Francisco,
San Francisco, CA, United States

Closed-loop neurostimulation is a promising therapy being tested and clinically
implemented in a growing number of neurological and psychiatric indications. This
therapy is enabled by chronically implanted, bidirectional devices including the
Medtronic Summit RC+S system. In order to successfully optimize therapy for patients
implanted with these devices, analyses must be conducted offline on the recorded
neural data, in order to inform optimal sense and stimulation parameters. The file
format, volume, and complexity of raw data from these devices necessitate conversion,
parsing, and time reconstruction ahead of time-frequency analyses and modeling
common to standard neuroscientific analyses. Here, we provide an open-source toolbox
written in Matlab which takes raw files from the Summit RC+S and transforms these
data into a standardized format amenable to conventional analyses. Furthermore, we
provide a plotting tool which can aid in the visualization of multiple data streams and
sense, stimulation, and therapy settings. Finally, we describe an analysis module which
replicates RC+S on-board power computations, a functionality which can accelerate
biomarker discovery. This toolbox aims to accelerate the research and clinical advances
made possible by longitudinal neural recordings and adaptive neurostimulation in people
with neurological and psychiatric illnesses.

Keywords: DBS, open-source software, Summit RC+S, bidirectional device, adaptive stimulation, closed-loop
stimulation

INTRODUCTION

Bidirectional, chronically implanted, neural interfaces provide an unprecedented window into
human neural activity during daily living and across a range of disease and symptom states. In
addition, these devices can deliver therapeutic stimulation in response to real-time changes in
neural activity features, driven by symptom biomarkers (Lo and Widge, 2017; Bouthour et al.,
2019; Velisar et al., 2019). Compared to traditional deep-brain stimulation (DBS) paradigms,
this adaptive stimulation approach may provide more nuanced therapy, avoiding side effects and
maximizing potential benefit (Herron et al., 2016; Little et al., 2016; Swann et al., 2018; Huang
et al., 2019; Velisar et al., 2019). Furthermore, the neural sensing capability of bidirectional devices
opens new possibilities for understanding disease mechanisms and functional brain networks
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(Swann et al., 2017). The Summit RC+S from Medtronic
(Stanslaski et al., 2018), a device available under Investigational
Device Exemption, is currently employed in the study of a
wide range of clinical indications (Table 1). It is a leading
example of advanced bidirectional neuromodulation technology
that heralds a new era of longitudinal, high-volume brain sensing
and neuromodulation in human patients (Gilron et al., 2021).
The advanced sense and stimulation capabilities of this device
system provide great user flexibility, but also challenges for
data handling. Data handling challenges include the need for
critical software for reading, handling, processing, or analyzing
RC+S data streams.

In order to prevent multiple individual research teams from
needing to engineer piecemeal solutions specific to each use-
case simply to access the data, we here provide a freely available,
comprehensive software toolbox written in Matlab and tested
on Mac and Windows1. We describe the implementation of this
functionality in three parts, with example patient and benchtop
data: (1) A data translation tool to ingest raw data from the
Summit RC+S and transform those data into a user-friendly,
human-readable, conventional analysis-ready format with data
streams on a common time base, with consistent inter sample
intervals; (2) A plotting tool that dynamically displays multiple
raw data streams and associated metadata; and (3) An analysis
module that mimics on-board power calculations conducted
by the device and plugs in to the constructed human-readable
data. Together, these tools can be used to support wide ranging
analyses of RC+S data or modeling developed by the end-user.

1https://github.com/openmind-consortium/Analysis-rcs-data

TABLE 1 | Clinical trials using the Medtronic Summit RC+S system.

Sponsor/main site Registration
number

Indication Enrollment
target

Baylor College of Medicine NCT04806516 OCD 5

Baylor College of Medicine NCT04281134 OCD 3

Duke University NCT03815656 PD 6

Duke University NCT03270657 PD (intraop*) 5

Icahn School of Medicine at
Mount Sinai

NCT04106466 TRD 10

Johns Hopkins University NCT04576650 Locked-in
Syndrome

5

Mayo Clinic NCT03946618 Epilepsy 10

Stanford University NCT04043403 PD 14

University of California,
San Francisco

NCT03582891 PD 25

University of California,
San Francisco

NCT04675398 PD 10

University of California,
San Francisco

NCT04144972 Chronic Pain 6

University of Florida NCT02649166 ET 20

University of Florida NCT02712515 ET (intraop*) 50

xUniversity of Nebraska NCT04620551 PD/Sleep
fragmentation

20

OCD, obsessive compulsive disorder; PD, Parkinson’s disease; TRD, treatment
resistant depression; ET, essential tremor; *intraop, intraoperative study only (no
chronic implant).

MEDTRONIC SUMMIT RC+S

The Summit RC+S system consists of two surface or depth leads
that are implanted in the brain and a neurostimulator (INS)
implanted in the chest. The system is capable of sensing neural
activity, performing on-board computations, and delivering
open-loop or adaptive stimulation based on user-programmed
parameters. The device can stream myriad metadata (device and
battery status; sensing, stimulation, and adaptive configurations;
enabled electrode contacts, etc.) in addition to user-defined
selections of time series data [referred to here as “data streams,”
including: time domain local field potentials, band-pass power,
fast Fourier transform (FFT), accelerometry, and adaptive
algorithm settings; Table 2] to an external tablet.

The richness and completeness of the data that are streamed
also present a number of challenges. The device employs
User Datagram Protocol (UDP) to transmit packets of data
from the implanted INS to an external tablet. However, this
transmission protocol does not perform receipt verification,
meaning that some data packets may be lost in transmission
(e.g., if the patient walks out of range) and/or may be
received out of order. Each of the packets contains a variable
number of samples, and timing information is only present
for the last sample in each packet (Figures 1A,C). These
data packets are stored in 11 JSON files, such that 11
raw data files are present for each recording (Figure 1D).
Packets are individually created, sent, and received for the
different JSON files, meaning that packets across different data
streams have different timing information, and missing packets
across data streams may not align. The JSON files contain a
combination of meta data and time series information with
much of the metadata coded in hex or binary necessitating
translation into human-readable values (Figures 1A,B). Lastly,
information is needed from multiple JSON files simultaneously
to provide users with information of interest (e.g., multiple
JSON files are needed to recreate the labels of electrode contacts
which were being used for stimulation and the parameters
for stimulation) (Figures 1C,D). The quantity and variety of
data from this device far surpass any previous bidirectional
neuromodulation system, but this strength has also proven
to be a notable barrier to implementation for research and
clinical teams. The first and second parts of the presented
toolbox seek to address this challenge by providing data parsing

TABLE 2 | Summit RC+S configurable data streams.

Time Domain Continuous time domain data from up to four channels
sampled at 250 or 500 Hz, or from up to two channels
sampled at 1,000 Hz.

Accelerometry Continuous onboard 3-axis accelerometry data sampled at
∼4–64 Hz

FFT Single-sided fast Fourier transform derived by the on-device
FFT engine according to user-defined FFT parameters

Power Domain Continuous power data from the on-board FFT engine in
configurable power bands. Up to eight power domain
channels can be streamed simultaneously.

Adaptive Setting and stimulation state information from the adaptive
detector.
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FIGURE 1 | Summit RC+S raw data structure. (A) One packet of data from RawDataTD.json; each packet contains one set of timing values and a variable number
of time domain samples from each streamed channel; values such as SampleRate must be converted to interpretable values (e.g., Hz). (B) One section of values
from DeviceSettings.json which provides information on time domain channel settings; mode, gain values, high pass and low pass filter settings, and contacts must
be decoded to interpretable values. (C) Each time series stream transmits data from the INS in packets of variable sizes using UDP; receipt verification is not
performed, so packets may not be received or may be received out of order. Each packet contains one value of timing information per variable, aligned to the last
sample in the packet. Each data stream transmits packets separately, with non-aligned timing information. (D) The present toolbox is compatible with raw RC+S
data which are acquired in 11 JSON files. This relationship diagram depicts that information from multiple files is required to interpret the recordings. For example,
interpretation of RawDataTD.json may require all other JSON files which are connected to it via arrows. Colors are used to aid visualization.

and time alignment across the data streams and streamlined
data visualization.

A key mode of operation for the Summit RC+S uses an
“embedded” algorithm to control adaptive stimulation, which is
also complex to implement. A typical workflow for programming
of this mode includes identifying neural activity which is
correlated with or predictive of symptoms (i.e., a biomarker),
programming the device to calculate the biomarker, and setting
the device detector with threshold values such that when
the biomarker moves between predefined states, stimulation
delivery and/or stimulation parameters are adjusted (Provenza
et al., 2019). Specifically, the Summit RC+S includes on-board
computational capability to calculate FFT, band-pass power,

and execute linear discriminant analysis (LDA) to control the
administration of adaptive stimulation. Effectively programming
the device and managing patients using adaptive stimulation
can be challenging because the biomarker characteristics (e.g.,
frequency band limits, dynamic range) must be known, and
parameters of the on-board computation of the FFT and power
(e.g., interval, size, Hann window) can change values going into
the LDA. Exhaustively testing these parameters in patients is
time consuming and not feasible. Therefore, the third part of
our toolbox is to provide a power calculation module which
allows for off-device power computation using streamed time
domain data. This tool can be set to use the same parameters as
the Summit RC+S, allowing for the optimization of settings to
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increase detector performance without creating undue burden on
the patient. A key feature differentiating the power computations
in our toolbox from standard offline power calculations is that
the magnitude, update rate, and range of power values will be
comparable to those calculated by the device; these values can
directly inform optimal programming of adaptive stimulation.

METHOD AND RESULTS

Part 1: Data Parsing and Time Alignment
Conventional neurophysiological analyses are greatly simplified
by the use of a standardized timebase across data streams
and a consistent sampling rate (i.e., inter-sample interval).
This facilitates time-frequency decomposition and supports
downstream modeling of disease biomarkers, analysis of
stimulation impact, and parameter selection for adaptive
stimulation. Such standardized data formatting includes data in
matrix form, with samples in rows, data features in columns
(or vice versa), and a timestamp assigned to each row. A key
computational step for RC+S data is the derivation of the precise
time assigned to each row, which we will refer to as DerivedTime.
DerivedTime should be in unix time (a standardized time format
for describing a point in time; the number of elapsed seconds
from 1 January 1970 in UTC, with a method to account for

different time zones), to allow for synchronization with external
data streams, symptom reports, or tasks. Furthermore, we ideally
would like all separate datastreams to be on the same timebase,
aligned to common DerivedTime timestamps (such that we
can analyze multiple data streams recorded simultaneously—for
example correlating time and power domain data with patient
movement detected via the accelerometer). Below, we describe
our implemented approach to navigate the specialized native
format of RC+S data to achieve this desired, standardized output
format (Figure 2).

The result of this approach is to provide a table
(combinedDataTable) containing time series data from all
data streams with a calculated DerivedTime value for each
sample, and tables with relevant metadata and settings which can
be applied to select periods of interest in combinedDataTable.
DerivedTime is inclusive of the beginning of the earliest starting
data stream to the end of the latest finishing data stream, in
steps of 1/Fs of the time domain data stream (Fs = 250, 500,
or 1,000 Hz). CombinedDataTable is filled with data from all
datastreams; if there is not a sample for a given time step, the
entry is filled with a NaN. Thus, this neuroscience-analysis-ready
table can be quite large to store on disk (leading to prohibitively
long read/write times for long recordings). Therefore, there
are two main functions to execute to achieve the desired final
data table: ProcessRCS.m followed by createCombinedTable.m

FIGURE 2 | Overview of Summit RC+S data parsing and time alignment. Raw JSON files (orange) are loaded into Matlab (yellow). For each time series data stream,
packets with invalid data are removed and timing variables are used to calculate DerivedTime for each sample (light green). Samples in each data stream are aligned
to DerivedTime for time domain data, which has the highest sampling rate (dark green). These data tables are saved in a.mat file (using a combination of tables and
sparse matrices) along with tables containing settings information and metadata (blue). Finally, combinedDataTable is created which can be used for plotting and
user-specific analyses (purple).
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(Table 3). In the following sections, we describe the rationale
behind the implementation of these functions.

Steps 1 and 2: Raw Data From RC+S Loaded Into
Matlab
Large raw data are loaded from JSON files into Matlab using
the turtle_json toolbox (2included in our toolbox repository),
which can parse large files rapidly. In cases where JSON files
are malformed (typically with closing brackets omitted), fixes
are attempted to read these data. Each data stream is read
independently, and empty or faulty raw data files will result in
continuation of processing omitting that data stream.

Step 3: Data Cleaned and Timestamps Aligned
We continue processing of each data stream independently.
There are multiple time and counting related variables present
for each packet of data (Table 4). We identify and remove
packets with meta-data that is faulty or which indicate samples
will be hard to place in a continuous stream (e.g., packets
with timestamp that is more than 24 h away from median
timestamp; packets with negative PacketGenTime; packets where
PacketGenTime goes backward in time more than 500 ms;
packets where elapsed PacketGenTime disagrees with elapsed
timestamp by more than 2 s).

Upon inspection of empirical patient and benchtop (Stanslaski
et al., 2012; Powell et al., 2021) data sets, we found that none
of the time related variables associated with each packet of data
could independently serve as DerivedTime. Table 4 describes
why each variable cannot be used for DerivedTime. In the
case of PacketGenTime, the difference between PacketGenTime
of adjacent packets, when no packets were dropped, does not
equal the expected amount of elapsed time (as calculated using
the number of samples in the packet and the sampling rate);
the amount of this offset varies between packets. This presents

2https://github.com/JimHokanson/turtle_json

TABLE 3 | Description of functions for creating CombinedDataTable.

Function Inputs Outputs

ProcessRCS.m (1) Path to folder
containing raw JSON files
(2) (Optional) processFlag
to indicate
saving/read/overwrite
selection
(3) (Optional) Alternate
method for handling short
gaps in data, for
advanced users (more
information below)

For each data stream:
sparse matrix with
numerical data, cell array
with column labels for
sparse matrix, table with
non-numerical data; tables
with metadata and settings

createCombinedTable.m All required variables
available from
AllDataTables.mat or
output of ProcessRCS.m
(1) Cell array of data
streams to be included
(2) unifiedDerivedTimes
(3) Metadata

combinedDataTable

TABLE 4 | Time and count variables associated with each packet of data from
the RC+S system.

Variable Value meaning Why insufficient for
DerivedTime

timestamp Elapsed number of
seconds since March 1,
2000, in units of seconds.
Implemented in INS
firmware

Highest resolution is 1 s

systemTick Running counter, in units
of 1e−4 seconds; rolls
over every 2ˆ16 values
(∼6.5535 s).
Implemented in INS
hardware

Rolls over every 2ˆ16 values.

PacketGenTime API estimate of when the
packet was created on
the INS. Unix time with
resolution to millisecond

The difference between
adjacent PacketGenTime
values does not always equal
the expected amount of
elapsed time. Aligning by
PacketGenTime would result in
varying inter-sample intervals

PacketRxUnixTime Unix time when computer
received packet

Highly inaccurate after packet
drops

dataTypeSequence Packet sequence
number. Rolls over at
255; does not reset upon
start of streaming

Counter, does not provide time

a serious problem—in cases of missing time, we would lose
the stereotyped 1/Fs duration between samples, which would
introduce artifacts in time-frequency decomposition. In cases of
overlap, there is no way to account for having more than one
value sampled at the same time.

We next sought to use timestamp and systemTick in concert
to create DerivedTime, and then convert to unix time using one
value of PacketGenTime. However, we observed from empirical
data (both recorded from an implanted patient device and using
a benchtop test system) that one unit of timestamp (1 s) did not
always equal 10,000 units of systemTick. The consequence of this
was offset between systemTick and timestamp that accumulated
over the course of a recording (multiple seconds error by the
end of a 10-h recording). While using these values may be
acceptable for short recordings, we chose to move away from this
implementation because one of the strengths of the RC+S system
is the ability to stream data for long periods of time. Thus, rather
than use any one of these time variables independently, we rely
on information provided by all of them to create DerivedTime.

Our implemented solution for creating DerivedTime
(Figure 3) depends on first identifying continuous “chunks” of
data; defined as a continuous series of packets of data sampled
without packet loss. Although there is indeterminacy in the
timing of individual data packets, the INS device samples
continuously at a fixed sampling interval and therefore, within a
chunk of concatenated packets, the data sampling is continuous
and regular. Our approach aims to align the beginning of
continuous chunks of data to unix time and then use the
sampling rate to determine the DerivedTime for each individual
sample. This process relies on the assumption that only full
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FIGURE 3 | Calculation of DerivedTimes for each data stream. (A) The default method for calculating DerivedTimes for short-gap chunks and the only method for
long-gap chunks is to align the beginning of continuous chunks of data to Unix time using the adjusted PacketGenTime from the first packet in the chunk, and then
using the sampling rate to determine the DerivedTime for each sample. Each DerivedTime is shifted to the nearest multiple of 1/Fs after chunk one in order to
preserve consistent intersample spacing. (B) DerivedTime is calculated separately for each time series data stream, as each data stream has packets that are sent
independently.

packets of data are missing, but there are no individual samples
missing between packets. First, we chunk the data—identified by
looking at the adjacent values of dataTypeSequence, timestamp,
and systemTick as a function of sampling rate and number of
samples per packet. Breaks between chunks can occur because
packets were removed during data cleaning, because there were
dropped packets (never acquired), or because streaming was
stopped but the recording was continued. Changes in time
domain sampling rate will also result in a new chunk. There are
two categories of chunks, short-gap and long-gap. Short-gap
chunks follow a gap shorter than 6 s, as determined by timestamp
(indicating there was not a full cycle of systemTick); long-gap
chunks follow a gap greater than or equal to 6 s (indicating there
may have been a full cycle of systemTick). There are two options
for how to handle short-gap chunks and only one method for
handling long-gap chunks.

For all chunks, we need to align the beginning of the chunk
to a Unix time. The first chunk in a recording is aligned using
the PacketGenTime of the first packet in the chunk. The default
option for handling short-gap chunks is the use of the same
approach used for long-gap chunks: we look across all the
packets in the chunk and calculate the average offset between
each PacketGenTime and the amount of time that is expected
to have elapsed (calculated based on sampling rate and number
of samples in the packet). We then apply this offset to the
PacketGenTime corresponding to the first packet of the chunk,
creating the Adjusted PacketGenTime. We can now calculate a
time for each sample in the chunk, as a function of the sampling
rate. The alternative option for short chunks is to use adjacent
values of systemTick to calculate the elapsed time across a gap
(systemTick from the last packet of the previous chunk and

systemTick of the first packet of the next chunk). This is possible
because we have stayed within one full cycle of systemTick values.
This approach should only be used when users have verified
that their systemTick clock is quite accurate (otherwise error can
accumulate over the course of the recording). Whichever process
is selected is repeated separately for each chunk.

Lastly, we shift the calculated DerivedTime values slightly for
chunks two onward, in order to match the time base of the
sampling of the first chunk of data and preserve inter-sample
spacing of 1/Fs. Any missing values are filled with NaNs. Again,
the above processing is conducted separately for each data stream,
as each of these streams have separate systemTick, timestamp,
and PacketGenTime values reported per packet. Harmonization
of DerivedTime across data streams is conducted later.

Step 4: Harmonize Time
As described above, the optimal format for neuroscience-
analysis-ready data is matrix form, with samples in rows, data
features in columns, and a timestamp assigned to each row. After
creating DerivedTime separately for each time series data stream,
we must “harmonize” these times across data streams. By this,
we mean samples in each data stream are aligned to the nearest
value of DerivedTime from time domain data, which has the
highest sampling rate (Figure 4). In some cases, data streams may
extend before or after time domain data – in these instances, we
add values to DerivedTime in steps of 1/Fs (time domain Fs) to
accommodate all samples.

Step 5: Output File
If the user selects to save the output of ProcessRCS.m to disk,
AllDataTables.mat is created and stored. This file contains a
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FIGURE 4 | Harmonization of time across data streams to achieve one common DerivedTime timebase. DerivedTime from the time domain is taken as the common
time base, as the time domain data have the highest sampling rate. Samples from other data streams are shifted in time slightly to align with the nearest time domain
DerivedTime.

number of variables, which separately store data from each
datastream and tables with metadata and settings. For each
time series, numerical data are stored in a sparse matrix,
non-numerical data are stored in a table, and a cell array contains
the column headings of the sparse matrix. The purpose of saving
these data broken into different tables and matrices is to minimize
file size (as the final desired combinedDataTable contains a large
number of NaNs and can be quite large).

Step 6: Data Structure for Plotting and Analysis
Outputs from ProcessRCS.m (or variables loaded from
AllDataTables.mat) can be used to create combinedDataTable
using the script createCombinedTable.m. Whenever a data
stream lacks a value for a particular DerivedTime, that
entry in the table is filled with a NaN. The table does not
contain any columns which are entirely filled with NaNs. The
CombinedDataTable variable represents the final data structure
for plotting and analysis. All time series data for a given session
of RC+S streaming can be contained within this table. The
use of Unix time facilitates the synchronization of neural
data with external tasks, symptom reports, or across multiple
implanted devices. For example, some patients are implanted
with two RC+S devices (one in the right hemisphere, one in
the left hemisphere) which can be streamed simultaneously.
In Figure 5, we plot the accelerometry channels from bilateral
devices in a single patient after each dataset was independently
processed using ProcessRCS.m and combineCombinedTable.m.
The movement signals are very closely aligned in time at the
beginning and end of an overnight recording, providing an
example of validation of the processing algorithm.

Part 2: Data Plotting and Visualization
Analysis of local field potential neural data often consists of
several key steps: preprocessing, artifact removal, and spectral
analysis. Performing these steps with the Summit RC+S data
presents special challenges for a few key reasons: First, small
gaps in the data introduce transient artifacts in spectral analysis.
Second, RC+S data contains several data streams that are not
commonly used in other processing and plotting pipelines (e.g.,
power time series, adaptive detector). Third, all data streams
use different sampling rates. Fourth, data collected at home over

hours and days (Gilron et al., 2021) result in multiple recording
sessions; some analyses require loading multiple sessions and
creating one cohesive structure. Finally, some data streams are
usefully plotted together, such as the adaptive detector and
associated thresholds.

In order to address these challenges, we have created a
Matlab plotting tool to aid in rapidly plotting and analyzing
RC+S data directly from the JSON files. Our plotting tool
incorporates the functional steps described above to create a
cohesive, unified time across RC+S data streams and provides
the user the ability to easily plot all data types (Figure 6A).
Unlike commonly available spectral tools (Fieldtrip, EEGLAB)
which assume data are continuous, this tool will perform “gap
aware” analysis of the data in the frequency and spectral domain.
Data are plotted from multiple data streams with different
sampling rates such that alignment is preserved, utilizing the
common time base calculated in the first part of the toolbox,
described above. Furthermore, we provide an easily executed
mechanism to combine and analyze data from multiple sessions
(e.g., throughout an entire day of streaming), as well as functions
to save and aggregate power spectral density data for downstream
analysis (Figure 6B). The plotting tools takes advantage of all
meta-data parsing and combines this information in the display
of plotting results. For example a call to plot a time domain
channel will include information of the sense channels and
filtering settings (Figure 6C, top), and a call to plot current
will include information about stimulation channels, stimulation
settings, and if changes occurred within the session (Figure 6C,
second from bottom).

Finally, reporting functions exist to visualize gaps that exist in
the data and report event markers (written to the raw JSON file by
the API) that the experimenter may have programmed. Typically,
these include task timing or patient symptom reports. Figure 6
provides a schematic of the analyses this tool can perform for
data visualization as well as an example call demonstrating the
simplicity of use to plot rich data stream visualizations.

Part 3: Power Calculation Analysis
Module
The Summit RC+S can be programmed to deliver adaptive
stimulation controlled by user-programmed power features and
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FIGURE 5 | (A) Accelerometry channels from the beginning of an overnight recording from two RC+S devices implanted in the same patient. Detected movement
serves as a way of confirming the parsing algorithm, which was applied separately to data from each device, is faithfully recreating time across the recording, without
any accumulated offset. (B) Accelerometry channels from the end of the same ∼6.5 h recording as in panel (A). No accumulated drift is visible between the
datastreams across the devices.

FIGURE 6 | rcsPlotter overview and example. (A) Main functions used in the “rcsPlotter” class. These functions are used for loading data which are processed
through ProcessRCS.m, plotting all RC+S data streams, reporting values across recordings (such as stim state and event markers), and saving for downstream
analyses. (B) Example function call for the “rcsPlotter.” This shows the simplicity of loading data from an embedded adaptive DBS session and plotting the results.
Plots from function call show in panel (C). Each stream has its own dedicated plotting command that will pull in meta data and display it in the subplot title. Adding
additional folders (for example, from the same day) only requires one call (and will plot all streams together). There is a “plot” method for each data stream. A list of
available methods is available in the function help section. (C) This output from the “rcsPlotter” class includes meta-data parameters pulled from multiple JSON files
to populate graph titles. Top plot—bandpass time domain data used for embedded detector, sense channels and filter settings indicated. Second from top—output
from embedded linear detector output (threshold shown as red dashed line). Third from top—stimulation current and current parameters. Bottom—actigraphy.
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detector settings employing LDA. Biomarker discovery and
programming of adaptive stimulation are greatly aided by being
able to compute inferred embedded power domain outputs
from the recorded time domain data off the device. This
avoids the need for new data sets to be collected after any
changes in device sense settings. Here, we describe an analysis
module to calculate off-device power equivalent to the on-
device power values using the streamed time domain neural
data. This provides an estimate of power that is comparable
to the power the device calculates internally and allows the
user to calculate different frequency bands and with the option
to modify FFT parameters (size, interval, and Hann window
%). Figure 7 provides an overview of the key computation
steps in this module.

For the off-device power calculation, time domain signal s(n)
is extracted from combinedDataTable, offset voltage is removed,
and raw millivolt values are transformed to internal device
units using the following equation which accounts for amplifier
calibration (Equation 1; Table 5):

s(n){rcs units} = (s(n){mV} − s(n){mV})

∗

250 ∗ config trimmer ch gain
255 ∗ f pv

{real units}

1000 ∗ 1.2
(1)

Then, the overlap of a running Hann window is calculated as a
function of sampling rate, FFT interval, and FFT size. The overlap
formula is given in Equation 2:

Overlap = 1 −
(

sampling rate ∗ fft interval
fft size actual

)
(2)

For the overlap calculation the device uses an actual number of
FFT points of 62, 250, or 1,000 for FFT sizes of 64, 256, or 1,024,
respectively. The RC+S offers three Hann windows (window
load) settings, 25%, 50%, and 100%. The 100% Hann window is
the default Hann window, defined by:

Hann window (n) = 0.5 ∗
[

1− cos
(

2π
n
N

)]
, 0 ≤ n ≤ N

(3)
with a window length L = N + 1. In the off-device power
calculation the user chooses one of the three Hann window
settings (Figure 8).

In Figure 9, the off-device calculation of a benchtop dataset is
shown. The time domain raw neural signal s(n) is transformed to
the internal on-device units (Equation 1). Then, a window with
the size of the FFT is shifted from start to end of the time domain
signal using the Hann window (see Equations 2, 3). For each
window, the single-sided FFT is calculated, and the biomarker

FIGURE 7 | Use of the function calculateNewPower.m to calculate a new power domain time series based on user-defined FFT settings, frequency band, and time
domain channel. The steps required before invoking the function include: (1) Define FFT settings, frequency band, and time domain channel. (2) Calculate FFT bins.
(3) Define Power Settings using the FFT settings and derived FFT bins. (4) Determine FFT bins within frequency band. (5) Run function calculateNewPower.m passing
all required parameters.
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TABLE 5 | Variables and constants to transform RC+S signal back to internal
on-device units.

s(n){rcs units} Raw neural sense channel transformed to the internal
RC+S units

s(n){mV} Raw neural sense channel in time domain file (default
units = millivolts)

250 ∗ config trimmer ch gain
255 Calibrated sense channel amplifier gain (config trimmer

ch gain defined in device settings file per sense channel)

fpv{real units} On-device fixed point value constant to account for real
numbers (48,644.8683623726)

power band is computed as the sum of the power of all frequency
bins within the defined frequency band multiplied by a gain factor
G (see Figure 9D). To optimize the match between the off-device
and the on-device power series, the FFT gain factor G may be
calibrated per dataset (the chosen default value is G = 2).

In Figure 10, a comparison between the on-device and off-
device calculations for a human subject dataset is shown. To
assess the difference between the on-device and the off-device
calculated power, root mean square error (RMSE), normalized
RMSE, and percentage difference for each were evaluated,
resulting in 318.03 (RCS units), 0.041 (normalized RMSE), and
1.78% respectively. We normalize using the difference between
maximum and minimum for each of the two variables (Power
on-device and Power off-device).

DISCUSSION

Deep-brain stimulation is an established or experimental therapy
for a number of neurological and psychiatric diseases (Mayberg
et al., 2005; Lozano et al., 2008; Mallet et al., 2009; Schlaepfer
et al., 2013; Pereira and Aziz, 2014; Fontaine et al., 2015;
Moro et al., 2017; Limousin and Foltynie, 2019; Harmsen et al.,
2020; Shirvalkar et al., 2020; Krauss et al., 2021). Originally
applied in an open-loop paradigm, there has been a surge
of interest in delivering closed-loop or adaptive stimulation

in response to disease and symptom biomarkers (Neumann
et al., 2014; Arlotti et al., 2018; Hoang and Turner, 2019;
Provenza et al., 2019). The use of adaptive stimulation may
be able to better match the timescale of stimulation therapy
adjustments to the timescale of symptom evolution, or may
operate on fast time scales to reshape pathological oscillatory
bursts (Tinkhauser et al., 2017). The Medtronic Summit RC+S
bidirectional device is being tested in a number of clinical
trials for therapeutic stimulation to treat a range of diseases
(Table 1). This device is equipped with advanced sense and
stimulation capability, including the ability to record multiple
data streams simultaneously (e.g., time domain, accelerometry,
power, FFT, adaptive detectors), and to stimulate either in open-
loop or adaptive mode. The device is powered via a rechargeable
battery, thereby allowing patients to stream for long periods
without the need for frequent surgeries to replace a primary
cell battery. However, fully leveraging these advanced capabilities
is limited if researchers and clinicians cannot efficiently access
recorded data in a format amenable to conventional analysis
to inform device programming. Here, we provide a toolbox
which can ingest raw JSON data from the Medtronic Summit
RC+S device and provide key outputs and functionality for
users. We import raw time series and metadata from all data
streams and decode information to human-readable values.
Critically, we compute a common time base such that all data
streams can be analyzed together with time alignment. While
seemingly simple, the technical specifics of how data packets
are transmitted from the INS to the external tablet precluded
the ability to easily analyze multiple datastreams together with
accurate time alignment prior to this implementation. Prior
studies relied on averaging time windows for more coarse
alignment or looking at datastreams independently. Because our
common time base is in Unix time, it further facilitates the
synchronization of Summit RC+S data with external sensors
and tasks and event-locked epoching. The ability to analyze
all acquired datastreams together is fundamental to both our
scientific understanding of neural correlates of disease and for

FIGURE 8 | Hann window with “window load” parameter of 25, 50, and 100% as selectable by the RC+S FFT power calculation: (A) The shape of the tapper Hann
window function. (B) Power calculated off-device based on different Hann window load values.

Frontiers in Human Neuroscience | www.frontiersin.org 10 July 2021 | Volume 15 | Article 714256

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-714256 July 9, 2021 Time: 12:59 # 11

Sellers et al. Analysis-rcs-data

FIGURE 9 | Power calculation off-device replicating the on-device power calculation for a benchtop dataset with three 5 s bursts of a 25 microvolts sine wave at
20 Hz frequency. The calculation is conducted following four steps: (A) The raw time domain neural signal s(n) (mV) is transformed back to internal device units, RCS
units (see Equation 1, Table 5). (B) To minimize spectral leakage, a Hann window is applied to each new analysis window of the transformed signal s(n). The new
analysis window (∼26.9–27.3 s) is defined by the size and interval of the FFT (Equations 2, 3). The raw signal within the next time segment is shown in blue and the
Hann window tapered signal is in red. (C) A single-sided FFT is applied to the Hann tapered signal s(n) resulting in an amplitude FFT value per each frequency bin of
the complete FFT band (0 to 1/2 sampling rate). For the exact scaling of the single sided FFT see function “calculateNewPower” (scaling steps 1 and 2) on
https://github.com/openmind-consortium/Analysis-rcs-data. (D) Power is computed as the sum of squares of each FFT amplitude multiplied by a gain factor G
(scaling step 3) for all frequency bins within the frequency band. The on-device power series is shown in blue and the off-device calculated power, up to the last
analyzed window in this graph (∼27 s) is depicted in red (using the matlab function stem). The time alignment between the on-device and the off-device signal is
accurate as the perfect overlay between sample points at the power signal flanks shows.

FIGURE 10 | In vivo human data set showing on-device and off-device calculated power series for a given frequency band (8.05–12.20 Hz). (A) Overlay of power
time series for the “on-device” and the “off-device” calculation. (B) Zoom into a 2-min segment showing minimal difference between the two power series.
(C) Scatter plot showing the fit between the “on-device” and “off-device” power values with RMSE of 318.03 (RCS units) and percentage difference of 1.78%.
(D) Scatter plot showing the fit between the “on-device” and “off-device” power values with normalized RMSE of 0.041 and percentage difference of 1.78%.

accurately understanding how neural activity, stimulation, and
symptoms relate for the clinical management of implanted
patients. Similarly, viewing these different datastreams together

provides a more comprehensive view of the therapy. Our
plotting tool allows for easily customized visualization of one or
multiple datastreams.
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The Summit RC+S system provides technological advances
to enable embedded adaptive stimulation. Such therapy has
been applied in the treatment of epilepsy (Kremen et al.,
2018) and Parkinson’s disease (Swann et al., 2018; Gilron
et al., 2021). Across indications, the device is programmed to
calculate power within predefined frequency bands, and these
values are used to determine the current “state,” relative to
the predefined detector thresholds. The Summit RC+S has
two detectors available when operating in embedded adaptive
mode, each with a linear discriminant function that allows for
up to four input power features. Selecting all the parameters
for each computation, detector, and threshold is a challenge
in the real-world implementation of this system. Exhaustive
testing with patient reports of symptom status (in order to
validate performance) is not feasible because of the large
parameter space. Therefore, we provide a tool which allows
Summit RC+S users to calculate inferred embedded power
estimates, off the device, using streamed time domain data.
While standard software power calculations can be used to
analyze the data for better understanding of neural correlates of
symptom status, those computations are less useful in informing
programming of the device. Here, we mimic the computation
steps performed on the device hardware and firmware in order
to obtain values that are comparable to what the device will
calculate. The magnitudes of the power values calculated are
typically used to set the threshold values in the detector, so
it is critical to have off-device computations which do not
require a scaling factor or other transform to be comparable to
online computations.

Though the Summit RC+S is only accessible via an
Investigational Device Exemption with no current plans for
commercial release, it has a 9-year life span, and is expected
to be implanted in over 130 patients across seven indications.
Given the research volume planned with these patients (estimated
to be over $40 M in NIH funding), a robust toolbox to aid
in data analysis and data sharing could prove invaluable for
the research groups that will be working on these datasets
in the decade(s) to come. Available as a potential alternative,
the Neuropace Responsive Neurostimulation (RNS) System is
a commercially available device which is capable of sense and
stimulation. Specifically designed for epilepsy management, the
RNS is a primary cell, cranially-contained device with two
4-contact leads. As the on-board calculation capability of the
device is tailored for seizure detection and stimulation is designed
to disrupt the progression of seizures, the applicability of
this device to other indications is limited. Furthermore, the
primary cell battery precludes the ability to stream for long
periods of time, which is a key strength of the RC+S. New
bidirectional sense and stimulation enabled devices continue to
enter the market (e.g., Medtronic Percept). We hope the learnings
presented via this toolbox can provide guidance to device
manufacturers to develop systems which are easily implemented
and managed by clinicians and researchers (Borton et al., 2020).
Some areas for improvement include: use of only one clock
(either on firmware or hardware) for timing related variables;
unix-based timing variables or high resolution non-resetting
timing variables; transmission protocol which includes packet

receipt checking; marking in the raw data when packets are
missing; keeping all variables needed for interpreting a given
data stream localized to one data file with the same timing
variables. While coding of data may be needed to overcome
the limited transmission bandwidth available to fully-implanted
devices, translation of these codes to human-readable values
as early as possible in the user-facing pipeline is desirable.
Consistent and streamlined handling of missing data, data
streams with different sampling rates, and continuous data
with changing parameters are critical for efficient analysis.
Thoughtful design at this level will decrease the barrier to entry
for new clinicians and researchers, which is common in the
medical/academic environment, especially when working with
patients who are enrolled in multi-year clinical trials. This
is particularly important as more neurological and psychiatric
conditions are becoming understood in terms of neurophysiology
for both biomarker tracking and adaptive stimulation.

In order to facilitate use and adoption of this toolbox, we
provide an extensive README in the shared GitHub repository.
We provide example datasets, both patient data (anonymized
and shared with informed consent) and benchtop data acquired
with known characteristics and input signals, to facilitate user
training and to demonstrate features of the toolbox. The
repository is actively maintained, with ongoing code review of
new features and bug fixes. Some members of the OpenMind
Consortium have already incorporated the toolbox into their data
handling workflows. The OpenMind Consortium is a group of
investigators establishing and sharing best practices for handling
and analyzing data from stimulation and recording enabled
devices such as the RC+S and Percept.

The presented toolbox includes three key areas of
functionality. Future areas for fruitful development are plentiful.
The quantity of raw and processed data from patients implanted
with Summit RC+S devices is staggering, and efficient databasing
is required. This will facilitate both targeted analyses as well
as data mining across patients. The toolbox is currently
implemented in Matlab, but in the short term a conversion tool
can be written to make the data easily accessible by Python.
In the long-term, we seek to implement an open-source data
standard for Summit RC+S data, Neurodata Without Borders
(NWB). The NWB format provides a documented schema on
top of the h5 file format and facilitates data readability, sharing,
and archiving. Conversion of raw JSON files from the Summit
RC+S directly into NWB was not possible because of the unique
packet structure and the need to create a shared timebase across
all datastreams. With the functionality of the toolbox presented
here, we are now able to begin developing conversion modules
to create RC+S NWB files. The power computation module
we presented serves as a template for future development of
analyses—including a similar off-device implementation of the
detector engine which utilizes LDA. Such tools can be applied
to data collected prior to chronic implant in order to inform
personalized targeting (Allawala et al., 2021). Taken together, we
hope this toolbox provides infrastructure on which to continue
building shared analysis tools for the ongoing development of
stimulation therapy using the Medtronic Summit RC+S for the
whole neurophysiology community.
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