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Two decades of bacterial ecology and 
evolution in a freshwater lake
 

Robin R. Rohwer    1 , Mark Kirkpatrick1, Sarahi L. Garcia    2,3, Matthew Kellom4, 
Katherine D. McMahon    5,6  & Brett J. Baker    1,7 

Ecology and evolution are considered distinct processes that interact 
on contemporary time scales in microbiomes. Here, to observe these 
processes in a natural system, we collected a t wo -d ec ade, 4 71 -m et ag enome 
time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 
species-representative genomes and found that genomic change was 
common and frequent. By tracking strain composition via single nucleotide 
variants, we identified cyclical seasonal patterns in 80% and decadal shifts 
in 20% of species. In the dominant freshwater family N  a n  op  e l  ag  i c aceae, 
environmental extremes coincided with shifts in strain composition 
and positive selection of a    m  i   no a  c i d a nd nucleic acid metabolism genes. 
These genes identify organic nitrogen compounds as potential drivers 
of freshwater responses to global change. Seasonal and long-term strain 
dynamics could be regarded as ecological processes or, equivalently, as 
evolutionary change. Rather than as distinct interacting processes,  
we propose a conceptualization of ecology and evolution as a continuum  
to better describe change in microbial communities.

Microbial communities allow us to observe eco-evolutionary dynam-
ics in real time due to the short lifespans and large population sizes 
of microbes1,2. Real-time evolution was famously observed in the 
Escherichia coli long-term evolution experiment3, but few long-term 
observations exist for natural, ecologically complex systems. Here, 
we introduce a two-decade, 471-sample microbial time series from a 
freshwater lake, the TYMEFLIES dataset4, which allows us to directly 
observe ecology and contemporary evolution in a natural ecosys-
tem. The Lake Mendota (Wisconsin, USA) microbial observatory5 is 
part of the North Temperate Lakes Long-Term Ecological Research 
programme6, which builds on limnological research dating back to the 
late 1800s. Long-term and abrupt change in Lake Mendota are well doc-
umented and linked to multiple interacting drivers including climate7–9,  
land use10,11 and invasive species12,13, and these drivers are also impacting 
the lake’s microbial communities14,15.

The dynamism of freshwater and marine bacterial communi-
ties, especially in response to seasonal drivers, is evident in several 
long-term time series where 16S ribosomal RNA genes were used to 
define species-like units16–18, as well as in Lake Mendota14. However, 
a genome-resolved approach is necessary to incorporate evolution 
into our understanding of microbial community change. Selective 
pressures change gene frequencies, which manifest as genomic 
diversity19. This microdiversity can be measured across samples by 
mapping short metagenomic reads against reference genomes and 
identifying single nucleotide variants (SNVs) in the mapped reads20,21. 
Such strain-resolved approaches have identified both the ecological 
relevance of strains22,23 and a variety of evolutionary strategies shap-
ing them24–27.

Here, we describe community-wide strain-resolved bacte-
rial change over 20 years. By reconstructing tens of thousands of 
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(Fig. 2a). To gain greater resolution of the strain composition of the 236 
species abundant enough over time to reliably call SNVs (median cover-
age >10×), we created a ‘SNV profile’ for each date with the frequencies 
of the reference alleles. For each species, we calculated the Euclidean 
distance between every date’s SNV profile (Fig. 2b). We found that 80% 
of these 236 abundant species had consistent phenological patterns 
in their strain composition. This demonstrates that phenological pat-
terns evident in the bacterial community extend to the finest possible 
taxonomic resolution. Several short-term freshwater studies have also 
observed changes in strain composition on seasonal time scales46,47. 
Phenological patterns in subspecies strains similar to those at the 
species level suggest ecological processes may shape bacterial strain 
composition, but these changes are evidenced by intraspecific genomic 
change and could thus also be interpreted as seasonal evolution.

Given the ubiquity of seasonal patterns in both species abundance 
and subspecies diversity, we asked whether they were correlated. We 
quantified whether a species’ ‘bloom’ in abundance consisted of fewer 

metagenome-assembled genomes (MAGs), we found that inter- and 
intraspecific changes unfold at short, seasonal time scales as well as 
longer-term decadal time scales, in some cases coinciding with envi-
ronmental extremes. Research on such eco-evolutionary dynamics 
usually focuses on feedbacks between distinct processes of ecology 
and evolution28–30. In our microbial data, however, these processes 
were difficult to distinguish. Ecological dynamics appeared to occur 
between strains within a population, but the strains themselves were 
inferred from observations of genomic change. Consistent with the 
ambiguity of the microbial species concept31, our observations sug-
gest that it is not possible to cleanly delineate between ecological and 
evolutionary processes in natural microbial communities. Therefore, 
we propose an adjusted conceptualization, where ecology and evolu-
tion converge along a continuum.

Results
The TYMEFLIES dataset
We collected 471 samples over 20 years from Lake Mendota (Wisconsin, 
USA)4 and obtained shotgun DNA libraries (Fig. 1a and Supplementary 
Data 1). We refer to these ‘Twenty Years of Metagenomes Exploring 
Freshwater Lake Interannual Eco/evo Shifts’ as the TYMEFLIES dataset. 
By cross-mapping reads from ~50 metagenomes to each single-sample 
metagenome assembly, we obtained a total of 85,684 genome bins, 
30,389 of which were medium or high quality (>50% completeness and 
<10% contamination)32. We clustered these 30,389 bins at 96% average 
nucleotide identity (ANI) and obtained 2,855 clusters from which we 
chose representative MAGs33 (Supplementary Data 2). Several previ-
ous studies have found an emergent species boundary at similar ANI 
cut-offs34–36, and we observed a rapid increase in the number of clusters 
above the 96% ANI cut-off. In this study, we treat the representative 
MAGs from each 96% ANI cluster as bacterial species and refer to sub-
species delineations identified in the mapped metagenomic reads as 
strains20.

The representative MAGs have high estimated completeness 
(median 86%) and low contamination (median 0.9%) (Fig. 1b and Sup-
plementary Data 2) and reflect the abundant members of the lake’s 
bacterial community, especially in well-sampled seasons (Fig. 1c). 
Using a 16S rRNA gene amplicon dataset from the same time series4 
as a reference for the expected community composition (Fig. 1d), we 
found that our representative MAGs comprise most of the abundant 
taxa (Fig. 1e). Moreover, we obtained 168 representative MAGs from the 
Nanopelagicales order, which is the most abundant order in Lake Men-
dota and accounts for 22% of the amplicon reads and 10% of the mapped 
metagenomic reads. Similar to SAR11 bacteria in the oceans, this 
freshwater lineage is abundant in lakes globally37, difficult to culture38  
and typically has highly streamlined genomes39.

Seasonal ecology and evolution
From a century of limnological research, we know that Lake Mendota 
follows a consistent annual phenology and that phenological patterns 
are changing in response to climate change and invasive species40–43. 
These seasonal dynamics are evident in bacterial14, viral44 and protistan45  
community composition. To confirm that phenological abundance 
patterns also exist in our finely resolved bacterial species, we identi-
fied annual peaks in species relative abundance using periodograms 
(magnitude of Fourier transforms). After limiting this temporal analysis 
to the subset of 1,474 species that occurred at least 30 times over at 
least 10 years, we found that 72% of them have consistent seasonal 
abundance patterns (Fig. 2a).

To determine whether evolutionary dynamics (that is, changes in 
allele frequency within the species) also unfold seasonally, we mapped 
reads from each sample against each species’ reference genome and 
identified shifts in strain composition from changes in nucleotide diver-
sity (π) and allele frequencies at SNVs. We found that 33% of the 1,474 
species displayed consistent seasonal nucleotide diversity patterns 
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Fig. 1 | The TYMEFLIES dataset. a, The metagenome sample dates are indicated 
by black vertical lines, and microbial seasons14 are indicated by coloured shading. 
Ice-on indicates contiguous ice cover; spring, a diatom bloom; clear-water,  
a phase of intense zooplankton grazing and high water clarity; early summer,  
a switch to cyanobacterial dominance; late summer, a period of strong thermal 
stratification; and fall, an unstratified period after fall mixing. b, The quality 
of the 2,855 representative genomes obtained after clustering to 96% ANI. We 
treat these genomes as species. c, The percent of metagenome reads from each 
sample that mapped to all reference genomes with an ANI ≥93%. The samples 
are grouped by season to highlight how well the reference genomes reflect 
each seasonal community. d, The rank abundance of phyla as measured by 
16S rRNA gene amplicon sequencing4. The abundant Nanopelagicales order 
of Actinobacteria is highlighted. e, The abundance of phyla in the TYMEFLIES 
reference genomes, quantified as the mean relative abundance normalized 
by genome size and sequencing depth. The Nanopelagicales order is again 
highlighted. The box plots indicate Q1 − 1.5 × interquartile range (IQR), Q1, 
median, Q3 and Q3 + 1.5 × IQR.
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strains or more strains than its baseline composition. Of the 365 species 
with seasonal patterns in both abundance and nucleotide diversity 
(Fig. 2a, purple bars), we found that both scenarios were common; 
21% of these species had less diverse blooms (Fig. 2c,e, yellow bars), 
while 19% had more diverse blooms (Fig. 2d,e, green bars). Further, 
all abundant phyla demonstrated an even mix of both bloom types 
(Fig. 2e). A lower-diversity bloom suggests that a subset of strains 
outcompeted the others, while a higher-diversity bloom suggests 
that micro-niches allowed rarer strains to gain abundance, resulting in 
higher strain diversity48 due to a more even strain composition. This is 
in agreement with a previous study that found both overlapping and 
distinct niches within freshwater bacterial species25. The prevalence 
of both bloom diversity patterns suggests ecological processes drive 
changes in allele frequencies.

Long-term ecology and evolution
Long-term changes can be masked by seasonal oscillations, lost in 
what is referred to as the ‘invisible present’49. The unprecedented 
length of the TYMEFLIES metagenome dataset provides a unique 
lens into the invisible present, enabling the identification of overlayed 
long-term patterns. To find long-term changes in strain composition,  

we developed a classifier trained on the distance between each date’s 
SNV profile and the SNV profile of that species’ first occurrence in the 
time series. We trained this classifier on 11 examples of manually identi-
fied temporal patterns and then applied it to all 263 species with suf-
ficient abundance to reliably call SNVs. Our classifier identified gradual 
change (Fig. 3a), which may arise from genetic drift or in response to 
a slow press disturbance. It also identified abrupt change (Fig. 3b,c), 
which may arise in response to a new stable state after a tipping point 
or from a sudden environmental shift50,51. Among instances of abrupt 
change, we identified step changes (Fig. 3b), where the new strain com-
position persisted during the remainder of our time frame, as well 
as patterns of disturbance with resilience (Fig. 3c), where the strain 
composition recovered to baseline.

We found that 21% of the most abundant species experienced 
one kind of long-term change in their SNV profiles during our 20 year 
study period, and these changes overlayed both seasonal and acycli-
cal short-term dynamics (Fig. 3d). Abrupt change was almost twice as 
common as gradual change (seen in 36 versus 19 species), and resilience 
was only slightly more common than a lasting step change (20 versus 16 
species) (Fig. 3d). The three long-term change patterns were found in 
many abundant species distributed across phyla (Fig. 3e). Many species 
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Fig. 2 | Bacterial seasonality at the subspecies level. a, The per cent of species 
with seasonality in nucleotide diversity and abundance (a centred log ratio 
transform was applied to relative abundances). The 1,474 species that occurred at 
least 30 times were included in this analysis. b, A time-decay plot of the Euclidean 
distances between the SNV profiles of an abundant species in the Nanopelagicus 
genus (ME2017-06-13_3300043469_group7_bin14). A smaller distance between 
SNV profiles indicates that the strain composition is more similar. Each blue 
point represents a pairwise comparison between two sample dates, with the time 
between those dates on the x axis. The black line is a 6 month moving average, 
drawn to highlight the annual periodicity of strain similarities. c, An example of  

a less diverse bloom, where nucleotide diversity decreases as relative abundance 
increases. Displayed is an abundant species in the Planktophila genus (ME2011-
09-04_3300044729_group3_bin142). d, An example of a more diverse bloom, 
where nucleotide diversity increases as relative abundance increases. Displayed 
is an abundant species in the Nanopelagicaceae family, MAG-120802 genus 
(ME2012-08-31_3300044613_group4_bin150). The thin blue lines represent 
individual years, and thick black lines with shading represent mean ± s.d.  
e, The distribution of bloom diversity patterns across the 365 species that had 
seasonality in both abundance and nucleotide diversity.
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in the Actinobacteriota phylum were abundant enough to include in 
this analysis, providing a detailed view of change in these common 
freshwater heterotrophs. Long-term changes in SNV profiles reflect 
shifts in intraspecific strain composition, which is typically attributed 
to evolutionary processes52. The fact that during our observation 
period over a fifth of the species experienced long-term changes in their 
SNV profiles emphasizes the importance of including contemporary 
evolutionary change in our understanding of microbial ecology.

Abrupt changes in Nanopelagicaceae
In general, related species did not change in unison with each other, 
suggesting that the drivers of evolutionary change are highly specific 
(Fig. 4a). One exception is an abrupt change event that impacted seven 
species within the Nanopelagicaceae family (acI) in 2012, specifically 
species in the Nanopelagicus and Planktophila genera (acI-B and acI-A). 
This is the most abundant family in Lake Mendota and in freshwaters 
globally37, and the 127 Nanopelagicaceae species we recovered together 
accounted for 8% of the relative abundance on average. Five of these 
Nanopelagicaceae species displayed resilience to an abrupt change in 
2012, while two experienced lasting step changes in strain composition.

A myriad of possible environmental variables could have driven 
this event. A leading candidate is extreme weather as Lake Mendota was 

unusually warm and dry in 2012. The lake experienced high epilimnion 
water temperatures during spring and summer, with the hottest July on 
record since 189414 (Fig. 4b), the fifth shortest winter ice duration on 
record since 185653 (Fig. 4c), the eighth lowest annual discharge from 
its major tributary on record since 1976 and the second lowest peak 
discharge54 (Fig. 4e). These environmental conditions led to top-down 
and bottom-up controls on the lake’s primary productivity. The highest 
spring zooplankton abundance since measurements began in 199455 
(Fig. 4d) was probably a result of the mild winter and spring56, which 
allowed zooplankton, including the prolific grazer Daphnia pulicaria, 
to establish early. Low total phosphorus and soluble reactive phospho-
rus (Fig. 4f,g) was probably a result of low external nutrient loading 
associated with mild discharge events57. The resulting combination of 
high zooplankton grazing and low phosphorus, typically the limiting 
nutrient in lakes, may be responsible for low phytoplankton biomass 
(Fig. 4h), which in Lake Mendota is dominated by cyanobacteria during 
summer58. Lake Mendota’s dissolved organic carbon (DOC) is primarily 
provided by phytoplankton59, consequently DOC was also low in 2012 
(Fig. 4i). Lake heatwaves are predicted to become hotter and longer 
with climate change60, and these observations suggest that the intense 
epilimnetic heatwaves during 2012 had cascading effects on lake 
 biogeochemistry that extended to the level of bacterial strains.
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Fig. 3 | Long-term changes in strain composition. a, An example of long-term, 
gradual change in strain composition. The points indicate sample dates and 
distance refers to the Euclidean distance between a species’ SNV profile on 
that sample date and its first occurrence in the time series. A species in the 
Nanopelagicales order, AcAMD-5 family is shown (ME2005-06-22_3300042363_
group2_bin84). b, An example of an abrupt step change in strain composition in a 
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c, An example of a disturbance/resilience pattern, where an abrupt change in 
strain composition is followed by recovery to the original strain composition, in 

a species in the Planktophila genus (ME2015-07-03_3300042555_group6_bin161). 
d, Long-term change patterns often overlayed seasonal patterns. Of the 263 
species abundant enough to observe their SNV profiles, 39 had both long-term 
and seasonal patterns, while 16 had only long-term patterns. e, The distribution 
of long-term patterns across phyla. Each species that underwent long-term 
change is indicated by a section of the phyla’s bar, scaled by the mean abundance 
of that species. The sections corresponding to the examples highlighted in a–c 
are labelled.
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Another possible driver is the irruption of the invasive zooplank-
ton spiny water flea (Bythorephes cedertrömii) in 2009, which itself was 
driven by an unusually cool summer61. This major disturbance resulted 
in a trophic cascade that decreased water clarity13,43, increased lake 
anoxia55 and shifted the bacterial community composition14. Although 
the abrupt changes in strain composition of seven Nanopelagicaceae 
species were not observed until 3 years later, lag effects are common 
in complex ecosystems62. In contrast to the 2009 species invasion, we 
did not see bacterial community-level shifts corresponding to the 2012 
extreme weather, but environmental drivers of strain dynamics may 
be highly specific. Ecosystem-wide drivers like these two disturbances 
can have cascading and interacting effects on nutrient and carbon 
dynamics, which in turn impact bacteria. The observed long-term 
intraspecific changes suggest that such ecological drivers are also 
drivers of evolutionary change, further emphasizing how ecology and 
evolution are intertwined.

Evolutionary signals in a Nanopelagicus
To understand the dynamics of abrupt evolutionary change, we fur-
ther examined one of the abundant species, a Nanopelagicus (acI-B), 
that experienced a step change in strain composition in August 2012 
(Fig. 3b). A non-metric multidimensional scaling (NMDS) ordination of 
its SNV profiles indicated the strain composition changed abruptly at 
that time and settled into a new composition after a period of adjust-
ment in 2012 and 2013 (Fig. 5a).

The relative abundance of this species was quite constant through-
out our 20 year observation period (Fig. 5b), typically with higher 
abundances during the spring clear-water phase. The step change 
in strain composition (Fig. 3b) coincided with one in genome-wide 
nucleotide diversity (Fig. 5c). These patterns could result from the 
introduction of a new strain or from an increase in the evenness of 
existing strain abundances. To distinguish between these hypotheses, 
we counted the number of previously unobserved SNVs in the mapped 

reads of every sample. We did not see large spikes in new SNVs in 2012 
(Fig. 5d), suggesting that the step change reflects shifts in the relative 
abundances of existing strains.

This interpretation is consistent with a dramatic increase in the 
number of genes under positive selection that occurred at this time 
(Fig. 5e). As the relative abundances of some strains increase, alleles 
specific to them appear to undergo partial (or ‘soft’) selective sweeps.  
If strain composition re-equilibrated, this signal would die out. How-
ever, the increase in the number of genes under selection persisted 
(Fig. 5e). This could arise from continuing fluctuations in strain abun-
dances, consistent with the larger distances between SNV profiles seen 
after the step change (Fig. 5a). To identify candidate loci that reflect the 
phenotypic differences between strains driving adaptations, we sought 
genes that consistently showed signs of being positively selected over 
the entire time series, only during the pre-2012 period and only during 
the post-2012 period. Four genes were consistently selected both pre- 
and post-2012, four genes were consistently selected pre-2012 and 33 
genes were consistently selected post-2012. We used gene functional 
predictions63 to identify their potential metabolic pathways. Of the 33 
consistently selected genes post-2012, ten are involved in amino acid 
metabolism or aminoacylation and six are involved in nucleic acid 
synthesis or degradation (Fig. 5f).

Previously, the absence of biosynthesis or auxotrophies for amino 
acids and nucleotides has been highlighted for microorganisms with 
streamlined genomes64,65. In the streamlined Nanopelagicus, auxo-
trophies for various amino acids39,66 coupled with an enrichment of 
transporters for many small organic nitrogen compounds, including 
amino acids39,67,68 and nucleic acid components39,66–68, are common. 
Moreover, the histidine pathway was found split between two different 
strains of Nanopelagicus growing in a mixed culture66. Our observation 
of consistent selection on amino acid and nucleic acid metabolism sug-
gests that these genes differentiate the post-2012 strains. Additionally, 
the low phytoplankton biomass in 2012 (Fig. 4h) might indicate lower 
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with environmental extremes in 2012. a, Dates of all abrupt changes in strain 
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biomass (excluding predatory Bythotrephes and Leptodora) was unusually high, 
probably enabled by warm early spring temperatures (relative to 1995–2018). 

e, Discharge from the Yahara River, the main tributary to Lake Mendota, was 
unusually low and lacked high run-off events typical after storms and spring 
snowmelt (relative to 1989–2021). f,g, The total phosphorus (TP) (f) and soluble 
reactive phosphorus (SRP) (g) were low (relative to 1995–2021), probably due to 
low sediment transport. h, Low phytoplankton biomass (relative to 1995–2020), 
probably resulting from both high zooplankton grazing and low nutrient 
availability. i, Low dissolved organic carbon (DOC) (relative to 1996–2022), 
probably a result of low phytoplankton abundance. The box plots indicate 
Q1 − 1.5 × IQR, Q1, median, Q3 and Q3 + 1.5 × IQR.
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influx of fixed nitrogen into the system, which could have cascading 
effects on the processing of organic nitrogen in abundant microorgan-
isms. Therefore, it appears that biosynthesis, use and reuse of small 
organic nitrogen compounds are key in the ecology and evolution of 
these globally abundant lake bacteria.

Discussion
Freshwater lakes are focal points on the terrestrial landscape, pro-
cessing an estimated 70% of net terrestrial carbon production69. 
These ecosystems are stressed by both climate change70 and inva-
sive species71, but whether lakes will become net sources or sinks 
of carbon is uncertain72,73. The foundational role of bacteria in 
aquatic food webs74 makes understanding their responses to global 
change a pressing question75. The coincidence of the 2012 shifts in  
Nanopelagicaceae strains with both a species invasion and environ-
mental extremes implicates anthropogenic drivers. Given the global 
abundance of Nanopelagicaceae37, changes in its strain composition 
may have wide-ranging impacts on freshwater ecosystems, and organic 
nitrogen compounds may play a central role in freshwater responses to 
global change. However, it is ambiguous whether such shifts in strain 
composition reflect ecological or evolutionary change.

The interface between ecology and evolution is delineated by spe-
cies boundaries, but in bacteria species definitions are hotly debated31. 
Using a commonly chosen definition for microbial species boundaries, 
we found interspecific ecological dynamics mirrored intraspecific 
evolutionary dynamics, with no emergent boundary delineating ecol-
ogy from evolution. Should interactions such as competition and 
niche differentiation between strains be considered ecology, or does 
the fact that they were inferred from observations of genomic change 
place them in the realm of evolution? Should positive selection of 
organic nitrogen metabolism genes be considered evolution, or are 
soft selective sweeps simply evidence of ecological shifts between 
phenotypically distinct strains? Can we differentiate ecological from 
evolutionary processes when they occur on the same time scales, in 
response to the same likely environmental drivers, and across unclear 
species delineations?

Our two-decade TYMEFLIES dataset, its associated 2,855 
species-representative MAGs and decades of North Temperate 
Lakes Long-Term Ecological Research program (NTL-LTER) envi-
ronmental data raise these questions again and again. We identi-
fied seasonal and decadal strain dynamics that could be considered 
alternately ecology or evolution across diverse and abundant phyla.  
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Fig. 5 | Step change in strain composition coincides with more genes under 
selection. a, An abundant Nanopelagicus species experienced a step change in 
strain composition in 2012 (ME2011-09-21_3300043464_group3_bin69, see also 
Fig. 3b). Samples with more similar SNV profiles appear closer on this NMDS 
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occurred on 3 August 2012. b, Despite the abrupt change in strain composition, 
the relative abundance of this species remained constant over time.  
c, Concurrent with the shift in strain composition, nucleotide diversity increased 
and then remained high, indicating that the new equilibrium comprised a more 
diverse assemblage of strains. d, The absence of a spike in the number of new 

SNVs suggests that an increase in the evenness of existing strains occurred, 
rather than the introduction of new strains. e, Concurrent with the shift in strain 
composition, the number of genes under positive selection also increased 
(McDonald–Kreitman two-sided F-statistic P value <0.05). f, The occurrence of 
consistently selected genes in all the samples, in the pre-2012 period and in the 
post-2012 period. The x axis indicates samples ordered consecutively and the 
y axis indicates genes. The shading indicates the significance level of positive 
selection (McDonald–Kreitman two-sided F-statistic P value). Amino acid-
related genes and nucleic acid-related genes are indicated on the right axis. Full 
annotations are available in Supplementary Data 3. Note that the x axis is evenly 
spaced by sample, so that years with more samples take up more space.
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Other microbiome studies have similarly identified microdiversity at 
the strain level as key to understanding microbial change. Strains have 
displayed distinct environmental preferences in anaerobic digesters76, 
oceans22,23,26,77,78 and geysers79, and strain-level dynamics have been 
linked with outcomes such as cyanobacterial toxicity80, preterm birth81, 
human health82 and cheese rind aroma83. Strains have been described 
alternately by ecological concepts such as metapopulations in the 
subseafloor84 and carrying capacity in the human gut85, or by evolution-
ary concepts such as modes of speciation in lakes24,27. In pitcher plant 
microbiomes, strains were ecologically distinct when they differed 
by only 100 SNVs86. Among all these microbiome studies, sometimes 
strain dynamics are framed as ecology23,77–80,83,85,86 and sometimes as 
evolution22,26,27,76,81,82,84. However, even in plants and animals speciation 
is not instantaneous and subspecies population structure creates a 
blurred line between strains and species87,88. Therefore, we propose a 
shift away from framing eco-evolutionary dynamics around feedbacks 
between distinct processes28–30. To better encompass microbial com-
munities, we should frame change as converging along a continuum 
of ecology and evolution.

Methods
Lake Mendota samples
Lake Mendota is a eutrophic temperate lake located in Madison,  
Wisconsin (USA)89. Integrated samples were collected from the upper 
12 m at a 25 m deep location referred to as the central ‘deep hole’  
(43° 05′58.2″ N, 89° 24′16.2″ W). During the summer stratified months, 
these 12 m samples span the epilimnion layer. Bacteria were collected 
on 0.2 µm polyethersulfone filters (Pall Corporation), stored at −80 °C, 
and DNA was extracted by a single person after randomizing sam-
ple order in 2018–2019 using FastDNA Spin kits (MP Biomedicals). 
A detailed description of the study site, sample collection and DNA 
extraction procedures is provided by Rohwer and McMahon4.

Metagenome sequencing and assembly
Sample DNA was sequenced by the US Department of Energy Joint 
Genome Institute ( JGI) using a paired library layout with a NovaSeq 
6000 Sequencing System and an S4 flow cell (Illumina Inc.). Samples 
were sequenced to a depth of 80 ± 20 million reads and 23 ± 6 billion 
bases per sample. Sample metadata are available in Supplementary 
Data 1 and raw sequencing data are available from the National Center 
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) 
under Umbrella Project accession PRJNA1056043. Individual metage-
nome SRA accession numbers are listed in Supplementary Data 1. Read 
filtering was performed using standard JGI protocols90 (IMG Pipeline 
version 5, minor releases listed in Supplementary Data 1), which are 
additionally detailed as metadata paired with each sample through 
the JGI IMG/M website. Briefly, BBDuk91 was used to remove adaptors 
and quality trim reads, and BBMap91 was used to identify and remove 
common contaminants. In our analyses we treated the resulting filtered 
fastq files as the metagenome reads. Single-sample assemblies were 
also generated by JGI with their standard protocol90 (IMG Pipeline 
version 5, minor releases listed in Supplementary Data 1) using metaS-
PAdes92. These filtered fastq files and single-sample assemblies are 
available through the JGI Genome Portal under ITS Proposal ID 504350.

Obtaining and characterizing genomes
Genomes were binned out of metagenomes using the Texas Advanced 
Computing Center’s Lonestar6 supercomputer and the Launcher utility 
(version 3.7)93. Metagenomic reads were mapped back to sample assem-
blies using BBMap (version 38.22)91, sorted BAM files were created 
using SAMtools (version 1.9)94 and MAGs were binned using MetaBAT2 
(version 2.12.1)95. Metagenomic reads from different samples were 
cross-mapped back to each single-sample assembly to perform differ-
ential coverage binning. Cross-mapping scales exponentially, so it was 
performed on assemblies and sample reads broken into approximately 

50-sample groups of consecutive sample dates, with samples from 
the same year grouped together. This resulted in 85,684 genome bins. 
CheckM2 (version 0.1.3)32 was used to assess bin quality, including com-
pleteness and contamination estimates, and the Genome Taxonomy 
Database Toolkit (GTDB-Tk) (version 2.1.1)96 was used to assign GTDB 
taxonomy (release 207)97 to all bins. 30,389 genome bins were at least 
50% complete and less than 10% contaminated and these bins were 
dereplicated to 96% ANI using dRep (version 3.4.0)33. To choose 96% 
as our ANI cut-off, we ran dRep at ANIs ranging from 90% to 99% and 
examined the resulting number of dereplicated bins, as well as the 
number of bins from the same assembly that were combined. We chose 
96% ANI because very few (one) of the 30,389 bins were combined into 
an ANI group with a bin created from the same assembly, and because 
96% ANI was generally located right before a sudden increase in the total 
number of genome groups. Our goal was to separate as many species 
as possible while combining strains that were so closely related they 
would compete for mapped reads. Applying a 96% ANI cut-off with 
dRep resulted in 2,855 representative genomes, which we treated as 
species in this study. These MAGs are available from the NCBI SRA under 
BioProject accession PRJNA1158976 and their associated metadata is 
detailed in Supplementary Data 2.

To quantify the relative abundance of each species in every sam-
ple, we mapped all sample reads against the concatenated 96% ANI 
reference genomes using BBMap (version 38.22)91, created sorted BAM 
files using SAMtools (version 1.9)94 and calculated relative abundance 
using coverM (version 0.6.1)98. With the coverM software, we required 
a minimum read percent identity of 93, proper pairs only, and excluded 
1,000 bp from each contig end from the calculation. CoverM calculates 
relative abundance as the mean coverage divided by the mean coverage 
across all genomes multiplied by the proportion of reads that mapped 
to the genome, thus normalizing by recovered genome size to estimate 
the fraction of cells that belong to a given species in each sample. A 
table of representative MAGs along with taxonomy annotations, quality 
statistics and abundance statistics is available as Supplementary Data 2.

To further characterize the genomes, we ran inStrain (version 1.7.1)21  
using a minimum read ANI of 93%, as recommended by the inStrain 
documentation given our previous choice of 96% ANI to dereplicate 
genomes. This software called SNVs and calculated nucleotide diver-
sity, among other metrics. To identify genes, we ran prodigal (version 
2.6.3)99 on each genome separately. We then used Kofamscan (version 
1.3.0)100 to assign gene annotations from the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database (release 107.1)63. Additional 
custom analyses were performed using the R programming language 
(version 4.1.2)101 and relied extensively on the data.table R package 
(version 1.14.8)102, the lubridate R package (version 1.9.3)103 and GNU 
parallel (version ‘Chandrayaan’)104.

Classifying seasonal and long-term change
To classify each species’ abundance pattern as seasonal or not, we 
started with relative abundances as calculated by coverM (version 
0.6.1)98 and further corrected any abundance to zero if the genome’s 
coverage breadth was 70% or less than its expected breadth, as calcu-
lated by inStrain (version 1.7.1)21. We then applied a centered log ratio 
transformation to the relative abundance values using the composi-
tions R package (version 2.0–6)105. After taking a daily linear interpo-
lation to obtain evenly spaced samples, we detrended the temporal 
profiles with a cubic fit. Finally, we performed a periodogram analysis 
by computing the magnitude of the fast Fourier transform. If a peak 
occurred within 30 days of 365 days, we considered it an annual oscilla-
tion, and if any of the top five peaks corresponded to an annual period, 
we classified the species as having a seasonal abundance pattern. We 
applied this analysis only to the 1,474 species that occurred on least 30 
dates over at least 10 years. To classify each species’ nucleotide diver-
sity pattern as seasonal or not, we similarly performed a fast Fourier 
transform on its inStrain-calculated nucleotide diversity over time.  
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We used the same periodogram analysis to classify it as having seasonal 
nucleotide diversity or not, and we applied this analysis to the same 
subset of 1,474 species.

To characterize blooms as more diverse or less diverse, we calcu-
lated the Pearson correlation between centered log ratio-transformed 
relative abundance and nucleotide diversity for the 365 species that 
had both seasonal abundance and seasonal nucleotide diversity annual 
oscillations. We considered it a positive correlation (more diverse 
blooms) if the Pearson correlation was at least 0.35 and a negative 
correlation (less diverse blooms) if the Pearson correlation was less 
than or equal to −0.35. We repeated this analysis with up to 2 weeks 
of lag and used the highest correlation within that window. We chose 
0.35 as a reasonable cut-off after manual examination of the first 150 
species’ correlations.

To calculate SNV profiles for each species, we created vectors 
corresponding to every SNV position in its genome, where the value 
of each element was the percent of mapped reads that matched the 
reference genome base at that position in each sample. SNVs were 
called using inStrain21, and we only applied this analysis to samples 
where the species’ median coverage was over 10×, as at coverages less 
than that we observed a drop in the total SNVs called. Therefore, for 
both long-term and seasonal analysis of SNV profiles, we included only 
species that had median coverage over 10× on at least 30 dates over 
at least 10 years, which resulted in a subset of 263 species. To identify 
changes in SNV profiles, we created a distance matrix for each species 
based on Euclidean distances between each sample’s SNV profile using 
the vegan R package (version 2.6–4)106. From this, we created a table 
of time elapsed and Euclidean distance between each sample date.

To identify seasonal patterns in each species’ SNV profiles, we 
created a daily linear interpolation of pairwise distances between all 
samples, taking the mean when multiple sample pairs occurred with 
the same time interval. After detrending with a cubic fit, we performed 
a periodogram analysis to identify annual oscillations and the presence 
of seasonal patterns using the same criteria as with our abundance and 
nucleotide diversity annual oscillation analysis.

To identify long-term change patterns, we subset our pairwise 
distance table to the distance of each sample from the first sample. We 
developed a classifier for these temporal profiles of distances between 
SNV profiles using 11 manually chosen species. We chose our training 
set to encompass examples of each pattern of change including no 
change, and to include both high and low numbers of observations. Our 
classifier criteria was hierarchical: first gradual change was identified, 
then step change was identified and finally disturbance/resilience pat-
terns were identified. After training, the classifier was applied to all 263 
species above the abundance cut-off. Gradual change was identified if 
a linear fit to the daily linearly interpolated distances, excluding dates 
closer than a month to the starting date, resulted in an adjusted R2 of at 
least 0.55. Dates closer than a month to the starting date were excluded 
because they tended to be highly similar, and a linear interpolation 
was applied to account for uneven sampling dates, particularly the 
high frequency of summer sampling in the latter decade of the time 
series. Possible step change locations were identified after excluding 
dates closer than a month to the starting date and applying an F test 
to the linearly interpolated distances using the strucchange R package 
(version 1.5–3)107. If a breakpoint was identified by the F test, the means 
of measured (as opposed to interpolated) before and after distances 
were different (two-sided Mann–Whitney P value < 0.01), and the step 
resulted in a new mean at least 33% higher than the previous mean, a 
step change pattern was identified. Disturbance/resilience patterns 
were then identified using outlier distances calculated by the default 
box plot statistics in R. If a date’s distance was >1.5 times the difference 
between the third and first quartile of observed distances, a date was 
considered an outlier, and if outlier values were maintained for at 
least a month, the species was classified as having a disturbance event  
with resilience.

Analysing abrupt change in Nanopelagicaceae
To place environmental conditions in 2012 in context, historical envi-
ronmental data was collected from the NTL-LTER through the Envi-
ronmental Data Initiative (EDI) (https://edirepository.org/) and the US 
Geological Survey (USGS) Water Data for the Nation (https://waterdata. 
usgs.gov/nwis) using the USGS dataRetrieval R package (version 
2.7.14)108. EDI datasets analysed included ice duration53; nutrients, pH,  
and carbon109; major ions110; water temperatures combined from mul-
tiple datasets111–115 as described in Rohwer et al.14; phytoplankton116; and 
zooplankton117 converted to biomass as described in Rohwer et al.55.  
River discharge measurements were obtained from the USGS for 
the Yahara River, the primary tributary into Lake Mendota (site ID: 
05427718)54. After exploring all parameters included in these datasets, 
the occurrence of a hot, dry year with low primary productivity became 
apparent. Lake heatwaves spanning much of 2012 were confirmed using 
the 90th percentile definition from Woolway et al.60 and the heatwaveR 
R package (version 0.4.6)118.

Relative abundance and nucleotide diversity of the Nanopelagicus  
MAG ME2011-09-21_3300043464_group3_bin69 were calculated as 
for the seasonal analysis. New SNVs were identified as SNV positions 
that were called by inStrain21 for the first time in a given sample. To 
identify dates where an unusual number of new SNVs appeared, pos-
sibly indicating the emergence of a new strain, the new SNV counts 
were compared across all sample dates. Initially, high numbers of 
new SNVs are expected, so outlier dates were identified among the 
remaining samples after excluding the initial consecutive dates where 
new SNVs remained in the fourth quantile. Genes under selection 
were identified using the ratio of nonsynonymous to synonymous 
SNVs in relation to the reference genome (dN/dS) and the ratio of 
nonsynonymous to synonymous SNVs when at least two alleles were 
present (pN/pS) as calculated by inStrain21. A McDonald–Kreitman 
test119 was used to identify positively selected genes where the bias of 
unfixed SNVs to be non-synonymous was lower than the bias of fixed 
SNVs to be non-synonymous, that is, when (pN/pS)/(dN/dS) <1, and 
positive selection was considered statistically significant when the 
two-sided Fisher P value was less than or equal to 0.05. A gene was con-
sidered consistently selected if it appeared under significant positive 
selection with high frequency (in the fourth quartile). Consistently 
selected genes were identified for the pre-2012 and post-2012 time 
periods separately.

Gene annotations were analysed in the context of the KEGG path-
ways63 they belonged to. For each potential pathway, all genes present 
in the genome were visualized with KEGG Pathway Maps (https://www.
genome.jp/brite/br08901). When multiple genes that surrounded the 
selected gene existed in the genome, that pathway was considered a 
likely annotation. When likely pathways involved amino acid metabo-
lism or aminoacylation, they were considered amino acid related. When 
likely pathways involved purine or pyrimidine metabolism, they were 
considered nucleic acid related.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Metagenome and MAG sequences are available from the NCBI SRA 
under Umbrella Project accession PRJNA1056043. Individual metage-
nome SRA accession numbers are listed in Supplementary Data 1 and 
individual MAG SRA accession numbers are listed in Supplementary 
Data 2. Most MAGs are available under the NCBI BioProject accession 
PRJNA1158976, but a few, detailed in Supplementary Data 2, are avail-
able from the Open Science Framework120. The filtered fastq files and 
single-sample assemblies used in this study are available through the 
JGI Genome Portal under ITS Proposal ID 504350. Environmental data 
is publicly available through the EDI (https://edirepository.org/)53,109–117 
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and the US Geological Survey’s Water Data for the Nation (https://
waterdata.usgs.gov/nwis)54.

Code availability
Custom scripts used for data processing are available via GitHub at 
https://github.com/rrohwer/TYMEFLIES_manuscript and via Zenodo 
at https://doi.org/10.5281/zenodo.10663021 (ref. 121).
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