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Developing Intensity-Duration-Frequency (IDF) Curves From
Satellite-Based Precipitation: Methodology and Evaluation
Mohammed Ombadi1 , Phu Nguyen1,2, Soroosh Sorooshian1 , and Kuo-lin Hsu1,3

1Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of
California, Irvine, CA, USA, 2Department of Water Management, Nong Lam University, Ho Chi Minh City, Vietnam, 3Center
for Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan

Abstract Given the continuous advancement in the retrieval of precipitation from satellites, it is important
to develop methods that incorporate satellite-based precipitation data sets in the design and planning of
infrastructure. This is because in many regions around the world, in situ rainfall observations are sparse and
have insufficient record length. A handful of studies examined the use of satellite-based precipitation to
develop intensity-duration-frequency (IDF) curves; however, they have mostly focused on small spatial
domains and relied on combining satellite-based with ground-based precipitation data sets. In this study, we
explore this issue by providing a methodological framework with the potential to be applied in ungauged
regions. This framework is based on accounting for the characteristics of satellite-based precipitation
products, namely, adjustment of bias and transformation of areal to point rainfall. The latter method is based
on previous studies on the reverse transformation (point to areal) commonly used to obtain catchment-scale
IDF curves. The paper proceeds by applying this framework to develop IDF curves over the contiguous United
States (CONUS); the data set used is Precipitation Estimation from Remotely Sensed Information Using
Artificial Neural Networks – Climate Data Record (PERSIANN-CDR). IDFs are then evaluated against National
Oceanic and Atmospheric Administration (NOAA) Atlas 14 to provide a quantitative estimate of their
accuracy. Results show that median errors are in the range of (17–22%), (6–12%), and (3–8%) for one-day,
two-day and three-day IDFs, respectively, and return periods in the range (2–100) years. Furthermore, a
considerable percentage of satellite-based IDFs lie within the confidence interval of NOAA Atlas 14.

Plain Language Summary Intensity-duration-frequency (IDF) curves are used for the design of
infrastructure. At any specific location, the rainfall intensity can be obtained for a given duration and
frequency of occurrence (known as return period). Development of IDF curves is based on probabilistic
analysis of past records of extreme rainfall. However, in many regions around the world, particularly in
developing countries, such records are not available either due to limited spatial coverage of ground rainfall
gauges, short record length, or poor data quality. Satellite-based precipitation is an alternative source that
can be utilized to develop IDF curves since it has near global coverage and high spatiotemporal resolution. In
this paper, we explore the use of satellite-based precipitation products in developing IDF curves by providing
a framework that accounts for the characteristics of satellite-based precipitation. Furthermore, we develop
IDF curves for the contiguous United States (CONUS) and evaluate them using National Oceanic and
Atmospheric Administration (NOAA) Atlas 14 as a benchmark. The results demonstrate that IDFs derived from
satellite-based precipitation are of good accuracy. The methods used in this study have the potential to be
extended and applied in other regions in the absence of in situ rainfall observations.

1. Introduction
Engineering design of infrastructure requires information about runoff magnitudes for which the structures
will be designed to withstand during their lifetime. In order to estimate these magnitudes, intensity (depth)
duration frequency—IDF (DDF)—curves are the typical input to hydrological models used by hydrologists
and civil engineers for design purposes. They represent a mathematical relationship between frequency,
duration, and intensity (depth) of rainfall events. Their accuracy is contingent upon input data quality and sta-
tistical inference methods. The concept of the IDF dates back to the efforts of Bernard (1932) and since then
many studies have focused on improving statistical inference methods used in IDF development. Most nota-
ble are the studies of Hosking and Wallis (1997) of introducing L-moments estimation (see also Hosking,
1990), the use of probability weighted moments estimation (Greenwood et al., 1979; Landwehr et al.,
1979), parametric formulation of IDF relationships (Koutsoyiannis et al., 1998), and implementing
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regionalization methods such as the Index Flood method (Dalrymple, 1960; Hosking & Wallis, 1993; Wallis,
1982). Today, atlases of IDF curves have already been developed for several developed countries; an example
of such efforts is National Oceanic and Atmospheric Administration (NOAA) Atlas 14 developed by the
National Weather Service (NWS) at National Oceanic and Atmospheric Administration (NOAA; Bonnin et al.,
2006, 2011; Perica et al., 2011, 2013a, 2013b), which succeeded NOAA Atlas 2 developed in 1973.

Despite the aforementionedmethodological advancements in IDF formulation, construction of IDF curves for
most countries around the world remains a major challenge. This is mainly because of the limited availability
of long rainfall records with adequate spatial distribution to reflect temporal variation and spatial heteroge-
neity of precipitation. As has been stated earlier, the accuracy of IDF curves is dependent on both input data
quality and statistical inference methods. While considerable research focus has been given to the latter, only
a handful of studies examined the former. Some of these studies investigated the use of alternative sources of
rainfall measurements such as radar (Eldardiry et al., 2015; Marra et al., 2017; Marra & Morin, 2015; Overeem
et al., 2008), satellite-based precipitation, or downscaled global climate model’s simulations of precipitation
(DeGaetano & Castellano, 2017). Regarding the use of satellite-based precipitation, Endreny and Imbeah
(2009) utilized Tropical Rainfall Measuring Mission (TRMM) rainfall data set in combination with rainfall data
from ground gauges to construct IDF curves over Ghana. Similarly, Awadallah et al. (2011) investigated the
use of TRMM and ground-based rainfall data to develop IDF curves over a region in Northwestern Angola.
Recently, Gado et al. (2017) used the PERSIANN-CDR data set to develop IDF curves in ungauged sites by com-
bining ground gauge data from neighboring sites in two basins in Colorado and California. Meanwhile, Marra
et al. (2017) used Climate Prediction Center morphing (CMORPH) data to develop IDF curves over the eastern
Mediterranean and compared them to IDF derived from radar data. Overall, these studies highlighted the
benefit of using satellite-retrieved precipitation as an alternative source, particularly in partially gauged sites.
However, several reasons limit the adequacy of these studies and the extension of their application to other
regions. First, the methods used in most of these studies strongly rely on the partial availability of rainfall data
sets with sufficient record length from ground gauges in the site of interest or in their neighboring sites,
which is not satisfied in many regions. Second, they approached the use of satellite-based precipitation in
IDF development from a case-study perspective and focused on small-scale regions; therefore, it is uncertain
whether these methods will provide adequate results in regions with different climatic and precipitation
regimes. Finally, and most importantly, the results of these studies were either not evaluated or evaluated
in a small-scale domain. In other words, it is unknown whether these results underestimate or overestimate
IDF curves that would ideally be derived from a dense network of rainfall gauges data.

In light of the aforementioned issues associated with previous studies on the use of satellite-based precipita-
tion to develop IDF curves, the overarching goal of this article is to provide a methodological framework for
developing IDF curves from satellite-based precipitation. This is achieved by, first, considering and analyzing
the systematic error component (i.e., bias) in extreme satellite-retrieved precipitation; second, considering
the necessary transformation of satellite-based precipitation from an area averaged to point rainfall; and
finally, the application of commonly used regionalization methods to derive IDF curves. The area-to-point
transformation implied in this framework is based on previous research studies that focused on the reverse
transformation (i.e., point-to-area). The paper proceeds by applying this framework to develop IDF curves of
durations one, two, and three days over the contiguous United States (CONUS). While this research was moti-
vated by the potential of using satellite-based precipitation to develop IDF curves in data-scarce regions,
CONUS has been chosen as a test bed because of the availability of rigorous IDF estimates from ground
gauges provided by NOAA Atlas 14. Therefore, IDF curves derived from satellite-based precipitation are eval-
uated and compared to NOAA Atlas 14 to assess the performance of the framework.

The subsequent sections of this article are organized as follows. Section 2 presents the data sets used in this
study as well as describing the case study region and its geographic sections. In section 3, a detailed descrip-
tion of the methodological framework for developing IDF curves is provided. This section includes the ana-
lysis of systematic error in extreme satellite-based precipitation, a model for bias adjustment of extreme
satellite-based precipitation, and a method to transform areal rainfall to point rainfall. Section 4 provides
the results and their evaluation as well as an analysis of their uncertainty. The paper concludes in section 5
by highlighting the main findings and discussing issues that need to be explored thoroughly and that might
be the focus of future research studies.

10.1029/2018WR022929Water Resources Research

OMBADI ET AL. 7753



2. Data and Case Study
2.1. PERSIANN-CDR

The satellite-based precipitation data set used in this study to derive IDF
curves is Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks–Climate Data Record (PERSIANN-CDR; Ashouri
et al., 2015). This data set has daily temporal resolution, spatial resolution
of (0.25° × 0.25°), and near global coverage (60°S–60°N) for the period
(1983 to present). PERSIANN-CDR is based on infrared (IR) imagery from
geostationary satellites, and it is a unique data set because of its relatively
long record (1983 to delayed present) compared to other satellite-based
precipitation products. Other satellite-based precipitation products that
can potentially be utilized for the development of IDF curves include the
CMORPH (Joyce et al., 2004) and TRMM Multisatellite Precipitation
Analysis (TMPA; Huffman et al., 2007). Both products have high temporal
resolution of 3 hr and a spatial resolution of (0.25° × 0.25°). CMORPH record
covers the period (2002 to present); meanwhile, TMPA is available for the
period (1998–2015). In this study, we opted to select PERSIANN-CDR pri-
marily because of its relatively long record.

Although in this study IDF curves have been solely derived from
PERSIANN-CDR, two secondary data sets were used. First, Climate
Prediction Center (CPC) Unified Gauge-Based Analysis of Daily
Precipitation over CONUS, hereafter referred to as CPC, has been used to
estimate parameters of the bias adjustment model. Second, the NOAA

Atlas 14 data set has been used as a basis for the evaluation of IDF curves derived from satellite-
based precipitation.

2.2. CPC Unified Gauge-Based Analysis of Daily Precipitation Over CONUS

The CPC data set was developed by NOAA’s CPC. It covers the period (1948 to present) and has a similar spa-
tial resolution to PERSIANN-CDR (0.25° × 0.25°). However, in this study, only CPC record in the period (1983 to
present; i.e., same time coverage as PERSIANN-CDR) has been used. CPC data set was produced from a dense
gauge network over the CONUS with approximately 8,500 stations and a mean station-to-station distance of
~30 km (Chen et al., 2008). The interpolation algorithm used to develop the products is the Optimal
Interpolation (OI) method (Gandin, 1965); this method proved to be reliable and provides results with high
correlation in several studies (Chen et al., 2008; see also Bussieres & Hogg, 1989; Creutin & Obled, 1982).

2.3. NOAA Atlas 14

The NOAA Atlas 14 data set was developed by NOAA’s National Weather Service (NWS; Bonnin et al., 2006,
2011; Perica et al., 2011, 2013a, 2013b), and it is not yet available for the states of Texas, Oregon,
Washington, Idaho, Montana, and Wyoming. NOAA Atlas 14 over CONUS is divided into five geographic
regions as shown in Figure 1; these geographic regions have been adopted in this study for evaluation pur-
poses since they represent, to some extent, regions with distinct climatic and precipitation regimes. NOAA
Atlas 14 is derived from a dense network of rainfall gauges with an average record length range of
(54–68) years (Bonnin et al., 2006, 2011; Perica et al., 2011, 2013a, 2013b).

3. Methodology
3.1. Bias in Satellite-Based Extreme Precipitation

In recent decades, a multitude of studies have been devoted to the evaluation of satellite-retrieved precipita-
tion (e.g., AghaKouchak et al., 2011; Behrangi et al., 2011; Dinko et al., 2008; Ebert et al., 2007; Sorooshian et al.,
2000). While these evaluation studies differ from each other in many aspects, such as geographic location
over which the evaluation is performed, temporal scale (e.g., daily, monthly), and evaluation metrics, the
consensus is that satellite-based precipitation exhibits errors, both random and systematic. Moreover,
satellite-based precipitation products have lower skill in detecting heavy rainfall (Mehran & AghaKouchak,

Figure 1. Geographic regions of contiguous United States (CONUS) accord-
ing to National Oceanic and Atmospheric Administration (NOAA)-Atlas 14
volumes (Volume 1 and 6: Semiarid Southwest and California, Volume 2: Ohio
River Basin and Surrounding States, Volume 8: Midwestern States, Volume 9:
Southeastern States and Volume 10: Northeastern States). Updating inten-
sity-duration-frequency (IDF) curves for Texas is in progress, while updated
IDF curves are unavailable for the states of Washington, Oregon, Idaho,
Montana, and Wyoming.
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2014). Therefore, it is necessary to examine errors in satellite-based preci-
pitation prior to their use in IDF development.

As far as IDF studies are concerned, only extreme rainfall events, defined as
events higher than the 99th percentile of the distribution of rainfall totals
accumulated over a specific duration, are of importance. This is because
both approaches commonly used to sample extreme events, namely,
Annual Maximum Series (AMS) and Partial Duration Series (PDS), contain
rainfall values that are typically higher than the 99th percentile. Hence,
in this study, analysis of errors in PERSIANN-CDR is carried out as follows.
First, AMS is extracted from both ground-based precipitation (CPC) and
satellite-based precipitation (PERSIANN-CDR) data sets for each grid
(0.25° × 0.25°); the AMS length is 33 years, and it is extracted from the per-
iod of hydrological years (1984–2016). Second, an adjustment factor (ζ ) is
defined as the ratio of ground-based (CPC) to satellite-based precipitation
(PERSIANN-CDR), that is:

ζ x;y;kð Þ ¼
RG x;y;kð Þ
RS x;y;kð Þ

(1)

where ζ (x, y, k) is the adjustment factor for the kth event in the AMS at loca-
tion (x,y), RG (x, y, k) is the kth ground-based rainfall event in the AMS at loca-
tion (x,y), and RS (x, y, k) is the kth satellite-based rainfall event in the AMS at

location (x,y). Next, at each grid location the average adjustment factor ζ x;yð Þ of values in equation (1) is cal-
culated; this factor represents the systematic error (i.e., bias) in extreme satellite-based precipitation.

Figure 2 shows the relationship between elevation and ζ x;yð Þ. It can be clearly seen that the bias is significantly

correlated with elevation as indicated by Pearson’s correlation coefficient value of 0.54. This indicates that
29% (0.542) of the variability in the bias can be explained linearly by elevation. Hence, it can be concluded
that, in general, satellite-based precipitation (PERSAINN-CDR) tends to have higher bias, particularly underes-
timation bias, in high-altitude regions. The presence of this relationship in PERSIANN-CDR as well as other
satellite-based precipitation products has been observed in previous studies (e.g., Hashemi et al., 2017;
Miao et al., 2015). This is due to the fact that warm orographic rainfall over high-altitude regions poses a chal-
lenge to satellite-based precipitation retrieval algorithms based on IR imagery (Dinko et al., 2008).

3.2. Bias Adjustment Model

Based on the previous analysis, the following model is proposed as a new approach to adjust extreme
satellite-retrieved precipitation; the model utilizes elevation as the only explanatory variable.

ζ x;yð Þ ¼ α�eβE x;yð Þ (2)

where E is elevation in meters, α and β are parameters, and ζ x;yð Þ is defined as before.

Figure 2 (blue curve) shows the estimated adjustment factors based on the model for one-day annual max-
imum series. Estimation of the model parameters can be carried out in a
simple manner by recognizing that the model can be solved analytically
by linearization. This can be performed by taking the natural logarithm
of both sides in equation (2), then solving for the values of the parameters
ln(α) and β using ordinary least squares solution. It should be noted that
the parameters α and β are estimated for each duration of interest (i.e.,
one day, two days, and three days) separately. Table 1 lists the values of
parameters and their 95% confidence intervals for each duration
of interest.

3.3. Transformation of Areal Rainfall to Point Rainfall

An important issue to be considered when developing IDF curves from
satellite-based precipitation is the areal nature of the data, since all

Figure 2. Relationship between elevation (meters) and the adjustment fac-
tor defined in equation (1) for annual maximum series of one day. The red
dots represent observations, while the blue line represents the adjustment
model calculated from equation (2) with the values of parameters given in
Table 1.

Table 1
Values of the Bias Adjustment Model Parameters for Annual Maximum Series
of Durations One, Two, and Three Days

One day Two days Three days

α 1.308 1.2557 1.2180
(1.3019–1.3142) (1.2497–1.2616) (1.2123–1.2238)

β 1.6627 × 10–4 1.7978 × 10–4 1.7865 × 10–4

(1.6186–1.7068) × 10
�4

(1.7531–1.8424) × 10
�4

(1.7418–1.8313) × 10
�4

Note. Values in parenthesis are the 95% confidence bounds for the para-
meters estimates.
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products of satellite-based precipitation estimate the average precipi-
tation depth over a grid area, which is in the case of PERSIANN-CDR is
(25 km × 25 km = 625 km2). Areal rainfall distribution has both a lower
mean and variance compared to the distribution of point rainfall; this
follows directly from the fact that the former is an averaged random
process of the latter. It is widely stated in the literature that in general
the difference between the areal and point distributions increases
with decrease in the total rainfall depth (Eagleson, 1970; Rodriguez-
Iturbe & Mejía, 1974a). This is mainly because events that produce
low amounts of rainfall tend to be more localized. This relationship
is significantly present in satellite-based precipitation as shown in
Figure 3. It can be clearly seen that high quantiles of rainfall depths
correspond to low quantiles of bias (i.e., systematic error) with a
Pearson’s correlation coefficient value of �0.38.

Considerable research attention has been assigned to the develop-
ment of methods that transform point IDF curves to areal IDF curves;
such a transformation requires reduction factors commonly known as
areal reduction factors (ARFs). Methods of developing ARFs fall into
two categories: first, empirical methods which utilize rainfall time ser-
ies data from gauge network in a specific region to develop relation-

ships between point and area-averaged rainfall (e.g., U.S. Weather Bureau, 1957, 1958) and second, theory-
based methods which are based on the stochastic representation of rainfall fields in space and time. In this
study, we adopt a theory-based approach to derive ARFs, which was proposed by Sivapalan and Blöschl
(1998) and is based on the spatial correlation structure of the rainfall field. It should be noted that contrary
to the common use of ARFs, we are interested in transforming areal to point rainfall; thus, we will use the reci-
procals of ARFs. The methodology consists of first assuming an isotropic correlogram (i.e., spatial correlation
structure) of point rainfall of the following exponential form:

ρ rð Þ ¼ exp �r=λð Þ (3)

where ρ is correlation, r is the Euclidean distance between two points, and λ is a parameter that specifies the
decay in correlation. To estimate the parameter λ, equation (3) has to be fitted to preserve themean observed
correlation at a distance known as the characteristic distance rA (Rodriguez-Iturbe & Mejía, 1974a, 1974b); this
distance is a function of the shape and size of the area under consideration. The characteristic distance (rA) is
defined as the mean distance between two randomly chosen points in the region of interest, and its distribu-
tion was provided by Ghosh (1951). Matérn (1986) used the distribution to compute the ratio of the charac-
teristic to the maximum distances for unit areas with standard shapes (e.g., square and circle). The following
result was found for a square unit area (A):

rA ¼ 0:7374�diagonal Að Þ (4)

Applying this result on the grids of PERSIANN-CDR (25 km × 25 km) will result in a characteristic distance of
26.07 km. However, because the distances between the grid centers for which equation (3) can be computed

can only take multiples of 25 km (i.e., 25, 50, and 75), we have taken rA to be
25 km. Then, the average observed cross correlation between the annual
maximum series at distances of 25 km was calculated for each of the geo-
graphic sections shown in Figure 1. Finally, equation (3) is fitted to the
values of observed correlations to estimate the value of parameter λ.
Additionally, in order to evaluate the bias resulted from assigning a value
of 25 km instead of 26.07 km to the characteristic distance, the sensitivity
of the parameter λ to changes in the characteristic distance have been
investigated. The results (see Table 2) demonstrate that the sensitivity is
different in each geographic region depending on the precipitation
mechanism. However, the average sensitivity is in the order of 7.5% for a

Figure 3. Density plot for the joint distribution of one-day annual maximum series
rainfall quantiles and error quantiles; quantiles are calculated using the Weibull
plotting position. Data used to plot the density include all grids over the contig-
uous United States (CONUS).

Table 2
Percentage Change in the Estimate of Parameter λ Resulting From Changes in
the Characteristic Distance of 25, 50, and 75 km

25 km (%) 50 km (%) 75 km (%)

Southwestern States 8.4 16.04 21.5
Southeastern States 4.95 6.6 7.6
Northeastern States 19.87 26.56 40.23
Ohio River Basin 2.88 4.0 6.3
Midwestern States 1.46 1.8 2.13
Average 7.5 11.0 15.55
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change of 25 km in the characteristic distance and it increases consistently
with more significant changes in the characteristic distance. Therefore, the
bias in the parameter λ resulted from assigning a value of 25 km instead of
26.07 km is on average significantly less than 7.5%.

After estimating the parameter λ, the variance reduction factor κ2, defined
as the expectation of the correlation between any two random points
within the region under consideration, can be calculated according to
the following equation (Rodriguez-Iturbe & Mejía, 1974a; Sivapalan &
Blöschl, 1998):

κ2 ¼ E ρ x1 � x2ð Þ½ � (5)

Furthermore, Rodriguez-Iturbe andMejía (1974a) showed that equation (5)
can be simplified by integrating the product of the probability density
function of variable r and the correlation function according to the follow-
ing equation:

κ2 ¼ ∫diag Að Þ
0 ρ rð Þ f R rð Þ: dr (6)

where ρ and r is defined as above and fR(r) is the probability density func-
tion of the random variable r. For a square area with side length a (e.g., in

the case of PERSIANN-CDR, a = 25 km), Ghosh (1951) has derived the distribution of r (i.e., fR(r)).

f R rð Þ ¼
4r
a4

1
2
πa2 � 2ar þ 1

2
r 2

� �
; 0≤ r≤a

4r
a4

sin�1a
r
� a2 cos�1a

r
þ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p
� 1
2
r 2 þ 2a2
� �� �

; a≤ r≤
ffiffiffiffiffi
2a

p

8>>><
>>>: (7)

The final step is to use the variance reduction factor estimated from equation (6) to adjust the parameters of
the generalized extreme value (GEV) probability distribution that will be fitted to the data according to equa-
tions (8) and (9). These equations have been derived by Sivapalan and Blöschl (1998) by matching the para-
meters of areal and point extreme rainfall distributions in the particular case of zero area. See Sivapalan and
Blöschl (1998) for detailed derivation of equations (8) and (9).

μp ¼
μA

κ2 0:39þ 0:61κ�1:6ð Þ (8)

αp ¼ αA 1� 0:17 ln κ�2ð Þð Þ
κ2

(9)

where μp and μA are the point and areal GEV distribution location parameters, respectively; similarly αp and αA
are the point and areal scale parameters, respectively.

This theory-based approach to derive area-to-point transformation factors has been validated in Sivapalan
and Blöschl (1998). The validation was performed by comparing the ARFs derived by this method to ARFs
observed in actual storms. In this study, we investigated the validity of the methodology by examining an
extreme rainfall event over Texas on 27 August 2018 associated with hurricane Harvey. Total 24-hr rainfall
was obtained from NCEP Stage IV multisensor (i.e., radar and gauges) precipitation data, then the observed
ARFs were calculated (red line with markers in Figure 4). Next, using one-day IDF estimates for that region
reported in Cleveland et al. (2015), the observed ARFs were matched through the selection of appropriate
correlation length λ. Further details of the validation process such as the equations used for the selection
of appropriate correlation length are provided in Text S1. Figure 4 demonstrates that the two enveloping
curves for the observed ARFs correspond to correlation lengths of 120 and 160 km. Since the correlation
length reflects information about the rainfall generating mechanism, these large values of correlation length
are consistent with the large synoptic-scale event that produced this storm. It should be noted that this is an
approximate validation since the observed ARFs are storm-centered (i.e., specific to storm); meanwhile, the
simulated ARFs are fixed-area ARFs.

Figure 4. Observed Area Reduction Factors (ARFs; red line with markers) and
estimated ARFs by the proposed methodology (blue lines) for an extreme
rainfall event on 27 August 2018 over Texas associated with hurricane
Harvey.
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3.4. Developing IDF Curves

After adjusting the bias in the annual maximum series extracted from PERSIANN-CDR using the model
described in section 3.2, the process of developing IDF curves is carried out in several steps illustrated in
Figure 5. First, regionalization is applied to improve the statistical inference by increasing the number of
samples. This is achieved by creating homogenous regions using the k-means algorithm to cluster grids.
This step starts with input data to the algorithm that constitute latitude, longitude, elevation, and mean
annual precipitation; these data to a certain extent define different climatic divisions. Next, the output
clusters from the k-means algorithm are tested statistically for homogeneity using the method described
in Hosking and Wallis (1993). In this method the within-cluster variation in L-CV (i.e., the ratio of second to
first L-moments) is compared with what would be expected by simulations from a general probability

Figure 5. Flowchart illustrates the process of developing intensity-duration-frequency (IDF) curves from satellite-based
precipitation. Processes in green illustrate generally the process of estimating confidence intervals.

Figure 6. Q-Q plot comparing the quantiles of AMS extracted from Climate Prediction Center (CPC; horizontal axis) and
Annual Maximum Series (AMS) extracted from Precipitation Estimation from Remotely Sensed Information Using
Artificial Neural Networks – Climate Data Record (PERSIANN-CDR; vertical axis) at (a) (37.625°N, 119.375°W), California,
altitude = 3272 m and (b) (37.625°N, 78.125°W), Virginia, altitude = 96 m. The red dots and line represent the quantiles
before adjustment and its linear fit. Similarly, the blue dots and line represent the quantiles after adjustment and its linear
fit. The gray dotted line represents the equality line (x = y).
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distribution; in this study the Wakeby distribution (Houghton, 1978; see
also Hosking & Wallis, 1997) was used. If clusters are not satisfactory
according to the homogeneity check, clustering is repeated with increas-
ing the number of groups. It should be noted that clustering might be
different for each duration of interest (e.g., one day and two days) since
it depends on L-CV values of each AMS.

Following the identification of homogenous regions, the AMS at each grid
is normalized by dividing it by the mean AMS value. Then, the AMSs in
each homogenous region are combined and fitted to a GEV distribution.
The choice of the GEV distribution to model the extreme rainfall process
was validated using the Kolmogorov-Smirnov test (Massey, 1951); results
showed that GEV is an adequate distribution to represent the annual max-
imum series. The location and scale parameters of the distribution are then
adjusted to account for the transformation of areal to point rainfall using
the approach described in section 3.3.

Finally, precipitation quantiles corresponding to return periods (2, 5, 10,
25, 50, and 100) years are calculated using the index flood procedure
(Hosking & Wallis, 1997). In this approach, the quantiles for each homoge-
nous region, also known as the regional growth factors, are estimated.
Next, to account for normalization, the quantiles in each grid cell are calcu-
lated by multiplying the mean AMS value at the cell by the growth factor
according to the following equation:

q x;yð Þ ¼ μ x;yð Þ�bq (10)

where q(x, y) is the quantile at grid (x,y), μ(x, y) is the mean of AMS at grid
(x,y), and bq is the regional growth factor for the homogenous region of
interest.

3.5. Estimation of Confidence Intervals

Confidence intervals are estimated using Monte Carlo bootstrapping;
the method consists of three steps. First, the at-site empirical cumula-
tive distribution function is estimated at each grid cell center using
Kernel density estimation (Parzen, 1962; Rosenblatt, 1956). Second,
samples of AMS are extracted from the empirical distribution with
the same length of record as the original AMS. The sampling is
performed by drawing a uniform random variable in the range (0,1),

then the empirical cumulative distribution function is used to estimate the corresponding quantile. It
should be noted that Monte Carlo sampling is implemented 1,000 times to approximate the asympto-
tic properties of the population distribution. In the final step, the quantiles are estimated using the
method described in section 3.4, then the 5th and 95th percentiles are computed from the data to
obtain the 90% confidence interval.

4. Results and Discussion
4.1. Bias Adjustment

Figure 6 illustrates the impact of the bias adjustment at a high-altitude location (a) and a low-altitude loca-
tion (b). Clearly, the results suggest the following: First, PERSIANN-CDR before adjustment and CPC (red
dots) follow an identical distribution since the quantiles lie almost perfectly on a straight line. Second,
the bias in the case of high-altitude regions (Figure 6a) is more significant than the bias in low-altitude
regions (Figure 6b). This provides further demonstration to the analysis presented in section 3.1 about
the significant correlation between elevation and bias. Finally, the bias adjustment model removes a
sizable portion of the systematic error as can be seen from the close alignment of the quantiles after

Figure 7. (a) Reduction in mean relative error of intensity-duration-fre-
quency (IDF) curves derived from Precipitation Estimation from Remotely
Sensed Information Using Artificial Neural Networks – Climate Data Record
(PERSIANN-CDR) compared to National Oceanic and Atmospheric
Administration (NOAA) Atlas 14 for durations of one, two, and three days and
return periods of 2, 25, and 100 years. The solid color bars represent the
contribution of area-to-point transformation, and the hatched bars represent
the contribution of bias adjustment. The black bars represent the standard
deviation of the reduction in relative error. (b) Relationship between the
mean values of the inverse Area Reduction Factor (e.g., 1/ARF); durations of
one, two, and three days; and return periods of 2, 25, and 100 years.
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adjustment (blue dots) with the 45° line (gray dotted line). However, it
should be noted that the remaining bias, illustrated by the blue dots fall-
ing below the 45° line, will be accounted for by the areal to point trans-
formation. Furthermore, it can be discerned from Figure 6 that the bias
adjustment results in an overestimation for the largest event in the
AMS. This is primarily because the average bias adjustment factor esti-
mated for all values in the AMS is higher than the actual bias in the
highest AMS value; this result is consistent with the analysis shown in
Figure 3.

Although the bias adjustment model presented in this study is effective in
removing bias, it can be seen from Figure 2 that for a given elevation, there
is a range of values for the adjustment factor. In other words, the elevation
is not a satisfactory and/or sufficient explanatory variable in some loca-
tions. Further investigation of the model’s performance was conducted
over CONUS (see Figure S1). The results demonstrate that the multiplica-
tive bias in the adjusted AMS from PERSIANN-CDR is considerable over
the California Central Valley, northern parts of California, Oregon, and
Washington. In particular, the bias over these regions is mostly an overes-
timation bias. This analysis highlights that while the model is effective in
removing bias over most regions in CONUS, it has limitations regarding
the adjustment of overestimation bias.

4.2. Areal to Point Rainfall Transformation

Figure 7a shows the contribution of area-to-point transformation in
reducing the relative error of IDF estimates compared to that of the bias
correction. Clearly, the bias adjustment is the prime factor in improving
IDF estimates; however, areal-to-point transformation plays a consider-
able role in reducing the relative error of IDF estimates. A decreasing
trend for the contribution of area-to-point transformation as the dura-
tion of IDF increases can be discerned from Figure 7a. Further evidence
to support this conclusion is demonstrated in Figure 7b which shows
the relationship between the transformation factor, duration, and return
period. The inverse relationship of the transformation factor and dura-

tion is consistent with previous studies (e.g., Asquith & Famiglietti, 2000; Mineo et al., 2018), and it is jus-
tified by rainfall behavior since short-duration events are primarily associated with small areal extent and
convective rainfall; meanwhile, long-duration events are distributed over a large area (Mineo et al., 2018;
Sivapalan & Blöschl, 1998). On the other hand, the transformation factors increase with return period as
shown in Figure 7b. This relationship shows that the transformation method is not independent of return
period and it is consistent with previous studies (e.g., Veneziano & Langousis, 2005). This is because the
transformation is applied to both the location and scale parameters of the distribution. Sivapalan and
Blöschl (1998) showed that this transformation method results in a decrease of the coefficient of variation
as the area increases unlike transformation methods that assume independence of return period resulting
in a constant coefficient of variation.

4.3. IDF Curves Evaluation

IDF curves derived from PERSIANN-CDR are evaluated against NOAA-Atlas 14 precipitation frequency esti-
mates. The evaluation is performed over the CONUS except the states of Washington, Oregon, Idaho,
Montana, Wyoming, and Texas because of unavailability of NOAA-Atlas 14 estimates in these states as shown
in Figure 1. The evaluation is performed for IDF with durations one, two, and three days and return periods 2,
5, 10, 25, 50, and 100 years.

The main metric used for evaluation of IDF estimates derived from PERSIANN-CDR is the percentage relative
error which is defined as follows:

Figure 8. Boxplots of satellite-based intensity-duration-frequency (IDF) rela-
tive error for durations of (one, two, and three) days. (a) Return periods of 2, 5,
and 10 years. (b) Return periods of 25, 50, and 100 years. The thick lines inside
boxes indicate the median value, the boxes indicate the interquartile range,
and the dashed lines indicate the range.
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Relative Error %ð Þ ¼ IDFPERSIANN�CDR � IDFNOAA�Atlas14

IDFNOAA�Atlas14

� �
�100% (11)

This is an adequate performance metric since it is normalized and there-
fore not sensitive to the absolute values of rainfall. This allows us to exam-
ine the performance of IDF estimates over the whole spatial domain
regardless of variations in climate.

Figure 8 shows the relative error of IDF curves over the whole spatial
domain of NOAA Atlas 14 (see Figure 1) for durations one, two, and three
days and return periods 2, 5, 10, 25, 50, and 100 years. While the errors are
considerable for one-day duration with the median errors in the range
(�17% to�22%) for return periods (2–100 years), the errors are less signif-
icant in longer durations. For example, in the case of two-day IDF, themed-
ian errors range is (�6% to �12%); meanwhile, for three-day IDF, the
median errors range is (�3% to�8%). This trend of improved performance
with longer durations is due to the increased accuracy of satellite-based
precipitation over long time scales as well as the temporal mismatch com-
paring remotely sensed and gauged rainfall over short periods. It should
also be noted that the errors are more pronounced in high return periods,
and this is attributed to the relatively short record of PERSIANN-CDR
(~30 years) compared to the length of record used to derive NOAA Atlas
14 which on average ranges from 54 to 68 years (Bonnin et al., 2006,
2011; Perica et al., 2011, 2013a, 2013b). Overall, IDF relationships derived
from PERSIANN-CDR tend to underestimate the amount of precipitation;
however, the errors are not significant in durations of two days and larger.

Since the previous analysis only reveals information about the aggregate
performance over the whole NOAA Atlas 14 spatial domain, it is important
to examine the accuracy of IDF curves over different geographic regions.
Therefore, IDF curves have been evaluated separately over each of the

geographic sections shown in Figure 1. While the average relative errors over all geographic regions are com-
parable and do not indicate large differences as shown in Figure 9a, the percentages of IDF curves that lie
within the confidence interval of NOAA Atlas 14 clearly highlight that the accuracy of IDF curves derived from
PERSIANN-CDR varies significantly. As can be seen from Figure 9b, the accuracy is higher over the
Northeastern States since 77, 86, and 84% of one-day, two-day, and three-day IDF curves, respectively, lie
within the 90% confidence interval. It is followed by the Southeastern States where approximately 43, 79,
and 86% of one-day, two-day, and three-day IDF curves lie within the confidence interval. The poorest accu-
racy is observed over the Southwestern States where only 20% of one-day IDF curves lie within the confi-
dence interval. This is primarily due to the inadequacy of the bias adjustment model over the Central
Valley of California (see Figure S1).

In order to understand the sources of observed errors in PERSIANN-CDR IDF curves, we compare IDF curves
from the original PERSIANN-CDR (i.e., without adjustment and area-to-point transformation) and from the
CPC record (1984–2015); the results are shown in Figure 10. By comparing IDF curves derived from CPC (black
dotted lines) and NOAA Atlas 14 (black lines), it can be clearly seen that IDFs from CPC exhibit underestima-
tion errors. Since the data used to derive NOAA Atlas 14 is identical to CPC data, the observed differences are
primarily due to the length of record as we have used CPC record of approximately 30 years long. This high-
lights that while the observed errors can potentially be attributed to several sources such as the difference in
spatial scale, it is important to consider the relatively short length of record as the main source
of underestimation.

An important point to be concluded from Figure 10 is that the bias adjustment and the area-to-point
transformation are important, and they improve the results significantly. This can be clearly seen by compar-
ing the original PERSIANN-CDR IDFs (red dotted line) and IDFs derived after adjustment and transformation
(red lines). For example, in both Figures 10a and 10b, IDFs derived from adjusted PERSIANN-CDR lie within the

Figure 9. (a) Average relative error in satellite-based intensity-duration-fre-
quency (IDF) with return period of 25 years for the five contiguous United
States (CONUS) divisions defined in Figure 1 (SW: Semiarid Southwest, SE:
Southeastern states, NE: Northeastern states, ORB: Ohio River Basin and MW:
Midwestern States). (b) Percentage of satellite-based IDF estimates that falls
within the 90% confidence intervals; return period is 25 years.

10.1029/2018WR022929Water Resources Research

OMBADI ET AL. 7761



confidence interval of NOAA Atlas 14; meanwhile, IDFs before adjustment are considerably underestimated
and lie out of the confidence interval. Figure 10c shows an example of an IDF where bias adjustment and area
to point transformation improve the results yet not sufficiently as the obtained IDF (red line) lies outside the
confidence interval. On the other hand, it can be seen from Figure 10d that IDF curves from the original
PERSIANN CDR (red dotted line), that is, without adjustment and area-to-point transformation, are
overestimating. Therefore, the framework used in this study to adjust the bias and account for the areal
nature of satellite-retrieved precipitation exacerbates the errors leading to an increased overestimation as
shown by the red line in Figure 10d. This highlights that while the adjustments embedded in the
methodology are essential for the development of accurate IDF curves, special attention should be paid in
regions where satellite-based precipitation products show peculiar performance such as the case over the
Central Valley of California.

4.4. Uncertainty and Impact of Regionalization

The issue of uncertainty in satellite-based IDF curves is more difficult than when ground measurements are
used to develop these curves. This is because there are several components of uncertainty to be considered.
First, uncertainty arises from the estimation process since satellites do not measure precipitation directly but
rather utilize other information as a proxy for rainfall rate. Second, there are uncertainties induced by the
methodological framework proposed in this study; these include the bias adjustment model and the trans-
formation from areal to point rainfall. Finally, the commonly considered source of uncertainty is estimation
of distribution parameters.

In this section, we only discuss uncertainty that arises from the estimation of distribution parameters.
Confidence intervals of IDF estimates are computed using Monte Carlo bootstrapping described in

Figure 10. Intensity-duration-frequency (IDF) curves for durations one, two, and three days and return period of 25 years.
IDF curves from original Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks –
Climate Data Record (PERSIANN-CDR), adjusted PERSIANN-CDR, CPC, and National Oceanic and Atmospheric
Administration (NOAA) Atlas 14 are plotted along with confidence intervals of NOAA Atlas 14. (a) (42.875°N, 72.125°W),
Vermont. (b) (46.375°N, 101.375°W), North Dakota. (c) (27.375°N, 80.625°W), Florida. (d) (39.625°N, 122.125°W), Northern
California.
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section 3.5. First, we highlight the importance of regionalization in con-
straining the uncertainty to narrower limits. Figure 11a shows the coeffi-
cient of variation for the distribution of quantiles corresponding to 2, 5,
10, 25, 50, and 100 years for both cases of using regionalization and at-site
(i.e., no regionalization) estimation. The distribution is obtained by extract-
ing 1,000 samples, then estimating the quantiles. Meanwhile, the coeffi-
cient of variation (i.e., the ratio of the standard deviation to the mean) is
used to assess uncertainty since it is a normalized measure and hence
allows us to examine all regions regardless of variation in their climate. It
can be seen that for lower quantiles such as those corresponding to 2-
and 5-years return period, the impact of regionalization is barely notice-
able. However, as higher quantiles are considered, the differences in the
coefficient of variation are more significant with regionalization leading
to lower coefficients of variation. This indicates the importance of regiona-
lization in reducing the uncertainty, particularly for quantiles in the tail of
the distribution.

Furthermore, regionalization in the case of satellite-based precipitation is
more effective in reducing uncertainty since the amount of available data
is immense. To illustrate, an arbitrary homogenous area of 6,250 km2 that
might be covered with three ground gauges with average record length of
50 years will generate (3 * 50 = 150 samples), while on the other hand,
PERSIANN-CDR will provide (10 grids * 30 = 300 samples). The increased
sample size will result in a decrease of the uncertainty range. As it can
be seen from Figure 11b, uncertainty ranges in the case of IDFs derived
from PERSIANN-CDR are smaller than those of NOAA Atlas 14. This high-
lights that implementing regionalization in the case of satellite-based pre-
cipitation is more effective.

5. Conclusions

The goal of this paper is to contribute and advocate for the development
of methods that facilitate the use of satellite-retrieved precipitation in
developing IDF curves. This is of particular interest to developing countries

where existing networks of ground gauges do not provide sufficient spatial coverage or record length to
develop IDF curves. Given the continuous advancement in remote sensing and the retrieval of precipitation
from satellites, it is worthy of attention to dedicate more research efforts toward the development of meth-
ods that ensure the incorporation of satellite-based precipitation in the design, operation, and planning of
infrastructure. This study has attempted to examine this issue from a methodological point of view by con-
sidering and accounting for the characteristics of satellite-based precipitation. The methodology used in this
study is different from previously reported studies on the use of satellite-based precipitation in the develop-
ment of IDF curves, which approached this issue from a case study perspective. The ultimate aim of this study
is to contribute in the development of general methodologies that can provide adequate results in the
absence of in situ rainfall measurements.

While the main motivation for this research is the potential use of satellite-based precipitation to construct
IDF curves for developing countries, it is important at this early stage of methodological research to examine
the methods by evaluating them in regions with extensive networks of ground gauges with sufficient length
of record. This has been the rationale behind the selection of CONUS as a test bed to evaluate the proposed
methodology. It is important to emphasize that the methods proposed in this study are neither tailored to a
specific region nor to a specific satellite-based precipitation product. Furthermore, we emphasize that esti-
mating the adjustment model parameters is the only step in the proposed framework that requires the avail-
ability of ground-based measurements. The question then arises, “Are these parameter estimates sufficiently
robust such that they can be applied in other regions?”. The answer is twofold. First, it is expected that these
estimates are robust over most regions since data from all grids over CONUS, which represent a variety of

Figure 11. (a) Coefficient of variation (CV) in the distribution of quantiles of
one-day IDF with return periods (2, 5, 10, 25, 50, and 100) years. The blue
and red curves represent the values of CV for the case of regionalization and
at-site estimation respectively. (b) Uncertainty ranges normalized by the
mean for quantiles corresponding to (2, 5, 10, 25, 50, and 100) years. Values
are averaged over the whole spatial domain of NOAA Atlas 14 shown in
Figure 1.
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climatic and precipitation regimes, have been used in the estimation process. Second, as has been shown in
this study, the model has limitations in adjusting overestimation bias over specific locations such as the
Central Valley of California. However, further studies are sorely needed to explore the bias in PERSIANN-
CDR as well as other satellite-based precipitation products over different regions. It is also important to note
that in regions with partial coverage of ground rainfall gauges, information from ground gauges may be
incorporated to validate the bias adjustment model presented in this study, which will lead to improved per-
formance. We also acknowledge that the bias in other satellite-based precipitation products does not neces-
sarily follow the same characteristics observed in PERSIANN-CDR. For example, Endreny and Imbeah (2009)
reported that bias in TRMM rainfall depths over Ghana is primarily overestimation bias; meanwhile, in this
study, PERSIANN-CDR mainly exhibits underestimation bias. Thus, an extensive analysis of bias is required
in other satellite-based products prior to their use in IDF development.

Overall, the results of this study highlight the potential of using satellite-based precipitation as an alternative
source to the commonly used ground-based measurements in developing IDF curves. Through comparison
with NOAA Atlas 14 estimates, which have been used as a benchmark, we found that the median relative
errors in satellite-based IDFs over CONUS are in the range of (�17 to �22%), (�6 to �12%), and (�3 to
�8%) for one-day, two-day, and three-day IDFs, respectively. Furthermore, a significant percentage of
satellite-based IDF curves fall within the confidence interval of NOAA Atlas 14 for most geographic sections
of CONUS with the best results over the Northeastern States with 77, 86, and 84% of one-day, two-day, and
three-day IDFs within the confidence interval. These promising results corroborate findings reported in Gado
et al. (2017), which demonstrated that the use of satellite-based data with bias adjustment from local gauges
provides accurate quantile estimates. The increase in IDF error with increase in the return period can be
attributed to uncertainty associated with the short length of record; this relationship is consistent with uncer-
tainty analysis of IDF derived from remotely sensed observations (Marra et al., 2017). We also highlight that
IDFs derived from PERSIANN-CDR in this study over the Central Valley of California exhibit higher errors since
the original product is overestimating in this region. This emphasizes the importance of considering any
peculiar performance of satellite-based precipitation over specific regions prior to the development of IDF
curves. It also pinpoints that elevation is not a satisfactory and/or sufficient explanatory variable in some loca-
tions to adjust bias in extreme satellite-based precipitation.

Finally, there are several important questions regarding the use of satellite-based precipitation in IDF devel-
opment that remain unanswered and in need of further investigation: first, quantifying the different sources
of uncertainty in satellite-based IDFs that arise from the estimation of rainfall rates, bias adjustment, transfor-
mation of areal to point rainfall and the estimation of distribution parameters. In this study, we only dealt with
the uncertainty in the estimation of distribution parameters; however, other sources of uncertainty should
not be ignored. A possible approach to deal with uncertainty from the estimation process is to consider sev-
eral satellite-based precipitation products in an ensemble approach, which will provide uncertainty limits for
the random error component. With regard to bias adjustment, it might be beneficial to estimate the para-
meters of the adjustment model using Bayesian regression to provide uncertainty bounds to the parameter
estimates. Second, further research is needed to investigate the impact of the liquid/frozen precipitation par-
titioning since satellite-based precipitation provides estimates of the total precipitation while in the develop-
ment of IDF curves usually only liquid precipitation is considered. This might only be of significance in regions
that receive considerable amounts of frozen forms of precipitation (i.e., snow, ice, and hail) during extreme
precipitation events. Finally, as the results of this study have shown that regionalization of IDFs derived from
satellite-based estimates is more effective in reducing the uncertainty in distribution parameters due to the
availability of more information, it is important to develop regionalization methods that can exploit the infor-
mation content of satellite-based precipitation data sets more efficiently.
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