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Abstract

Lattice models for photosynthetic membrane stacks

by

Andreana Marie Rosnik

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Phillip L. Geissler, Chair

Proteins in photosynthetic membranes can organize into patterned ar-
rays that span the membrane’s lateral size. Attractions between proteins
in different layers of a membrane stack play a key role in this ordering, as
has been demonstrated by both empirical and computational methods. The
architecture of thylakoid membranes, depending on physiological conditions,
also may create circumstances for inter-layer interactions that instead dis-
favor the high protein densities of ordered arrangements. This dissertation
introduces several statistical mechanical models for exploring the interplay
between these opposing forces and for characterizing phases that reflect the
periodic geometry of stacked thylakoid membrane discs. First, we propose
a lattice model that roughly accounts for proteins’ attraction within a layer
and across the stromal gap, steric repulsion across the lumenal gap, and reg-
ulation of protein density by exchange with the stroma lamellae. Mean field
analysis and computer simulation reveal a broken-symmetry striped phase
disrupted at both high and low extremes of density. We expect that the
widely varying light and stress conditions in higher plants explore the space
of protein density and interaction strength broadly. The phase transitions we
identify should thus lie within or near the range of naturally occurring condi-
tions. Second, we expand upon this lattice description, allowing the thickness
of each thylakoid’s lumenal gap to fluctuate. This fluctuating-gap model in-
troduces the possibility of mechanical control of photosynthetic function. We
monitor how changing gap thickness affects mean protein occupation on both
sides of the discs. Via mean field analysis and computer simulation we find
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even richer phase behavior for this model, featuring transitions that originate
in long-ranged protein interactions mediated by lumenal gap fluctuations.
These results suggest that compression or expansion of lumenal gaps could
lead to sudden and dramatic changes in the population and spatial pattern-
ing of photosynthetic proteins. Taken together, the lattice models we have
constructed and explored provide a framework for minimalistic modeling of
the physics underlying structure and function of photosynthetic membranes.
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Chapter 1

Introduction

This dissertation is largely comprised of two manuscripts, with each present-
ing a distinct class of models.

The models presented here are based on traditional lattice models widely
known in the statistical mechanics community, but applied to the intrica-
cies of photosynthetic membrane protein self-organization. The first set of
models characterizes regimes for protein density ordering within a stack of
membranes; its salient feature is a competition between steric repulsion and
protein-protein attraction. The second set of models builds on the first, per-
mitting variation in membrane gap distances in addition to protein density
fluctuations.

This introduction will provide motivation for both works in language
suitable to a slightly wider audience.

For those already overwhelmed by jargon, a breakfast-based analogy may
be helpful to appreciate the kinds of organization we aim to understand at
a microscopic level. The basic architecture of the photosynthetic apparatus
we study is a stack of disc-shaped objects, populated by numerous smaller
constituents – in essence an exotic dish of pancakes. Here, proteins (choco-
late chips or blueberries) may coalesce in thylakoids (green pancakes) within
chloroplasts of cells (the breakfast nook), influenced by incident light (stress
of the frying pan), material input from connected structures (spoonfuls of
baking soda or gobs of syrup), and other delicious factors. Whenever things
become difficult to visualize, I encourage you to think of stacks of green,
photosynthesizing pancakes.
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Figure 1.1: This illustration of thylakoids (by me) is not perfectly scientifi-
cally accurate, but it assists the imagination.

1.1 Motivation of work

Photosynthesis is a complex process spanning multiple length and time scales.
As such, most research on photosynthetic organisms tends to focus on one
set of spatial or temporal scales. For example, much effort has been invested
in characterizing the smallest scales of electronic energy transfer. [1, 2] On
the opposite end of the spectrum, plants and other organisms have been
genetically modified to change efficiencies in water use or light responses. [3]
Much of this work is of an empirical nature. Theoretical work traditionally
serves as a means of probing the extremes of parameter space while using
purely computers and, ideally, decreased time effort. Another strength of
theoretical work is its ability to explore phenotypes and behaviors difficult
to produce with in vivo systems.

Reasons to tinker with photosynthetic systems are myriad, from design of
artificial photosynthesis mechanisms [4, 5] to modifying crops for a changing
climate. [3] Photoautotrophs have developed the means to harness solar
energy over billions of years, and these processes are incredibly sensitive to
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external and internal conditions of the organism. Photosynthesis research
attempts to demystify the many levels of photosynthesis across an array of
photoautotrophs.

With the scope of ideologies introduced, we will consider the more im-
mediate context in which this dissertation resides. The vast majority of
photosynthetic activity occurs in the chloroplast, and as such we focus our
attention to chloroplasts and their analogues. (For those seeking visual rep-
resentations of the innards of chloroplasts, Refs. [6, 7] are quite helpful.) We
further center ourselves on the infrastructure involved in light-harvesting and
electron transport – the thylakoid membranes. Previous theoretical studies
of photosynthesis have focused on lateral self-organization within thylakoid
membranes, [8, 9, 10] electronic energy transfer in thylakoid membranes,
[11] and optical properties of thylakoid membrane collections. [12] Most of
these studies focus on interactions among proteins in the plane of a thylakoid
membrane layer, with the exception of Ref. [12].

However, thylakoid membranes can exist in stacks, [6, 13] creating oppor-
tunities for ordering out of the plane of thylakoid membranes. This disserta-
tion is an exploration of regimes for vertical ordering in thylakoid membrane
stacks (grana; singular, granum), primarily in higher plants. We specify
higher plants, as these are the organisms with the greatest propensity to
develop grana.

1.2 Brief note on techniques

This dissertation utilizes methodologies common to the discipline of statisti-
cal mechanics, namely Monte Carlo simulations and mean field theory. The
specifics of these techniques needed to understand the results presented here
are detailed in the chapters devoted to the two manuscripts, as well as the
appendices.

1.3 Soft constraint model

The first manuscript relates my exploration of what I will call the soft con-
straint model, or the fixed-gap model, a lattice model whose main feature is
the competition between attractive and repulsive forces in the vertical direc-
tion of a granum. In Chapter 2, I develop the method from physical and
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mathematical perspectives, then describe the possible phases of order and
disorder that arise from it. Helpful explanatory cartoons are displayed, and
these remain relevant for the second model. I outline the mean field calcula-
tions and Monte Carlo simulations. The resulting phase diagrams and their
implications are discussed at length.

1.4 Fluctuating-gap model

The second manuscript, described in Chapter 3, follows the development of
the second class of models, the fluctuating-gap model. Here another set of
fluctuating quantities is added: in addition to variations in protein density,
this model accounts for fluctuations in thylakoid disc thickness (or lumenal
gap thickness). This extension enriches the phase space significantly. In
Chapter 3, I explain the difference between this model and the soft constraint
model, including new, additional means of describing order and disorder.
Then I proceed to outline a mean field approach and the resulting phase
diagrams, as well as sketch simulation data.
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Chapter 2

Lattice models for protein
organization throughout
thylakoid membrane stacks

2.1 Preface

The text of this chapter is the manuscript, Lattice models for protein organi-
zation throughout thylakoid membrane stacks, submitted in early July 2019,
whose preprint is Ref. [14]. For the sake of completion I include the Abstract
and Statement of Significance here. The Supplemental Information is given
in Appendix 5.1.

2.2 Abstract

Proteins in photosynthetic membranes can organize into patterned arrays
that span the membrane’s lateral size. Attractions between proteins in dif-
ferent layers of a membrane stack can play a key role in this ordering, as was
suggested by microscopy and fluorescence spectroscopy and demonstrated
by computer simulations of a coarse-grained model. The architecture of
thylakoid membranes, however, also provides opportunities for inter-layer
interactions that instead disfavor the high protein densities of ordered ar-
rangements. Here we explore the interplay between these opposing driving
forces, and in particular the phase transitions that emerge in the periodic
geometry of stacked thylakoid membrane discs. We propose a lattice model
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that roughly accounts for proteins’ attraction within a layer and across the
stromal gap, steric repulsion across the lumenal gap, and regulation of pro-
tein density by exchange with the stroma lamellae. Mean field analysis and
computer simulation reveal rich phase behavior for this simple model, fea-
turing a broken-symmetry striped phase that is disrupted at both high and
low extremes of chemical potential. The resulting sensitivity of microscopic
protein arrangement to the thylakoid’s mesoscale vertical structure raises
intriguing possibilities for regulation of photosynthetic function.

2.3 Statement of significance

This work develops the first theoretical model for grana-spanning spatial or-
ganization of photosynthetic membrane proteins. Based on the stacked-disc
structure of thylakoids in chloroplasts, it focuses on a competition between
interactions that dominate in different parts of the granum. Analysis and
computer simulations of the model reveal striped patterns of high protein
density as a basic consequence of this competition, patterns that acquire
long-range order for a broad range of physical conditions. Because natural
changes in light and stress conditions can substantially alter the strengths of
these competing interactions, we expect that an ordered phase with periodi-
cally modulated protein density is thermodynamically stable at or near some
physiological conditions.

2.4 Introduction

Photosynthetic membranes are dense in proteins that cooperate to execute
the complicated chemistry fundamental to light-harvesting and other compo-
nents of photosynthesis. Membrane functionality depends not only on these
proteins, but also supramolecular spatial arrangements thereof. Both the
architecture of the membranes and the interactions of the protein compo-
nents influence protein organization. Both levels of complexity are further
influenced by light and physiological conditions.

In higher plants, photosynthetic membranes are arranged as stacks (called
grana) of discs (called thylakoids). Each thylakoid, measuring roughly 300-
600 nm in diameter and 10-15 nm thick, is bounded above and below by a
lipid bilayer densely populated with photosynthetic proteins (See Fig. 2.1).
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[6, 15, 7] A typical granum is composed of 10-100 thylakoid discs, spaced
vertically by 2-4 nm. Grana do not exist in isolation in chloroplasts; rather,
they are connected by unstacked membranes called stroma lamellae, which
tend to be longer and have different protein composition. See Refs. [6, 7] for
visual representations of the membrane architecture.

This intricate geometry provides diverse opportunities for association
among transmembrane proteins. We focus on interactions and arrangements
involving two particular proteins, photosystem II (PSII) and light-harvesting
complex II (LHCII), which abound in the central, mostly flat portion of
thylakoid discs. [6, 16, 17, 18] “Super-complexes” comprising a handful of
these proteins can form with a variety of ratios PSII:LHCII. [6, 19] Super-
complexes are situated within a single lipid bilayer, but their stability may be
influenced by interactions across the gap separating distinct thylakoid discs.
[8, 20, 21] These interactions are net attractive due to solvent mediation
of interactions between polar, protruding domains of LHCII proteins. Such
attractive “stacking” interactions may also drive larger scale organization of
these proteins within the plane of the bilayer, forming laterally into extended
periodic arrays that have been observed. [20, 22, 23, 24, 25] Computational
work has suggested that these lateral arrays signal a phase transition to a
crystalline state that would exhibit truly long-range two-dimensional order in
the absence of constraints on protein population and disc size. [8, 9, 10, 11]
Small changes in protein composition, density, and interaction strength could
thus trigger sudden large-scale reorganization. Diminished stacking during
state transitions and non-photochemical quenching processes, processes of
thylakoid restructuring to shift electronic excitations or to minimize photo-
oxidative damage, respectively, may reflect control mechanisms that exploit
this sensitivity. [26]

Vertical interactions in a stack of thylakoids can also be repulsive in char-
acter. Due to narrow spacing between apposed membranes, and the signif-
icant protrusion of certain proteins into the region between stacked mem-
branes, steric repulsion is likely to influence spatial organization in some
circumstances. PSII in particular extends large domains towards the interior
of thylakoid discs (called the lumen), a space that contracts under low light
conditions. With sufficient contraction of the lumen, PSII molecules inhab-
iting a disc’s opposing membranes would be unable to share the same lateral
position. [20, 27, 28, 29] The consequences of such a constraint on protein
organization, e.g., its implications for the stability of stacked protein arrays,
have not been directly explored in either experiment or simulation. However,
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the implications of these spatial constraints on the diffusion of molecules in
the lumen has been addressed in Refs. [27, 28].

Our work addresses the interplay between attractive and repulsive protein-
protein forces within grana stacks. To date only one study has attempted
to quantify the competition between attractive and repulsive protein-protein
forces within grana stacks, including how this competition is affected by
changing physiological conditions. [30] Different interactions likely prevail in
different parts of the stack, due to proteins’ well-defined orientation relative
to the lumen. We therefore focus on the possibility of spatially modulated or-
der, patterns of protein density that alternate along the direction of stacking.
To date such patterns have not been observed in experiment, but potential
impacts of related kinds of granum-scale order on photosynthetic function
have recently been discussed. [12]

There is empirical evidence for vertically extended order within a stack
of membranes, though in a much simpler context. Specifically, synthetic
membrane systems, devoid of proteins, have been constructed to examine
compositional ordering in an array of phospholipid bilayers with multiple lipid
constituents. [31, 32] Spatial modulations in lipid composition were observed
to align and extend throughout the entire membrane stack, establishing a
basic plausibility for the ordered phases discussed in this work.

In order to examine the basic physical requirements for protein correla-
tions spanning an entire stack of thylakoids, we develop minimal models that
account for locally fluctuating protein populations in a granum-like geometry.
As described in Sec. 2.5, these fluctuations are biased by protein-dependent
attractions between discs, and by steric repulsion between proteins that reside
in the same disc. The strengths of these interactions are determined by pa-
rameters that roughly represent light conditions and protein phosphorylation
states. Using methods of Monte Carlo simulation detailed in Sec. 2.6, as well
as mean field theories presented in Sec. 2.7, we find that strongly cooperative
behavior emerges over a wide range of conditions. As parameter values are
changed, the model system can cross phase boundaries where intrinsic sym-
metries are spontaneously broken or restored. The correspondingly sudden
changes in the microscopic arrangement of photosynthetic proteins suggest a
mechanism for switching sharply between distinct states of light harvesting
activity, as discussed in Sec. 2.8. In Sec. 2.9 we conclude.
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Figure 2.1: Schematic cross-section of a short stack of thylakoids discs. Dark
green squares represent LHCII molecules, lighter green domed shapes repre-
sent PSII, and yellow-green bands represent lipid bilayers. Each disc (indexed
by an integer z) comprises two layers (indexed α = 1 and α = 2). Protein
attraction within each layer is assigned an energy scale J in our lattice model.
Aligned LHCIIs in subsequent layers can engage in favorable stacking inter-
actions, which is assigned an energy ε in the model. Protrusion of PSII into
the lumen spaces (i.e., the interior of each disc) may lead to steric repul-
sion between the two layers of each disc. Mediated by thylakoid gap and
membrane fluctuations, the effective steric energy scale is denoted ε′.
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2.5 Model

2.5.1 Physical description

Our model of stacked thylakoid discs elaborates the familiar lattice gas model
of liquid-vapor phase transitions. We represent the microscopic arrangement
of proteins on a cubic lattice, resolving their transiently high number density
in some parts of the membrane and low density in others. Proteins’ specific
identities and internal structures are not resolved here; in discretizing space
at the scale of a protein diameter, we have notionally averaged out such
details. Our fluctuating degrees of freedom are thus binary variables n for
each lattice site, indicating the local scarcity (n = 0) or abundance (n = 1)
of protein. We refer to the local states n = 0 and n = 1 as unoccupied and
occupied, respectively, although they do not strictly indicate the presence of
an individual molecule.

The net protein density in our model membranes may fluctuate accord-
ing to a chemical potential µ. Such variations generally represent exchange
of material with a reservoir. In our case the stroma lamellae – unstacked
regions of photosynthetic membrane – could play the role of reservoir. Al-
ternatively, µ could be regarded as a tool of mathematical convenience (a
Lagrange multiplier) for manipulating the total density in calculations.

Interaction energies are assigned wherever adjacent sites on the lattice
are occupied. The sign and strength of such an interaction depends on the
locations of the two lattice sites involved, as depicted in Fig. 2.1. Within a
planar layer of the stack (a disc comprises two layers), neighboring occupied
sites contribute an attractive energy −J , representing lateral forces of protein
association. Stacking interactions occur between laterally aligned sites on the
facing layers of sequential discs in the granum; each pair of occupied stacked
sites contributes an attractive energy −ε.

Laterally aligned sites within the same disc are subject to a repulsive en-
ergy ε′, representing steric forces between transmembrane proteins protruding
into the lumen. The harshly repulsive nature of steric interactions suggests
that ε′ should be very large, effectively enforcing a constraint of volume ex-
clusion. For this reason, we will consider ε′ = ∞ as a special case. Termed
the hard constraint limit, this case offers mathematical simplification as well
as transparent connections to a related class of spin models. Smaller values
of ε′, however, may be more appropriate in situations where steric overlap
can be avoided through modest deformation of the membrane layers. Un-
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der high light conditions, when thylakoid discs swell in the vertical direction,
very slight membrane deformation (or perhaps none at all) could be sufficient
to allow simultaneous occupation of laterally aligned sites, corresponding to
very small ε′.

Figure 2.2: Depictions of a granum state with high protein density. In the
left illustration, yellow-green indicates membrane that is not inhabited by
protein; small dark circles are LHCII trimers; and oblong green shapes with
small circles are PSII-LHCII supercomplexes. The right illustration shows
a lattice representation of a similarly dense microstate. Here, yellow-green
indicates a local sparsity of proteins, and dark green represents a region that
is densely populated by either protein. These colors and shapes are used
consistently throughout the chapter.

The ground state of this model depends on values of the energetic pa-
rameters µ, ε, J , and ε′. Large, positive µ encourages occupation and thus
favors a high average value n̄ of the local occupation variable. In the limit
µ→ +∞, a state of complete occupation is thus energetically minimum. At
high µ we generally expect thermodynamic states that are densely populated,
as depicted in Fig. 2.2. Conversely, at very negative values of µ we expect
very sparse equilibrium states, as depicted in Fig. 2.3.

Equilibrium states at modest µ are characterized by competition among
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steric repulsion and the favorable energies of stacking and in-plane associa-
tion. Large ε′ harshly penalizes lattice states that are more than half full –
states which must feature simultaneous occupation of laterally aligned sites
within the same disc. In order to realize in-plane attraction at half filling,
one layer of each thylakoid must be depleted of protein. The stack then
comprises a series of sparse and dense layers. Extensive stacking interaction
between discs requires a coherent sequence of these layers, yielding ground
states that are striped with a period of four layers. This pattern is illustrated
in Fig. 2.4 and quantified by an order parameter ∆n that compares protein
density in the two layers of each thylakoid. More specifically, ∆n is a linear
combination of layer densities, whose coefficients change sign with the same
periodicity as the stripe pattern described. Macroscopically ordered stripes
of protein density may be an unlikely extreme in real grana. Slow ordering
kinetics, imperfect grana architecture, or insufficiently strong interactions
could all prevent long-range coherence in practice. The tendency towards
ordering for dark to low light conditions can still be of importance, e.g., in
the form of transient striping over substantial length scales or a steep decline
in the population of vertically adjacent PSIIs as the transition is approached.

The two layers of each disc are completely equivalent in our model en-
ergy function. Stripe patterns, which populate the two layers differently
with a persistent periodicity, do not possess this symmetry. Equilibrium
states with ∆n 6= 0 therefore require a spontaneous symmetry breaking and
a macroscopic correlation length, and they must be separated from symmet-
ric states by a phase boundary. The computational and theoretical work
reported in the following sections aims to determine what, if any, thermody-
namic conditions allow for such symmetry-broken, coherently striped states
at equilibrium. Possible physiological consequences of this organization will
be discussed in Sec. 2.8.

2.5.2 Mathematical definition

In order to describe quantitatively the energetics and ordering we have de-
scribed, it is useful to index lattice sites according to (a) the thylakoid disc
to which they belong, specified by a vertical coordinate z ranging from 1 to
Lz, (b) which layer of the disc they inhabit, α = 1 (bottom) or α = 2 (top),
and (c) the lateral position, specified by an integer i ranging from 1 to LxLy.
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Figure 2.3: Depictions of a granum state with low protein density. Colors
and shapes have the same meaning as in Fig. 2.2.
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Figure 2.4: Depictions of a granum state with striped order. Layers of high
and low protein density alternate vertically with a period of two discs. Specif-
ically, each disc includes one high-density layer and one low-density layer; and
each high-density layer is vertically adjacent to a dense layer on an adjacent
disc. Colors and shapes have the same meaning as in Fig. 2.2.
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(See Fig. 2.1). Density and striping order parameters are then defined as

n̄ ≡ (2LxLyLz)
−1
∑
z,i,α

n
(z)
α,i (2.1)

and
∆n ≡ (2LxLyLz)

−1
∑
z,i

(−1)z(n
(z)
1,i − n

(z)
2,i ), (2.2)

and the total energy of a configuration {n(z)
α,i} is written

H[{n(z)
α,i}] = −µ

∑
z,α

∑
i

n
(z)
α,i − J

∑
z,α

∑
i,j

′
n

(z)
α,in

(z)
α,j

−ε
∑
z

∑
i

n
(z)
2,in

(z+1)
1,i + ε

′∑
z

∑
i

n
(z)
1,in

(z)
2,i , (2.3)

where the primed summation extends over distinct pairs of lateral nearest
neighbors. As described above, each occupation variable n

(z)
α,i adopts values

1 (occupied) or 0 (unoccupied). The energetic parameters ε (in-plane at-
traction), J (stacking attraction), and ε′ (steric repulsion) are all positive
constants. At temperature T , the equilibrium probability distribution of
{n(z)

α,i} is proportional to the Boltzmann weight e−βH , where β ≡ 1/kBT .
In addition to transparent spatial symmetries, this model possesses a sym-

metry with respect to inverting occupation variables. Applying the transfor-
mation n̂

(z)
α,i = 1 − n

(z)
α,i to all lattice sites generates from any configuration

{n(z)
α,i} a dual configuration {n̂(z)

α,i} whose probability is also generally different
from the original. As in the lattice gas, a certain choice of parameters renders
the Boltzmann weight invariant under this transformation. In our case this
statistical invariance occurs when −2µ−4J−ε+ε′ = 0, establishing a line of
symmetry in parameter space. More usefully for our purposes, the duality es-
tablishes pairs of equilibrium states with related thermodynamic properties.
Specifically, the states (µ, ε, J, ε′, T ) and (µ̂, ε, J, ε′, T ) have identical statistics
of ∆n for the choice

µ̂ = −µ− 4J − ε+ ε′ (2.4)

Viewing density rather than chemical potential as a control parameter, dis-
tributions of ∆n are identical in pairs of thermodynamic states (n̄, ε, J, ε′, T )
and (ˆ̄n, ε, J, ε′, T ) related by ˆ̄n = 1− n̄; in other words, n̄ = 1/2 is also a line
of symmetry due to duality.

15



For the phase transitions of interest here, these arguments guarantee that
any phase boundary at chemical potential µ (or density n̄) is mirrored by a
dual transition at µ̂ (or ˆ̄n), for any consistent choice of ε, J, ε′, and T . More
physically, any phase change induced by controlling protein density must
exhibit reentrance (or else occur exactly at the line of symmetry, which we
do not observe).

In simpler terms, imagine an initial equilibrium state with very low pro-
tein density and negligible spatial correlation. Increasing protein occupancy
towards half filling could (and often does) drive the model system into a
striped state with long range order. The inversion symmetry we have de-
scribed dictates that a further increase in density must eventually destroy
striped order. The latter transition may be more easily envisioned as a con-
sequence of loading thylakoid discs beyond half filling – once steric energies
have been overcome, the competition underlying striped order becomes im-
balanced, and an unmodulated state of high density is thermodynamically
optimal. Mathematically, the loss of modulated order at high protein density
is simply the dual transition of its appearance.

Like the lattice gas, our thylakoid stack model can be mapped exactly
onto a spin model with binary variables σ = 2n − 1 = ±1. Among the
expansive set of spin models that have been explored numerically and/or
analytically, we are not aware of one that maps precisely onto this variant of
the lattice gas. Many, however, share similar ordering motifs and spin cou-
pling patterns. [33, 34, 35] Alternating attraction and repulsion in Eq. (2.3)
correspond to mixed ferromagnetic and antiferromagnetic couplings in a spin
model, e.g., in axial next-nearest neighbor Ising (ANNNI) models, which can
also support modulated order. [36] A different class of spin models seems
better suited to the hard constraint limit of Eq. (2.3). For ε′ = ∞ each
lateral position on a thylakoid disc can adopt three possible states (both lay-
ers empty, and one or the other layer filled), two of which are statistically
equivalent. The similarity to a three-state Potts model in an external field is
more than superficial. Much of the phase behavior we identify echoes what is
known for that model in three dimensions, [37] even for finite steric repulsion
strengths (ε′).

The spirit of our approach echoes many previous efforts to understand
basic physical mechanisms of collective behavior in membrane systems, from
lipid domain formation to correlations among sites pinned by proteins or
substrates. [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48] By stripping away
most molecular details, simplified descriptions of phase transitions, such as
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spin models and field theories, focus attention on the emergence of dramatic
macroscopic response from a few microscopic ingredients. They also greatly
reduce the computational cost of sampling pertinent fluctuations, which are
simply inaccessible for biomolecular systems near phase boundaries when
considered in full atomistic detail. This perspective has even been applied to
stacks of membrane layers, but not in a photosynthetic context. [31, 32, 49,
50]

Here we examine equilibrium structure fluctuations of the lattice model
defined by Eq. (2.3), using both computer simulations and approximate an-
alytical theory. We first describe results of Monte Carlo sampling, which
confirm the stability of a striped phase over a broad range of temperature
and density. We then present mean field analysis that sheds light on the na-
ture of symmetry breaking and relationships with previously studied models.

2.6 Methods: Monte Carlo simulations

We used standard Monte Carlo methods to explore the phase behavior of
our thylakoid lattice model. Specifically, we sampled the grand canoni-
cal probability distribution e−βH for a periodically replicated system with
Lx = Ly = 10 and Lz = 24, over broad ranges of temperature and chemical
potential. This geometry can accommodate Lz/2 = 12 copies of the striped
motif in the central simulation cell.

Within mean field approximations presented in the next section, the at-
tractive energy scales J and ε are most important in the combination 4J + ε.
We therefore define a parameter

K ≡ (4J + ε)/kBT (2.5)

and focus on βµ, K, and ε′ as essential control variables for this model. The
ratio J/ε can also be varied; but for values of J/ε that are not extreme, this
ratio is not expected to affect qualitative behavior. For simplicity, we limit
attention to results exclusively for values of J/ε very close to 1/4, for which
we have systematically varied βµ, K, and ε′. A limited set of simulations
with J/ε = 0.5 and 1 support the ratio J/ε as inessential within the range
studied.

These simulations confirm the symmetry-breaking scenario described above,
in which the average value 〈∆n〉 of the striping order parameter can become
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nonzero in an intermediate range of βµ. In other words, a phase with macro-
scopically coherent stripes can be thermodynamically stable at intermedi-
ate density. We identify and characterize transitions between this striped
phase and the “disordered” phase with 〈∆n〉 = 0 by computing probabil-
ity distributions P (∆n). Fig. 2.5 shows corresponding free energy profiles
F (∆n) = −kBT lnP (∆n) determined by umbrella sampling (see Appendix).
The progression from convexity to bistability of F (∆n) as βµ increases at
fixed K and ε′ is suggestive of Ising-like symmetry breaking. Quantitative
features of F (∆n) support this connection. In particular, near the transi-
tion Binder cumulants approach values characteristic of 3-dimensional Ising
universality (see Appendix). However, we find evidence that the nature of
the transitions becomes discontinuous between K = 6 and K = 7 (see Ap-
pendix).

Loading of proteins into the model thylakoid is thus accompanied by con-
tinuous transitions in 〈∆n〉, critical fluctuations, and correspondingly dra-
matic susceptibility. We locate this transition through the shape of the free
energy profile. The striped phase is stable wherever F (∆n) possesses global
minima away from ∆n = 0. Elsewhere, the thylakoid is macroscopically
disordered, though stripe patterns may be prominent on microscopic scales.

Fig. 2.6 shows the phase diagram in the (K, βµ) plane. An equivalent but
more intuitive representation in the plane of K and n̄ is given in Fig. 2.7.
Results are included for a broad range of ε′ values. In all cases, computed
phase boundaries are curves of Ising-like critical points. All boundaries are
mirrored across the lines of inversion symmetry of Eq. (2.4), or n̄ = 1/2 in the
n̄ vs. K plane, respectively. As described in Sec. 2.5.2, striping transitions at
finite ε′ are re-entrant as a consequence for all finite steric repulsion strengths
ε′. Modulated order requires sufficient filling of the lattice but is inevitably
destroyed by high density.

The shapes of these phase diagrams clearly reflect the origin of modu-
lated order in an interplay between proteins’ attraction and steric repulsion.
The domain of stability of the striped phase is largest where attraction and
repulsion are both potent (i.e., βε′ and K are both much greater than unity).
Small values of either βε′ or K greatly compromise this stability, or eliminate
it entirely.
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Figure 2.5: Statistics of the striping order parameter ∆n at three different
thermodynamic states. In all cases Monte Carlo simulations were performed
with ε′ = 20kBT , J = 0.4kBT , ε = 1.65kBT (corresponding to K = 3.25),
Lz = 24, and Lx = Ly = 10. The free energy relative to thermal energy,
βF = − lnP (∆n), is shown for βµ = −1.5, βµ = −0.5, and βµ = 0.6. For
the highest value of βµ, macroscopic bistability indicates a striped state with
long-ranged order and broken symmetry. For the lowest value of βµ, Gaussian
fluctuations in ∆n typify the sparse disordered state. For the intermediate
value of βµ, the quartically flat shape of βF near ∆n = 0 indicates proximity
to a continuous ordering transition.
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Figure 2.6: Phase diagrams of the thylakoid lattice model constructed from
Monte Carlo simulation results, shown in the plane of attraction strength
and chemical potential. Results are shown for several values of repulsion
strength ε′. In the white region, the disordered phase is stable for all ε′.
The region with darkest shading shows the range of βµ and K over which
the ordered phase is stable for βε′ = 1. The next darkest region shows the
additional range of ordered phase stability at βε′ = 2, and so on. All phase
boundaries, which are assumed to follow straight lines between explicitly
determined points (circles), mark continuous striping transitions. Results
for the hard constraint limit, ε′ = ∞, are indistinguishable from those with
βε′ = 20.
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Figure 2.7: Phase diagrams of the thylakoid lattice model constructed from
Monte Carlo simulation results, shown in the plane of attraction strength and
density. Points and shading have the same meaning as in Fig. 2.6. Results
for the hard constraint limit, ε′ = ∞, are indistinguishable from those with
βε′ = 20. For the latter case, βε′ = 20, we did not impose high enough
chemical potential in simulations to obtain results for n̄ > 1/2. In the hard
constraint limit, the regime n̄ > 1/2 is strictly forbidden.
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2.7 Methods: Mean field theory

As with most critical phenomena, the long-ranged correlation of protein den-
sity fluctuations implied by these phase transitions greatly hinders accurate
analytical treatment. Here we employ the most straightforward of traditional
approaches for predicting phase behavior, namely mean field (MF) approx-
imations, to further explore and explain the ordering behavior revealed by
Monte Carlo simulations of the thylakoid model. Though quantitatively un-
reliable in general, mean field methods provide a simple accounting for the
collective consequences of local interactions, and thus a transparent view of
phase transitions that result.

Mean field theories generically treat the fluctuations of select degrees of
freedom explicitly, regarding all others as a static, averaged environment. We
first consider a pair of fluctuating lattice sites in a self-consistent field, whose
continuous transitions can be easily inferred. We then analyze an extended
subsystem of 12 tagged lattice sites, whose qualitative predictions align with
the simpler treatment. This consistency suggests a robustness of mean field
predictions for the thylakoid model.

2.7.1 Two-site clusters

In order to describe modulated order of the striped phase, a subsystem for
mean field analysis should include representatives from both layers of a thy-
lakoid disc. Our simplest approximations therefore focus on a pair of tagged
occupation variables, n

(1)
1,1 and n

(1)
2,1, describing density fluctuations at verti-

cally neighboring lattice sites that interact directly through steric repulsion.
We will describe mean field analysis for this two-site cluster first in the sim-
plifying case ε′ → ∞, i.e., the hard constraint limit. We then consider the
more general case of finite repulsion strength.

Hard constraint limit

In the limit ε′ → ∞, the microstate n
(1)
1,1 = n

(1)
2,1 = 1 of our two-site cluster

is prohibited. As a result, the mean field free energy FMF can be written
very compactly. We construct FMF from (a) the Gibbs entropy associated
with probabilities of the cluster’s three allowed microstates and (b) the av-
erage energy of interaction with a static environment. In terms of the order
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parameters n̄ and ∆n, we obtain

2βFMF

N
= −2βµn̄+ (n̄+ ∆n) log(n̄+ ∆n)

+(n̄−∆n) log(n̄−∆n)

+(1− 2n̄) log(1− 2n̄)−K(n̄2 + ∆n2), (2.6)

where N is the total number of lattice sites. Eq. (2.6) suggests a close re-
lationship between our thylakoid model and the well-studied 3-state Potts
model of interacting spins. Applying the Curie-Weiss MF approach to that
Potts model yields a free energy of identical form to Eq. 2.6 for the case of an
external field that couples symmetrically to two of the spin states. [37] The
MF phase behavior of the two models is therefore isomorphic, involving both
first-order and continuous symmetry-breaking transitions. The continuous
transitions are qualitatively consistent with results of our Monte Carlo sam-
pling. The discontinuous transitions were not observed in thylakoid model
simulations for K < 6; evidence for them emerges only for larger values of
K, where sampling becomes challenging.

Continuous transitions may be identified by expanding Eq. (2.6) for small
∆n. This expansion indicates a local instability to symmetry-breaking fluc-
tuations that first appears at n̄ = K−1. A corresponding phase boundary
in the (K, βµ) plane can then be found by minimizing FMF with respect to
n̄, yielding βµ = −1− ln(K − 2). This result, plotted as the black curve in
Fig. 2.8, captures the most basic features of our simulation results at large
βε′. As is typically true, the maximum temperature at which ordering occurs
is overestimated by MF theory (i.e., the minimum value of K is underesti-
mated).

For sufficiently largeK, numerical minimization of FMF reveals transitions
that are instead discontinuous, as shown in the red curve in Fig. 2.8. Here,
the disordered state remains locally stable while global minima emerge at
nonzero ∆n. The onset of such transitions at K∗ = 10/3 can be determined
by careful Taylor expansion of FMF in powers of n̄ and ∆n (see Appendix).
Both of these order parameters suffer discontinuities at the first-order phase
boundary. For K < K∗, no discontinuous transitions are observed; in terms
of Fig. 2.8, the red curve begins at K∗.

The absence of first-order transitions in computer simulations could signal
a failure of this simple mean field theory. Alternatively, such transitions
may occur only at temperatures lower than the range examined. This low-
temperature regime is challenging to explore with our Monte Carlo sampling
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Figure 2.8: Phase diagram of the thylakoid lattice model determined from
mean field theory in the hard constraint limit ε′ = ∞, shown in the plane
of attraction strength and chemical potential. In the white region, Eq. 2.6
has a single minimum, at ∆n = 0, indicating a lack of striped order. In the
shaded region, global minima at nonzero ∆n indicate symmetry breaking,
i.e., striping with long-range coherence. The extremum of FMF at ∆n = 0
changes stability at the black curve, allowing for continuous ordering. At
large K this continuous change is preempted by a first-order transition (red
curve).

methods. Below we will show that discontinuous transitions survive in more
sophisticated MF treatments, suggesting they are a real feature of the model
that is difficult to access with simulations.

Both simulations and MF theory indicate that the striping transition is
not re-entrant in the hard constraint limit. High-density disordered states
are prohibited by steric repulsion at ε′ =∞.

Soft steric repulsion

The same basic MF approach can be followed for finite ε′. In this case,
however, FMF is written most naturally not as a function of n̄ and ∆n, but
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instead in terms of probabilities pn1n2 for the four possible cluster microstates:

2βFMF

N
= p00 ln p00 + p10 ln p10 + p01 ln p01 + p11 ln p11

− K

2
[(p11 + p10)2 + (p11 + p01)2]

+ βε′p11 − βµ(p10 + p01 + 2p11) (2.7)

Recognizing that ∆n = (p10− p01)/2 and n̄ = (p10 + p01 + 2p11)/2, expansion
and minimization of Eq. (2.7) yields continuous transitions in the (K,n)
plane along

n̄ =
1

2
± 1

2K

√
(K − 2)2 − 4δ (2.8)

where δ = e−βε
′
. The two values of n̄ for each K > 2(1 +

√
δ) mark transi-

tions to the low- and high-density disordered phases, reflecting the occupa-
tion inversion symmetry discussed in Sec. 2.5.2. In the (K, βµ) plane these
transitions occur at

βµ = βε′ −Kn̄+ ln (Kn̄− 1) (2.9)

where n̄ refers to either solution of Eq. 2.8. Viewed as functions of K at given
ε′, the two branches of βµ in Eq. 2.9 have the peculiar feature of crossing
at a certain attraction strength K = Kcross(ε

′) (see Appendix). For K >
Kcross these solutions violate fundamental stability criteria of thermodynamic
equilibrium (see Appendix) and therefore cannot be global minima of the free
energy. Lower-lying minima indeed appear at K∗ < Kcross, preempting the
continuous ordering transition before the two solutions cross.

The development of nonzero 〈∆n〉 with increasing density is thus pre-
dicted to become discontinuous at sufficiently low temperature, as in the
hard constraint case. The onset of this first-order transition,

K∗ =
10

3
+

2

3
δ +O(δ2), (2.10)

can be determined by Taylor expansion of FMF in the regime of strong re-
pulsion, i.e., large ε′ and small δ. Figs. 2.9 and 2.10 show mean field phase
diagrams for several values of ε′, as determined by numerical minimization of
Eq. 2.7. For this mean field method, it is unnecessary to assume a value for
J/ε, as the mean field blurs distinctions between vertical and in-plane cou-
plings for sites coupled via J or ε. As in the simulation results of Figs. 2.6
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Figure 2.9: mean field phase diagram of the thylakoid lattice model at fi-
nite ε′, shown in the (K, βµ) plane. Shading has the same meaning as in
Fig. 2.6. Phase boundaries, determined by minimizing Eq. 2.7, are continuous
at small K and discontinuous beyond a value K∗ that is well approximated
by Eq. 2.10.

and 2.7, the data in Figs. 2.9 and 2.10 exhibit the symmetry guaranteed
by duality. Discontinuous changes in density upon striping imply regions of
coexistence between ordered and disordered phases, spanning intermediate
values of n̄ as shown in Fig. 2.10.

The domain of stability of the striped phase in mean field theory evolves
with ε′ in the same basic way observed in Monte Carlo simulations. Relative
to simulations, however, mean field results are consistently shifted to lower
K (higher T ), increasingly so as ε′ decreases. The discontinuous nature of
mean-field transitions at high K is not easily corroborated by simulations,
as sampling becomes challenging for K > 6. Limited simulations of the
system for K > 6 suggest first-order transitions appear between K = 6 and
K = 7, rather than between K = 3 and K = 4; see Appendix for details.
Consequently, the coexistence regions displayed in Fig. 2.10 do not appear
in simulation for K < 6.
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Figure 2.10: mean field phase diagram of the thylakoid lattice model at finite
ε′, shown in the (K, n̄) plane. Hatched regions indicate the striped phase, and
the coloration corresponds to that of Fig. 2.6. Shaded but un-hatched regions
mark coexistence between striped and disordered phases. Phase boundaries,
determined by minimizing Eq. 2.7, are continuous at small K and discontin-
uous beyond a value K∗ that is well approximated by Eq. 2.10. The lines
between coexistence regions and the striped phase merely mark the threshold
densities between the striped phase and a coexistence region. The lines out-
lining the outer edges of the coexistence regions are the first-order transition
lines obtained by minimizing Eq. 2.7.
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2.7.2 Bethe-Peierls approximation

The accuracy of MF theory is generally improved by examining a larger set of
fluctuating degrees of freedom. [51] In some cases, considering large clusters
can even remove spurious transitions suggested by lower-level calculations.
MF treatments of anisotropic Ising models, some of which incorrectly pre-
dict discontinuous transitions, are particularly interesting here. Neto et al.
have surveyed an array of MF approaches for one such model in two dimen-
sions, which supports modulated order at low temperature. The simplest MF
calculations predict a crossover from continuous to discontinuous ordering.
The Bethe-Peierls (BP) approximation, a more sophisticated MF approach,
captures the strictly continuous ordering observed in computer simulations.
[52]

We have performed BP analysis for the thylakoid model (in 3 dimen-
sions), in order to test the robustness of phase behavior predicted by the
two-site calculations described above. Here, we enumerate all microstates
of a subsystem that includes n

(1)
1,1, n

(1)
2,1, and all of their remaining nearest

neighbors, a total of 12 sites. The additional sites experience effective fields
representing interactions that are not explicitly considered. For the specific
case J = ε, only two of these fields may be distinct, greatly simplifying the
self-consistent procedure. We focus exclusively on this case. The calculation
and phase diagrams that result are presented in Appendix.

Like simpler MF approaches, the BP approximation yields several solu-
tions for the effective fields at low temperature. Some of these solutions
correspond to continuous ordering transitions, which can also be identified
by Taylor expansion of the self-consistent equations. Other solutions de-
scribe symmetry-broken states that do not appear continuously, resembling
in many respects the first-order transitions predicted by two-site calcula-
tions. Demonstrating that these states are thermodynamic ground states
would require formulating a free energy for this BP approach, which we have
not pursued. Their local stability, however, is clearly preserved in the BP
scheme.

The most pronounced difference between BP phase diagrams and those
of simpler MF treatments is a shift of phase boundaries to lower temperature
(higher K). Agreement with Monte Carlo simulations is therefore improved.
With this shift, the onset of discontinuous transitions suggested by BP calcu-
lations occurs near K = 6, the highest value of K we studied by simulation.
This result supports the notion that first-order transitions are a real feature
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of the thylakoid model, occurring in a temperature range that is not easily
accessed by simulation. Limited samplings of the system via simulation at
K > 6 suggest first-order transitions occur in simulation between K = 6 and
K = 7, further confirming the improved accuracy of BP over simpler MF
methods; see Appendix.

2.8 Discussion

The model we have constructed to study vertical arrangement of proteins in
grana stacks is sparse in microscopic detail. It does not distinguish among
the associating protein species in photosynthetic membranes, nor does it
account for shape fluctuations of lipid bilayers in which these proteins reside.
But unless these unresolved features generate long-range correlations of their
own, they are unlikely to alter the basic ordering scenario we have described.
Such details are instead important in setting the parameters of a coarse-
grained representation like Eq. (2.3). The finite size of grana stacks will
round off sharp transitions and limit divergences, but natural photosynthetic
membranes should be large enough to exhibit micron-scale cooperativity in
protein rearrangements.

The biological relevance of these rearrangements depends on the effective
physiological values of parameters like K, ε′, and βµ. Inherent weakness of
attraction or repulsion, or else extreme values of protein density, could pre-
vent thylakoids from adopting a striped phase. Photosynthetic membranes,
however, visit states in the course of normal function that vary widely in
protein density and in features that control interaction strength. We there-
fore expect significant excursions in the parameter space of Figs. 2.6 and
2.7. Since ordering transitions in our model require only modest density and
interactions not much stronger than thermal energy, we expect proximity to
phase boundaries to be likely in natural systems. Biological relevance de-
pends also on the functional consequences of striped order. Photochemical
kinetics and thermodynamics are determined by details of microscopic struc-
ture that we have made no attempt to represent, in particular, gradients in
pH. If those aspects of intramolecular and supermolecular molecular struc-
ture are sensitive to local protein density or to the nanoscale spacing between
dense regions, then striping transitions could provide a way to switch sharply
between distinct functional states.

Given the limited availability of thermodynamic measurements on photo-
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synthetic membranes, making quantitative estimates of the control variables
K, ε′, and βµ for real systems is very challenging. We will focus on the current
qualitative knowledge of properties that are conjugate to these parameters, in
order to explore which phases could be pertinent to which functional states.

The majority of precise measurements on grana have assessed the density
of specific proteins, which is of course conjugate to their chemical potential.
For this reason we have presented phase diagrams in terms of both βµ and
n̄.

The net attraction strength relative to temperature, K, is conjugate to
the extent of protein association within each membrane layer and across
the stromal gap. Because experiments suggest stacking interactions have
an empirically measured, dramatic effect on protein association, [20, 22, 23,
24, 25] we will focus on the extent of stacking as a rough proxy for K.
Previous computational work suggests that the range of K we have explored
is physiologically reasonable. Focusing on lateral protein ordering in a pair
of membrane layers, Refs. [8, 53] found that configurations consistent with
atomic force microscopy images could be obtained for weak in-plane protein-
protein attractions of energy ≤ 2kBT and stacking energy 4kBT . Associating
the energy scales of that particle model with the energies of our more coarse-
grained lattice representation (βJ . 2 and βε ≈ 4) suggests values of K in
the neighborhood of 5-10.

The strength of steric repulsion, ε′, is strongly influenced by thylakoid
geometry. For a very narrow lumen and very rigid phospholipid bilayers,
PSII molecules on opposite sides of a thylakoid disc are essentially forbid-
den to occupy the same lateral position, a hard constraint that is mimicked
by the limit ε′ = ∞ of Sec. 2.7.1. Greater luminal spacing, together with
membrane flexibility, abates or possibly nullifies this repulsion. We therefore
regard thylakoid thickness as a rough readout of ε′. Since thylakoid thickness
changes significantly as light conditions change, we also view ε′ as a control
variable related to light intensity.

In high light conditions, the luminal gap of the thylakoid discs widens.
[54, 55] This geometric change should ease steric repulsion, though lumen
widening is less substantial at the center of the discs than at their edges.
[56, 57] If the light intensity is particularly high, this expansion can be accom-
panied by the disassembly of PSII-LHCII mega-complexes (and, to a much
lesser extent, super-complexes) en route to PSII repair. [26, 54, 55, 58, 59]
Although this disassembly is primarily limited to the edges of the thylakoid,
we infer an overall decrease in the extent of stacking. And because PSII is
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subsequently shuttled to the stroma for repair, we also expect a concomitant
decrease in protein density. The implied low to modest values of βµ, ε′, and
K suggest that high light scenarios favor the sparse disordered phase of our
model.

In low light conditions, thylakoid discs are thinner, and the stromal gaps
between them decrease as well [6, 15], pointing to large values of ε′ and K.
The low-light physiological state thus appears to be the strongest candidate
for the striped phase we have described.

During state transitions, a collection of changes causes the balance of
electronic excitations to shift from PSII to photosystem I. [26, 56, 57, 60, 61]
Among these changes, a diminution of stacking and a shift of LHCII density
towards the stroma lamellae are closely related to the ordering behavior of
our thylakoid model. Both result from phosphorylation of some fraction of
the LHCII population, which weakens attraction between discs, prompts dis-
assembly of a fraction of PSII-LHCII mega-complexes and super-complexes,
and allows LHCII migration towards the thylakoid margins. The correspond-
ing reduction of βµ and K is likely to be highly organism-dependent, since
the extent of phosphorylation varies greatly from algae to higher plants.
[57, 60, 61, 62, 63, 64] Lacking as well quantitative information about thy-
lakoid thickness, it is especially difficult to correlate state transitions with the
phase behavior of our model. In the case of very limited phosphorylation (as
in higher plants), the ordered and sparse disordered phases both seem plau-
sible. With extensive phosphorylation (as in algae), substantial reductions
in stacking attraction and density make the ordered state unlikely.

The relationship among granum geometry, protein repulsion strength,
and long-range stripe order suggests interesting opportunities for manipulat-
ing the structure and function of thylakoid membranes in vivo. By adjusting
the luminal spacing, mechanical force applied to a stack of discs in the verti-
cal direction (i.e., the direction of stacking) should serve as a handle on the
steric interaction energy ε′. The phase behavior of our model suggests that
smooth changes in force can induce very sharp changes in density, protein
patterning, and stack height. Ref. [56] demonstrates a capability to manip-
ulate thylakoids in this way, and could serve as a platform for testing the
realism of our lattice model. Complementary changes in attraction strength
might be achieved by controlling salt concentration, a strategy used in Ref.
[21] to examine the influence of stacking interactions on lateral ordering of
proteins in a pair of thylakoid discs.
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2.9 Conclusion

The computer simulations and analysis we have presented establish that or-
dered stripes of protein density, coherently modulated from the bottom to
the top of a granum stack, can arise from a very basic and plausible set of
ingredients. Most important is the alternation of attraction and repulsion in
the vertical direction, a feature that is strongly suggested by the geometry
of thylakoid membranes. Provided the scales of these competing interactions
are both substantial, a striped state with long-range order will dominate at
moderate density. Under conditions accessible by computer simulation, the
striping transition is continuous, with critical scaling equivalent to an Ising
model or standard lattice gas. Mean field analysis suggests that the tran-
sition becomes first-order for strong attraction, switching sharply between
macroscopic states but lacking the macroscopic fluctuations of a system near
criticality.

Simple mechanisms for highly cooperative switching have been proposed
and exploited in many biophysical contexts, [45, 46] including the lateral
arrangement of proteins in photosynthetic membranes. [7, 18, 21, 26, 54,
56, 58, 60, 61, 62, 64] We suggest that vertical ordering in stacks of such
membranes can be a complementary mode of collective rearrangement with
important functional consequences.
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Chapter 3

Lattice models for mechanical
responses of thylakoid
membrane stacks to changes in
illumination

3.1 Preface

The text of this chapter is a proto-manuscript that will eventually be sub-
mitted for publication. The Supplemental Information is given in Appendix
5.2.

3.2 Abstract

Proteins in photosynthetic membranes can form organized lateral structures
under certain illumination criteria. Changes in illumination alter their order-
ing, as light conditions impact both protein-protein interactions and mem-
brane morphology. Protein interactions include both attractive and repulsive
forces, and their competition decides both the density and degree of order.
Here we explore how the interplay between these opposing driving forces is
influenced by membrane mechanics. We propose a lattice model that roughly
accounts for fluctuation of lumenal gap thickness, in addition to proteins’ at-
traction within a layer and across the stromal gap, steric repulsion across the
varying lumenal gap, and regulation of protein density by exchange with the
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stroma lamellae. Mean field analysis and computer simulation reveal rich
phase behavior for this model, featuring a broken-symmetry striped phase
that is disrupted at both high and low extremes of chemical potential, as
well as unstructured phases that occur at extremes of chemical potential and
for less rigid membranes. The resulting sensitivity of microscopic protein
arrangement to the thylakoid’s mesoscale vertical structure and membrane
plasticity raises intriguing possibilities for regulation of photosynthetic func-
tion via mechanical forces.

3.3 Introduction

In the previous chapter we focused on the interplay between attractive and
repulsive protein-protein forces within grana stacks, and we found that a
model with those simple features may explain a significant range of physio-
logical conditions. The preceding chapter showed how membrane geometry
impacts ordering; it follows that mechanical forces coupled to this geometry
can influence the stability of ordered phases. This chapter extends our previ-
ous study by permitting the inner gap thickness of individual thylakoid discs
to vary along with proteins’ spatial distributions. The inclusion of fluctuat-
ing gap thicknesses allows us to examine how external mechanical forces can
influence large-scale protein organization.

Our extended model is inspired by the approach and results of Ref. [56],
which measured membrane elasticity and lumenal gap thickness as a func-
tion of PSII-targeting illumination. In addition to wider gaps, Clausen et
al. found increased elasticity upon higher illumination intensity. They also
examined changes in the extent of stacking due to varied illumination, con-
firming previously measured trends. Their results recommend the use of
techniques like atomic force microscopy (AFM) for uses other than imaging.
For over a decade AFM has been used to manipulate membranes [65], though
its applications to photosynthetic membranes were primarily for imaging pur-
poses. [7, 23, 24, 66] We hope that complementing the work of Clausen et
al. with theoretical studies could inspire further study of mechanical aspects
of photosynthetic membranes. Varying the force strength under constant
illumination, however, has not been explored. Our work suggests that exter-
nal mechanical forces can influence thylakoid protein organization much like
illumination does.

In order to examine the basic physical requirements for protein corre-
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lations spanning an entire stack of thylakoids, we develop minimal models
that account for locally fluctuating protein populations and per-disc fluc-
tuating lumenal gaps in a granum-like geometry. As described in Sec. 3.4,
population fluctuations are biased by protein-dependent attractions between
discs, and by steric repulsion between proteins that reside in the same disc.
Gap fluctuations influence this steric repulsion to a degree dictated by the
inherent stiffness of the membrane. The strengths of these interactions are
determined by parameters that roughly represent light conditions and pro-
tein phosphorylation states. Using methods of mean field theory presented in
Sec. 3.6, as well as Monte Carlo simulation detailed in Sec. 3.7, we find that
strongly cooperative behavior emerges over a wide range of conditions. As
parameter values are changed, the model system can cross phase boundaries
where intrinsic symmetries are spontaneously broken or restored. The corre-
spondingly sudden changes in the microscopic arrangement of photosynthetic
proteins suggest a mechanism for switching sharply between distinct states
of light harvesting activity, as discussed in Sec. 3.8. In Sec. 3.9 we conclude.

3.4 Model

3.4.1 Physical description

Our model, like that of Chapter 2, describes stacked thylakoid discs by ex-
tending the familiar lattice gas model of liquid-vapor phase transitions. As
before, we represent protein arrangements on a cubic lattice. Proteins’ iden-
tities and internal structures are not resolved here; by discretizing space at
the scale of a protein diameter, we have essentially averaged out such details.

The novel feature of this model is the lumenal gap thickness θ, which we
permit to fluctuate subject to several forces. The presence of proteins that
protrude into the lumen generates forces that tend to enlarge the gap. An
external force Nxyfext, where Nxy is the number of lattice sites in a single
membrane layer, could be compressive (fext > 0) or expansive (fext < 0)
when applied vertically to the membrane stack. Finally, the extent of fluc-
tuations in θ is governed by an intrinsic stiffness of the membrane structure,
whose restoring force we take to be linear in θ, à la Hooke’s Law with a
spring constant Nxyk. A large k signifies a stiff membrane for which lumenal
gaps hardly deviate from their average value. Conversely, a small k suggests
a loose membrane, in which lumenal gaps may vary widely, enabling the ac-
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commodation of more protein per layer. In our original model, θ was held
implicitly fixed, corresponding to very large k but also implicitly requiring
large forces to switch between gap thicknesses characterizing different light
conditions.

The fluctuating degrees of freedom are thus binary variables n for each
lattice site, indicating the local scarcity (n = 0) or abundance (n = 1) of
protein, and continuous variables θ, indicating the lumenal gap size for each
disc. We refer to the local states n = 0 and n = 1 as unoccupied and
occupied, respectively, although they do not strictly indicate the presence of
an individual molecule.

The net protein density in our model membranes may fluctuate according
to a chemical potential µ. Such variations generally represent exchange of
material with a reservoir. In our case the stroma lamellae – unstacked regions
of photosynthetic membrane – could play the role of reservoir. Interaction
energies are defined as in our previous model; see Fig. 2.1, as well as Figs. 3.1
and 3.2.

In the previous chapter, we noted that the steric repulsion strength may
be significantly influenced by the average lumen thickness, which dictates the
severity of deformations required to avoid steric overlap. Here we acknowl-
edge this dependence explicitly, regarding ε′ as a function of the fluctuating
gap thickness θ. We expect ε′(θ) to decrease monotonically with increasing
θ, but there is little data to justify a specific mathematical form. We adopt
the simplest choice,

ε′(θ) = ε′(θ0)− (θ − θ0)f, (3.1)

a linear expansion about a reference gap thickness θ0. An appropriate refer-
ence, and the repulsion strength ε′(θ0) > 0 it implies, could vary with light
conditions, as could the spring constant k for membrane fluctuations. We
expect these parameters, however, to be largely dictated by features of the
membrane, such as bilayer lipid lengths, that are not significantly affected
by changing light conditions. The proportionality constant f in Eq. 3.1 is
positive, ensuring that repulsion is alleviated by swelling of the lumen.

Introducing lumenal gap fluctuations to the thylakoid model modifies its
phase behavior in several interesting ways, but the essential nature of its
stable phases is unchanged. Ground states now depend on a larger set of
parameters (µ, ε, J , k, θ0, ε′(θ0), f , fext, and temperature), but only a few
combinations of these quantities are essential to the phase transitions we will
describe. As in the previous chapter, large, positive µ encourages occupation
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and thus favors a high average value n̄ of the local occupation variable. In
the limit µ → +∞, a state of complete occupation is thus energetically
minimum.

At high µ we generally expect densely populated thermodynamic states,
as depicted in Fig. 2.2. Conversely, at very negative values of µ we expect
very sparse equilibrium states, as depicted in Fig. 2.3. The magnitude of
chemical potential values required for these extremes is now sensitive to all
of the mechanical properties described by k and ε′(θ). More interestingly,
transitions between sparse and dense phases are now more varied. Distin-
guishing among these transitions is aided by an order parameter ω̄ that mea-
sures the extent of “double occupation” – the fraction of lateral sites where
protein is present in both layers of a thylakoid disc. Distinctions between
single and double occupation are portrayed in Fig. 3.2. Double occupation
goes hand-in-hand with high density, and given the high densities typical
of photosynthetic membranes, double occupancy is exceedingly common in
thylakoid systems.

At modest µ, equilibrium states are characterized by competition among
steric repulsion and the favorable energies of stacking and in-plane associa-
tion. Large ε′(θ) harshly penalizes lattice states that are more than half full
– states which must feature simultaneous occupation of laterally aligned sites
within the same disc. In order to realize in-plane attraction at half filling, one
layer of each thylakoid must be depleted of protein. The stack then comprises
a series of sparse and dense layers. Extensive stacking interaction between
discs requires a coherent sequence of these layers, yielding ground states that
are striped with a period of four layers. This pattern is illustrated in Fig. 2.4
and quantified by an order parameter ∆n that compares protein density in
the two layers of each thylakoid. Fig. 3.1 is a schematic representation of
the striped phase in a low γ system, and Fig. 3.2 for a high γ system. More
specifically, ∆n is a linear combination of layer densities, whose coefficients
change sign with the same periodicity as the stripe pattern described.

As before, the two layers of each disc are completely equivalent in our
model energy function. Stripe patterns, which populate the two layers differ-
ently with a persistent periodicity, do not possess this symmetry. Equilibrium
states with ∆n 6= 0 therefore require a spontaneous symmetry breaking, and
they must be separated from symmetric states by a phase boundary. The the-
oretical work reported in the rest of this chapter aims to determine what, if
any, thermodynamic conditions allow for such symmetry-broken, coherently
striped states at equilibrium, and addresses how their stability is influenced
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ε attraction: LHCII-LHCII “stacking”

ε’ repulsion: PSII-PSII sterics

J attraction: lateral coupling
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Figure 3.1: Schematic cross-section of a stack of thylakoids discs for low
γ, which in the limit γ → 0 becomes the model of the previous chapter.
Dark green squares represent LHCII molecules, lighter green domed shapes
represent PSII, and yellow-green bands represent lipid bilayers. Each disc
(indexed by an integer z) comprises two layers (indexed α = 1 and α = 2).
Protein attraction within each layer is assigned an energy scale J in our lat-
tice model. Aligned LHCIIs in subsequent layers can engage in favorable
stacking interactions, which is assigned an energy ε in the model. Protrusion
of PSII into the lumen spaces (i.e., the interior of each disc) may lead to
steric repulsion between the two layers of each disc. Mediated by thylakoid
thickness and membrane fluctuations, the effective steric energy scale is de-
noted ε′. Lumenal gap thickness θ is represented by the white space inside
the discs. This system is in a striped state, as there is modulated vertical
ordering. 38
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Figure 3.2: Schematic cross-section of a stack of thylakoids discs for high γ.
All colors and shapes have the same meaning as in Fig. 3.1. The purple out-
lined area at z = 3 depicts two singly occupied sites, and the orange outlined
area at z = 2 depicts two doubly occupied sites. At high γ the system may
adopt a wider range of lumenal gap thickness values, thereby accommodat-
ing more density on both faces of wider thylakoid discs. Consequently, the
propensity for purely striped states is diminished.
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by fluctuations in θ. Possible physiological consequences of this organization
will be discussed in Sec. 3.8.

3.4.2 Mathematical definition

In order to describe quantitatively the energetics and ordering we outlined
above, it is useful to index lattice sites according to (a) the thylakoid disc to
which they belong, specified by a vertical coordinate z ranging from 1 to Lz,
(b) which layer of the disc they inhabit, α = 1 (bottom) or α = 2 (top), and
(c) the lateral position, specified by an integer i ranging from 1 to Nxy. We
consider variations θ(z) of the lumenal gap thickness in the vertical direction,
but for simplicity assume it is constant in x and y. (See Figs. 2.1, 3.1, and
3.2). The total energy of a configuration is written

H[{n(z)
α,i}, {θ(z)}] = −µ

∑
z,α

∑
i n

(z)
α,i +Hatt

+1
2
kNxy

∑
z(θ

(z) − θ0)2

+
∑

z ε
′(θ(z))

∑
i n

(z)
1,in

(z)
2,i

+Nxyfext

∑
z(θ

(z) − θ0) (3.2)

where Hatt includes all contributions from protein-protein attractions,

Hatt[{n(z)
α,i}] = −J

∑
z,α

∑
ij

′
n

(z)
α,in

(z)
α,j

−ε
∑

z

∑
i n

(z)
2,in

(z+1)
1,i (3.3)

The chemical potential (µ) term, Hatt, and the ε′(θ(z)) term were the focus of
Chapter 2, except that ε′ was treated as a constant. All other terms are new
to this model. As before, the primed summation in Eq. 3.3 extends over dis-
tinct pairs of lateral nearest neighbors. As described above, each occupation
variable n

(z)
α,i adopts values 1 (occupied) or 0 (unoccupied). At temperature

T , the equilibrium probability distribution of {n(z)
α,i} is proportional to the

Boltzmann weight e−βH , where β ≡ 1/kBT .
Limits of Eq. 3.2 clarify the meaning of mechanical parameters we have

introduced to represent gap thickness fluctuations. In the completely protein-
occupied state (n

(z)
α,i = 1 for all α, i, and z), the net force on each thylakoid

disc is −∂H/∂θ(z) = Nxy[f − fext + k(θ(z)− θ0)], identifying f as an intrinsic
force resulting from double occupation. In the opposite extreme of protein
depletion (n

(z)
α,i = 0 for all α, i, and z), the average gap thickness is 〈θ(z)〉 =
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θ0− fext/k, identifying θ0 as the natural thickness of a protein-free thylakoid
disc.

Density and striping order parameters are defined as before,

n̄ ≡ 1

N

∑
z,i,α

n
(z)
α,i (3.4)

and

∆n ≡ 1

N

∑
z,i

(−1)z(n
(z)
1,i − n

(z)
2,i ), (3.5)

whereN = 2LzNxy is the total number of lattice sites. The double occupation
order parameter is

ω̄ ≡ 2

N

∑
z,i

n
(z)
1,in

(z)
2,i , (3.6)

The simple harmonic form of Eq. 3.2, viewed as a function of θ(z), al-
lows an exact accounting for gap thickness fluctuations at any given protein
configuration. The resulting bias on protein occupation variables is obtained
from a straightforward Gaussian integration,

βHeff({n(z)
α,i}) = − ln

[∫ (
Πzdθ

(z)
)
e−βH

]
,

yielding an effective potential for the remaining nα,i variables,

Heff = −µ
∑

z,α

∑
i n

(z)
α,i +Hatt

+ε′eff

∑
z Ω(z) − γ

2Nxy

∑
z[Ω

(z)]2 (3.7)

where we have defined the net double occupation of each disc

Ω(z) ≡
∑
i

n
(z)
1,in

(z)
2,i

as well as the parameter combinations

ε′eff ≡ ε′(θ0) + (f/k)fext, and γ ≡ f 2/k

Note that the effective steric repulsion ε′eff varies linearly with external force.
This result, together with the connection between repulsion strength and
light conditions discussed in Chapter 2, suggests that imposing force on

41



grana stacks could induce responses related to changing light conditions.
Conversely, a change in light intensity could register substantially in mea-
surements of vertical force.

Focusing on protein occupation statistics, the new feature in Eq. 3.7 re-
sulting from gap fluctuations is an energy proportional to

[Ω(z)]2 =
∑
i

∑
j

n
(z)
1,in

(z)
2,in

(z)
1,jn

(z)
2,j .

This interaction directly couples protein fluctuations at four different sites
within the same disc. It also extends over arbitrarily large lateral distances,
a consequence of assuming the gap thickness to be independent of x and y.
A more realistic model would acknowledge lateral variations in gap thick-
ness, limiting the range of these four-site interactions. Provided that lateral
variations in membrane shape are spatially gradual, however, the four-site
interaction will have considerable range in that case as well. Our model
mimics this long-distance coupling in an idealized way.

The four-site interaction is notably attractive, favoring dense protein oc-
cupation in contrast to the steric repulsion parameterized by ε′eff . The com-
petition stressed in Chapter 2, between forces that favor and disfavor high
protein density, is thus enriched. Under the influence of fluctuating lumen
thickness, a competition exists even within a single disc. We anticipate an
interplay between this local competition and inter-disc stacking interactions
that lead to striped ordering.

3.5 Basic consequences of lumenal gap fluc-

tuations

The basic effects of including θ as a fluctuating variable are highlighted by
considering a limit in which it provides the sole driving force for protein or-
ganization. We explore this limit by discarding protein attractions described
by Hatt, i.e., by setting J = ε = 0. In the absence of stacking interactions,
each disc is statistically independent, so we analyze fluctuations of a single
disc (e.g., z = 1). The partition function of this tagged disc,
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Z =
∑
{nα,i}

exp

[
βµ
∑
i

(n1,i + n2,i)

−βε′effΩ +
βγ

2Nxy

Ω2

]
, (3.8)

can be computed exactly in the thermodynamic limit Nxy → ∞, due to
the unbounded spatial range of four-site interactions. (Superscripts “(1)” in
Eq. 3.8, indicating the arbitrary index of the tagged disc, have been omitted
for simplicity.) We introduce a continuous auxiliary variable φ through

Z ∝
∫
dφ
∑
{nα,i}

exp

[
βµ
∑
i

(n1,i + n2,i)

−βε′effΩ− Nxy

2βγ
φ2 + φΩ

]
, (3.9)

This rewriting amounts to a Hubbard–Stratonovich transformation [67, 68],
which casts φ as an effective fluctuating variable. Note that a simple Gaus-
sian integration over φ returns Eq. 3.8 as a result. The transformation is not
unique. As an integration variable, φ could be scaled by any constant; the
coefficients of φ2 and φΩ terms in Eq. 3.9 would change as a result, changing
the natural scale of fluctuations in φ. In the form we have chosen, φ is inten-
sive in scale, i.e., its mean value is independent of Nxy in the thermodynamic
limit.

The summation over occupation variables can now be carried out exactly.
The result, Z ∝

∫
dφ exp [−NxyI(φ)], is an integral dominated by contribu-

tions near the peak of a rate function,

I(φ) = − φ2

2βγ
+ ln

(
1 + 2a+ a2δeφ

)
,

where δ = e−βε
′
eff and a = eβµ. In the limit Nxy → ∞, this saddle point

dominance is complete, so that Z ∝ exp [−NxyI(φ∗)], where φ∗ locates the
maximum of I(φ). Differentiating I(φ) to determine this maximum produces
a nonlinear self-consistent equation,

φ∗

βγ
=

a2δeφ
∗

1 + 2a+ a2δeφ∗
, (3.10)
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with a form familiar from the mean field approximations presented in Chap-
ter 2. Indeed, the approach followed here is tantamount to mean field theory,
which is exact in this case of purely long-range interaction.

The self-consistent equation (3.10) can be cast more usefully by exploiting
the connection

∂ lnZ

∂βγ
=

Nxy

2(βγ)2
φ∗2 =

1

2Nxy

〈Ω2〉 (3.11)

and recognizing that ω̄ =
√
〈Ω2〉/Nxy as a consequence of saddle point dom-

inance. We then obtain an expression for the double occupancy order pa-
rameter,

ω̄ =
a2δeβγω̄

1 + 2a+ a2δeβγω̄
,

or equivalently

m = tanh

(
βγ

4
m+ h

)
, (3.12)

where m = 2ω̄−1 and h = (2βµ−βε′eff +βγ/2− ln(1+2a))/2. The rewriting
in Eq. 3.12 makes underlying symmetries of our model more transparent. In
doing so, it also highlights an isomorphism with the classic Curie-Weiss mean
field theory of the Ising model.

The phase behavior of our thylakoid model in the limit of vanishing at-
traction can be determined immediately from Eq. 3.12. For h = 0 a symmetry
exists between configurations with and without double occupancy, and for
βγ > 4 this symmetry is spontaneously broken. In other words, for temper-
atures below γ/(4kB), two distinct phases are possible, distinguished by the
degree of double occupation. These phases coexist at h = 0, defining a phase
boundary βε′eff = 2βµ + βγ/2 − ln(1 + 2eβµ)) in the plane of βε′eff and βµ,
as plotted in Fig. 3.3. Transitions at this boundary are discontinuous in ω̄.
The state with βγ = 4 and h = 0 is a critical point in the mean field Ising
universality class.

The thylakoid model of Chapter 2 did not feature a phase transition be-
tween unstructured phases of different density. From a sparse phase, increas-
ing chemical potential could induce striped ordering, sometimes accompa-
nied by a discontinuous change in density. From this striped phase, further
increasing chemical potential destroys ordering upon transition to an un-
structured dense phase. Sparse and dense phases are distinguished in that
scenario, but under no conditions do they coexist. Fluctuating gap thickness
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introduces this possibility, at least at J = ε = 0kBT . Whether that transi-
tion survives at nonzero attraction strength is not obvious. The relationship
between unstructured phases in these two models is also not immediately
clear. To address these questions we have employed Monte Carlo simulations
and mean field approximations similar to those presented in Chapter 2.

3.6 Mean field theory

Here we deploy the most straightforward of traditional, analytical approaches
for predicting phase behavior, namely MF approximations, to explore and
explain the ordering behavior of the fluctuating-gap thylakoid model. Since
the four-spin interaction of Eq. (3.7) couples all lattice sites of a disc with
the same strength, we expect mean field methods to be more accurate than
in the fixed-gap model of Chapter 2.

In order to describe modulated order of the striped phase, a subsystem
for mean field analysis should include representatives from both layers of a
thylakoid disc. We therefore focus on a pair of tagged occupation variables,
n

(1)
1,1 and n

(1)
2,1, describing density fluctuations at vertically neighboring lattice

sites that interact directly through steric repulsion.
As in Sec. 2.7 of Chapter 2, the mean field free energy FMF is written

most naturally in terms of probabilities pn1n2 for the four possible cluster
microstates of our two-site cluster

2βFMF

N
= p00 ln p00 + p10 ln p10 + p01 ln p01 + p11 ln p11

− K

2
[(p11 + p10)2 + (p11 + p01)2]

+ βε′effp11 − βµ(p10 + p01 + 2p11)− 1

2
βγp2

11 (3.13)

where K = (4J + ε)/kBT . Note that the four probabilities in Eq. 3.13 must
add to one, p00 = 1− p11 − p10 − p01.

At equilibrium, the order parameters ω̄ = p11, n̄ = (p10 + p01 + 2p11)/2,
and ∆n = (p10 − p01)/2 take on values that minimize the mean field free
energy. We locate these minima by differentiating FMF with respect to each
of p11, p10, and p01. Requiring these derivatives to vanish generates a set of
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three coupled self-consistent equations:

∆n = p00ae
Kn̄ sinh(K∆n)

n̄ = p00ae
Kn̄
[

cosh(K∆n) + δaeKn̄eβγω̄
]

ω̄ = p00δa
2e2Kn̄eβγω̄ (3.14)

where p00 = (1 + 2aeKn̄ cosh(K∆n) + δa2e2Kn̄eβγω̄)−1. We solve these equa-
tions numerically, iterating from an initial guess until convergence. (See
Appendix 5.1 for details.)

Solving Eqs. (3.14), we identify several distinct phase transitions from dis-
continuous or non-analytic dependence of order parameters on control vari-
ables like βµ and βε′eff . Some of these transitions follow the pattern discussed
in Chapter 2 for a model with fixed lumenal gap thickness. Specifically, for
sufficiently large K, increasing chemical potential yields macroscopically or-
dered stripes of protein density; further increasing βµ restores the symmetry
that is spontaneously broken in the striped phase. These order-disorder tran-
sitions may be continuous or first-order, depending on the repulsion strength
ε′eff .

Some other transitions follow the pattern discussed above for a fluctuating
gap with no protein attraction. Specifically, for sufficiently large γ, increasing
chemical potential yields a discontinuous change in double occupancy at a
density determined by ε′eff . For K = 0 the critical value γc, above which these
double occupancy transitions occur, is exactly βγc = 4. With K > 0, the
double occupancy transitions occur in a different range γ > γc(K). Because
the attractions described by K promote dense population of the membrane,
a system with higher K should require less potent four-spin interactions
to achieve double occupancy. Indeed, according to mean field theory, γc

decreases monotonically with increasing K. Note that for γ = 0 the onset K
value is not infinite, because as described in Chapter 2, first-order transitions
in ∆n occur for K = 10

3
+ 2

3
δ +O(δ2), where δ = eβε

′
eff .

For some combinations of K and γ, both of these phase scenarios occur.
The top right image of Fig. 3.3 shows a representative mean field phase
diagram for this case, in the plane of βε′eff and βµ. Unstructured phases
dominate at low and high βµ. The route between them involves at least
one phase transition. At low βε′eff the transition is direct and discontinuous.
At higher βε′eff , an ordered stripe phase intervenes: As density increases
from a sparse unstructured state (upon increasing βµ), symmetry in ∆n is
spontaneously broken, producing stripes with macroscopic coherence. This
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order is subsequently destroyed at higher density, producing an unstructured
state with intermediate density. At still higher βµ, the double occupation
transition yields an unstructured state with even higher density. Fig. 3.6
shows how these transitions are marked by changes in the order parameters
for double occupancy (ω̄) and striping (∆n).

As K increases, the space between striping and double occupancy tran-
sitions narrows, and eventually closes. The two transitions then merge, as
represented by the phase diagram in the bottom image of Fig. 3.3. In this
case the loss of striped order at high βµ occurs simultaneously with an abrupt
change in double occupancy. Unlike the phase behavior discussed in Chapter
2, the order-disorder transitions (at a given K and βε′eff) have different char-
acter at low and high density. Here, the low-density transition is continuous,
while the high-density transition is starkly discontinuous in both ∆n and
ω̄. This scenario is depicted in the left column of Fig. 3.6. For still larger
values of K, the low-density transition also becomes discontinuous in ∆n,
while developing a kink in the double occupancy parameter ω̄, as shown in
the right column of Fig. 3.6. The low-density transition does not become
truly discontinuous in ω̄.

Fig. 3.4 shows the mean field phase diagram for an intermediate mem-
brane stiffness, βγ = 3. Here the striped phase region resembles that of the
model in Chapter 2, though now the high-density striping transition becomes
discontinuous at lower coupling strength K than in the fixed-gap model. A
short line of double occupancy transitions extends from the boundary of the
striped phase towards low K, terminating at a critical point. This branch,
which does not involve striping, is new to the fluctuating-gap model. As K
increases, the corresponding coexistence curve merges with the high-density
branch of the striped phase boundary. The low-density striping transition
occurs much as in the fixed-gap model: Transitions are second-order up to
K ≈ 10/3, beyond which ∆n changes discontinuously. For sufficiently large
coupling, K ≈ 4.6 and K > 4.6, the order parameter ω̄ also suffers a discon-
tinuity upon striping.

Fig. 3.5 shows a mean field phase diagram typical of large γ. Here the line
of double occupancy transitions extends all the way to K = 0, for both values
of βε′eff shown. At this merged phase transition, ∆n and ω̄ both experience
a pronounced discontinuity. The low-density striping transition, however,
remains continuous until K ≈ 3.1 − 3.3 for βε′eff > 2, and for βε′eff = 1,
the low-density striping transition becomes discontinuous within 0.5 K units
of the initial βε′eff = 1 low-density transition. Furthermore, the low-density
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Figure 3.3: Phase diagrams constructed via mean field self-consistency, in the
βµ vs. βε′eff plane for selected K. The top left image corresponds to K = 0
and represents the ω̄ transitions-only scenario; top right depicts K = 2.1
and the approach of continuous ∆n transitions to ω̄ transitions; the bottom
image represents K = 4, where the upper branch of ∆n transitions meet
ω̄ transitions and thereby become discontinuous. βγ = 5 for all three sub-
figures.
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striping transition is accompanied by a weak occupancy discontinuity for K
values shortly following the K at which ∆n initially varies discontinuously.
Additionally, the overall phase diagram is slightly shifted to lower βµ than
Fig. 3.4.

Yet another perspective on these mean field results is given in Figs. 3.6.
The top two panels show phase diagrams in the n̄ vs. βε′eff plane, for two dif-
ferent values of K. This plane focuses directly on the consequences of chang-
ing protein density, and of changing external force. Discontinuous changes
in ω̄ are highlighted in this view, since the density undergoes concomitantly
sharp change. As a visual consequence, these phase diagrams feature regions
of coexistence, where a constraint on total density induces separation into
two macroscopic phases separated by an interface. Such coexistence regions
appear wherever striping or double occupancy transitions involve discontin-
uous change in n̄, for example at the boundary between the striped phase
and the dense disordered phase.

If one were to imagine even larger K at the same γ value, the striped
region would continue to shrink in size, though the range over which a macro-
scopic fraction is striped would grow. Additionally, all ∆n transitions – and,
therefore, all the transitions for this model – would be discontinuous.

3.7 Monte Carlo simulations

As in Chapter 2, we employ computer simulations to examine the accuracy
of mean field approximations underlying the phase diagrams in Figs. 3.3 to
3.5. For the fixed-gap thylakoid model, Monte Carlo simulations demon-
strated a qualitative adherence to mean field phase behavior, but a substan-
tial difference in the parameter ranges where phase transitions occur. For the
fluctuating-gap model developed in this chapter, we expect a similar compar-
ison, perhaps with improved quantitative agreement due to the long range
of gap-induced protein attractions.

Our Monte Carlo methods sample the grand canonical probability dis-
tribution e−βH for a periodically replicated system with Lx = Ly = 10 and
Lz = 6. This geometry can accommodate Lz/4 = 3/2 copies of the striped
motif in the central simulation cell. Motivated by results of mean field theory,
we limit attention to the case J = ε, so that attraction strength is controlled
solely by K = (4J + ε)/kBT . We present results for a few values of βγ = 5.

Under many conditions, thoroughly sampling P (ω̄) proved very difficult,
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Figure 3.4: Phase diagram constructed via mean field self-consistency, in the
βµ vs. K plane. Here βγ = 3. Green shaded regions represent the striped
phase. Regions hatched with forward slashes indicate doubly occupied phase
for ε′ = 5kBT , and regions hatched with a backward slash indicate doubly
occupied phase for ε′ = 10kBT ; cross-hatching occurs when these two regions
coincide. White, un-hatched space denotes the sparse disordered phase. Tri-
angular points mark ω̄ transitions, and open circles mark ∆n transitions.
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Figure 3.5: Phase diagram constructed via mean field self-consistency, in the
βµ vs. K plane. Here βγ = 5. The meanings to symbols and colors in
Fig. 3.4 apply here.

even at modest values of K. As such, transitions were primarily located
by sudden changes in the average value 〈ω̄〉 computed without the bias of
umbrella potentials. Transitions were further characterized via 〈∆n〉 and
〈n̄〉. Striping transitions were also detected by these means.

These simulations generally confirm the phase transition scenarios de-
duced from mean field theory. Symmetry-breaking transitions, in which 〈∆n〉
becomes nonzero, occur as in the fixed-gap model but at lower values of βµ.

Simulations also confirm that low-density and high-density striping tran-
sitions can have different character as a result of gap fluctuations. At low
density we observe continuous ordering over the range of K where sampling
is facile (K < 6), as in the fixed-gap model. At the high-density boundary
of the striped phase, however, we observe discontinuous transitions, where
average values of ∆n (striping order parameter), n̄ (density), and ω̄ (occu-
pancy order parameter) all change abruptly. Recall that simulations of the
fixed-gap model did not exhibit first-order transitions for comparable values
of K.

Discontinuous transitions in ω̄ were identified similarly. For low values of
K and/or ε′eff , the double occupancy transition occurs in simulations without
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Figure 3.6: Top row: phase diagrams in the n̄ vs. βε′eff plane. Left image
corresponds to K = 3, right image to K = 5. Middle row: cutouts of ∆n vs.
βµ for βε′eff = 4, with K = 3 on the left and K = 5 on the right. Bottom
row: cutouts of ω̄ vs. βµ for βε′eff = 4, with K = 3 on the left and K = 5 on
the right. For all sub-figures βγ = 5.
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the development of striped order. Here, ω̄ changes from near zero to consid-
erable values ω̄ & 0.1 upon very small changes in βµ. Recall that simulations
of the fixed-gap model showed exclusively smooth changes in occupancy over
a comparable range of conditions.

Simulation results are shown in Figs. 3.7 to 3.9. These heat maps display
the three order parameters ∆n, ω̄, and n̄ values for K = 4 and γ = 5, the
same conditions as in the last panel of Fig. 3.3. The phase diagram obtained
from simulations strongly resembles that result of mean field theory. Fig. 3.7
exhibits a triangular region of non-zero ∆n for similar βµ and ε′ values.
The color changes are gradual on the bottom line, suggesting continuous
transitions for low βµ. The color progression is starker for more positive
βµ, suggesting discontinuous transitions there. In Fig. 3.9, ω̄ shows sudden
change along a single curve, likely demarcating a first-order double occupancy
transition as predicted by mean field theory. The color (value) changes in
Fig. 3.8 resemble those of Fig. 3.9 for more positive βµ, though the lower
half likely reflects the continuous ∆n changes in Fig. 3.7 at low βµ.

Umbrella sampling provides stronger evidence for the phase behavior pre-
dicted by mean field theory. Here we present results of flat histogram sam-
pling for three points in the phase diagrams of Figs. 3.7 to 3.9. This tech-
nique in effect removes free energy barriers that hinder transitions between
distinct basins of attraction in configuration space. As a result, the relative
thermodynamic stabilities of these basins can be quantitatively assessed, and
the nature of phase transitions can be carefully evaluated. The three points
we examine lie along three distinct phase boundaries in the (βµ, βε′eff) plane.

Fig. 3.10 shows free energy profiles − lnP (ω̄) at the low-ε′eff double oc-
cupancy transition. These highly structured profiles shed light on the sam-
pling difficulties faced in straightforward simulations. Due to the long-range
nature of interactions mediated by gap fluctuations, each disc acquires or
loses double occupancy in a concerted fashion. Interfaces between dense and
sparse states therefore run parallel to the discs themselves, and the growth of
high-density domains proceeds discretely. The global free energy minima in
Fig. 3.10 correspond to uniformly sparse and uniformly dense states. Nearly
degenerate local minima at intermediate ω̄ possess an interface between co-
existing domains. For isotropic ordering phenomena, the motion of interfaces
at coexistence is typically unhindered by barriers, reflecting a great variety
of interfacial shapes. Here, however, interfaces between sparse and dense do-
mains can advance only through a barrier-crossing process that interconverts
entire discs. These barriers not only slow Monte Carlo sampling; the modu-
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lated structure they introduce also complicates the characterization of phase
transitions. In this case, it is nonetheless clear from the globally bistable
shape of − lnP (ω̄) that the double occupancy transition is discontinuous.

Continuous striping transitions at low density, which do not centrally
involve long-range interactions, need not suffer from such complications. The
free energy profile in Fig. 3.12 indeed lacks the discrete structure discussed
above. It instead develops a quartically flat shape at the transition, consistent
with the predictions of mean field theory at modest K.

High-density striping transitions are most problematic. Because they
involve sharp changes in double occupancy, free energy profiles are highly
structured. Furthermore, the cost of creating interfaces between striped and
doubly occupied domains can be very low. If these patterns lie in register,
with the high-density layer of a striped domain adjacent to a doubly occupied
domain, the surface tension can very nearly vanish. The free energy profiles in
Fig. 3.11 exhibit precisely these features. From these calculations alone, it is
very difficult to discern the true thermodynamic ground state. The statistics
within individual discs, however, immediately clarify this issue. Thermody-
namic bistability of each disc is strongly evident at this transition, strongly
implying a discontinuous transition as predicted by mean field theory.

3.8 Discussion

Our calculations suggest mechanical responses of thylakoids present a range
of possibilities for protein organization. Recall that the external force fext in
Eq. (3.2) is a means to tune ε′eff , the effective steric repulsion. The quantities
ε′(θ0) (baseline steric repulsion), k (membrane stiffness), and f (proportion-
ality constant in Eq. (3.1)) are fixed, so the only parameter that may modify
ε′eff is fext. While in our previous model ε′eff was considered constant, the in-
clusion of this force allows ε′eff to change. In changing ε′eff we can manipulate
lumenal gap thicknesses.

To concretely consider shifts in ε′eff , let us revisit the βµ and βε′eff phase
diagrams of Fig. 3.3. (In the previous chapter we discuss at length the
physiological inspiration and implications of the parameters K, βε′eff , and βµ;
here we concern ourselves primarily with the consequences of the sampled
choices for βε′eff , βµ, and γ.) Changing force at fixed βµ can cause sudden
changes in density (top left panel), or induce/disrupt stripe patterns (top
right and bottom panels for βε′eff > 6), or in some cases both at the same
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Figure 3.7: Heat map in the βµ vs. βε′eff plane for average |∆n| values. Data
obtained for K = 4, βγ = 5, via Monte Carlo simulations. Dot, asterisk, and
cross indicate points to be discussed in Figs. 3.10 to 3.12.
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Figure 3.8: Heat map in the βµ vs. βε′eff plane for n̄ values. Data obtained
for K = 4, βγ = 5, via Monte Carlo simulations. Dot, asterisk, and cross
indicate points to be discussed in Figs. 3.10 to 3.12.
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Figure 3.9: Heat map in the βµ vs. βε′eff plane for ω̄ values. Data obtained
for K = 4, βγ = 5, via Monte Carlo simulations. Dot, asterisk, and cross
indicate points to be discussed in Figs. 3.10 to 3.12.
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Figure 3.10: Free energy as a function of ω̄ for βγ = 5, K = 4, βε′eff = 1,
and βµ = −2.67 for two different system sizes. Represented by the dot in
Figs. 3.7 to 3.9. Data by PLG.

time (bottom panel for βε′eff > 3). These possibilities are similar for most K
values. At fixed βµ, changing force is unlikely to encounter the low-density
stripe phase boundary, which is nearly parallel to the βε′eff axis. Fixed density,
however, corresponds to a curve in this plane that is likely monotonic but
need not be straight. Applying force at fixed density could therefore traverse
a different set or sequence of phase boundaries.

Considering that larger ε′eff corresponds to thinner lumenal gaps, these
data suggest the salient feature of thicker lumenal gaps is the density of
protein rather than any particular structure. For thinner lumenal gaps (larger
ε′eff), the competition of stacking attraction (K) and lumenal steric repulsion
(ε′eff) becomes relevant (i.e., K and βε′eff have the same order of magnitude),
making modulated phases possible and energetically favorable. When K >>
βε′eff , dense states form; when K << βε′eff , the system’s maximally dense
phase is the striped phase. This is loosely consistent with the understanding
that large ε′eff (thinner gaps) correspond to dark to low light conditions, where
stacking is strong, and small ε′eff (thicker gaps) to high light conditions, where
stacking is disrupted by a number of factors.

The parameter γ represents how much the granum has the capacity to
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Figure 3.11: Probability distributions for order parameters ω̄ (black curve)
and ∆n (red curve) at βγ = 5, K = 4, βε′eff = 4, and βµ = −0.44. Repre-
sented by the asterisk in Figs. 3.7 to 3.9. Dashed lines mark distributions
in which order parameters were averaged over only one layer, and solid lines
indicate distributions for order parameters averaged over the entire system.
Data by PLG.
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Figure 3.12: Probability distributions for order parameters ω̄ (black curve)
and ∆n (red curve) at βγ = 5, K = 4, βε′eff = 5, and βµ = −1.65. Repre-
sented by the cross in Figs. 3.7 to 3.9. Dashed lines mark distributions in
which order parameters were averaged over only one layer, and solid lines
indicate distributions for order parameters averaged over the entire system.
Data by PLG.
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vary lumenal gap thicknesses across the stack of thylakoids. For larger γ the
stack has more variation in thylakoid dimensions, and as such we expect the
system to be more pliant to changing conditions.

It is well known that illumination changes beget reorganization of thy-
lakoid membranes. These results suggest that mechanical force application
may have similar effects on protein spatial patterning, as external forces allow
one to move across the (βµ, βε′eff) plane. How said forces could affect other
characteristics (e.g., pH gradients or phosphorylation states) of illumination
states is unclear. If we assume that force application can initiate a chain
of events that result in granal protein reorganization, then mechanical ma-
nipulation of thylakoid membranes would be akin to changing illumination.
That said, the discontinuous nature of some of these transitions suggests
force application could induce more dramatic changes than gradual light ac-
climation. The results of this chapter depict equilibrium phase behavior; as
such, we discuss static, not dynamic properties, and therefore will refrain
from commenting on time scales for protein redistribution.

Stable thermodynamic phases of the fluctuating-gap model have the same
symmetries as those of the fixed-gap model, and are distinguished in much the
same way. We therefore associate them with physiological states as described
in Chapter 2. In particular, the striped ordered phase is characterized by
coherent stacking, which is in turn promoted by tightly layered membranes.
The most plausible natural conditions in which this state could be stable
involve little or no light intensity. Other light conditions more likely favor
the dense or sparse unstructured states.

The limitations of this model are largely the same as those of the fixed-gap
model. Both models are sparse in microscopic detail. They do not distin-
guish among the associating protein species in photosynthetic membranes.
While this fluctuating-gap model accounts for fluctuations in lumenal gap
thickness, the gap thickness only fluctuates on a per-thylakoid basis, and
therefore does not account for local shape fluctuations of the lipid bilayers.
Given the typically high protein density of photosynthetic membranes, these
membranes are largely depleted of lipids and therefore are expected to be
mostly rigid in the central region of grana. Unless these unresolved features
generate long-range correlations of their own, they are unlikely to alter the
basic ordering scenario we have described. Such details are instead important
in setting the parameters of a coarse-grained representation like Eq. (3.7).
The finite size of actual grana stacks will round off sharp transitions and limit
divergences, but natural photosynthetic membranes should be large enough
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to exhibit micron-scale cooperativity in protein rearrangements.
Recent progress in tomography and live imaging of plant cells and chloro-

plasts provide new avenues for direct observation of changing morphology in
photosynthetic systems and corroborate findings of mechanics-based exper-
iments. [13] While the resolution is not fine enough to distinguish indi-
vidual proteins or the details of their clustering, with techniques like three-
dimensional structured illumination microscopy (3D-SIM), differences in mem-
brane structure between high light intensity from normal conditions are read-
ily observed. [69, 70, 71] Moreover, due to their application to entire cells
or chloroplasts, with improved resolution, entire grana – or even collections
of grana – could be visualized. Tomography has already been applied to
photosynthetic membranes, though only in two extremes: to capture details
relevant for cyclic electron flow, [72] or to document topology of grana. [73]
It remains to be seen if tomography could be used to resolve protein com-
plexes while simultaneously probing grana ultra-structure. We hope that,
using these techniques or others mentioned earlier in this chapter, photo-
synthesis research leads to both higher resolution measurements of protein
spatial organization and, ideally, responses to mechanical forces.

3.9 Conclusion

The mean field analysis and Monte Carlo sampling results we have presented
demonstrates that mechanical forces can dramatically alter conditions fa-
voring striped, modulated order of protein density. In essence, applying
mechanical forces in this model corresponds to shifting the steric repulsion
strength in the fixed-gap model. Adding fluctuating lumenal gap thickness
enriches the phase behavior. By decreasing the stiffness of membranes, the
system’s lumenal gap thickness can fluctuate more substantially, disrupting
ordering and allowing the thylakoid to accommodate proteins at higher den-
sity. Conversely, stiffening the membranes leads towards the limit of the
fixed-gap model detailed in the previous chapter. In conclusion, compared
to the fixed-gap model, the range of stability of modulated order is reduced,
but the scenarios for entering and leaving the ordered phase are more compli-
cated. These transitions are more directly connected to experimental control
variables.

For weak stacking coupling, abrupt, discontinuous transitions from sparse
to dense unstructured phase occur. When striping transitions are possible,
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the character of transitions depends greatly on the density of the system.
At high density, striping and occupancy transitions occur simultaneously
and discontinuously for moderate to large stacking strength. At low density,
the striping transition is continuous for weak to moderate stacking strength,
and it becomes discontinuous at larger stacking strength. The discontinu-
ous striping transitions are accompanied by weakly discontinuous changes in
occupancy.

The various possibilities for transitions suggest applying mechanical forces
may have a range of effects on long-ranged protein organization in grana.
Compressive or expansive forces may lead to sudden and dramatic changes
in protein population and patterning. We suggest that monitoring and mod-
ifying lumenal gap thickness may have effects on protein distributions akin
to changing illumination.
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Chapter 4

Conclusion

4.1 Implications

Minimalistic physics can, at least in an abstract way, illuminate underlying
driving forces in light and physiological conditions in plants. A mathemati-
cal approach such as those described here could be used to predict possible
regimes of order and disorder in higher plants. More importantly, the pa-
rameters of our models could be translated into descriptors of high light, low
light, dark, state transition, and other conditions, so that we can develop a
language of mesoscale organization in photosynthetic membranes. Both sets
of models suggest an array of states characterized by protein density, lumenal
gap thickness, and protein ordering. The presence of both continuous and
discontinuous transitions between ordered and disordered states imply that,
under certain circumstances, fluctuations in density or gap thickness may
facilitate transitions between states, but that in some cases abrupt changes
in state may occur instead.

Given the extreme physiological states suggested by the sparse disordered
and striped phases, these phases may not be physically possible in grana.
That said, they may represent regimes of alignment in protein distribution
across thylakoids within a granum. The striped phase could merely depict
a state of strong, consistent stacking throughout a granum; for this reason
we suggest it corresponds to dark to low light conditions. Alternatively,
vertical alignment of laterally ordered domains throughout a granum may be
a possible in vivo manifestation of the striped phase. The dense and sparse
unstructured phases indicate relative density of protein in the grana core,
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as well as imply an inherent lack of order or alignment, regardless of the
interpretation chosen here.

Results of the fluctuating-gap model may inspire further mechanical ex-
periments with atomic force microscopy techniques applied to thylakoid mem-
branes; we discuss possibilities for experiments below.

Tuning some parameters could permit these models to be more widely ap-
plicable to other organisms, such as algae and cyanobacteria. Broadly speak-
ing, these organisms have less hierarchical architecture than higher plants do,
so I would expect the striped phase to be less accessible in these systems.
While this is due to their smaller or non-existent grana (thylakoids or proto-
thylakoids are present; the grana structure is not), in the cast of our model
this would arise as weaker stacking (smaller K) or more flexible membranes
(higher γ).

4.2 Future Directions

On the theoretical side, future directions largely involve making the model
more specific and more directly empirically inspired.

Further extension of the fluctuating-gap model could involve explicitly
coupling multiple grana in a manner inspired by Ref. [12]. This would re-
move some of the mystery of the stroma lamellae and lead to a more precise
understanding of chemical potential. Similarly, non-periodic boundary con-
ditions could specify how the margins, or edges, of thylakoids affect protein
distribution and mass exchange with the stroma lamellae.

Helfrich-type terms [85] could be included in the Hamiltonian to describe
membrane plasticity not only as a function of lumenal gap thickness, but
also material properties intrinsic to photosynthetic membrane lipids. Some
suspect CURT proteins [15] and even carotenoids [74, 75] may influence mem-
brane shape and fluidity, so this very much is an area requiring further ex-
perimental study.

The abstracted ideas brought forth in these models could be extended to
a particle-based model, such as the Schneider-Geissler coarse-grained particle
model. [8, 9] This may be the simplest means of incorporating more protein
species-specific detail. Moreover, a model such as theirs could be extended
to accommodate more than two membrane layers and to incorporate vari-
able lumenal steric repulsion. This model could be simulated via Metropolis
Monte Carlo techniques, as those used here, or possibly Langevin dynamics
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so as to capture dynamic behavior of this system. (All the results here are
static phenomenology; indeed those of Refs. [8, 9, 10] are, too.)

On the empirical side, as outlined in Chapter 2, we hope this theoretical
work inspires mechanical, force-based measurements of thylakoid membranes
to stimuli. We envision applying compressing or pulling forces to thylakoids
or grana and measuring/imaging subsequent redistribution of protein for a
number of time delays after the force application, while holding light intensity
and wavelength constant. It would be interesting to see how these reorgani-
zations compare to changing light conditions or altering salt concentration
(or pH). More than likely such experiments would involve AFM-based mea-
surements.

We also anticipate advances in live cell imaging and other imaging tech-
niques, so as to observe membranes under changing physiological and illu-
mination states; see Sec. 3.3 and Sec. 3.8 for details on these methods. We
hope said advances include not only increased resolution, but also the ability
to study larger samples like a granum comprising a few thylakoids.

4.3 Broader Impacts

As mentioned in the introduction to this dissertation, reasons for investi-
gating principles underlying photosynthetic architecture and function range
in application. As the effects of climate change become more frequent and
dramatic, we continue to be reminded that we humans must not only seek,
but also find solutions for how to adapt to a rapidly changing world. En-
gineering crops will be essential for sustaining nourishing crops for growing
populations, new biofuels will need to be tried and tested, and clean energy
will need to scale up dramatically. Over time scales much longer than our
lifespans, plants will continue to adapt and evolve; perhaps we can learn to
harness some of their energy-processing power for ourselves. While the work
in this dissertation is quite focused in scope, I hope it contributes to the
human knowledge base that may lead to advancements necessary to prolong
the existence of humanity and to curtail anthropogenic changes to the planet
Earth.
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Chapter 5

Appendices

5.1 Chapter 2 Appendix

5.1.1 Methods: Monte Carlo

Simulation specifications

Phase transitions were determined via umbrella sampling, a form of biased
MC simulations. The bias added to the Hamiltonian energy was a harmonic
potential 1

2
k(〈∆n〉−∆ntarget)

2 with a spring constant k of 10,000 kBT . Sim-
ulations were run for (2 to) 3 million MC sweeps, saving ∆n and n̄ data every
100 sweeps. The bias targets ranged from ∆ntarget = −0.5 to ∆ntarget = 0.5
for a total of 51 distinct ∆ntarget values. With these data, free energy profiles
were constructed via the WHAM method. [76]

5.1.2 Binder cumulants

We computed Binder cumulants for the thylakoid striping transition in order
to verify its Ising universality classification. We specifically consider [77, 78]

U∗4 = 1− 〈(∆n)4〉
3〈(∆n)2〉2

(5.1)

Fig. 5.1 shows U∗4 as a function of βµ for K = 5.25 and βε′ = 1, over a range
that spans the ordering transition. The interval in which the free energy
F (∆n) changes convexity is also marked. Values of U∗4 in this interval lie
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near that expected for the three-dimensional cubic Ising model universality
class. [79]

Fig. 5.2 shows analogous results for K = 3.5 and βε′ = 20.

Evidence for first-order transitions in simulation

The enhanced sampling methods used to obtain data in Fig. 5.1.2 utilized
the flat histogram method. [80] Simulations were performed by PLG.

The plots in Fig. 5.1.2 provide a glimpse into how the order of transitions
changes in simulation for increased K. We present the data in terms of three
order parameters, n̄, ∆n, and p11. The first two have been discussed at
length in the main text, while p11 has not. The latter is the probability of
two sites, on either side of the same disc, being occupied; these probabilities
are discussed in the derivation of Eq. (2.7).

As K increases (i.e., moving from left to right in the columns of Fig. 5.1.2,
the full-system distributions (top row of plots) of all order parameters flat-
ten. These changes are accompanied by emerging bimodality in all order
parameter distributions on the individual-disc level (bottom row). While the
flattening of system-wide distributions suggests a generic phase transition
has begun, the development of bimodal distributions for a subset of the sys-
tem implies an interface between two phases has formed, creating portions of
the system belonging to either (coexisting) phase. Since this character devel-
ops prominently in the rightmost column for K = 7, we believe the striping
transition takes on first-order characteristics between K = 6 and K = 7.

5.1.3 Methods: Mean field theory

Mean field phase diagrams were obtained by numerically minimizing the free
energy in Eq. (2.6) or (2.7) of the main text. We found it most efficient to
do so by iterating self-consistent equations that determine local free energy
minima. Here we provide these self-consistent equations, which result from
differentiating FMF, and detail other aspects of our mean field analysis.

Self-consistent equations for the hard constraint limit

The hard constraint MFT average order parameter is

∆n =
1

2

eβµ(eKn̄
(1) − eKn̄(2)

)

1 + eβµeKn̄(1) + eβµeKn̄(2)
(5.2)
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Figure 5.1: Binder cumulant U∗4 as a function βµ for J = 0.675kBT ,
ε = 2.55kBT , and ε′ = 1kBT . The horizontal dashed line represents the
three-dimensional cubic Ising universality value of 0.465 The horizontal red
line indicates the universal value U∗4 = 0.465 corresponding to the three-
dimensional Ising model on a cubic lattice. Vertical lines bracket the range
of βµ over which F (∆n) changes convexity.
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Figure 5.2: Binder cumulants for βµ at and near transition for J = 0.45kBT ,
ε = 1.7kBT , and ε′ = 20kBT . The horizontal dashed line represents the three-
dimensional cubic Ising universality value of 0.465. Vertical lines bracket the
range of βµ over which F (∆n) changes convexity.
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Figure 5.3: Log probability distributions for order parameters n̄, ∆n, and p11,
at both the full system level and the individual disc level. The development
of shoulders to full bimodality that occurs as K is increased (moving from
left to right in the figure columns) indicates discontinuous transitions occur
somewhere between K = 6 and K = 7.
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where n̄(i) refers to the average density in the ith layer. Mutatis mutandis
for n̄(2). The average density is

n̄ =
1

2

eβµ(eKn̄
(1)

+ eKn̄
(2)

)

1 + eβµeKn̄(1) + eβµeKn̄(2)
(5.3)

Onset of first-order transitions for the hard constraint limit

We identify the onset of discontinuous transitions by posing the question:
As the free energy extremum at n̄ = 1/K and ∆n = 0 loses local stability,
do lower-lying minima of FMF exist? Near the onset we assume that such
minima reside at very small ∆n and at n̄ very close to 1/K; for a given value
of n̄, these minima ∆n∗ satisfy

∆n∗2 = 3n̄3

(
K − 1

n̄

)
(5.4)

where we have neglected terms of order ∆n4.
Setting n̄ = 1/K + η, Eq. 5.4 gives

∆n∗ = ±
√

3

K
η +O(η3/2) (5.5)

To lowest order in η, the mean field free energy FMF(n̄,∆n) at the putative
satellite minima can then be written

2β

N
FMF

(
1/K + η,±

√
3

K
η

)
=

2β

N
FMF

(
1/K, 0

)
+

(
− 3K +

4K

K − 2

)
η2 (5.6)

For K > 10/3, this free energy lies below that of the critical state at n̄ = 1/K
and ∆n = 0. In other words, symmetry breaking occurs discontinuously,
before the symmetric state becomes permissive of macroscopic fluctuations.

Self-consistent equations for soft steric repulsion

Minimizing the free energy Eq. (2.7) with respect to p10, p01, p11, and p00 =
1 − (p10 + p01 + p11) gives nonlinear expressions for the mean density in
alternating layers,

n1 = p10 + p11 =
1

q
(aeKn1 + δa2eK(n1+n2)), (5.7)
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and

n2 = p01 + p11 =
1

q
(aeKn2 + δa2eK(n1+n2)), (5.8)

where a = eβµ, δ = e−βε
′
, and

q = 1 + a(eKn1 + eKn2) + δa2eK(n1+n2). (5.9)

Iteration of these expressions converges rapidly to local minima of FMF. From
these solutions, our primary order parameters are computed simply from
n̄ = (n1 + n2)/2, and ∆n = (n1 − n2)/2.

Continuous transitions for soft steric repulsion

For finite ε′, the extremum of FMF at ∆n = 0 becomes locally unstable when

n̄ =
1

2
± 1

2K

√
(K − 2)2 − 4δ, (5.10)

defining possible continuous transitions in the (K, n̄) plane. Fig. 5.4 shows
both lines of solutions in the (K, βµ) plane, for several values of ε′. In each
case the two lines cross at an attraction strength Kcross(ε

′). For βε′ ≥ 2,
Kcross lies outside the range of this plot.

Continuous transitions predicted for K > Kcross violate a fundamental
thermodynamic requirement of stability. Specifically, the solution with higher
density n̄ occurs at a lower chemical potential than the low-density solution,
implying a negative compressibility. Although these solutions represent lo-
cal free energy minima, they cannot be global minima. Indeed, numerical
minimization of FMF identifies lower-lying minima in all cases.

Self-consistent equations for soft steric repulsion

Minimizing the mean field free energy for finite ε′ yields nonlinear equations
for the average layer densities:

〈ni〉 =
1

q
(aeKni + δa2e2Kn), (5.11)

In terms of n and ∆n,

n =
1

2q

[
aeKn(eK∆n + e−K∆n) + 2a2e2Knδ

]
(5.12)
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Figure 5.4: Soft constraint model βµ vs. K phase diagram, continuous mean
field transitions according to Eq. (2.8). Shaded region indicates the striped
phase.
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∆n =
1

2q

[
aeKn(eK∆n − e−K∆n)

]
(5.13)

where a = eβµ, δ = e−βε
′
, n = 1

2
(n1 + n2), and ∆n = 1

2
(n1 − n2).

Solving self-consistent equations

Iterating the self-consistent equations (5.12) and (5.13) converges readily
to local extrema of the mean field free energy. After 106 steps, additional
iteration changes values of n1 and n2 by less than 10−12.

Under many conditions, however, this free energy surface exhibits three
or more distinct minima. The end result of iteration thus depends on initial
values of n1 and n2. We considered five different (n1, n2) pairs, namely (0.6,
0.4), (0.1, 0.1), (0.9, 0.9), (0.9, 0.1), and (0.2, 0.1). For each set of conditions,
we then select the self-consistent solution with lowest free energy.

A resulting value of |n1 − n2| greater than 10−9 was taken to signify
thermodynamic stability of the ordered phase.

5.1.4 Methods: Bethe-Peierls approximation

One-cluster diagram

Our site cluster, depicted in Fig. 5.5, encompasses two thylakoid discs, so as
to capture one instance of the striped motif in the striped phase.

One-cluster expressions

The cluster Hamiltonian is

H = −µ(n0A + n0B)− J
4∑
i=1

(n0AniA + n0BniB)

− ε(n0An5A + n0Bn5B) + ε′n0An0B

− µA
4∑
i=1

niA − µB
4∑
i=1

niB − µ′An5A − µ′Bn5B (5.14)

where A and B denote different stripes.
In a BP ansatz, instead of solving for average densities, one solves for

effective fields; these are given by µA, µB, µ′A, and µ′B. There are four
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Figure 5.5: Bethe-Peierls cluster schematic. n0X is the central site, and all
others are neighboring sites. Dark-colored sites denote sites in a densely pop-
ulated stripe, and light-colored sites represent sites in a sparsely populated
stripe.

fields because sites interfacing with a stripe of the opposite type experience
a different field than those surrounded by like sites.

If we take J = ε, then µ′k = µk. With this in mind, we write the partition
function. First, below are some important variable assignments:

µA = µ̄+ ∆µ, µB = µ̄−∆µ

z = eβµ, zA = eβµA , zB = eβµB

z̄ = eβµ̄, δ = e−βε
′
, c = eK

Taking the standard derivatives of Eq. (5.15), the average densities are
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Eqs. (5.16) and (5.16). Note that there are two average densities for each
stripe, with n0x as the central sites and the others its neighboring sites.

Q =
∑

n0A,n0B

zn0A+n0Bδn0An0B

(
1 + zAe

Kn0A

)5(
1 + zBe

Kn0B

)5

=

(
1 + z̄eβ∆µ

)5(
1 + z̄e−β∆µ

)5

+ z

(
1 + cz̄eβ∆µ

)5(
1 + z̄e−β∆µ

)5

+ z

(
1 + z̄eβ∆µ

)5(
1 + cz̄e−β∆µ

)5

+ z2δ

(
1 + cz̄eβ∆µ

)5(
1 + cz̄e−β∆µ

)5

(5.15)

〈n0A〉 =
1

Q

(
1 + cz̄eβ∆µ

)5

z

[(
1 + z̄e−β∆µ

)5

+ zδ

(
1 + cz̄e−β∆µ

)5]
(5.16)

〈nA〉 =
1

5Q

∂Q

∂βµA
=
zA
5Q

∂Q

∂zA

=
z̄eβ∆µ

Q

{(
1 + z̄eβ∆µ

)4[(
1 + z̄e−β∆µ

)5

+ z

(
1

+ cz̄e−β∆µ

)5]
+ cz

(
1 + cz̄eβ∆µ

)4[(
1 + z̄e−β∆µ

)5

+ zδ

(
1 + cz̄e−β∆µ

)5]}
(5.17)

Here we have replaced µA and µB with µ̄ + ∆µ and µ̄ − ∆µ, as this
formulation more intuitively allows one to discuss the fields in terms of an
average field and fluctuations from it. The astute reader will notice the
factor of 5 in Eq. (5.17) – this is the number of nearest neighbors in the
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same lattice A. In general, this number would be 2d− 1, where d is the total
dimensionality of the system; other factors in Eq. (5.17) may change with
different d. The difference between 〈niA〉 and 〈niB〉 simply involves replacing
µA with µB and vice versa; for this reason, 〈niB〉 expressions are not shown
here.

Since we have two unknowns, µ̄ and ∆µ, instead of solving one self-
consistency expression as for mean field theory, one must solve a system of
equations. The system is Eqs. (5.18) or (5.19). The system was initialized
for both small and large δµ and for initial µi large and small. The tolerance
for self-consistency was 10−12, and the maximum number of iterations was 1
million. The transition was determined by finding ∆n differences larger than
10−9 between consecutive βµ values for a given K.

〈n0A〉 = 〈nA〉
〈n0B〉 = 〈nB〉 (5.18)

〈∆n0〉 − 〈∆n〉 = 0

〈n̄0〉+ 〈n̄〉 = 0 (5.19)

where ∆ni = 1
2
(nA − nB) and n̄i = 1

2
(nA + nB).

Phase diagrams

Here we present Bethe-Peierls phase diagrams, in both the βµ vs. K and n̄
vs. K planes. Figs. 5.6 and 5.7 show a larger range of K values than we
presented for two-site mean field theories. Only at these larger values of K
are signs of discontinuous ordering apparent at the BP level of mean field
theory.

Continuous BP transitions can be determined by linearizing the self-
consistent equations. The resulting equations, which are polynomial in z̄,
are amenable to numerical root finding methods. Continuous transitions
can also be located by initializing the nonlinear self-consistent iteration ap-
propriately. These continuous transitions, plotted in Figs. 5.7 and 5.9 (on
different scales), show the same unphysical crossing behavior found with the
two-site approach, though this crossing occurs at a larger K value than in
the previous approach.
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Self-consistent solutions obtained with a different initialization are plotted
in Fig. 5.6 over a wide range of K. At small K they coincide with the
continuous transitions described above, as emphasized in Fig. 5.8, which
shows only the range of K accessible in simulations. Limited to the domain
1 < K < 6, this plot is essentially identical to the continuous case Fig. 5.9.
For large K, however, this initialization produces different solutions, which
do not cross. Instead, these phase boundaries exhibit discontinuous change
in both ∆n and n̄, and widen markedly at high K. All of these features are
consistent with results of two-site MF theory, but they set in at higher K.
For the range of ε′ we have studied, the onset of first-order transitions occurs
near K = 6, as opposed to the two-site result of K ≈ 10/3. As per the data
of Sec. 5.1.2, first-order transitions are observed in simulation between K = 6
and K = 7, demonstrating that Bethe-Peierls does indeed more accurately
estimate the location of discontinuous transitions in this model.

The minimum value of K at which ordering occurs is also shifted upwards
in BP theory, to about K = 2.4. This prediction compares more favorably
with the critical value K ≈ 2.7 found in simulations than does the two-site
prediction K ≈ 2.

Again, viewed on the same scale as results in the main text, the BP
data very strongly resemble the results of two-site mean field theory; see
Figs. 5.8 to 5.9. Note that these two figures are essentially identical as the
discontinuous transitions begin at K ≈ 6.

5.1.5 Two-cluster Bethe-Peierls approximation

As mentioned in the main text, another way to account for alternating cou-
plings in a lattice model using BP is to use two clusters instead of one (see
Fig. 5.10). One cluster corresponds to a sparsely populated stripe, and the
other a densely populated stripe. To start, we write the cluster Hamiltonian
for cluster A:

HA = −µn0A − µBn0B − Jn0A(n1A + n2A + n3A + n4A)

− µA(n1A + n2A + n3A + n4A + n0A′)

+ ε
′
n0An0B − εn0An0A′

(5.20)

The cluster Hamiltonian for the B lattice can be obtained similarly. The
average densities arise in the traditional way, via derivatives of the partition
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Figure 5.6: BP βµ vs. K phase diagram, with first-order transitions begin-
ning K ≈ 6. Shaded region indicates the striped phase. The upper branch
was calculated via the inversion symmetry relation Eq. (2.4) in the main text.

function:

〈n0A〉 =
∂ lnZA
∂βµ

=
1

ZA
eβµ
(

1 + eβ(µ̄+∆µ+J)

)4

×
(

1 + eβ(µ̄−∆µ−ε′ )
)(

1 + eβ(µ̄+∆µ+ε)

)
(5.21)

〈nA〉 =
1

5

∂ lnZA
∂βµA

=
1

5ZA

[
5

(
1 + eβ(µ̄+∆µ)

)4

eβ(µ̄+∆µ)

(
1 + eβ(µ̄−∆µ)

)
+4

(
1 + eβ(µ̄+∆µ+J)

)3

eβ(µ̄+∆µ+J)eβµ
(

1 + eβ(µ̄−∆µ−ε′ )
)(

1 + eβ(µ̄+∆µ+ε)

)
+eβµeβ(µ̄+∆µ+ε)

(
1 + eβ(µ̄−∆µ−ε′ )

)(
1 + eβ(µ̄+∆µ+J)

)4]
(5.22)

Using these expressions, the same systems of equations (5.18) or (5.19)
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Figure 5.7: BP βµ vs. K phase diagram, continuous transitions throughout.
Shaded region indicates the striped phase. The upper branch was calculated
via the inversion symmetry relation Eq. (2.4) in the main text.

were solved via gradient descent optimization to find continuous transitions.
Please note that no first-order transitions were found for this model, and nor
did these equations preserve occupation inversion symmetry.

Momentum-boosted gradient descent

The system of equations, Eq. (5.18), was rephrased as a root-finding problem
in Eq. (5.19), such that a gradient descent method could be used to find its
roots. Consequently, one can imagine the system of equations as a vector
whose components are the equations. Thus, the objective function optimized
was the magnitude of this vector – namely, the sum of the squared equations
set equal to zero.

A gradient descent approach was used for a number of reasons. Firstly,
the ideal initial conditions for this system were unknown, so a method that
can handle initial conditions far from the solution was desired; many root-
finding and optimization algorithms do not do well when seeded far from the
solution. Second, so as to handle potentially multiple solutions for a given
set of parameters, we wanted a method that had the ability to find multiple
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Figure 5.8: BP βµ vs. K phase diagram, with first-order transitions begin-
ning K ≈ 6 (not visible here). Shaded region indicates the striped phase.
The upper branch was calculated via Eq. (2.4) in the main text.

minima – this concern is related to the first, since initial conditions must be
given differently so as to explore possible multiple global solutions. Gradient
descent is algorithmically simple and has mostly guaranteed convergence,
hence it was chosen.

Furthermore, MGD was utilized instead of plain steepest descent as a
means of increasing efficiency and preventing traps in local optima. [81] One
can write the x component of the update vector at the next step as

vx,t+1 = γvx,t + s∇xf

x = x− vx,t+1 (5.23)

where γ is the momentum scalar that usually is between 0.9 and 1 and
encodes the ”memory” of the previous step, and s is the step size for the de-
scent. The step size is on the order of 0.1 to 0.0001 usually. Convergence was
determined by how close both the objective function and the gradient were
to zero. The gradient of Eq. (5.19) was approximated using finite differences.

For each system of BP equations, the initial conditions were generated by
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Figure 5.9: BP βµ vs. K phase diagram, continuous transitions throughout.
Shaded region indicates the striped phase. The upper branch was calculated
via Eq. (2.4) in the main text.

creating a grid of (∆µ, µ̄) values. Since µ̄ was expected to remain relatively
close to µ, a limited number of µ̄ initial guesses were used. For ∆µ, a grid
ranging from -2 to 2 kBT measured out by a given increment were used;
based on preliminary explorations, solutions obeying the constraints of the
problem are only found for relatively small ∆µ (that is, ∆µ within these
bounds).

5.2 Chapter 3 Appendix

5.2.1 Enhanced Monte Carlo sampling specifications

The enhanced sampling methods used to obtain data in Figs. 3.10 to 3.12
in Chapter 3 utilized the flat histogram method. [80] Simulations were per-
formed by PLG.
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Figure 5.10: Two-cluster schematic. The top bar represents four layers, with
two sets of two-layer stripes. The lower half of the diagram represents the
clusters used in the BP approximation, with n0x as the centers of the clusters.

5.2.2 Solving mean field theory self-consistent equa-
tions

∆n = p00ae
Kn̄ sinh(K∆n)

n̄ = p00ae
Kn̄
[

cosh(K∆n) + δaeKn̄eγω̄
]

ω̄ = p00δa
2e2Kn̄eγω̄ (5.24)

n1 = p00(aeKn1 + δa2eK(n1+n2)eγω̄)

n2 = p00(aeKn2 + δa2eK(n1+n2)eγω̄)

ω̄ = p00δa
2eK(n1+n2)eγω̄ (5.25)

In order to find transition points in either mean field method, one needs
to solve systems of self-consistent equations. The system corresponds to
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Eqs. (5.24), written for both layers, or for Eqs. (5.25). We chose the latter
option, as it was more numerically stable. The system was initialized for five
different (n1, n2) pairs – (0.6, 0.4), (0.1, 0.1), (0.9, 0.9), (0.9, 0.1), and (0.2,
0.1), so as to cover a range of density values, as well as capture n values
related by inversion symmetry. Initial ω̄ values ranged were 0, 0.01, 0.5,
or 1, and each of these values was used with each (n1, n2) initial condition.
The tolerance for self-consistency was 10−12, and the maximum number of
iterations was 1 million. After selecting the converged, minimum free energy
solutions for (K, βµ) each point. ∆n transitions were determined by finding
∆n differences larger than 10−8 between consecutive βµ values for a given
K. ω̄ transitions were discovered either by identifying ω̄ differences greater
than 0.01 or discontinuities in finite differences of ω̄ as a function of βµ.
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Edwards, “Differential mobility of pigment-protein complexes in granal
and agranal thylakoid membranes of C3 and C4 plants,” Plant Physiol.,
vol. 161, no. 1, pp. 497–507, 2012.

[56] C. H. Clausen, M. D. Brooks, T. Li, P. Grob, G. Kemalyan, E. No-
gales, K. K. Niyogi, and D. A. Fletcher, “Dynamic mechanical responses
of Arabidopsis thylakoid membranes during PSII-specific illumination,”
Biophys. J., vol. 106, no. 9, pp. 1864–1870, 2014.

91



[57] M. Iwai, C. Pack, Y. Takenaka, Y. Sako, and A. Nakano, “Photosystem
II antenna phosphorylation-dependent protein diffusion determined by
fluorescence correlation spectroscopy,” Sci. Rep., vol. 3, no. 2833, pp. 1–
7, 2013.
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