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Scaling the Utilization Wall:

The Case for Massively Heterogeneous Multiprocessors

Abstract

Multi-core processors have emerged as the leading solution to the power and scalability concerns that processor designers

currently face. This transition addresses microarchitectural scalability issues, but it only delays the onset of the power scalability

problem. Due to limitations on threshold voltage scaling, in a few process generations, processors will only be able to make use

of a small fraction of a silicon die at full frequency at once. This “utilization wall” will prevent massively multi-core processors

from effectively employing more than a small subset of cores at once. If we cannot utilize the full array of homogeneous cores,

then the utility of building them comes into question.

This paper explores massively heterogeneous CMPs, an approach to processor design that can continue to scale performance

in spite of the utilization wall. Such designs will comprise 10s to 100s to even 1000s of heterogeneous specialized processing

elements (SPEs), ranging from small ASIC circuits to large speculative out-of-order general purpose processors. Massively

heterogeneous CMPs combine these SPEs with an execution model that allows each part of a program to run on the SPE

that can execute it most efficiently. Although the utilization wall dictates that massively heterogeneous CMPs (like all future

processors) may use only a small fraction of the die at once, it uses that fraction very efficiently.

This paper explores the architectural challenges that arise in designing general-purpose massively heterogeneous CMPs.

Our results demonstrate that massively heterogeneous systems can extend performance scaling by realizing large gains (up to

7×) in performance and efficiency relative to more modestly heterogeneous and homogeneous designs. The paper also presents

an ASIC-based SPE case study that demonstrates the ability of such systems to provide large efficiency gains even for irregular

integer applications.

1 Introduction

Power and microarchitectural scalability concerns have motivated a transition toward multi-core designs. Although multi-

core designs address many microarchitectural scalability issues, they only defer the power scalability problems. As a result

of threshold voltage scaling limitations, the percentage of transistors that a fixed-area design can switch at full frequency is

dropping substantially with each generation of Moore’s Law. In a few generations, processors will only be able to make use of

a small fraction of the die at one time at full speed. We term this impending scaling problem the utilization wall.

The utilization wall will force designers onto one of three paths. First, they can build smaller (in area) designs so that power

consumption and transistor budgets remain constant. Second, they can build successively lower-frequency designs that use all

of the area. Third, they can design processors that use only a small fraction of the processor at once, but dynamically vary

which fraction of the chip is active in order to maximize performance and efficiency. The first two scenarios would mark the

end of the benefits that increased integration has historically delivered. Only the third scenario provides a means to continue

scaling performance in the face of fixed power budgets and current limits on technology.
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This paper proposes a new style of processor design called massive heterogeneity that explores this third scenario. Massively

heterogeneous multiprocessors comprise a heterogeneous array of 10s to 100s to even 1000s of specialized processing elements

(SPEs), a small subset of which will be active at any time. The SPEs in a massively heterogeneous system vary widely, ranging

from specialized processors dedicated to particular loop nests to 8-way issue DSPs, graphics accelerators, and out-of-order

superscalars. This work explores the challenges in exploiting the power-efficiency and performance that these SPEs provide to

improve the performance of general purpose applications. We describe an execution model that allows processes to migrate

between SPEs, allowing the set of active SPEs to vary over time to match changing program behavior. In addition, data from the

literature and a preliminary hardware design study show that massively heterogeneous designs can improve power efficiency by

up to 10× and 7× compared to conventional homogeneous designs and less aggressively heterogeneous approaches [47, 46].

Moreover, massively heterogeneous systems can realize these gains for a very wide range of applications, even irregular integer

codes.

This paper makes the case for massively heterogeneous multiprocessors as a solution to the utilization wall and explores

the architectural challenges that arise in designing massively heterogeneous massively heterogeneous systems with potentially

1000s of specialized cores. It also evaluates massively heterogeneous systems relative to other heterogeneous and homogeneous

multiprocessors.

Specifically, the paper makes the following contributions:

• It describes the class of massively heterogeneous multiprocessors and demonstrates that they offer a promising approach

to overcoming the utilization wall, allowing massively heterogeneous designs to profitably exploit up to 6.7× more

transistors compared to less-aggressively heterogeneous designs.

• It demonstrates that although massively heterogeneous systems are composed largely of specialized processors, they can

realize performance and efficiency gains even if workloads vary (i.e., they are general-purpose).

• It examines the trade-offs between different levels of SPE specialization and their impact on massively heterogeneous

CMP performance.

• It proposes a baseline architecture and execution model to address engineering concerns in massively heterogeneous

systems.

Highly heterogeneous processors raise interesting research questions about programming, operating systems, and software

engineering. Indeed, recent efforts (e.g., [39, 49, 32]) have developed several promising approaches to address these issues.

We do not address these issues in detail, but the general research area continues to grow, particularly due to the increasing

prevalence of SoC chips in cell phones and other embedded systems.

The remainder of this paper is organized as follows. Section 2 examines the challenges and opportunities presented by

highly heterogeneous processors and examines related work. Section 3 proposes an architecture and execution model for use in

massively heterogeneous systems. Sections 4 and 5 present our methodology and the results of our evaluation of the massively

heterogeneous approach to processor design. Section 6 concludes.
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2 The utilization wall and heterogeneity

This section describes the technology-based case for massively heterogeneous multiprocessors. Then, we describe the relation-

ship between our exploration of massively heterogeneous CMPs and previous work on heterogeneity.

2.1 The Utilization Wall

The percentage of transistors that a fixed-area design can switch at full frequency is decreasing exponentially with Moore’s

Law, due to problems in threshold voltage scaling. We call this phenomenon the utilization wall. This section describes the

cause and structure of the utilization wall and shows that it is an inherent problem in MOSFET-based microprocessors.

Classical scaling dictates that device voltages scale in proportion to the dimension of the device. Unfortunately, further

reducing the transistor threshold voltage, Vt, is no longer possible, because it increases leakage current exponentially. Making

matters worse, fundamental limits from MOSFET physics suggest that improvements to transistor design or materials cannot

offer sustainable repeated improvements in leakage1. Process designers have no choice but to stop scaling Vt with successive

process generations.

Although fixing Vt can prevent leakage, it creates a chain-reaction that prevents the other aspects of the transistor from

scaling. The next victim in the chain is the supply voltage, Vdd. Reducing Vdd with the feature size reduces per-transistor

switching power, allowing the total power for the devices that can fit in a given area to remain constant. However, transistor

speeds are determined by the ratio between Vdd and Vt, and performance and power-delay product degrade substantially as this

ratio falls below the “sweet spot” of Vdd/Vt = 3.

Because of its negative impact on performance, reducing Vdd without lowering Vt is also not a long-term solution to the

power problem. With fixed Vt and Vdd, the power consumption of a fixed sized chip, clocked at frequency proportional to

transistor switching speed increases as S2, where S is the scaling factor from one process generation to the next. Table 1

summarizes these scaling relationships and shows the difference between conventional “ideal” scaling (column 2) and the

current leakage-limited regime (column 3).

The table shows that, given a fixed power budget, the percentage of transistors that can be switched at full frequency (i.e.,

the amount of silicon that can be in use) is going to decline drastically with each process generation, approximately as 1/S2.

This ratio leads us to conclude that an exponentially diminishing fraction of silicon area will be usable at full frequency in

future process technology.

This utilization wall has already begun to appear in current CMOS technology. Threshold and operating voltages are scaled

only slightly with each generation, and recently announced quad-core designs run at lower clock rates than their dual-core

predecessors in the same family. The introduction of new VLSI integration techniques like 3-D or large- or multi- die chips

will only accentuate this problem.

2.2 Trade-offs in heterogeneous processors

A processor can provide heterogeneity in the instruction sets and programming models it supports and/or the microarchitec-

tural implementations it provides. The amount of heterogeneity at each level substantially determines the challenges that the

processor must overcome and the extent to which it can address the utilization wall.

1The leakage relationship is governed by the subthreshold slope, and lowering it would reduce leakage. Currently the subthreshold slope is around 90-110

mV/decade, and the ideal minimum value possible at room temperature is 60 mV/decade, which limits the potential benefits of improved MOSFET design.
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Parameter Classical Leakage Parameter Classical Leakage

Scaling Limited Scaling Limited

power budget 1 1 Isat (saturation current) 1/S 1

chip size 1 1 F (device frequency) S S

Vdd (supply voltage) 1/S 1 D (device/area) S2 S2

Vt (threshold voltage) 1/S 1 p (device power) 1/S2
1

tox (oxide thickness) 1/S 1/S P (full die, full frequency power) 1 S2

W, L (transistor dimensions) 1/S 1/S U (utilization at fixed power) 1 1/S2

Cgate (gate capacitance) 1/S 1/S

Table 1: Scaling trends Application of CMOS scaling theory to current-day constraints, assuming fixed power and chip area.

The classical scaling column assumes that Vt can be lowered arbitrarily. In the leakage limited case, constraints on Vt, necessary

to prevent unmanageable leakage currents, hinder scaling.

We provide a two-dimensional taxonomy for heterogeneous multi-processors based on their architectural and microarchi-

tectural heterogeneity. A four letter mnemonic, aAmM, identifies each processor class where a is the number of instruction sets

or programming models the processor supports and m is the number of microarchitectures present. We use “*” to denote “more

than one.”

Below we describe the classes of processors covered by this taxonomy, previous related work, the challenges that each class

presents, and existing approaches for addressing those challenges.

1A1M These are conventional, homogeneous chip multi-processors. They are commercially available and have received

extensive attention from research and industry. Their uniformity prevents them from addressing the utilization wall.

1A*M Recent work on single-ISA, heterogeneous multiprocessors demonstrates that 1A*M machines can provide both power

savings [46, 41] and performance improvements [47]. Researchers have also examined scheduling issues [25, 48], and microar-

chitectural optimizations [40]. These machine provide some relief from the utilization wall by allowing some flexibility in the

types of cores in use at any one time. However, the use a single ISA and programming model limits the level of heterogeneity

they can exploit.

*A1M Researchers have proposed several multi-ISA, single micro-architecture processors, but they cannot address the power

scaling problems outlined in Section 2.1. SmartMemories [50] can emulate a range of different architectures using the same

hardware. Chimaera [70], GARP [43], PRISC [56], and the work in [31] augment a general-purpose processor with reconfig-

urable logic to provide extensible ISAs.

*A*M Multi-ISA, multi-microarchitecture machines are the most aggressively heterogeneous multiprocessors and they raise

the most serious challenges. Our goal is to explore processors in this class that support many (> 10) instruction sets and

microarchitectures and that target general-purpose computing.

A range of commercial *A*M processors and research prototypes are available or have been proposed. These include Sony’s

Cell [44], IRAM [54], and the hardware used in [39]. These machines augment a general purpose core with vector co-processors

to accelerate multimedia applications. These machines incorporate just two types of core (i.e., they are 2A2M machines).

In addition to the complexity that diverse hardware presents, *A*M machines also require significant changes in the op-

erating system, compiler, and, depending on the amount of compiler support, applications. Researchers have already begun
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Figure 1: A massively heterogeneous CMP The high-level design of a massively heterogeneous multiprocessor. SPE com-

plexes attach to a grid-based interconnect which provides access to general-purpose processors (GPP) and an on-chip L2. A

single SPE complex comprises many SPEs of varying generality and complexity. Only one SPE in the complex may be active

at a time.

to address the *A*M programming problem. EXOCHI [39] and Merge [49] provide general frameworks for programming

heterogeneous systems. They allow programmers to target multiple SPEs in the same program using a uniform set of abstrac-

tions. VEAL [32] provides a light-weight dynamic translation layer that allows computation targetted toward any potential

accelerators to be expressed in a single baseline instruction set.

3 Massively heterogeneous architectures

Organizing 100s or 1000s of heterogeneous SPEs into a general-purpose processor raises both software and hardware issues.

Below, we briefly discuss the execution model for massively heterogeneous CMPs and then discuss the high-level organization,

interconnect, and memory architecture of massively heterogeneous systems.

3.1 Execution model

A program executing on a massively heterogeneous CMP migrates between SPEs as its behavior changes. The tool-chain

and run-time environment combine to create the mapping between different sections of the program and the available SPEs.

Programmers and compilers will use a range of tools (e.g. library interfaces, code similarity measurement technology, and

performance prediction models) to identify which code segments will run most efficiently on different SPEs. The operating

system or run-time schedules code onto the available SPEs taking into account the physical location of the SPEs and other

applications competing for the same SPEs. The mapping of program to SPEs can also change at runtime to account for

observed changes in program behavior. Constructing the software infrastructure to support these tasks is challenging, but

several proposals [39, 49, 32] have already begun exploring this area and we expect it to be a fruitful area of research.

3.2 Hardware organization

Figure 1 depicts a small massively heterogeneous CMP comprised of twelve SPE complexes and four banks of shared L2 cache

connected by a grid-based on-chip interconnect. Together the complexes, cache banks, and network resemble recently proposed
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tiled processors such as WaveScalar [63], Raw [65], or TRIPS [57]. Instead of uniform tiles, however, the complexes (i.e., the

“tiles”) in a massively heterogeneous system contain many SPEs. The mix of SPEs in each complex is different. Broadly, the

SPEs fall into two categories: Single-purpose and Multi-purpose Specialists.

Single-purpose specialists are ASIC-like pieces of hardware that target particular power-critical algorithms, loops or ap-

plications, based on their prevalence within pre-existing workloads. Examples include compression, encryption (e.g., a SSL

accelerator in a web server-oriented), or back-end rasterizers. We expect single-purpose specialists will be automatically syn-

thesized from languages like C and C++, and have demonstrated that this is feasible in many cases (see Section 5.5).

Multi-purpose specialists, on the other hand, are intended to function across a wider variety of code-bodies (including those

not available at design-time), but are not necessarily Turing complete. Presently available multi-purpose specialists include

general purpose processors, graphics card pixel processors [52, 24], vector-accelerators, and molecular dynamics simulation

accelerators [35]. We expect that, as the utilization wall becomes more acute, we will see an increasing diversity in both

single-purpose and multi-purpose specialists.

Massively heterogeneous systems organize SPEs into complexes based on related functions to allow pipeline-sequential

style communication. SPEs likely to be used in sequence are placed in the same complex, so that they can efficiently commu-

nicate through the local L1 cache.

3.3 Interconnect

Two unique characteristics of massively heterogeneous systems combine to influence the design of the on-chip interconnect.

First, because of the utilization wall, only a fraction of the SPEs will be active at any time. This means that while the number

of end-points in the network will be high, the amount of simultaneous communication per end-point will be low. Second, many

SPEs are much smaller than even the smallest wormhole router, so conventional on-chip interconnects are not suitable – the

chip would be nothing but routers.

Massively heterogeneous systems satisfy these constraints with a hierarchical interconnect built to accommodate the exe-

cution model. Within a complex, we introduce the constraint that only one SPE at a time can be active. This allows us to pair

down the intra-complex interconnect by eliminating arbitration, flow-control and buffering logic, which is responsible for much

of the power and area. It also helps address power density concerns.

Massively heterogeneous systems connect SPE complexes with a conventional mesh-style wormhole-routed interconnection

network, similar to those found in tiled architectures like Raw [65]. SPEs in different complexes are permitted to operate

simultaneously, managed by the operating system.

3.4 Memory

SPEs communicate using coherent shared memory. To facilitate speedy exchange and forwarding of data between SPEs as

program execution migrates, SPE complexes contain a coherent L1 cache shared among the SPEs in that complex. Since only

a single SPE may be active in the complex at one time, there is no contention between SPEs for access and the cache does not

require multiple ports.

A conventional coherence protocol keeps the L1s synchronized with each other, the L2 cache, and main memory. In

addition, SPEs may have their own L0 caches or local memories customized for the SPE’s cache behavior. Our execution

model for massively heterogeneous systems requires that programs appear to execute on a conventional processor. To provide
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this appearance while ensuring maximum freedom in SPE design, massively heterogeneous systems adopt release consistency

to coordinate communication and synchronization.

4 Exploring massively heterogeneous designs

The effectiveness of massively heterogeneous multiprocessors hinges on their ability to combine many SPEs into a single

processing system that can efficiently execute general-purpose programs. This section presents our approach to resolving two

challenges that arise in massively heterogeneous designs. First, we analyze the key trade-off between SPE generality and

efficiency by examining the performance and power-efficiency that existing general-purpose, partially-specialized, and fully-

specialized SPEs offer.

Next, we present a genetic algorithm-based toolchain for selecting a set of SPEs to include in a massively heterogeneous

design and then evaluating that design. By automating the high-level design of massively heterogeneous systems, we can

quickly explore a large space of massively heterogeneous designs. We use this tool-chain to do so in Section 5.

4.1 Understanding SPE performance trade-offs

Ultimately, we expect massively heterogeneous multiprocessors to include 100s or 1000s of different SPEs. Performance data

for such a large variety of processors is not currently available. However, the literature does provide performance and power

data for several dozen SPEs that span a wide range in the application areas they target and the degrees of specialization they

provide. We collected performance, area, and power consumption data for many of these processors.

Making direct comparisons using the published data is challenging because the designers use different implementation

technologies and different benchmarks to measure performance. We overcame this obstacle by focusing on 23 SPE designs from

the literature and 25 applications (Table 2) that are either well-known or drawn from benchmark suites such as Spec2000 [60],

EEMBC [38], or MineBench [55]. We chose this set of applications and SPEs to maximize the number of direct comparisons

possible while still including a range of hardware designs and workloads.

We used a 90 nm Pentium 4 processor scaled to 22 nm technology as a performance “Rosetta stone.” We collected P4

performance data for all the applications and used those data to normalize the performance of other SPEs. To account for

different process technologies, we scaled each design to 22 nm using the data in Table 3.

For tiled machines, we combined data from WaveScalar [64] and Raw [65]. We partitioned the workloads into three groups

(the “Cat.” column of Table 2 (bottom)): Embarrassingly parallel (P), strictly serial (S), or mixed (M). Using the available data,

we computed the performance of different tiled array sizes by assuming that performance scales by the number of tiles (P), is

constant (S), or scales by the square root of the number of tiles (M). We counted each “domain” in the WaveScalar processor

as one tile.

The resulting data are not perfect, but they do highlight the range of performance and power efficiency numbers we can

expect from future SPEs. The table shows, for instance, that performance variation ranges from less than 2× for SpecINT

workloads to over 9,600× for convolution encoding. Likewise, the power consumption varies from 0.23W for the i.MX21 to

85W for a GPU. For ASICs, the power consumption (data not shown) is as low as 7mW (for the convolution encoder). The

area required for the SPEs varies just as widely (85.7mm2 for the GPU, 7.5e-5mm2 for the convolution encoder).

The data also provide insight into the trade-off between generality and power consumption. This trade-off is critical in
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SPE Description Power(W) ASICs Power(W)

General Purpose Conv. Encoder[66] 2e-03

P4[1] Pentium 4 Xeon 61.7 8b/10b Block Encoder[66] 6e-03

MC7448[2] Freescale MC7448 “PowerPC G4” 15.44 Conv. Encoder (EEMBC) 7e-03

750-CL[3] 2-issue, in order, IBM PowerPC 4.12 Autocorrelation (EEMBC) 7.5e-02

i.MX21[4] Freescale embedded Arm Core 0.23 8x8 DCT 0.35

Tiled FFT (EEMBC) 0.35

Tiled 1-16[64, 65] WaveScalar, Raw 1.86 - 30 1024-point Complex-FFT 0.5

Specialized GROMACS 3.5

Scale[45] The Scale processor Raytracing 3.5

Cell[30] Sony Cell processor 22.05 Scan 0.5

CSX600[34] ClearSpeed FP accelerator 6.41 Viterbi 0.3

DSP [5, 33] TI-TMS320C6416-720 and Bison 1.1 Bio. Sequence Matching 8e-02

GPU[6] NVidia 8800GTX 85.73

Workload Cat. Perf. Range Workload Cat. Perf. Range Workload Cat. Perf. Range

Min. Max. Min. Max. Min. Max.

EEMBC SPEC 2000 Others

Text S 0.07 1 Equake P 0.62 1 DCT 8 X 8 P 1 2.71

Ptr. Chase S 0.04 1 MCF S 1 2 1024-point FFT M 1 117.6

Ospf M 0.08 2.23 Art M 1 1.1 Scan P 1 14

Conv. Enc. P 0.003 28.93 Others (cont.) GROMACS P 1 105

Auto Corr. P 0.01 2.32 8b/10b block enc. P 1 60.56 Raytracing P 1 8.41

Fixed pt. Bit Alloc. M 0.05 2.59 802.11A Conv. Enc. P 0.53 20.97 CSLC P 1 33

Vitrebi P 0.08 2.75 SGEMM P 1 21 CityBusy M 1 20

FFT M 0.06 4.65 DGEMM P 1 7.06 Cloth Sim. M 1 20

SpMM P 0.05 6.4 Bio Sequen match P 1 94

Table 2: Kernels, applications, and SPEs We gathered performance data for 23 processors, co-processors, and ASICs (top) and

25 applications and kernels (bottom). The “Cat.” column in the workload table describes the parallizability of the application:

S=Serial (non-parallizable), P=Parallel, M=mixed. The “Perf. range” columns measure performance relative to a Pentium 4.

Data from [62, 59, 33, 45, 7, 67, 8, 34, 53, 9, 10, 11, 58, 37, 29, 36, 23, 12, 61, 66, 42, 22, 13, 14, 15, 28, 51, 26, 16, 69, 17, 67,

27, 58, 18, 19, 20]. Some values are estimates.

Process (nm) 250 180 130 90 65 45 32 22

Vdd 2.0 1.75 1.5 1.4 1.35 1.3 1.25 1.2

A 129 67 35 17 8.7 4.2 2.1 1.0

1/TFO4 0.09 0.12 0.17 0.24 .34 .49 .69 1.0

Table 3: Scaling methodology Our scaling methodology extends the model in Table 1 by incorporating Vdd data from Intel

product lines. To account for on-going transistor improvements such as strained silicon, high K, FinFET and improved doping

profiles, we allow the process to maintain consistent Ion/Ioff ratios (and thus constant leakage levels, which are set as a

parameter by Intel process engineers) and linear improvements in FO4 delay even as Vdd is lowered. We assume performance

scales with FO4.

massively heterogeneous designs because they strive for power-efficient execution of general-purpose workloads. Our data

show that moving from single-purpose SPEs to multi-purpose (but still specialized) SPEs leads to a large increase in power

consumption. However, increasing generality further leads to less dramatic reductions in efficiency and performance. For

instance, for matrix multiplication a fully-specialized ASIC is ∼ 50× more efficient than the CSX600 (a dedicated 96-way FP

co-processor), but the CSX600 is only 6× more power efficient than a fully-general tiled processor. In addition, the CSX600

outperforms the tiled machine on all the applications in its target domain for which we have data. We observe this trend for

other applications as well: The gap in efficiency between single-purpose and substantially multi-purpose designs is much larger

than between those designs and fully general-purpose designs. However, the designers of massively heterogeneous systems

must understand the “shape” of the trade-off between generality and power efficiency in more detail. In particular, it would be

useful to understand whether very modest levels of generality extract the same cost in terms of power efficiency.
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4.2 Tool-chain

The design space of massively heterogeneous multiprocessors is much larger than for conventional multiprocessors. To explore

the space of massively heterogeneous designs quickly, we have developed a tool-chain for generating and evaluating massively

heterogeneous multiprocessor designs given a workload and set of available SPEs. By varying the inputs to the tool-chain we

can generate massively heterogeneous multiprocessors crafted from different sets of SPEs and targeted at different applications

and area budgets. We use this tool-chain in Section 5 to compare the massively heterogeneous approach to other approaches

and to understand the impact of SPE and application mix on the effectiveness of massively heterogeneous systems.

The tool-chain takes four inputs:

1. Workload description: A list of kernels that make up the workload along with the fraction of time the workload spends

executing each kernel.

2. Performance data: A table of performance, power, and area data for each SPE running each kernel.

3. Area and power constraints: Limits on the amount of area and power the processor can consume.

4. Communication patterns: A matrix of communication requirements between kernels.

The first stage of the tool-chain uses a genetic algorithm (GA) to select the set of SPEs (a configuration for a given mas-

sively heterogeneous system) that is best suited to the workload. The GA avoids the need to exhaustively search the space of

massively heterogeneous CMP configurations. While the GA does not guarantee an optimal design, it achieves the same result

as exhaustive search for small problem cases with small diversity in core types. To verify bigger problem cases, for each power

budget, we defined a heuristic upper-bound using performance of a configuration with unconstrained area budget. With enough

area budget, the GA finds configurations with less than 5% performance degradation.

We use the data in Section 4.1 as input to the GA. When data for an SPE/application pair are not available, we estimate it

based on the performance of similar SPEs and similar applications. Our data show that these estimates have little impact on

our results: Randomly perturbing the estimated values by up to 10% results in smaller than 2% changes in our performance

measurements, and all the trends remain the same.

To evaluate a configuration, the GA combines measurements of both throughput and latency-oriented performance. To

measure throughput, the GA generates a random sequence of 400 jobs (kernel instances) drawn uniformly at random from our

benchmark suite. The scheduler attempts to maximize throughput while staying within the power budget.

To evaluate latency performance, the GA models executing the kernels in the workload serially on the highest performance

SPE for each kernel. The GA combines the latency and throughput measures to determine the overall quality of a configuration.

We control the trade-off between latency and throughput with a parameter called α. For parallel-centric designs, α = 0.

For serial-centric designs, α = 1. The α parameter corresponds to the trade-off in all multi-processors between throughput and

latency. In conventional CMPs, a large value of α would lead to a few, powerful cores (e.g., the Power6) while a small value

would lead to a larger number of simple cores (e.g., Sun’s Niagara). Unless otherwise stated, we provide data for α = 0.33.

If two configurations achieve the same level of performance, the algorithm favors the smaller one, so the final processor

might not utilize its entire area budget.
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We also use our toolchain to generate the 1A1M and 1A*M machines we use in our comparisons in the next section. To

generate 1A1M configurations we limit the GA to choosing the best single general-purpose processor (this amounts to an

exhaustive search). For 1A*M, we restrict the choice of SPEs to the four general-purpose processors in Table 2.

5 Results

This section uses our GA-based toolchain to quantify the differences between massively heterogeneous multiprocessors and

other types of heterogeneous processors. Section 5.1 measures massively heterogeneous multiprocessors’ efficiency and per-

formance improvements and investigates the trade-offs between area, power, and performance. It also compares massively

heterogeneous CMP performance to 1A1M (conventional, homogeneous CMP) and 1A*M (single-ISA heterogeneous) designs.

Section 5.2 demonstrates the ability of massively heterogeneous designs to provide benefits on a range of workloads. Sec-

tion 5.3 measures the impact of different degrees of SPE specialization on massively heterogeneous designs. Section 5.4

examines trade-offs between parallel and sequential performance in massively heterogeneous multiprocessors. Finally, Sec-

tion 5.5 describes a case study that argues that massive heterogeneity techniques are applicable to integer workloads and that

hardware complexity in massively heterogeneous processors is tractable.

5.1 Efficiency and performance

Figure 2 demonstrates massively heterogeneous systems’ ability to overcome the utilization wall and translate large transistor

budgets into performance gains, even in the face of strict power budgets. For instance, at 100W, 1A1M and 1A*M designs larger

than 24mm2 or 42mm2, respectively, do not offer additional performance (due to the utilization wall). Massively heterogeneous

designs can extract performance and efficiency gains from 6-10× more silicon. At 10W, the differences are even larger:

massively heterogeneous designs can effectively utilize up to 14× more silicon. The diversity in the available SPEs (i.e., those

in Table 2) limits the amount of area massively heterogeneous designs can utilize. For larger selections of SPEs, we would

expect to see even greater gains.
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Figure 4: Workload variation and massively heterogeneous system performanceThe performance of a particular massively

heterogeneous multiprocessor degrades gracefully for workloads that differ widely from the workload the GA designed it

for. The variation in performance grows, but even in the worst case, the massively heterogeneous machine out-performs less

heterogeneous designs.

Using specialized SPEs also translates into increased parallelism. A 100W, 260mm2 massively heterogeneous design uses,

on average, 34.4 SPEs simultaneously, compared to just 6.9 and 13.8 for the 1A1M and 1A*M machines (data not shown).

1A1M designs fare especially poorly in power-limited regimes because they cannot put additional area to any good use. Indeed,

depending on the power budget, 1A1M scalability stalls out at between 3 and 7 cores on one chip. After those points, further

increases in area (and transistor budgets) are useless.

Massively heterogeneous designs can also translate increased transistor counts into performance gains more effectively than

other types of heterogeneous processors. Figure 3 explores this effect in detail. It shows massively heterogeneous, 1A1M, and

1A*M performance for a range of power and area budgets. Each line represents a different power budget with performance

normalized to the 10mm2, 10W, 1A1M design comprised of general-purpose processors.

For all three architecture types, performance increases with power and area budgets. The data show that 1A*M designs

outperform 1A1M designs for a given area and power budget. These results corroborate previous results on the single-ISA

heterogeneous systems [47, 46].

Massively heterogeneous systems out-perform both of the other classes by a significant margin. At the low end, at 100W,

10mm2 massively heterogeneous design outperforms the corresponding 1A1M and 1A*M designs by 2.5× and 2.2×, respec-

tively. Incorporating highly specialized processors allows massively heterogeneous CMPs to widen the margin as the chip size

grows: For 100W, 320mm2 designs, the massively heterogeneous approach achieves 11.3× the performance of the 1A1M and

7.5× the performance of the 1A*M.

5.2 General purpose performance

Massively heterogeneous multiprocessors must provide speedups on a very wide range of workloads. The toolchain we outlined

in Section 4.2 generates architectures based on a particular workload model given as input. Figure 4 measures the sensitivity of

massively heterogeneous system performance to variations in workload. The figure shows the change in the performance for a

particular massively heterogeneous multiprocessor, A, as the workload characteristics diverge from the workload the GA used

to design the processor. For each point, we create a workload according to a skewed probability distribution over the kernels in

Table 2. The X-axis measures the degree of skew. The maximum possible value is 2. We use the GA to generate a customized
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Figure 5: Diversity’s impact Different core types contribute differently to different aspects of massively heterogeneous designs.

Graphs (a), (b), and (c) compare the contributions of each core type to overall processor performance, power consumption, and

area. The “GP” corresponds to 1A*M machines. In all cases, the power budget is 100W and the area budget is 320mm2.

massively heterogeneous multiprocessor for that workload. The Y-axis measures A’s performance relative to that processor.

The lines and error bars show the average performance and standard deviation for each level of skew.

The data show that this massively heterogeneous design achieves good performance on a range of workloads beyond the

training workload used by the genetic algorithm. The data also show that although variation in performance is smaller for 1A1M

and 1A*M designs, the maximum performance is lower. Indeed, even in the worst case we measured (workload variation = 1.5),

the massively heterogeneous multiprocessor outperformed the other designs by 2.4-13×.

The data illustrate what we believe will be a common theme in massively heterogeneous system performance: The variation

in performance for massively heterogeneous multiprocessors across applications will be much larger than for 1A*M and 1A1M

machines. Two key goals in designing massively heterogeneous systems will be to ensure that 1) any program can run at a

reasonable speed on the design and 2) most programs can benefit from the specialized cores available. We can address the first

goal by providing a capable selection of general purpose processors. Attaining the second goal will require shrewdly crafting

the specialized co-processors so that they are useful on a range of applications.

5.3 The impact of diversity

The SPEs listed in Table 2 represent a wide range of processor types that represent very different trade-offs in performance,

area, and power. Likewise, the contributions that these cores make to massively heterogeneous multiprocessors’ overall char-

acteristics vary widely.

Figure 5 demonstrates these differences by dividing the SPEs into four groups, general purpose (GP), tiled, specialized

(special), and application specific (ASIC), and measuring the effects of adding each group in turn. For instance, for a massively

heterogeneous CMP with a 100W power budget and 320mm2 area budget, ASICs provide 19% of the performance, but consume

just 1% of the power and 24% of the area. In contrast, the specialized processors provide 62% of the performance but consume

74% the power and 55% of the area. ASICs provide greater gains in performance and efficiency than specialized processors,

but at the cost of reduced flexibility. Other data (not shown) demonstrates that more specialized SPEs become more valuable

as power budgets shrink. For the 320mm2 case discussed above, ASICs provide fully 50% of performance for processors with

10W power budgets.
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Figure 6: Trading off latency and throughput in massively heterogeneous systems Multiprocessor performance for parallel

(a), hybrid (b), and serial (c) workloads. Massive heterogeneity provides the largest gains for parallel workloads (α = 0), but

heterogeneity is still beneficial for serial workloads (α = 1)

5.4 Latency and bandwidth trade-offs

All multiprocessors make a trade-off between optimizing for latency vs. bandwidth. In 1A1M machines the key variable is the

single-threaded performance of the individual, homogeneous cores (i.e., simple cores for bandwidth-oriented machines, and

larger more aggressive cores for latency-oriented machines). For massively heterogeneous and 1A*M machines, the choices are

more complex since the mix of cores comes into play as well. As described in Section 4, our GA uses a weighting factor, α, to

trade off between parallel- and serial-centric designs.

Figure 6 uses α to show how massively heterogeneous multiprocessors perform under parallel and serial-centric workloads.

Graphs (a), (b), and (c) in the figure show performance for purely serial-centric (α = 1), hybrid (α = 0.5), and purely

parallel-centric (α = 1) processors running on correspondingly serial, hybrid, and parallel workloads. The data show that the

massively heterogeneous approach provides larger gains for parallel than serial workloads. For the parallel case, the massively

heterogeneous approach benefits from both the performance and power advantages of its low-power SPEs, since more SPEs

than general purpose cores can run simultaneously. In the serial case, it can only exploit the performance benefits that the SPEs

provide. However, even for strictly serial workloads, the massively heterogeneous approach outperforms 1A1M and 1A*M

machines by up to 3.6×.

5.5 SPE design case study

The goal of massively heterogeneous systems is to improve the efficiency and performance of general-purpose applications

by using a large number of different SPEs. It is well-known that specialized processors and ASICs are well-suited to signal-

processing, multi-media, and some scientific workloads. However, the availability of SPEs for irregular, integer applications

(e.g., those in SpecINT) is less clear. Designing the many SPEs that a massively heterogeneous system requires is also a

daunting task. We must be able to generate SPEs with relative ease.

To address both these challenges, we performed an in-depth study of bzip2 from SPEC2000 [60]. We tasked one graduate

student, who had limited previous hardware design experience, with designing and synthesizing two SPEs, each accelerating a

specific function in bzip2. The conversion from C to Verilog only used transformations that a straight-forward compiler could

implement, demonstrating that even a simple hardware compiler can create SPEs that deliver substantial benefits in a massively

heterogeneous system.
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5.5.1 Accelerated functions

We targeted two of the three most heavily executed functions in bzip2. undoReversibleTransformation fast ac-

counts for 23.7% of execution time on our baseline Pentium 4 and is called 155 times for the reference graphic input. Our SPE

accelerates the run-length decoder and corresponding CRC computation, covering about 75 lines of source code. The resulting

SPE runs at 500MHz. It executes 3.6× faster than the baseline processor (including cache effects), occupies only 0.062mm2,

and requires 55.5× less power (including L2 accesses).

The second function, generateMTFValues, accounts for 11.8% of execution time and is called 155 times on the ref-

erence input. The primary loop contains 50 lines of code. The SPE runs at 500MHz and runs 2.8% faster than the baseline

processor while using only 0.113mm2 area and requiring 55.6 times less power. Figure 7 shows the placed and routed layout

of the generateMTFValues SPE (excluding the associated cache).

The combined area of the two SPEs and their caches is 0.175mm2 – only 0.13% of the area of the baseline processor.

5.5.2 Transformations

Our SPEs implement functions that take few arguments and operate primarily on a set of global and local arrays. To support

location-independent execution, we transformed global names into parameters passed to the SPE and stored in registers for the

duration of an execution of the procedure. We assume the chip containing the SPEs has an on-chip communication network

for passing start/return commands and scalar parameters between processors. Since the number of parameters is small ( < 10

scalar values), and the number of function calls is small compared to execution time, we do not consider the power and delay

effects of parameter passing.

5.5.3 System modeling and results

To evaluate the performance and power advantages of bzip2 SPEs, we model a system consisting of the Pentium 4 (90nm,

2.8GHz) used for our baseline analysis, augmented with the two SPEs described above. Both SPEs and the general purpose

processor share the L2. Caches for these SPEs are write-through, no-write-allocate, thus allowing the L2 to enforce coherence

for the SPEs using invalidations.

We used a 90nm CAD flow to synthesize our designs. We generated power and performance numbers for SPEs through

a trace-based approach that provides PrimePower [21], a CAD power tool, with dynamic transition counts to determine SPE

power and cycle count measurements and likewise feeds a cache simulator to model memory system power and delay effects.

We use Cacti 4.2 [68] to provide power data for our memory modeling. We assume the baseline processor operates at its TDP

of 84W throughout its execution.

Given that the SPEs are very small and operate at 500MHz, the memory system consumes most of the power. We use Cacti

to model leakage and per-access energy for tag and data arrays at both L1 and L2. The cache simulator provides miss and access

counts, which we combine with the Cacti and PrimePower-derived values to compute total SPE execution power requirements.

At 500MHz, access to the L2 cache is only a small number of cycles. Thus, the small cache associated with an SPE is

as much a power- and bandwidth-saving device as a performance enhancer. The cache for generateMTFValues is fully

associative, containing eight 16-byte lines. We use a simple stride-1 prefetcher to exploit the streaming nature of one load. The

undoReversibleTransformation fast SPE features a 16-entry fully associative L1 cache with 16-byte lines, and a

six-entry stride-based prefetcher (length-one history for each of six entries).
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cells dispersed throughout the SPE are clock buffers. The circuit occupies 0.113mm2 in 90nm (or 0.007mm2 scaled to 22nm).

5.5.4 Discussion

In only six weeks, one graduate student with minimal previous hardware design experience was able to design and synthesize

two SPEs that performe as well or better than our baseline processor and consume vastly less area and power. On a system

augmented with both SPEs, bzip2 executes 35% more energy-efficiently (21% faster and with 21.6% less power). It is clear that

small, power-efficient SPEs offering viable performance are relatively easy to produce. Given their minute area requirements,

a 320mm2, 22nm die, with a broad selection of the larger, more general-purpose SPEs in Table 2 and a 64MB cache, could still

accommodate several thousand ASIC SPEs.

6 Conclusion

We have proposed massively heterogeneous CMPs, a new approach to processor design that exploits highly-heterogeneous SPEs

to mitigate the impact of tight power budgets and provide performance that scales with increased transistor density. Massively

heterogeneous systems go beyond previous proposals for heterogeneous processors to include 10s, 100s, or even 1000s of SPEs

on a single die. This paper has described the design space of heterogeneous processors and explored the architectural issues

that arise in the design of massively heterogeneous machines. Our data demonstrate the potential of massively heterogeneous

CMPs to provide significant performance gains across a wide range of applications and its ability to exploit a great diversity

of SPEs. Finally, our ASIC-based case study shows that building specialized processors that provide substantial performance,

power, and area savings for a particular application is relatively easy.
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Appendix

Hardware Cat. P4 ASIC MC7448 750-CL i.MX21 Tiled:16 Tiled:8 Tiled:4 Tiled:2 Tiled:1 CELL CSX600 DSP GPU

Perf Area Power

Process (µm) 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022

Area (mm2) 8.1 3.49 0.95 0.05 3.82 1.91 0.96 0.48 0.24 13.2 6.44 0.34 25.09

Freq (GHz) 11.6 7.1 3.3 1.6 2.5 2.5 2.5 2.5 2.5 1.3 1.5 4.2 6.25

Power(W) 61.7 15.44 4.12 0.23 30 15 7.5 3.75 1.87 22.05 6.41 1.1 85.73

EEMBC

Text S 1 0.9 0.54 0.07 0.32 0.32 0.32 0.32 0.32 0.2 0.1 0.4 0.1

Ptr. Chase S 1 0.81 0.36 0.04 0.53 0.53 0.53 0.53 0.53 0.2 0.1 0.5 0.01

Ospf M 1 0.96 0.36 0.08 8.9 6.3 4.46 3.15 2.23 0.2 0.1 0.5 0.1

Conv. Enc. P 1 100 7.53E-05 7.00E-03 28.93 0.04 0.003 95 47.5 23.75 11.87 5.93 4 0.1 0.02 0.01

Auto Corr. P 1 40 0.015 0.075 1.08 0.1 0.01 37.15 18.58 9.29 4.64 2.32 8 12 0.43 8

Fixed pt. Bit Alloc. M 1 1.36 0.35 0.05 10.36 7.33 5.18 3.66 2.59 1 0.4 0.38 0.5

Vitrebi P 1 16 0.1 0.3 2.75 0.12 0.03 4.92 2.46 1.23 0.62 0.31 18 7.05 0.08 17

FFT M 1 60 0.12 0.35 4.65 0.35 0.06 9.35 6.6 4.67 3.3 2.34 20 20 0.45 4

SPEC 2000

Equake P 1 0.9 0.4 0.05 10 5 2.5 1.25 0.62 2 2 0.1 2

MCF S 1 0.9 0.7 0.5 2 2 2 2 2 1.5 0.2 0.1 0.2

Art M 1 0.9 0.1 0.01 4.4 3.1 2.2 1.56 1.1 8 4 0.06 2

Others

8b/10b block enc. P 1 60.56 1.13E-04 6.00E-03 8 0.04 0.002 30 15.2 7.6 3.8 1.92 4 0.1 0.02 0.01

802.11A Conv. Enc. P 1 20.97 2.51E-05 2.00E-03 2 0.03 0.002 6.88 3.5 1.8 0.95 0.53 4 0.1 0.2 0.5

SGEMM P 1 0.9 0.1 0.01 1.6 0.8 0.4 0.2 0.1 21 8 0.4 6

DGEMM P 1 0.8 0.05 0.005 0.8 0.4 0.2 0.1 0.05 2.9 7.06 0.2 0.3

SpMM P 1 0.9 0.4 0.05 6.4 3.2 1.6 0.8 0.4 2.5 3 0.15 2.5

DCT 8 X 8 P 1 60 0.128 0.35 3 0.35 0.06 5.59 2.8 1.4 0.7 0.35 20 12 2.71 4

1024-point FFT M 1 150 0.18 0.5 1 0.35 0.06 1.4 1 0.7 0.49 0.35 30 117.6 0.4 11

Scan P 1 15 0.2 0.5 1.1 0.45 0.2 7.2 3.6 1.8 0.9 0.45 7 6 10 14

GROMACS P 1 105 13 3.5 3 0.3 0.05 4.8 2.4 1.2 0.6 0.3 4 10 0.3 100

Raytracing P 1 60 11.1 3.5 1.2 0.3 0.04 4.8 2.4 1.2 0.6 0.3 8.41 7 0.5 2.2

CSLC P 1 2.78 0.23 0.04 33.4 16.7 8.35 4.17 2.09 20.5 10 0.43 5

CityBusy M 1 1.5 0.2 0.01 0.8 0.57 0.4 0.28 0.2 1.25 2.5 0.2 20

Cloth Sim. M 1 1.5 0.2 0.01 0.8 0.57 0.4 0.28 0.2 6.25 10 0.2 20

Bio Sequen match P 1 60 0.02 0.08 0.2 0.5 0.07 8 4 2 1 0.5 4 1 0.4 94

Table 4: SPE power, performance, and area The SPEs we have collected data for span an enormous range in power consump-

tion, size, and performance for the kernels in the table. Values in bold are scaled from data in [62, 59, 33, 45, 7, 67, 8, 34, 53,

9, 10, 11, 58, 37, 29, 36, 23, 12, 61, 66, 42, 22, 13, 14, 15, 28, 51, 26, 16, 69, 17, 67, 27, 58, 18, 19, 20], others are estimated

(see Section 4).
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