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Non-Invasive Detection of Early-Stage Fatty Liver Disease
via an On-Skin Impedance Sensor and Attention-Based
Deep Learning

Kaidong Wang, Samuel Margolis, Jae Min Cho, Shaolei Wang, Brian Arianpour,
Alejandro Jabalera, Junyi Yin, Wen Hong, Yaran Zhang, Peng Zhao, Enbo Zhu,
Srinivasa Reddy, and Tzung K. Hsiai*

Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with
most cases going undiagnosed, potentially progressing to liver cirrhosis and
cancer. A non-invasive and cost-effective detection method for early-stage
NAFLD detection is a public health priority but challenging. In this study, an
adhesive, soft on-skin sensor with low electrode-skin contact impedance for
early-stage NAFLD detection is fabricated. A method is developed to
synthesize platinum nanoparticles and reduced graphene quantum dots onto
the on-skin sensor to reduce electrode-skin contact impedance by increasing
double-layer capacitance, thereby enhancing detection accuracy. Furthermore,
an attention-based deep learning algorithm is introduced to differentiate
impedance signals associated with early-stage NAFLD in high-fat-diet-fed
low-density lipoprotein receptor knockout (Ldlr−/−) mice compared to healthy
controls. The integration of an adhesive, soft on-skin sensor with low
electrode-skin contact impedance and the attention-based deep learning
algorithm significantly enhances the detection accuracy for early-stage
NAFLD, achieving a rate above 97.5% with an area under the receiver
operating characteristic curve (AUC) of 1.0. The findings present a
non-invasive approach for early-stage NAFLD detection and display a strategy
for improved early detection through on-skin electronics and deep learning.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is
the most common liver disease worldwide
and one of the leading causes of acute coro-
nary syndrome and stroke.[1] A high-fat diet
increases fatty infiltrate in the liver, and hep-
atocytes (liver cells) have a limited capac-
ity to metabolize excess fat, leading to lipid
accumulation and NAFLD.[2] The global
prevalence of NAFLD is ≈ 25.24%, with
the highest rates found in industrialized
nations such as the United States.[3] Most
patients with fatty liver are undiagnosed,
missing the therapeutic window to prevent
cardiovascular disease, liver cirrhosis, and
cancer.[4] Thus, there is an unmet clinical
need to detect the early stage of NAFLD.

While a liver biopsy remains the gold
standard for diagnosing NAFLD, it is
invasive and prone to bleeding risk.[2a]

Alternative imaging modalities, such
as ultrasound, often fail to detect fatty
liver at an early stage due to their rela-
tively low resolution and sensitivity. An
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individual remains asymptomatic at the early and reversible
fatty liver stage.[4b,5] Notably, the early stages of NAFLD present
a window of reversibility through targeted dietary and lifestyle
interventions. In this context, there is an urgent need to develop
non-invasive and cost-effective sensors for early detection and
intervention.

The measured impedance consists of electrode-skin contact
impedance and body impedance.[6] We aimed to explore on-
skin impedance sensors that could detect the changes in elec-
trical impedance of fatty infiltration in the liver.[7] At low fre-
quencies, the lipid bilayers impede the current flow, resulting
in high impedance. At high frequencies, the bilayers serve as
imperfect capacitors, resulting in tissue and fluid-dependent
impedance. Fat-free tissue, such as skeletal muscle, carries a
high-water content, ions, and protein content, allowing for effi-
cient electrical conductivity.[8] In contrast, fat-infiltrated tissue,
such as fatty liver, is anhydrous with reduced conductivity. These
properties provide the basis for applying the multi-frequency
impedance technique to measure fatty infiltration of the
liver.[6a,9]

However, high electrode-skin contact impedance remains a
barrier to acquiring accurate impedance signals for detect-
ing fatty infiltration in the liver.[6a,7c,10] Nanomaterials such as
graphene quantum dots (GQDs), with their sp2-bonded carbon
structures and negatively charged oxygen-rich functional groups,
have demonstrated the feasibility of reducing electrode-skin
contact impedance.[11] Electrochemical reduction techniques al-
low for precise modulation of the sp2 domains and negatively
charged functional groups of GQDs.[12] This fine-tuning en-
ables the rGQDs to effectively immobilize platinum nanoparti-
cles (PtNPs) on sensing electrodes, thereby significantly increas-
ing the capacitive double-layer (Cdl) to reduce electrode-skin con-
tact impedance.[13]

Deep learning algorithms play a crucial role in identify-
ing the intricate patterns within datasets by employing the
backpropagation technique to adjust parameters across layers
iteratively.[14] The attention-based mechanism in deep learn-
ing algorithms can emulate the human cognitive process by
pinpointing the regions of interest within the data.[15] Inte-
grating the attention mechanism into the deep learning al-
gorithm is anticipated to enable more accurate detection of
early-stage NAFLD by focusing on the vital features within the
dataset.[16]

This study proposed a non-invasive and cost-effective ap-
proach for detecting early-stage NAFLD in high-fat diet-fed
low-density lipoprotein receptor knockout (Ldlr−/−) mice. To
fabricate an adhesive, soft, and on-skin sensor with a low
electrode-skin contact impedance, we seamlessly integrated the
soft poly(styrene-b-isoprene-b-styrene) (SIS) block copolymer,
serpentine conductive gold connections, medical-grade adhe-
sive silicone gels (Silbione RT Gel 4717 A/B), and platinum
nanoparticles-reduced graphene quantum dots (PtNPs@rGQDs)
coating. Furthermore, we introduced an attention mechanism
into the deep learning algorithm to extract relevant features
associated with early-stage NAFLD in the impedance dataset
obtained from the fabricated sensor. We demonstrate a de-
tection accuracy for early-stage NAFLD above 97.5%, with an
area under the receiver operating characteristic curve (AUC) of
1.0.

2. Results

2.1. A Strategy to Detect Early-Stage NAFLD via an On-Skin
Impedance Sensor

Herein, we propose a non-invasive approach for detecting early-
stage NAFLD employing a novel on-skin impedance sensor. The
fabricated impedance sensor, designed to measure alternating
current (AC) electrical properties of liver tissues, offered a safer
alternative to traditional invasive biopsy methods. To build an
early-stage NAFLD dataset, we exposed Ldlr−/− mice to a high-
fat diet regimen for four weeks.[17] By utilizing the Ldlr−/− mice,
which are genetically predisposed to high cholesterol, we ma-
nipulated the progression of NAFLD by administering a high-
fat diet regimen over time. After the non-invasive measurements
using the fabricated impedance sensor, we employed histologi-
cal analysis involving Hematoxylin and Eosin (H&E) and Oil Red
O staining along with image processing (Videos S1 and S2, Sup-
porting Information) to quantify the distribution of lipid droplets
in liver tissues.[18] The staining and image analysis techniques
ensure high accuracy in quantifying lipid accumulation in liver
tissues and identifying early-stage NAFLD. Utilizing 3D confo-
cal microscopy, we observed significant visual contrasts between
the hepatic profiles of Ldlr−/− mice affected by diet-induced alter-
ations and healthy controls, as depicted in Figure 1a, Videos S1
and S2 (Supporting Information). Notably, the Ldlr−/− group ex-
hibited a substantial accumulation of lipid droplets following the
dietary intervention.

To facilitate the detection of early-stage NAFLD using an on-
skin impedance sensor, we utilized a multi-frequency electrical
impedance technique to record both resistive and reactive com-
ponents of the bioelectrical signal traversing the liver.[19] The
measurement accuracy of liver impedance can be adversely af-
fected by electrode-skin contact impedance between the sen-
sor and skin (Figure S1, Supporting Information). To reduce
electrode-skin contact impedance, we engineered an adhesive
and soft impedance sensor with highly conductive and capacitive
sensing electrodes (Figure 1b). The soft SIS substrate facilitated
optimal contact between the sensor and the skin.[20] In contrast,
the adhesive silicone gels serve the dual functions of insulating
the conductive pathways and ensuring sustained adhesion on
the skin (Figure 1d). The functionalization of electrode surfaces
by integrating rGQDs with PtNPs leads to a notable increase in
capacitance at the inner Helmholtz plane (IHP), effectively re-
ducing electrode-skin contact impedance between the sensor and
skin (Figure 1c).[19,21]

To fulfill the binary classification of early-stage NAFLD, we em-
ployed a deep learning architecture that includes residual neu-
ral network (ResNet), attention layers, and fully-connected layer
to extract relevant features associated with early-stage NAFLD
in the impedance dataset obtained from the fabricated sensor
(Figure 1e).[22]

2.2. A Soft, Adhesive, and On-Skin Impedance Sensor

We employed a multi-frequency electrical impedance technique
to record impedance signals associated with the liver using an on-
skin sensor.[6a,23] We fabricated a soft sensor on the skin near the
liver (Figure 2a,b). Biological tissues exhibit capacitive properties,
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Figure 1. Non-invasive detection approach for early-stage NAFLD. a) Comparative confocal microscopy images illustrate lipid droplet accumulation
in a healthy liver versus early-stage NAFLD. b) Schematic representation of the on-skin sensor, featuring a soft SIS substrate, patterned serpentine
gold connections, an adhesive encapsulation layer, and PtNPs@rGQDs sensing electrodes. c) Detailed view of the capacitance increase facilitated by
PtNPs@rGQDs sensing electrodes, including the Inner Helmholtz Plane (IHP) and Outer Helmholtz Plane (OHP). d) A photograph of the soft on-skin
sensor. e) An attention-based deep learning model designed to extract classification features from impedance data obtained from the multiplexed on-skin
sensor.

manifesting frequency-dependent electrical impedance in the
presence of alternating currents. Fat-free tissues are more con-
ductive due to their high-water content, in contrast to the reduced
conductivity of anhydrous fatty tissues. These differential prop-
erties were exploited to differentiate between a healthy liver and
early-stage NAFLD via an on-skin impedance sensor (Figure 2c).

To facilitate the non-invasive detection of early-stage NAFLD,
we engineered an on-skin sensor deformable to irregular objects,
incorporating a four-layer design to optimize softness, mechani-
cal resilience, adhesiveness, and electrical impedance character-
istics. The impedance sensor exhibited high softness, as illus-
trated in Figure 2d–g, including bending (d), twisting (e), stretch-
ing (f), and wrapping (g), facilitating favorable contact with irreg-
ular objects.

The substrate layer, built from an SIS block copolymer,
is selected for its superior film-forming ability, elasticity, and
biocompatibility.[24] The subsequent layer is composed of gold
wires, sputtered into a serpentine configuration to improve
long-term mechanical integrity. The adhesive silicone gel was
sprayed onto the gold wires in the serpentine configuration
to insulate them and enhance dermal contact. To quantita-
tively evaluate the adhesive properties of the impedance sen-
sor, a standard peeling test adhering to the prescribed rate
of 50 mm/min was employed.[25] The detailed schematic of
this testing procedure is delineated in Figure 2h, and corre-
sponding bonding strength measurements are presented in
Figure 2i. The peeling strength was calculated by the ratio of
the peeling force (F) to the film width (w). The peak peel-
ing strength reached 163 N/m, demonstrating that the fabri-
cated impedance sensor had high adhesiveness to ensure sta-

ble contact between the sensor and skin for impedance record-
ings. The structural robustness of the sensor was evaluated
through extensive bending tests. These tests revealed that the
variances in electrical impedance signals (Figure 2j) and cyclic
voltammetry (Figure 2k) remained under 1% even after the
100th bending test cycle, demonstrating excellent mechanical
stability.

2.3. Synthesis of PtNPs@rGQDs to Reduce Electrode-Skin
Contact Impedance

The measured impedance consists of electrode-skin contact
impedance and body impedance associated with the liver.[6a-c]

This study aimed to reduce electrode-skin contact impedance
and acquire more accurate impedance signals associated with
the liver to differentiate early-stage NAFLD and healthy con-
trols. Thus, we synthesized PtNPs@rGQDs onto the substrate
electrode to reduce electrode-skin contact impedance.[26] The
synthesis of PtNPs@rGQDs involved a two-step electrochemi-
cal process where GQDs were first reduced onto substrate elec-
trodes, and then PtNPs were electrochemically deposited, as il-
lustrated in Figure 3a. As seen in Figure 3b-i, the PtNPs, with
a size of ≈ 30 nm, are supported by well-dispersed rGQDs.
The EDX elemental mapping images indicated the presence
of C and Pt elements (Figure 3b-iv,v). The corresponding en-
ergy spectrum data are exhibited in Figure 3b-vi. The peaks
at 0.277 keV and 2.331, 9.442, 11.251, and 12.942 keV con-
firmed the presence of C and Pt, respectively (Figure 3b-vi; Figure
S5, Supporting Information).[27] The TEM grid was made from
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Figure 2. Fabrication and functional testing of a soft impedance sensor. a) Localization of electrodes on the human body. b) Diagram depicting the
electrical current pathways. c) Graphical representation of current flow patterns at different frequencies, contrasting between a healthy liver and an
early-stage NAFLD. d–g) Sequential illustrations of the soft sensor subjected to mechanical deformations: d) bending, e) twisting, f) stretching, and
g) conforming to surface contours. h) Illustration of a peeling test. i) Force-displacement curve illustrating the adhesive sensor detachment from the
skin. j,k) Comparative analysis of electrical impedance and cyclic voltammetry before and after the 100th bending test cycle, assessing durability and
functional integrity.

copper, and a Cu element peak at 8.048 keV was observed.
The results of the EDX elemental mapping images are con-
sistent with the corresponding energy spectrum data, demon-
strating that we succeeded in the synthesis of PtNPs@rGQDs
on the sensing electrode surface using two-step electrochem-
ical depositions. From the high-resolution TEM image of Pt-
NPs@rGQDs (Figure 3b-ii), the detected lattice distance of
0.23 nm corresponded well with the Pt (111) plane, known for
its stable structures, thus contributing to the accurate collec-
tion of impedance signals for NAFLD detection.[28] The elec-
trochemical reduction of GQDs effectively adjusted the ratio of
sp2-hybridized carbon atoms and oxygen-containing functional
groups.[12,29] The oxygen-containing functional groups and well-
dispersed structures provided additional anchoring sites for Pt
NPs during subsequent electrochemical deposition. Raman mea-
surements identified the sp2 domain (G-band) and sp3 domain
(D-band). A higher ratio (1.09-fold increase) of IG to ID indicated
that more sp2 carbon atoms were generated after electrochem-
ical reduction (Figure 3c), which is beneficial for faster charge
transfer.[30]

We utilized X-ray diffraction (XRD) measurement to ana-
lyze the crystal structures of the synthesized PtNPs@rGQDs
(Figure 3d). The XRD peaks of PtNPs@rGQDs at 2𝜃 of 39.8°,
46.2°, 67.5°, and 81.3° were indexed to the (111), (200), (220), and
(311) planes of Pt, confirming the reliable deposition of PtNPs.[31]

We employed an X-ray photoelectron spectroscopy (XPS) test

to determine the valences of PtNPs@rGQDs. The C 1s spec-
trum showed four peaks at 288.4, 285.7, 285.0, and 284.5 eV,
corresponding to C═O, C−N, C−C, and C═C bonds, respec-
tively (Figure 3e). For the Pt 4f spectrum, the pairs of peaks at
74.3/71.0 and 74.9/71.7 eV were assigned to Pt0 and Pt2+, respec-
tively (Figure 3f).[32] These results demonstrated that the well-
dispersed rGQDs, with highly conductive sp2-hybridized carbon
and sufficient oxygen-containing functional groups, can anchor
Pt NPs tightly on the sensor to reduce electrode-skin contact
impedance.

We employed electrochemical impedance spectroscopy to an-
alyze the deposited PtNPs@rGQDs (Figure 3g,h).[33] It was ob-
served that the intrinsic high impedance of the substrate elec-
trodes, stemming from their limited active surface area, pre-
sented a significant barrier to accurate recordings (Figure 3g).
The phase angle, reflecting the voltage-current phase displace-
ment, trends toward neutrality at higher frequencies, suggest-
ing a predominance of capacitive behavior at the interface
(Figure 3h).[34] The electrochemical reduction of PtNPs@rGQDs
onto the substrate electrode exhibited a significant impedance re-
duction due to the elevated specific capacitance of the composite
layer. Beyond the 1 kHz threshold, the PtNPs@rGQDs phase an-
gle plot approached nullity, signifying a capacitance-dominated
response conducive to electrical recordings (Figure 3h). The
comparisons of impedance and phase angle between the un-
modified substrate electrode, PtNPs-modified electrode, and
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Figure 3. Structural characterizations of PtNPs@rGQDs. (a) Randles equivalent circuit and schematic representation of the two-step synthesis process
for PtNPs@rGQDs sensing electrodes. b) High-resolution TEM images of PtNPs@rGQDs (i, ii, and iii), elemental mapping images for carbon (C, iv)
and platinum (Pt, v), and energy spectrum to confirm the existence of C and Pt. The TEM grid was made from copper, and a Cu element peak was
observed. c) Raman spectroscopy analysis of GQDs and rGQDs. d) XRD pattern of PtNPs@rGQDs. e,f) XPS spectra of the C 1s (e) and Pt 4f (f) regions.
g,h) Comparative plots of electrical impedance g) and phase angle h) measurements for PtNPs and PtNPs@rGQDs on the substrate electrode.

PtNPs@rGQDs-modified electrodes across a spectrum of fre-
quencies were detailed in Tables S1 and S2 (Supporting Infor-
mation). Employing a multi-frequency electrical impedance tech-
nique enables the detection of various tissues, given the distinct
impedance properties of diverse tissue architectures.

Electrode-skin contact impedance is the resistance encoun-
tered when electrical current flows from an electrode through the
skin, significantly influenced by various factors such as the prop-
erties of the electrode material and the methods used to secure
the electrode to the skin, including the application of adhesives
to enhance contact.[35] To minimize measurement impedance, it
is important to ensure the skin-electrode interfaces have high ca-
pacitance and are highly conductive. Strong adhesion to the skin
is crucial for reducing measurement impedance. The reduction
of electrode-skin contact impedance is crucial for enhancing the
quality of bioelectrical signal capture, as lower impedance leads
to reduced noise and more precise readings. The utilization of
as-synthesized PtNPs@rGQDs nanomaterials has been shown
to increase the contact area between electrodes and skin due to
the unique nanostructures of PtNPs@rGQDs (Figure 3b). Con-
currently, the adhesive layer ensures a robust bond between the
electrodes and skin, enhancing contact by expanding the con-
tact area. Accordingly, the double-layer capacitance (Cdl) was in-
creased (Figure 3a, Randles equivalent circuit), thereby dimin-
ishing the electrode-skin contact impedance (Formula 1).[35] This
optimized interaction between the electrode and skin not only
improves signal fidelity but also paves the way for advancements
in bioelectrical signal monitoring technologies. In this work, we
demonstrated that the unique nanostructures of as-synthesized
PtNPs@rGQDs (Figure 3b) combined with adhesive layer de-
sign (Figure 2h-i) are effective in reducing electrode-skin contact
impedance (Figure 3g,h). The electrode-skin impedance can be
derived as:[35b]

Z(w) = Rd +
1

jwCdl +
1

Re

, w = 2𝜋f (1)

2.4. An Attention-Based Deep Learning Model to Classify
Early-Stage NAFLD and Healthy Controls

We used a mouse model to develop the disease model
of early-stage NAFLD via low-density lipoprotein receptor
knockout (Ldlr−/−) mice and a high-fat diet regimen. Ac-
cordingly, we designed the on-skin impedance sensor patch
(≈42 mm× 28 mm× 0.2 mm) based on the mouse body size. The
measured impedance includes electrode-skin contact impedance
and body impedance. We synthesized the PtNPs@rGQDs nano-
material on sensing electrodes to reduce electrode-skin contact
impedance for highly accurate body impedance recordings. As
shown in Figure S4 (Supporting Information), the measured
impedance decreased (≈71.6% decline at 50 kHz) rapidly with
the increase in electrode diameter from 1 to 3 mm. Although the
measured impedance continued to decrease with the increase in
electrode diameter from 1 to 4 mm, the decrease in measured
impedance became smaller and may bring negative effects due
to narrower electrode spacing, impairing the measurement of
impedance in multi-electrode sensors.[36] Thus, we adopted the
electrode with a diameter of 3 mm for impedance measurements.

In Figure 4a, the impedance matrix associated with the liver
was obtained using a fabricated on-skin sensor over a multi-
frequency range of 1 to 100 kHz.[9a,34,37] Figure 4b,c illustrate the
datasets from Ldlr−/− mice subjected to standard and high-fat di-
ets, respectively. To improve the fidelity of the impedance data
associated with the liver, we engineered an on-skin soft sensor
with minimal electrode-skin contact impedance. Furthermore,
we developed an attention-based deep learning model to differ-
entiate between impedance signals related to early-stage NAFLD
and healthy controls, as shown in Figure 4e–g. The collected data
encompassed forty 15 × 30 impedance matrices, corresponding
to 20 early-stage NAFLD cases (Figure 4c) and 20 healthy con-
trols (Figure 4b). As depicted in Figure 4d, the datasets were
divided into a training set (50%), a validation set (20%), and a
test set (30%). To classify early-stage NAFLD and healthy con-
trols, we integrated a channel attention module (Figure 4f) and
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Figure 4. An attention-based deep learning model to classify early-stage NAFLD and healthy controls using impedance matrices obtained from an
on-skin sensor. a) A representative impedance matrix associated with the liver obtained from an on-skin sensor near the liver region. b) Impedance
matrices associated with the livers following a standard diet regimen (mouse number: n = 20). c) Impedance matrices from the livers subjected to a
high-fat diet regimen (mouse number: n = 20). d) Dataset partitioning ratio for training, validation, and testing sets. e) Actual detection photographs
during animal experiments (electrode diameter: 3 mm). f) The architecture of the attention-based deep learning model, including the on-skin impedance
sensor mounting location near the mouse liver. g,h) Illustrations of the channel g) and spatial h) attention mechanisms within the model. i) ROC curves
comparing the performance of ResNet and AttentionResNet in detecting early-stage NAFLD. j,k) Confusion matrices for early-stage NAFLD detection
using ResNet j) and AttentionResNet k). l) Validation of healthy and early-stage NAFLD differentiation based on lipid droplet distribution, as revealed
by Oil Red O histological staining.

a spatial attention module (Figure 4g) into the Residual Neural
Network (ResNet) architecture (Figure 4e, Figures S2 and S3,
Supporting Information).[15c,16b,38] Residual building blocks were
implemented to mitigate the vanishing and exploding gradient
problem.[16b] In addition, we employed 1 × 1 convolutional lay-
ers to enhance network training efficiency and inference speed
with fewer parameters.[39]

The confusion matrix for early-stage NAFLD and healthy con-
trols was calculated based on detection sensitivity and speci-
ficity, with ground truth labels derived from Oil Red O stain-
ing and lipid droplet distribution analysis (Figures 4k and 5).[18b]

The matrix confirmed that the AttentionResNet model correctly
identified early-stage NAFLD and healthy controls in the test set
(Figure 4j). In contrast, the ResNet model yielded misclassifica-
tion rates of 16.7% for early-stage NAFLD and 33.3% for healthy
controls (Figure 4i). The detection accuracy of the AttentionRes-
Net model for early-stage NAFLD reached above 97.5%, with an
area under the receiver operating characteristic curve (AUC) of
1.0 (Figure 4h). The detection performances using the Attention-
ResNet model (AUC: 1.0) outperformed those using the ResNet
model (AUC: 0.88), as shown in Figure 4h. These metrics under-
score the effectiveness of the attention-based deep learning al-
gorithm in accurately categorizing high-fat diet-induced Ldlr−/−

mice into early-stage NAFLD with high accuracy.[40] Thus, this
attention-based deep learning algorithm proved highly effective
in detecting early-stage NAFLD.[7d,19]

2.5. Validation of Early-Stage NAFLD via Histological Staining
and Statistical Analysis of Lipid Droplet Distribution

Here, we presented a comprehensive protocol for establishing
a mouse model of early-stage NAFLD using Ldlr−/− mice fed a
high-fat diet for four weeks (Figure 5). We utilized an on-skin
impedance sensor for early NAFLD detection (Figure 5c). We
validated it through hepatic dissection and histological staining
(Figure 5d), along with a quantitative analysis of lipid droplet dis-
tribution (Figure 5f) after image processing (Figure 5e).[18b,41]

After the non-invasive detection, the liver was sectioned and
stained ex vivo using Hematoxylin & Eosin (H&E) and Oil Red
O.[42] H&E staining is a widely used histology method that al-
lows for the differentiation of different types of tissues and cells.
Oil Red O staining is a specialized technique that visualizes lipid
droplets in cells and tissues.[18b] The transformation of the H&E-
stained sections (Figure 5e-i,e-ii) and Oil Red O-stained sections
(Figure 5e-iii,e-iv) facilitated semi-quantitative particle analysis.
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Figure 5. A comprehensive protocol was employed to validate the differentiation between healthy and early-stage NAFLD. a) Genetic modification
through Ldlr−/− gene knockout in mice. b) Implementation of a high-fat diet regimen in Ldlr−/− mice for a duration of 4 weeks. c) Application of an
on-skin impedance sensor near the liver region. (d) Dissection and subsequent histological staining of liver tissues from both healthy and early-stage
NAFLD. e) Illustrative processed images from H&E staining (i: healthy liver, ii: early-stage NAFLD) and Oil Red O staining (iii: healthy liver, iv: early-stage
NAFLD). f) Statistical analysis comparing the number of lipid droplets in early-stage NAFLD from high-fat diet-induced Ldlr−/− mice to those in healthy
controls (p < 0.0001 vs control for lipid droplet size from 2 to 7, n = 20; p < 0.001 vs control for lipid droplet size from 7 to 13, n = 20).

Fat-free tissue is electrically conductive due to its high-water and
electrolyte content (including ions and proteins), whereas fatty
tissue is less conductive due to its anhydrous properties.[7d,19]

The analyzed data demonstrated a significant increase in lipid
droplets in the Ldlr−/− mice fed a high-fat diet (Figure 5f). The
observation was further supported by a substantial increase in
the accumulation of small-sized lipid droplets, suggesting early-
stage NAFLD. Electrical impedance variations resulting from the
differing conductive properties of fatty and hydrated tissues were
observed and illustrated in Figure 4b,c.

The alignment of lipid droplet quantifications with impedance
recordings obtained from the fabricated on-skin sensor vali-
dated the effectiveness of the proposed non-invasive strategy for

early-stage NAFLD detection. Incorporating an attention-based
deep learning algorithm significantly enhanced the accuracy of
NAFLD detection, thus facilitating early intervention. The pro-
posed protocol, as seen in Figure 5, confirmed the early stage of
NAFLD and demonstrated the effectiveness of on-skin sensors in
early detection.

3. Discussion

The non-invasive detection of early-stage NAFLD via electrical
sensing represents a significant challenge. To overcome this chal-
lenge, we developed an adhesive and on-skin impedance sen-
sor that can conform to irregular body shapes and employed an
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attention-based deep learning model. The deep learning model
was designed to differentiate the impedance signals associated
with early-stage NAFLD and healthy controls.[19,38b,43] Our ap-
proach used the Ldlr−/− mouse model subjected to a high-
fat diet to establish a dataset of early-stage NAFLD. We uti-
lized histological staining to validate the progression of NAFLD.
Our technique employed multi-frequency impedance to measure
deeper and organ-specific impedances. This method reveals that
organ-derived signals have a stronger correlation with disease
progression.[19]

A notable barrier to effectively measuring body impedance is
the disturbance caused by electrode-skin contact impedance. To
mitigate this issue, we synthesized PtNPs@rGQDs to reduce
electrode-skin contact impedance.[31a,44] This improvement is piv-
otal for advancing non-invasive detection capabilities and could
significantly enhance the detection and management of early-
stage NAFLD.

The primary recommendation for NAFLD therapeutics in-
volves lifestyle modifications such as weight control, dietary sup-
plements, exercise, which have proven to be the most effective
approach.[2b,45] Weight loss can decrease steatosis, although the
sustained change was challenging to achieve.[46] A diet low in
carbohydrates and high in fiber and omega-3 fatty acids could
mitigate NAFLD in the long term, though the effects of short-
term dietary changes on the progression of the disease are yet to
be determined.[47] Exercise significantly enhances the manage-
ment of NAFLD, with high-intensity exercises yielding superior
results, although such regimens are not advisable for individu-
als with underlying cardiovascular complications.[46] Many en-
zymes are important in the processes of intracellular metabolism
and lipotoxicity, notably fatty acid synthase (FAS) and acetyl-CoA
carboxylase (ACC). Peroxisome proliferator-activated receptors
(PPARs) facilitate lipid oxidation and the expression of fatty acid
transport proteins (FATPs), positioning these molecules as po-
tential therapeutic targets in the management of NAFLD. How-
ever, the drug treatment has different levels of side effects.[2b]

In addition to lifestyle adjustments and drug interventions, sur-
gical options present a viable treatment pathway for critical
NAFLD cases, particularly those facing obesity-associated comor-
bidities such as cardiovascular diseases.[48] Nonetheless, the in-
herent complications and risks associated with such invasive
procedures restrict their applications across the broader patient
population.

The development of deep learning, multiomics, and gut mi-
crobiota has improved the diagnosis, therapeutics, and man-
agement of NAFLD.[49] The application of deep learning algo-
rithms in the areas of precision diagnostics and prognostic as-
sessment has attracted significant interest within the clinical
field, warranting additional research in the context of recom-
pensation for NAFLD-related cirrhosis.[49a] Machine learning al-
gorithms often require substantial preprocessing and domain-
specific feature engineering to handle datasets. Human cogni-
tion dynamically focuses on pertinent information while disre-
garding irrelevant data.[15b] Thus, we applied an attention mech-
anism that has shown promising results in various fields.[22,44b]

This study aimed to detect early-stage NAFLD using an on-skin
impedance sensor. Impressively, our model achieved a predic-
tion accuracy above 97.5%, underscoring the effectiveness of the
attention mechanism for feature extraction in multi-frequency

impedance analysis. The integration of multiomics data has il-
luminated the genetic underpinnings of NAFLD. Investigating
rare variants predicted to result in loss of function within genes
of interest, alongside analyses of blood RNA expression and
plasma proteomics, has identified potential causative genes and
explored how alterations in their activity may play a role in dis-
ease pathogenesis.[49b] Enhanced analytical techniques for dis-
tinguishing between healthy and unhealthy microbiomes, com-
bined with a deep comprehension of the dietary and additional
factors affecting the gut-liver axis, will aid in the development
of preventative measures and therapeutic approaches for this
condition.[49c]

The present strategy is aimed at the binary classification
of early-stage NAFLD and healthy controls. The early detec-
tion of NAFLD is of paramount importance given its propen-
sity to progress into non-alcoholic steatohepatitis (NASH), liver
cirrhosis, and liver cancer.[50] Variations in liver compositions
and cellular characteristics are pivotal in distinguishing between
healthy and different liver diseases.[50] The implementation of
a multi-electrode and multi-frequency strategy combined with
deep learning algorithms presents a feasible approach to accu-
rately discern the progression of liver diseases. We have proposed
a novel method that employs on-skin impedance sensors coupled
with attention-based deep learning algorithms for distinguish-
ing early-stage NAFLD from healthy states. This approach holds
the potential to facilitate the transition from binary to multi-
classification, thereby enabling the detection of various liver dis-
eases at different stages. Despite the promising premise of the
proposed method, it is important to note that experiments de-
signed to validate the feasibility of a multi-classification strategy
for different liver diseases detection have yet to be conducted.
Such validation is essential to ascertain the efficacy and relia-
bility of the proposed method. Looking ahead, we envision sig-
nificant expansions of the proposed detection method to encom-
pass multi-classification capabilities, thereby enhancing its utility
in diagnosing a wider array of liver diseases. Moreover, explor-
ing the integration of impedance sensors with portable circuits,
Bluetooth technology, and battery power presents a viable path-
way to eliminate reliance on bulky analytical devices. This evolu-
tion from on-skin to wearable impedance sensors marks a crit-
ical step forward, enabling the continuous monitoring of phys-
iological signals. Such advancements are particularly pertinent
for the early detection of NAFLD in both asymptomatic and pre-
symptomatic individuals, offering a proactive approach to man-
aging this increasingly prevalent liver condition.

Given the association of NAFLD with obesity, type 2 diabetes,
and hypertension, the necessity for early detection and interven-
tion is evident.[51] Using an on-skin electrical sensor combined
with an attention-based deep learning algorithm shows promise
in improving the early detection of diseases. Our approach, which
enables accurate and non-invasive detection, offers the potential
to improve patient prognoses and contribute to broader public
health outcomes.

4. Experimental Section
Materials: All chemical reagents were obtained from commercial

sources. Toluene (≥99.5%), H2SO4 (≥97.0%), graphene quantum
dots (1 mg mL−1), and chloroplatinic acid hydrate (H2PtCl6, ≥99.9%
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trace metals basis) were purchased from Sigma–Aldrich, USA. Styrene-
isoprene-styrene (SIS, D1113) elastomer was acquired from Kraton
Corporation. High-tack silicone gel (Silbione RT Gel 4717 A/B) was
purchased from Factor II, Incorporated. Ultrapure water (18.2 mΩ cm)
was generated using a Millipore apparatus.

Device Fabrication: First, an ≈ 200-μm-thick SIS substrate was cast
from its solution in toluene onto a glass wafer modified with a PVA sac-
rificial layer (layer 1). Then, an Au connection was sputtered onto the SIS
substrate using a pre-processed mask via a laser cutting machine (ULTRA
R5000, Universal Laser System) (layer 2). After that, the diluted silicone gel
(Silbione RT Gel 4717 A/B) was sprayed onto the SIS substrate to encapsu-
late the Au connection, using a pre-processed mask to shield the sensing
electrodes (layer 3). Finally, the sensing electrode was coated with rGQDs
and PtNPs through a two-step electrochemical reduction process (layer
4).

Characterizations: High-resolution transmission electron microscopy
images (HRTEM) and energy-dispersive X-ray (EDX) elemental mapping
images were obtained on an FEI Titan TEM operated at 300 kV. X-ray
diffraction (XRD) analysis was performed on a Panalytical X’Pert Pro X-ray
Powder Diffractometer. Raman spectra were acquired from a Raman spec-
trometer (HORIBA Scientific) using a 488 nm laser. X-ray photoelectron
spectroscopy (XPS) measurements were conducted on a Kratos Analytical
AXIS Ultra DLD photoelectron spectrometer.

Mouse Disease Model: Mice homozygous for the Ldlrtm1Her knockout
mutation were obtained from Jackson Laboratories (Strain 0 02207) to
generate Ldlrtm1Her/tm1Her (Ldlr−/−) mice. All mice were fed a high-fat diet
for four weeks. Mice were fed a high-fat diet (Teklad TD.88137, Envigo, In-
dianapolis, IN) composed of 42.1% fat, 15.2% protein, and 42.7% carbo-
hydrates based on caloric content for four weeks. The diet was supplied as
soft pellets and replaced every 2–3 days to ensure freshness. Animal exper-
iments were performed in compliance with the UCLA Institutional Animal
Care and Use Committee (IACUC) under animal welfare assurance num-
ber A3196-01. The Animal Research Committee (ARC) reviewed all animal
procedures performed at UCLA. The mice colony was housed in the facil-
ities maintained by the UCLA Department of Laboratory Animal Medicine
(DALAM).

Electrical Measurements: Electrical impedance measurements were
performed on mice following the approved ethical guidelines. Before the
measurements, the depilation of the mouse fur was conducted as a preop-
erative hair removal procedure. Subsequently, an on-skin soft sensor was
carefully mounted on the skin near the liver area. The sensing electrodes
were controlled by a homemade module, ensuring precise operation. Elec-
trical impedance was meticulously measured across a frequency range
from 1 to 100 kHz, with a 5 mV amplitude at the open-circuit potential,
using an impedance analyzer (E4980AL, Keysight). The impedance mag-
nitudes were acquired at 30 data points per frequency decade to achieve
detailed analysis, allowing for a comprehensive evaluation of the electri-
cal properties at the targeted location. The detection time is ≈ 15 min for
each mouse, including inhalation anesthesia of the mouse (≈2 min), hair
removal (≈3 min), and electrical impedance measurements (≈10 min).
The six-electrode impedance measurements include 15 combinations for
the electrode pair. For each electrode pair, 30 different frequencies were
employed from 1 to 100 kHz.

Machine Learning Algorithms: The machine learning framework con-
sisted of ResNet, attention layers, and a fully-connected layer.[16b] Fully
convolutional layers were utilized to accelerate the training and pre-
diction processes by reducing the number of machine parameters.[39]

The attention module, including spatial and channel attention, was em-
ployed to extract representative features in the multi-frequency impedance
dataset.[38,43b] The PyTorch torch-metrics library was adopted to evaluate
the performance of the proposed deep learning algorithm, with metrics
such as ROC, Accuracy, and Confusion Matrix.[52] The code for attention-
based machine learning is available in the GitHub repository (https://
github.com/cardioAI/AttentionFattyLiver).

Statistical Analysis: All data are presented as the mean ± standard er-
ror of the mean (SEM). The analysis included impedance results from 20
mice on a standard diet regimen and 20 mice on a high-fat diet regimen.
Statistical evaluation of the groups was conducted using a one-way analy-

sis of variance (ANOVA) to assess differences among groups, and a two-
way ANOVA to examine the effects under varying conditions. A p-value of
< 0.05 was considered statistically significant. All statistical analyses were
carried out utilizing GraphPad Prism version 9.0.1 (GraphPad Software,
Inc.).
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