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ABSTRACT OF THE DISSERTATION

Enhancing Atrial Fibrillation Detection Using Adaptive Template Matching

By

Stephanie Sun

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2023

Professor Glenn Healey, Chair

Among all cardiac arrhythmia diseases, atrial fibrillation (AF) is the most prevalent and is

associated with a chaotic and fast heartbeat, which often increases the risk of cardioembolic

stroke and other heart-related problems, including myocardial infarction and progressive

heart failure. Thus, it is important to diagnose AF in patients in the early stages and to

have them receive proper treatment before the condition worsens. Surface electrocardiogram

(ECG), implantable cardiac monitor (ICM), and Holter monitor analyses by doctors are

the standard methods to diagnose AF in clinics. However, such analyses/diagnoses are

time-consuming and sometimes difficult to interpret due to noise or data contamination.

In this thesis, a new AF detection algorithm is proposed and evaluated using four available

databases. Before discussing the new algorithms developed in this thesis, a basic introduction

of the heart and its arrhythmia are reviewed in Chapter 1. An overview of existing AF

detection methods and algorithms used in clinical and academic research is provided in

Chapters 2 and 3. Chapter 4 is dedicated to exploring the real-life factors that impact AF

detection. The new QRS template-based AF detection method is introduced and discussed

in Chapter 5 through 7. It is shown that the new AF detection algorithm improves detection

accuracy over standard methods in Chapter 8.
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Chapter 1

Introduction

Arrhythmias are abnormal heart rhythms such as asystole and atrial fibrillation (AF). Clini-

cians diagnose and manage arrhythmias using electrocardiograms (ECGs) from devices such

as Holter monitors, external loop recorders, post-event recorders, and insertable cardiac

monitors (ICMs) [1] [2]. AF is the most frequently observed arrhythmia and is an irregular

and often rapid heart rate that induces poor blood flow and can cause blood clots, stroke,

and heart failure. This condition can be intermittent or continuous and sometimes causes

symptoms such as fatigue, shortness of breath, dizziness, or palpitations [3]. In the United

States, AF was the underlying cause of death for 26,535 people in 2019, and 12.1 million are

projected to have AF in 2030 [4] [5] [6] [7].

A Holter monitor is a noninvasive technique for continuously recording ECGs for a few days

using chest electrodes [1] [2]. An external loop recorder is the same as the Holter monitor but

can continuously record ECGs for up to a month. A post-event recorder is placed directly

on a patient’s chest and records ECGs for up to a month like an external loop recorder.

These devices allow a physician to identify arrhythmias without symptoms or to assess the

overall arrhythmia burden over the recording period. However, the recording duration can
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be insufficient if arrhythmic events are rare or vary over time. ICMs are implanted near

a patient’s heart and can monitor heart rhythms continuously for up to three years. They

enable the detection of rare or varying events over time. ICMs also allow the continuous long-

term monitoring of abnormal heart rhythms [8] and support the identification of symptom-

rhythm correlations in patients with infrequent or unpredictable symptoms. In the case of

AF, the ICM can be used for AF detection and to quantify the AF burden [9]. The long

duration associated with ICMs increases the importance of developing automated processing

techniques that can adapt to changes in the measured signals.

AF detection (AFD) with an ICM is commonly a rate-based algorithm that analyzes whether

RR intervals are consistent or variable [10] [11] [12] [13] [14]. A critical challenge for these

algorithms is the presence of ventricular ectopic beats which can lead to irregular RR in-

tervals and false AF detection. This challenge has been addressed outside of the context

of AFD using algorithms that analyze individual heartbeat morphological features, ampli-

tudes, rhythm patterns, and correlations. Krasteva and Jekova [15] developed a method

for identifying ventricular ectopic beats using a model derived from a set of three normal

heartbeats selected by an operator. Decision rules based on signal descriptors are used to

compare ECG waveforms to the model to recognize ectopic beats. Given a set of identified

beats, de Chazal [16] used a set of time-domain features and a linear classifier to distin-

guish supraventricular and ventricular ectopic beats. Martinez, Alcaraz, and Rieta [17] used

principal component analysis to model and remove ectopic beats from ECGs. This work

only considered ectopic beats in ECGs containing AF, which may limit application to other

signals.

In this dissertation, we develop automated methods for AF detection that use adaptive

templates to differentiate normal and ectopic beats. Adaptive templates also estimate the

number of P waves in an ECG segment. These templates are particularly useful for modeling

changes in signal morphology due to factors such as measurement device position/orientation

2



change, which can occur during long-duration monitoring by devices such as ICMs. The

methods utilize probabilistic models derived using logistic regression for the dependence of

the likelihood of AF on various sets of measurable variables. We assess the methods using

over 5000 ECG segments of 2.5 minutes from MIT-BIH databases. The assessment separately

quantifies the benefit of the QRS and P wave templates for detection accuracy.

3



Chapter 2

Overview

2.1 Heart Rhythm Background

The human heart pumps blood through closed vessels to every tissue within the body [18] [19].

The blood delivers nutrients and oxygen to cells. When the cells and tissues do not receive

blood, they stop functioning at their total capacity and can malfunction and die. The heart

has four separate chambers: two atria (upper chambers) and two ventricles (lower chambers)

(See Figure 2.1). A septum is a wall that separates the atria from the ventricles. The valves

control blood flow within the four chambers. When blood becomes low in oxygen the heart

pumps it to the lungs where oxygen is added for distribution across the body [19].

An electrical pulse initiates the heartbeat. The impulse starts in the sinoatrial (SA) node,

which is a small bundle of specialized muscle cells located in the right atrium. The electrical

activity travels through the atrial walls and stimulates contraction to force blood into the

ventricles [20]. The SA node sets the heart’s rate and rhythm. The impulse rhythmically

repeats to drive the heartbeat and supply blood to the human body.
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Figure 2.1: Typical heart anatomy and normal ECG rhythm waveform. Parts of the figure
were drawn by using a picture titled “Heart” from Servier Medical Art. Servier Medical
Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License
(https://creativecommons.org/licenses/by/3.0/).

Cardiac arrhythmias are irregular heart rhythms, including tachycardia (very fast heart

rhythm) and bradycardia (very slow heart rhythm) [21]. Some arrhythmia types are asymp-

tomatic. When present, symptoms like palpitations, asystole (pause between heartbeats),

lightheadedness, passing out, shortness of breath, or chest pain may occur in more serious

cases [22]. While most arrhythmia cases are not serious, they can predispose a person to

complications such as stroke, heart failure, and sudden death [23] [24].

Arrhythmias are often categorized into extra beats, supraventricular tachycardias, ventric-

ular arrhythmias, and bradyarrhythmia [24] [25] [26]. Arrhythmias are due to the heart’s

electrical conduction system not working properly [23]. Several devices can help diagnose

arrhythmias, including an electrocardiogram (ECG) and Holter monitor. In this chapter, we

give an overview of typical arrhythmias for comparison to atrial fibrillation, which is most

relevant to this dissertation topic.
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Figure 2.2: An illustration of typical heart rhythm

2.1.1 Normal Heart Rhythm

The SA node in the right atrium generates the heart rhythm by sending electrical signals that

generally start each heartbeat [27]. The heart-signaling process usually goes smoothly in a

healthy heart, resulting in a normal heart rate of 60 to 100 beats a minute (See Figure 2.1

and Figure 2.2) [27] [28] [29] [30]. However, an arrhythmia can occur if the heart beats too

early, late, slowly, quickly, or at irregular intervals [3] [31] [32]. This arrhythmia happens

because there is a dysfunction in the heart’s electrical conduction system.

2.1.2 Atrial Fibrillation

Among the many different forms of arrhythmias, atrial fibrillation (AF) is the most com-

mon [3] [31] [32]. AF is an irregular and often very rapid heart rhythm. In other words,

AF induces varying and often very fast or slow heartbeats. In AF, the electrical impulses in

the atria (upper chambers of the heart) are disorganized and are unsynchronized or out of

coordination with the ventricles (lower chambers of the heart). Examples of signals from a

6



Figure 2.3: An illustration of atrial fibrillation

normal heart and with AF are seen in Figure 2.3 [3] [31]. It can be observed that the electri-

cal impulses in the normal heart proceed in an orderly flow, but the electrical impulses in the

AF heart are chaotic. In AF, the heart may pump over 150 times per minute due to irregular

heart rhythm. But in a healthy heart, the heart pumps approximately 60 to 100 times per

minute. During AF, the multiple ectopic foci in the atria discharge at an extremely fast rate

which leads to multiple irregular stimulations. As the atria cannot respond mechanically to

the disorganized electrical signal stimulation, the atria twitch rather than contract properly.

2.1.3 Atrial Flutter

In atrial flutter [33], the atria beat too quickly, as shown in Figure 2.4, causing a fast, but

usually regular, rhythm. Atrial flutter is a type of arrhythmia caused by problems in the

heart’s electrical system. Atrial flutter is like AF, which causes abnormal heart beat patterns,

but atrial flutter is more organized and less chaotic than AF. Sometimes a person may have

both atrial flutter and AF. People with atrial flutter may be asymptomatic, but the disorder

can increase the risk of complications such as stroke and heart failure.
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Figure 2.4: An illustration of atrial flutter

2.1.4 Supraventricular Tachycardia

Supraventricular tachycardia (SVT) is an abnormally fast or erratic abnormal heart rhythm

that affects the atria (See Figure 2.5) [34]. SVT is also called paroxysmal supraventricular

tachycardia. During an episode of SVT, the heart rate is about 150 to 220 times per minute,

but it can occasionally beat faster or slower. Most people with SVT can have healthy lives

without activity restrictions or treatment. Others may need to control or eliminate the rapid

heartbeats and related symptoms.

2.1.5 Ventricular Tachycardia

Ventricular tachycardia (VT) is an arrhythmia due to irregular electrical signals in the ven-

tricles (See Figure 2.6) [35]. A healthy heart typically beats about 60 to 100 times a minute

at rest. In VT, the heart beats faster, usually 100 or more beats a minute. Sometimes the

rapid heartbeat prevents the heart chambers from properly filling with blood. As a result,

8



Figure 2.5: An illustration of supraventricular tachycardia

the heart may not be able to pump enough blood to the body. If this happens, a person may

feel short of breath or lightheaded, or lose consciousness. VT episodes may be brief and last

only a few seconds without harm. However, episodes more than a few seconds (sustained

VT) can be life-threatening. Sometimes VT can cause sudden cardiac arrest.

2.1.6 Ventricular Fibrillation

Ventricular fibrillation (VF) is an arrhythmia [36]. During VF, disorganized heart signals

cause the ventricles to twitch uselessly (see Figure 2.7). As a result, the heart doesn’t pump

blood to the rest of the body. Because VF is the most frequent cause of sudden cardiac

death, it requires immediate medical attention.

9



Figure 2.6: An illustration of ventricular tachycardia

Figure 2.7: An illustration of ventricular fibrillation

2.1.7 Bradyarrhythmia

Bradyarrhythmia is a heart rhythm with a slow resting heart rate that is below 60 beats

a minute that indicates the heart isn’t pumping enough blood. Types of bradyarrhyth-

mia include sick sinus syndrome (SSS), conduction block, and first-degree to third-degree

atrioventricular (AV) blocks.

10



The SA node sets the heart’s pace. If it doesn’t work properly, the heart rate may alternate

between bradycardia and tachycardia [37] [38]. SSS can be caused by scarring near the SA

node that’s slowing, disrupting, or blocking the travel of impulses. SSS is most common

among older adults.

First-degree AV block is a disease in the heart’s electrical conduction system in which elec-

trical impulses conduct from the cardiac atria to the ventricles through the AV node more

slowly than normal [39]. This block is generally asymptomatic, but it may become a second-

degree and third-degree AV block. It is diagnosed using an ECG and is defined as a PR

interval above 200 milliseconds. First-degree AV block affects 0.65-1.1% of the population,

with 0.13 new cases per 1000 persons each year. When the heart’s electrical pathways are

blocked, it can cause the heartbeat stimulating signals to slow down or halt. Some blocks

may lead to no signs or symptoms.

Second-degree AV block is a disease in the heart’s electrical conduction system that blocks

some of the atrial impulses to impair conduction between the atria and ventricles [40]. It is

classified as an AV node block and is categorized between first-degree (slowed conduction)

and third-degree blocks (complete block).

Third-degree AV block is a medical condition in which the nerve impulse generated in the

SA node in the atrium of the heart cannot propagate to the ventricles [41]. Because the

impulse is blocked, an accessory pacemaker in the lower chambers will typically activate the

ventricles. This is known as an escape rhythm. Since this accessory pacemaker also activates

independently of the impulse generated at the SA node, two independent rhythms can be

noted on the ECG.
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Figure 2.8: ECG of premature ventricular contraction episode. Premature ventricular con-
traction (PVC) is a beat with a morphology different from a sinus rhythm. QRS complexes
of sinus rhythm are < 100 ms wide. QRS complexes of PVCs are broader (> 120 ms). PVCs
occur earlier than expected on the next heartbeat, so their RR intervals as shown in this
ECG are much shorter. PVCs can contribute to false appearances of RR irregularity, even
though they have no P-waves.

2.1.8 Premature Heartbeats

Premature heartbeats are extra beats as seen in Figure 2.8, sometimes in patterns that alter-

nate with the normal heartbeat. The extra beats may come from the atria (premature atrial

contractions) or the ventricles (premature ventricular contractions). A premature heartbeat

may feel like a skipped heartbeat. These beats are generally not concerning and rarely in-

dicate a more severe condition. Still, a premature heartbeat can trigger a longer-lasting

arrhythmia, especially in people with heart disease. Seldomly, persistent premature beats

lasting several years may cause a weak heart. Premature heartbeats may occur when resting.

Sometimes premature heartbeats are caused by stress, rigorous exercise, or stimulants like

caffeine or nicotine.
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2.2 ECG Monitoring Devices Background

2.2.1 Holter Monitor

A Holter Monitor is a familiar device to most practitioners and has been an effective choice

for ECG monitoring [1]. It uses multiple ECG leads to efficiently record an arrhythmia’s

start, end, and length during the monitoring period [2]. However, most Holter Monitors can

only store data for up to two days which is insufficient if symptoms are rarely repeated or if

arrhythmic events vary extremely. Moreover, these devices lack real-time data analysis and

incur considerable delay between ECG recording and analysis time. Newer devices, such as

post-event and external loop recorders, address these drawbacks.

2.2.2 Post-Event Recorder

Unlike external loop recorders and Holter Monitors, post-event recorders are placed directly

onto the chest area once a symptom appears [1] [2]. Although they can record ECGs for

up to 1 month, they can store up to 5 to 6 minutes of continuous ECG data on patient

activation. This happens at the onset of symptoms or after an abnormal episode. In that

case, they do not continuously monitor for rhythms or denote the origin of arrhythmias. The

start, end, and length of an arrhythmia episode may or may not be recorded. External loop

recorders and insertable cardiac monitors address these drawbacks.

2.2.3 External Loop Recorder

External loop recorders look like Holter Monitors, but they can record for up to 1 month [1] [2].

They can store ECG segments of fixed length before and after activation either automati-

cally by algorithms or manually through button presses. An external loop recorder usually
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records 1 to 6 minutes of new ECGs, replaces previously recorded ECGs, and stores data

only when activated either automatically or manually. The automated recorders can also

detect some symptomless arrhythmias along with their start times. Although they obtain

better symptom-rhythm correlations, they do not document cardiac activities continuously

due to ECG storage limits. Insertable cardiac monitors eliminate this drawback.

2.2.4 Insertable Cardiac Monitor

An insertable cardiac monitor functions like an external loop recorder. Still, it is implanted

near a patient’s heart in the chest area and can monitor heart rhythms continuously for

up to 3 years [1] [2]. Moreover, it provides additional documentation for analysis of car-

diac activities compared to an external loop recorder, including data about rarely repeated

symptoms and varying arrhythmic events. While close to the heart for better signal sensing,

interpreting ECGs has several challenges: device orientation/position, device flipping, and

respiration.
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Chapter 3

AF Detection and Diagnosis

Atrial fibrillation (AF) causes severe health concerns that can result in mortality [42]. Com-

puting devices and algorithms with the latest technological advancements can reduce AF-

related risks by early detection and diagnosis [43]. In general, atrial fibrillation detection

algorithms include rate-based AF detection [11] [13] [14] [44] [45], morphology-based de-

tection [15] [16] [17] and machine learning and deep learning approaches [12] [46]. These

algorithms help extract useful knowledge from data to aid decisions by doctors. Further-

more, different types of electrogram sensors can be used for identifying cardiovascular, gait,

and other activities of daily life. In this chapter, we present an overview of state-of-the-art

AF detection approaches that can be used for diagnosis and management. In summary,

these detection algorithms are 1) Heart Rate-based algorithms, 2) Morphology-based algo-

rithms, and 3) Automatic AI learning-assisted algorithms. These detection algorithms use

data collected from a surface ECG or an implanted device such as an ICM.
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3.1 AF Detection Challenges

AF detection using sensors outside the body can be challenging. For example, smartphone

cameras obtain pulsatile signals from normal sinus rhythm (NSR) subjects but motion and

noise artifacts corrupt those signals, causing the camera to detect them as AF [47]. Motion-

corrupted episodes have a similar characteristic of irregular RR intervals to AF.

Several factors impact AF detection using ICMs. While an ICM is implanted close to the

heart for better signal sensing, there are several challenges to interpreting ECGs [48]. R and

P wave amplitudes vary greatly due to factors such as posture changes or motion, device

orientation and position changes, respiration, noise, and body mass [48].

3.2 AF Detection Algorithm Efficacy

A few criteria can characterize AF detection algorithms’ diagnosis performance. The most

commonly used two parameters are sensitivity and specificity. A common method of pre-

senting an algorithm’s performance is the receiver operating characteristic [49].

3.2.1 Sensitivity

Sensitivity is a test’s ability to detect patients with a condition such as a disease correctly.

The sensitivity or detection rate in a clinical setting of a test is the proportion of those who

test positive for the condition among those who truly have the condition. Mathematically,

this can be expressed as:
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sensitivity =
number of true positives

number of true positives + number of false negatives
(3.1)

A negative result in a high-sensitivity test is useful for ruling out the condition. The test

is reliable when it shows a negative result since it rarely misdiagnoses those who have the

condition. A test with 100% sensitivity indicates all patients with the condition test positive.

However, a positive result in a high-sensitivity test does not always work for detecting the

condition. Suppose a test kit is always designed to give a positive result. When used on

patients with the condition, all patients test positive, leading to a test with 100% sensitivity.

However, sensitivity does consider false positives. Moreover, this test will show positive on

all healthy patients, rendering it useless for detecting or ”ruling in” the condition.

3.2.2 Specificity

Specificity relates to a test’s ability to determine that a patient does not have a condition.

The specificity of a test is the proportion of those who test negative for the condition among

those who truly do not have the condition. Mathematically, this can also be written as:

specificity =
number of true negatives

number of true negatives + number of false positives
(3.2)

A positive result in a high-specificity test is useful for ruling in the condition. The test rarely

shows a positive result in any healthy patient. A positive result indicates a high probability

of the presence of disease. A test with 100% specificity indicates all healthy patients test

negative for the condition so that a positive test result would detect the presence of the
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condition. However, a negative result in a high-specificity test does not necessarily work for

ruling out the condition. For example, suppose a test always returns a negative test result

to any patient. It gives a specificity of 100% because specificity does not include any false

negatives. However, this test would show negative for all patients with the condition, making

it useless for ruling out the condition.

3.2.3 Receiver Operating Characteristic Curve

The Receiver Operating Characteristic (ROC) curve can be used to compare the efficacy

of AFD algorithms. It plots true positive and false positive rates to graphically display

a binary classifier system’s diagnostic performance at all of its discrimination thresholds.

ROC analysis helps to evaluate the diagnostic tests’ performance and, more generally, the

accuracy of a statistical model that separates subjects into two categories (e.g., diseased or

non-diseased).

3.3 Rate Based Detection Algorithm

3.3.1 Heart Rate Variability Based

AF detection can use heartbeat variability from inter-beat intervals [13]. The Poincare plot

uses the inter-beat intervals to extract three feature measures - the number of clusters,

mean step increment of inter-beat intervals, and point dispersion around a diagonal line in

that plot - to characterize AF and non-AF [50]. AF is discriminated from non-AF using a

support vector machine (SVM) with the mean stepping increment and point dispersion in

the Poincare plot.

Since beats of ventricles are less likely to be influenced by baseline wandering and noise, the
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use of inter-beat intervals to detect and diagnose AF can use a real-time portable monitoring

electrocardiograph [50]. Such an algorithm requires only one lead of the ECG to acquire inter-

beat intervals. Heart rate variability is closely related to the homeostasis of the autonomous

nervous system. The dynamics of inter-beat intervals change after the onset of AF. People

without AF show regular patterns in the Poincaré plots. However, the plots of AF patients

are very irregular and change over time.

3.3.2 RR Interval Based

One AF detection algorithm is based on the characteristic of AF as a random sequence of

heartbeat intervals with markedly increased beat-to-beat variability and complexity. This al-

gorithm [10] combined three statistical techniques to exploit these characteristics, namely the

Root Mean Square of Successive Differences (RMSSD) of RR intervals to quantify variabil-

ity, the Turning Points Ratio (TPR) to test for randomness of the time series, and Shannon

Entropy (SE) to characterize its complexity. In addition, in contrast to the Tateno–Glass

method [10] [51] [52], which relies on training data histograms, this method is purely statis-

tical and thus less dependent on the diversity of training data. Work in [10] considers AF

to be random and employs a nonparametric statistic to test for randomness of the RR time

series.

A rate-based algorithm is used in St. Jude Medical/Abbott devices [53]. AF and Non-

AF R-R Interval Histograms capture the RR interval differences between AF rhythms and

Non-AF rhythms. The histograms are templates for comparison with the histogram of an

unknown ECG. On each heartbeat, the algorithm considers the last 64 beats to determine

the three components: the probability of RR intervals irregularity, probability of random vs.

patterned changes in RR intervals, and sudden onset score to detect if AF occurred.
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3.4 Morphology Based Detection Algorithms

3.4.1 QRS Detection Algorithm

Another algorithm [54] employs QRS detection with integer arithmetic in real-time. A

database with two simultaneous ECG channels is used. The algorithm uses a dual-threshold

technique to find missed beats and reduce false negatives. There are two separate threshold

levels where one level is half of the other. The thresholds continuously adapt to the char-

acteristics of the signal since they are based upon the most-recent signal and noise peaks

detected in the processed signals. If the algorithm does not find a QRS complex in a time

interval equivalent to 166% of the current average RR interval, the maximal peak detected

in that time interval that lies between these two thresholds is a possible QRS complex, and

the lower of the two thresholds is applied. Unfortunately, the dual-threshold technique is

only useful if the heart rate is regular.

Another approach [55] detects QRS complexes using slope, amplitude, and width informa-

tion. A bandpass filter preprocesses the signal to reduce interference and allow high detec-

tion sensitivity with low amplitude thresholds. A dual-threshold technique is used to search

for missed beats. The algorithm periodically adapts each threshold and RR interval limit

automatically. This adaptive approach accurately uses ECG signals with diverse signal char-

acteristics, QRS morphologies, and heart rate changes. However, this algorithm is limited

when the sensitivity of episode detection cannot be ascertained because information about

occurrences of under-detected AF is not available [56]. Thus, it was necessary to assume

that the ECG at the onset represented the entire duration of the detected AF episode.
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3.4.2 P Wave Detector

There is a need to improve the existing methods to achieve the highest efficiency possi-

ble [57]. RR intervals are straightforward to analyze, so AF detection algorithms assessing

only heart rate are popular among today’s ECG systems. In the presence of other significant

RR fluctuations, e.g., ectopic beats or respiratory sinus arrhythmia, most methods produce

significantly lower specificity. The method in [57] proposed an AF detection method based

on a Poincaré plot of consecutive RR intervals [13], and it takes P waves into account as well

to reduce the false positive cases in the presence of non-AF arrhythmias.

3.5 AF Detection from Surface ECG Recorder

An ECG is a non-invasive test that measures electrical signals produced by heartbeats.

There are various types of ECG machines with different capacities for capturing data. For

instance, a 12-lead 300 Hz ECG monitor can produce hundreds of millions of points for

each patient [58]. The physicians analyze ECG data to identify heart diseases like AF,

myocardial infarction, or acute hypotensive. Machine-learning and deep-learning approaches

are employed to predict AF heart diseases.

A Holter Monitor is a portable ECG recording device that continuously records heart

rhythms without requiring patient interactions with the device. It usually records for 24

to 48 hours (or longer in some newer devices). The data are stored on a flash drive that

can be uploaded for analysis. The recorded data fully discloses arrhythmia from the entire

recording period, which will help identify suspected frequently occurring silent arrhythmias

or assess the overall arrhythmia burden. Like other external monitoring devices, there are

scenarios in which Holter monitoring has not revealed a source of arrhythmia despite a high

degree of suspicion. In other words, although certain arrhythmia is highly suspected, Holter
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monitoring might not reveal its source.

The work in [59] has surveyed several methods and their merits and drawbacks. Some

methods tend to employ too many ECG parameters to characterize AF, which results in

increased computational complexity. To reduce the computational burden, methods have

been attempted using fewer parameters for the characterization, which resulted in a trade-

off in classification performance. The results on selected patients or segments were published

in some cases, mainly due to the difficulty in parameter extraction.

3.6 AF Long Term Monitoring and Detection from Im-

planted Device

Insertable Cardiac Monitors (ICMs) are proven diagnostic tools to establish symptom rhythm

correlation in cases where symptoms present infrequently, unpredictably, or in circumstances

where an external monitor may be unfeasible [60] [61] [62] [63] [64] [65] [66]. They have the

potential to alter both treatment and management plans for patients. Newer models of ICMs

are smaller and, thus, easier to implant and explant. They also allow remote Bluetooth mon-

itoring and may allow new specialized algorithms to better detect atrial fibrillation [60] [67].

Continuous monitoring is needed for patients with infrequent and unpredictable arrhyth-

mia/symptoms. These arrhythmias would likely not be detected using conventional methods

such as Holter monitoring that can only be used for a much shorter time. In the event of

frequent (>2) false positive device-initiated transmissions, the device can be reprogrammed

to enhance the specificity of the device-initiated transmissions during the patient’s next

in-person appointment.
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3.7 AI and Machine-Learning for AF Detection

In general, for a machine-learning algorithm, there are three possible classifiers – (a) super-

vised, (b) unsupervised, and (c) reinforcement [31] [68].

(a) Supervised Learning: Supervised learning is possible when input training data and cor-

responding output variables exist. Hence, the algorithm can learn to map the input to the

output via the training data.

(b) Unsupervised Learning: Unsupervised learning means only input data is available with-

out corresponding output variables. Therefore, the model cannot be trained to map the

input sample to the corresponding output. This type of learning draws inferences from the

unlabeled dataset and finds hidden patterns to group the data accordingly.

(c) Reinforcement Learning: This learning self-trains continuously by trial and error. This

type of learning is goal-oriented based on interacting with the environment.

(d) Deep Learning: Besides the first three learning processes, one can develop with deep

learning techniques. A deep learning system is often composed of several artificial neural

networks (ANN). The term ‘deep’ stems from the several hidden layers in the ANN struc-

ture. The primary building block of the ANN is the artificial neuron. The behavior and

function of the artificial neurons are replicas of brain neurons [31] [69]. Deep learning is

an established discipline, with algorithms conducted in many studies in diverse areas such

as speech recognition [31] [70], handwriting recognition [31] [71], object detection [31] [72],

and healthcare and medicine, including analysis of medical images [31] [73] and physiological

signals [31] [74] [75] [76] [77] [78] [79].

The referred studies in [31] [75] [80] [81] suggest that the implementation of deep learning

may improve the overall detection robustness as compared to the employment of conventional

methods. Moreover, with deep learning, R-peak detection and the removal of noise and
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artifacts from the ECG signals are not called for, and the extraction of features and the

selection of hand-crafted features are unnecessary. However, the main pitfall of deep learning

is the need for more training samples to train the networks for optimal performance.

3.7.1 Machine-Learning in AF Detection

Recent technological advancements in algorithms and computing devices can help reduce

AF-related risks by detecting them in the early stages [58]. Deep learning and machine

learning approaches extract helpful knowledge from historical training data to make appli-

cation decisions. Furthermore, different types of developed sensors can be used to identify

cardiovascular, gait, and other activities of daily life. These sophisticated sensors, comput-

ing devices, and intelligent algorithms provide opportunities to develop systems that can

improve health and quality of life, such as detecting AF in the early stages.

AF can be a quiet stroke or asymptomatic AF, a rhythm that shows no symptoms. Unfor-

tunately, detecting a quiet AF with such a short duration is difficult, even using a 12-lead

electrocardiogram, because it requires longer monitoring intervals. The machine learning

approaches can speed decision-making while improving AF diagnosis reliability, efficiency,

and accuracy. Furthermore, machine learning can aid in developing a risk model to identify

patients with a high risk of AF [58] [82].

The Support Vector Machine (SVM) is a supervised machine-learning algorithm that learns

from examples with assigned labels. The range of applications of SVM includes disease

classifying, natural language processing [58] [83], human activity recognition [58] [84], image

processing [58] [85], fault detection, and diagnosis [58] [86] [87] [88] [89] [90].

The SVM is favored in scenarios where the volume of data is massive or the complexity of

the data is very high [58] [91]. This technique can also be used for AF detection, where
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complex test samples are obtained from patients suffering from the disease. The sample can

be, for instance, a medical image compressed using the wavelet transformation. The SVM

classifier can achieve excellent unbiased results in the training phase.

The widely used classifiers in detection systems include SVM and linear discriminant analysis

for ECG arrhythmic detection. For more reliable and accurate AF detection, ANN takes the

ECG signal’s RR interval as input for classification. R peak is robust, and the ANN classifier

is good at processing non-linear data. When trained and tested on the AF Termination

Challenge Database and MIT-BIH Arrhythmia Database, this classifier gave a sensitivity of

99.3%, a specificity of 97.4%, and an accuracy of 98.3% [58].

3.7.2 Deep Learning Methods for AF Detection

Recently, the convolutional neural network (CNN) has gained much attention due to its per-

formance in various applications such as image detection, time series analysis, and language

processing. Time series analysis involves massive data used in many healthcare scenarios.

CNN consists of fully interconnected convolutional layers comprised of neurons. A proposed

CNN-based method in [58] [92] uses raw ECG signals. Another developed model uses a

modified frequency slice wavelet transform (MFSWT) and CNN. The MFSWT performs

better for low-frequency ECG signals, and its benefits include its precise time-frequency

component position estimation and signal adaptiveness. MFSWT converts the ECG signal

into 2D space, then images were given to 12-layered CNN, which extracts features of labeled

images and calculates scores to sort the predicted image. For this system, the MIT-BIH

AFDB database is used. This contains 25 ECG recordings collected from 25 subjects’ data

interpreted by a cardiologist. The time-lapse for each recording is 10 h and 15 min. Each

ECG signal has 250 samples per second and its resolution is 12 bits in a range of 10 mV. The

results from the above setup give an accuracy of up to 81.07% with five-fold cross-validation,
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with sensitivity at 74.96% and specificity at 86.41%. CNN is a popular technique that com-

bines extraction of features, reduction of features, and classification techniques. It classifies

the data with a fully connected multilayer perceptron (MLP). The disadvantages of CNN

include slow convergence speed and a lot of iterations.
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Chapter 4

Simulation and Modeling of Key

Variants Impacting AF Detection

4.1 Introduction

While many devices can record electrograms, an ICM is most frequently used for long-term

monitoring and detecting AF episodes. An ICM is a small medical device placed under the

chest muscle to continuously monitor electrical heart activities and record ECGs. Clinicians

use ICMs to diagnose and manage abnormal heart activities, including those in patients

with unexplained syncope, palpitations, cryptogenic stroke, lightheadedness, dizziness, and

seizures. However, clinical studies [93] [94] [95] [96] [97] [98] have shown that false detection

rates of abnormal heart rhythms are still high, and key variables can cause the ICM to detect

heart signals inappropriately by altering the amplitudes and morphologies of ECGs.

In older ICM models, false diagnosis by oversensing fast beats and undersensing bradycardia

is well-recognized [99]. Enhanced features in algorithms and device designs have greatly

reduced inappropriate sensing. Clinical observations have shown that an ICM is 94.5%-97.3%
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sensitive to true abnormal heart rhythm episodes and can positively predict 64%-74.8% of

detected abnormal heart rhythm episodes [53] [100]. Some causes of false detections include

undersensing of premature ventricular contractions (PVCs), undersensing of normal sinus

rhythm before or after PVCs, small R-waves, sudden R-wave amplitude change, signal close

to the threshold, and loss of electrode contact [96]. Key variables (e.g., respiration [97],

device rotation/orientation, device position, device flipping, and body mass [98]) may be

associated with causes of false detections. This chapter investigates the effects of these key

variables on ICM sensing using computer simulations and a virtual human family.

4.2 Methods and Models Used

Sim4Life finite element analysis (FEA) software is used to simulate cardiac propagation and

ICM electrode sensing inside three members of a virtual human family. The ICM CAD

model was used and placed in each member at various locations and with electrodes facing

up or down. The propagation vectors in the heart are approximated by fields created along

the heart axis going in the direction from the left atrium (LA) and right atrium (RA) disc

pair to the apex disc. After solving the models, the voltage difference on the electrodes is

obtained for each simulation.

4.2.1 Sim4Life Virtual Human Family Body Models

A set of computable, high-fidelity 3D Virtual Population human anatomical models in

Sim4Life was generated from magnetic resonance imaging scans of healthy patients [101].

Along with the tissue property database [102], the models fully represent global variations

of human anatomy. Each model depicts a unique body type, with over 120 vital anatomical

features and over 300 precisely identified tissues and organs. Simulations involving human
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models access the database linking to tissues to produce accurate and comprehensive re-

sults [103]. Considering anatomical differences and body mass index (BMI) values, we used

3 models – obese male, male adult, and girl – in simulations (Table 4.1).

Table 4.1: General Information about Each Human Model

Model Age[Years] Height [m] Weight [kg] BMI [kg/m2]
obese male 37 1.82 119.5 36.1
male adult 34 1.77 70.2 22.4

girl 11 1.49 34.0 15.3

4.2.2 ICM Device Model and Placement

The latest commercial ICMs are about the size of a AAA battery with devices from vendors

such as Medtronic (1.2cc, Figure 4.1a) and Abbott (1.4cc, Figure 4.1b) with similar electrode

designs on one side of the ICM. A similar solid model of an ICM was created and used in

simulations (Figure 4.1c). The model ICM has an end electrode and a tip electrode on

the front side with a spacing of 37.7 mm between them. The end electrode is shaped as

a half circle with a diameter of < 7 mm and the tip electrode is close to a quadrilateral

with a smaller area than the end electrode. According to clinical device positions, this

device was placed beneath the chest muscle of each of the three selected family members

(Figure 4.2a). In each member, the device was modeled near the fifth rib at five positions

to test position sensitivity (Figure 4.2b). The positions are labeled as DF V = vertical

position (clinical position), DF 45 = 45-degree rotation (clinical position), DF H = horizontal

position, MV3cm = vertical orientation shifted 3 cm to member’s left side, and MH3cm =

horizontal orientation shifted 3 cm up. In addition, the device is flipped for all five positions.

The device is denoted as “face up” or “face down” when the electrodes face the skin or the

heart, respectively.
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(a) Medtronic ICM

(b) Abbott ICM

(c) The model: blue is the end electrode and red
is the tip electrode

Figure 4.1: ICM model compared to Medtronic and St. Jude Medical ICMs

(a) Clinical device positions in
adult male

(b) Device placement near the fifth rib at five po-
sitions

Figure 4.2: Device placement for simulation
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Figure 4.3: Electrical potential distribution of potential body map on a patient with cardiac
vector along the heart axis pointing from local minimum to local maximum.

4.2.3 RA, LA, and Apex Disc Models

Three circular discs were modeled for each selected family member to mimic cardiac ventric-

ular propagation. Two of the discs were fit inside the RA and LA above the valves, whereas

the third disc was scaled according to the size of the apex and placed close to it. This forms

the cardiac vector along the heart axis (Figure 4.3). The voltage difference between the

atrium disc pairs and the apex disc is 1 V. The discs generated an electrical potential with

a similar potential distribution on the body surface to that generated by cardiac ventricular

propagation in sinus rhythm, so they were used to simulate sensed voltages on ICM devices.

Evidence of the electrical potential distribution generated by cardiac ventricular propagation

is explained in a previous study on patient-specific ECG models [104] [105] [106].

4.2.4 Sim4Life Electro Static Simulation Setup

Sim4Life electrostatic solvers were used in simulations to calculate the sensed voltages on the

ICM electrodes inside the family members. The ICM header and box were set as dielectric

materials, whereas the electrodes were set as perfect electrical conductors (PECs). In each

electrostatic solver, the electrical conductivity of the lungs was either 0.046 S/m or 0.1 S/m
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for simulating inflated or deflated lungs, respectively. Neumann and Dirichlet boundary

conditions were used in the electrostatic solvers. The Neumann boundary condition was

applied on six planes enclosing the body surface, whereas the Dirichlet boundary conditions

were applied to the discs. The RA and LA discs were set to 0 V constant potential, and the

apex disc was set to 1 V constant potential to obtain the voltage difference of 1 V between

them. Field sensors record electrical fields in the electrostatic solvers. The overall field sensor

records the human model’s electric field and electric potential. The electric field is calculated

as a negative gradient of electrical potential. The boxes surrounding each family member’s

heart muscle and discs were also set as field sensors. The line between two ICM electrodes

on the same side of the ICM was set as a voltage sensor for recording the voltage between

them. This sensed voltage is the input to the sensing circuitry of the ICM electrodes.

4.2.5 Normalization of Voltages

The average R-wave amplitude of 600 uV for normal body weight was divided by the ex-

tracted voltage from the simulation with the male adult model and the device at position

DF 45 to obtain the scaling factor [98]. This scaling factor was then multiplied into an

extracted voltage for each simulation to normalize it to clinical data.

4.3 Simulation Results

4.3.1 Electrical Potential Distributions

The electrical potential distribution body surfaces in all three members are similar, and

45 degrees tends to give greater potential drops at appropriate positions along the vectors

(Figure 4.4). The patterns of the distributions are like those measured in humans at the
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(a) Male Adult (b) Obese Male (c) Girl

Figure 4.4: Electrical potential distributions on body surfaces of three models

peaks of QRS complexes [104] [105].

4.3.2 Sensing Voltage in Three Human Models

Voltages (V) are extracted from voltage sensors of ICM electrodes in each family member

for device flipping, device orientation and migration, and respiration (Table 4.2).

Male Adult

Device Flipping: At device positions DF 45 and MV3cm, the sensed voltage had the smallest

difference of 0.30% and the second smallest difference of 1.20%, respectively, with device

flipping. At other device positions (DF H, MH3cm, and DF V) the differences were 2.05%,

5.38%, and 10.73%, respectively.

Device Positions or Rotation: When facing up, the sensed voltage had the average V= 522.82

± 125.42 µV at all five device positions, with the maximum at DF H (643.91 µV) and the

minimum at DF V (346.74 µV), that led to the most change by 46.15% between DF H and
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Table 4.2: Normalized voltages sensed by device along vector formed by discs with 1 V
difference with each combination of key variables

Position Rotation Flipping Respiration Obese
Male
Mag ∆V
(µV)

Male
Adult
Mag ∆V
(µV)

Girl
Mag ∆V
(µV)

DF 45 45 Face Down Deflate 295.29 600.00 1018.07
DF 45 45 Face Up Deflate 281.42 601.80 1001.22
DF V 0 Face Down Deflate 13.59 309.52 254.83
DF V 0 Face Up Deflate 8.11 346.74 359.14
DF H 90 Face Down Deflate 400.08 630.71 1601.68
DF H 90 Face Up Deflate 390.12 643.91 1404.61
MV3cm 0 Face Down Deflate 33.05 591.14 608.91
MV3cm 0 Face Up Deflate 31.43 584.06 425.86
MH3cm 90 Face Down Deflate 516.32 414.05 1049.29
MH3cm 90 Face Up Deflate 494.43 437.58 995.99
DF 45 45 Face Down Inflate 294.24 685.80 981.26
DF 45 45 Face Up Inflate 285.97 632.42 954.20

DF V. When facing down, the sensed voltage had the average V = 509.09 ± 140.22 µV at all

five device positions. The sensed magnitude decreased the most by 50.92% when the device

moved between DF H (630.71 µV) and DF V (309.52 µV). A greater maximum change for

the device face down was observed than for the face up.

Respiration: When the lungs inflated, the magnitude increased by 12.51% and 4.84% for

device face down and face up, respectively.

Obese Male

Device Flipping: At device position DF H, the device had the smallest difference in sensed

magnitude of 2.49% with device flipping. At other device positions (MH3cm, DF 45, MV3cm,

and DF V), the differences were 4.24%, 4.69%, 4.89%, and 40.32%, respectively.

Device Positions or Rotation: When facing up, the sensed voltage had the average V =

241.11 ± 215.79 uV at all five device positions. The sensed magnitude decreased the most

34



by 98.36% when the device moved between MH3cm (494.43 µV) and DF V (8.11 µV). When

facing down, the sensed voltage was V = 251.67 ± 222.73 µV at all five device positions. The

sensed magnitude decreased the most by 97.37% when the device moved between MH3cm

(516.32 µV) and DF V (13.59µV).

Respiration: When the lungs inflated, the magnitude decreased by 0.35% and increased by

1.59% for the device face down and face up, respectively.

Girl

Device Flipping: At device position DF 45, the device had the smallest V difference of 1.65%

with device flipping. At other device positions (MH3cm, DF H, DF V, and MV3cm), the

differences were 5.08%, 12.30%, 29.05%, and 30.06%, respectively.

Device Positions or Rotation: When facing up, the sensed voltage had the average V =

837.37 ± 439.26 µV at all five device positions. The sensed magnitude decreased the most

by 74.43% when the device moved between DF H (1404.61 µV) and DF V (359.14 µV).

When facing down, the sensed voltage had an average 906.56 ± 507.28 µV at all five device

positions. The sensed magnitude decreased the most by 84.09% when the device moved

between DF H (1601.68 µV) and DF V (254.83 µV).

Respiration: When the lungs inflated, the sensed magnitude decreased by 3.62% and 4.70%

for device face down and face up, respectively.

4.3.3 Body Mass

At the clinical default device position of DF 45, the simulated sensed magnitude decreased

by at least 50.8% when changing between the adult male and the obese male. This is similar
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to clinical data [98] with a mean decrease of 41.6% when BMI increased from an adult male

to an obese male. When BMI decreased from the male adult to that of the girl, the simulated

sensed magnitude increased by at least 66.4% while the clinical mean increased by 58.3% [98].

4.4 Discussion

Using RA, LA, and apex discs creates electrical sources for modeling large dipoles during

ventricular depolarization, generating an electrical potential distribution on the body sur-

face similar to that of the measured electrical potential for a human at the QRS peak in a

sinus rhythm [106]. Instead of using a full propagation model that is computationally expen-

sive [104] [105], the close relationship to the measured body potential supports a simplified

approach. The absolute values of simulated body potentials can be calibrated with those

measured in a human. If sensing of atrial propagation or PVCs needs to be simulated, a

different selection of excitation vectors can be used.

A larger body mass is commonly associated with a longer distance between the heart and the

electrodes in the subcutaneous layers of the body so that electrical sources inside the heart

are farther away from the sensing electrodes. Therefore, smaller signals are typically sensed.

The simulation results clearly show that a larger body mass generates smaller sensed signals

among the three models simulated. These simulation trends are consistent with clinical

observations in 281 patients [98] that increased body mass index was associated with lower

measured R wave amplitude. Patients with a BMI > 35 had sensed R-waves near the

minimum suggested amplitude by the device manufacturers of 300 µV. Simulations in the

obese model had a maximum sensed R-wave amplitude of about 300 µV, which became lower

as the ICM position changed.

Additionally, in the obese male model, much smaller signals were sensed, and the sensed
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magnitude of signals changed greatly when the device position changed or flipped. The

electric potential distributions on body surfaces in these three human models (Figure 4.4)

also showed that sensed amplitudes could be highly sensitive to the device’s orientation and

position. The simulation results support that the largest changes (40% -98%) were when the

device was changed from horizontal to vertical positions. The potential map also indicates

that the recommended clinical 45 degrees would not necessarily guarantee the best R-wave

sensing, and it depends on the location relative to the potential body map. This means that

an external testing tool may be helpful.

It has been observed that the devices in patients could flip. The simulations in this study

show that at the clinically recommended device position DF 45, the difference during device

flipping was small in all three models (0.30%-4.69%). But the amount of change can be

significant with the vertical orientation of the device (10%-40%), depending on position.

Respiration was simulated by changing the conductivity of the lung for inflated and deflated

values but did not consider the changes in lung volume and corresponding device positions

associated with respiration. The simulated respiration effect was small, likely due to the

small amount of lung tissue between the device and the heart.
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Chapter 5

AF Detection Algorithm Design

Figure 2.1 plots the ECG for a typical heartbeat, which includes a P wave, a QRS complex,

and a T wave. AF is characterized by irregular intervals between R locations and the absence

of P waves. For example, Figure 5.1 plots the ECGs for typical AF episodes with irregular

RR intervals. AF detection (AFD) with an ICM is typically based solely on whether the RR

intervals are consistent or variable [10] [11] [12] [13] [14]. These algorithms, however, can have

false positive detections due to rhythms with variable RR intervals such as sinus arrhythmia,

irregular sinus tachycardia, supraventricular tachycardia, and frequent premature ventricular

contraction (PVC) that are not AF [15] [16] [17] [99] [107]. ECG examples of these rhythms

are shown in Figure 2.8 and Figure 5.2 to Figure 5.5. These false positives can be avoided

by detecting the presence of P waves. P-wave detection, however, can be challenging due

to factors such as PVCs, Ventricular Flutter, and Ventricular Fibrillation [17]. In addition,

P-wave detection is often complicated by variations in P-wave structure due to factors such

as respiration, noise, body mass, or changes in device orientation and position [10] [48].

Examples of P-wave variation are shown in Figure 5.5 to Figure 5.8. We develop an algorithm

for AFD that is robust to these factors by combining adaptive templates for QRS complexes

and P waves with a measure of RR interval consistency.
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Figure 5.1: ECG of atrial fibrillation episode with irregular and often rapid heart rate that
induces poor blood flow. The AF episode has irregular RR intervals with no P waves.

Figure 5.2: ECG of bigeminy with a QRS complex with alternating sinus rhythm and pre-
mature ventricular contraction causing RR intervals of different lengths.

The AFD Algorithm processes ECG segments using four modules: R wave detection, irregu-

lar rate detection, QRS Template Matching, and P Wave Detection. Each of these modules

computes descriptors of the ECG segment that contribute to AF detection. The R wave
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Figure 5.3: ECG of ventricular tachycardia episode with unique and broad (>160ms) QRS
complexes which are different from those of a sinus rhythm.

Figure 5.4: ECG of premature atrial contraction (PAC) episode with a morphology that is
different from the one from a sinus rhythm. PACs can occur earlier than expected for the
next heartbeat, or they can occur without any accompanying QRS complexes.

detector estimates the total number of R waves in the segment. The irregular rate detector

computes a measure of the RR interval consistency. The QRS template matching process

generates and updates templates that are used to refine estimates of the number of R waves
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Figure 5.5: ECG of sinus arrhythmia with irregular RR intervals and with P waves with
variable structure due to noise.

Figure 5.6: ECG of sinus tachycardia with a heart rate of > 150 bpm and inconsistent P
waves. Sinus tachycardia can be mistaken for AF because it has no P-waves and irregular
RR intervals.

and the consistency of the RR intervals based on QRS complexes that match the current

template. The P Wave detector estimates the number of P waves in the segment. The de-

scriptors generated by the modules are used to build a probabilistic model for the likelihood
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Figure 5.7: ECG of atrial tachycardia with abnormal P wave morphology due to origin from
the upper heart chambers.

Figure 5.8: ECG of supraventricular tachycardia episode with narrow (< 120ms) QRS com-
plexes and variable P waves due to overlap with T waves.

of AF using logistic regression. Figure 5.9 summarizes the components of the AF detection

algorithm.
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Figure 5.9: Components of AF detection algorithm
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Chapter 6

R Wave Detection and Interval

Consistency

The first step in the AFD algorithm is to detect R waves and to compute a measure of

the consistency of the RR intervals. A threshold is used to locate the R waves in an ECG

segment (See Figure 6.1), and we define a(i) to be the sequence of positive time differences

between successive R waves. If n+1 R waves are detected then there will be n RR intervals

represented in a(i). We define the RR consistency measure C [59] [108] using the coefficient

of variation (CoV) of RR intervals.

C =

⌊
σ(|a|)
µ(|a|)

∗ 100%
⌋

(6.1)

where µ(|a|) is the mean of the absolute value of all elements in the sequence a and σ(|a|) is

the standard deviation of the absolute value of all elements in the sequence a. C will take

a minimum value of zero if all of the RR intervals in a(i) are the same and will increase
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Figure 6.1: Detection of R waves with one of two thresholds

Figure 6.2: ECG of AF episode where the arrows indicate irregular RR intervals with their
lengths in seconds

as successive RR intervals exhibit more variability. For the example in Figure 6.2 we have

µ(|a|) = 0.839s, σ(|a|) = 0.343s, and C = 40%. The result of C indicates that the RR

intervals vary significantly. The AFD algorithm calculates C for each ECG segment.
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Chapter 7

Template Matching

7.1 Existing Ventricular Ectopic Beat Detection Algo-

rithms

Existing ventricular ectopic beat detection algorithms analyze heartbeat morphological fea-

tures, amplitudes, rhythm patterns, and correlations to reduce the false detection of sinus

rhythms [15] [16] [17]. A principal component analysis-based algorithm detects QRS com-

plexes based on the Phasor Transform [17]. The algorithm characterizes the QRS morphology

of a beat with five descriptors: amplitude of R-wave peak, area of QRS complex, number of

samples between γiQRS+ and γiQRS−, number of samples between ρiQRS+ and ρiQRS−, and

the absolute value of the local minimum amplitude. γiQRS+ and γiQRS− are the two closest

points to the R-wave peak in which the amplitude falls to at most 30% of the peak amplitude.

ρiQRS+ and ρiQRS− are the two closest points to the local minimum in which the amplitude

magnitude is at most 30% of this minimum amplitude magnitude.

A QRS template matching algorithm [15] selects up to three original templates (the most
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frequently seen supraventricular or paced complexes) and substitutes their copies continu-

ously throughout the ECG analysis to capture slight variations in heartbeat morphology of

a patient’s rhythm. The algorithm is based on three descriptors: area differences, frequency

spectrum differences, and maximal cross-correlation coefficient.

A single-lead ECG-based algorithm is also used to detect supraventricular beats [16]. It

uses 4 feature groups: RR intervals, heart-beat intervals, segmented morphology, and fixed

interval morphology. They are organized into two feature sets. The first set contains RR

intervals, heart-beat intervals, and segmented morphology. The second set contains RR

intervals and fixed interval morphology. After processing these feature sets for each beat,

the algorithm runs a linear discriminant classifier over them.

The approach in [17] is evaluated over individual beats of simulated and real AF signals.

This algorithm is focused on AF only whereas our approach focuses on both AF and not AF

signals. The method developed in this thesis also takes into consideration the full shape of

the QRS complex for template matching. Our approach is not limited by linear discriminant

nor does it track the number of samples compared to the algorithms in [16] [17].

7.2 Template Generation

QRS templates for a patient can be used to distinguish normal from ectopic beats. Let E[n]

be a discrete-time ECG signal and let ti be the index of the central time sample for the

ith QRS complex that is detected in the signal using a threshold as described in Chapter 6.

Each complex is represented using 2W + 1 time samples. The area under the curve of the

ith complex is given by
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Figure 7.1: ECG segment with selected QRS complexes

A(i) =

ti+W∑
n=ti−W

|E[n]|. (7.1)

After A(i) is computed for the first N QRS complexes, the complexes that correspond to

the interquartile range of A(i) values are selected as model complexes. For our work we

use N=12 to select 6 QRS complexes. Fig. 7.1 plots an ECG segment with 6 of 12 QRS

complexes selected using the interquartile range of A(i).

Let xj[n] for 0 ≤ n ≤ 2W be the signal for the jth selected QRS complex. Each of these

signals is aligned to x1[n] by finding the value of the shift k denoted kj that maximizes the

cross-correlation

R[k] =
∞∑

n=−∞

xj[n]x1[n− k] (7.2)

where each xj[n] is assumed to have value zero outside of the range 0 ≤ n ≤ 2W. Figure 7.2a

shows two QRS complexes before alignment by kj and Figure 7.2b shows these complexes

after alignment. Figure 7.3 shows a set of six selected complexes after alignment. A template

T [n] for 0 ≤ n ≤ 2W is generated by averaging the aligned selected complexes at each time
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(a) Before alignment of complexes (b) After alignment of complexes

Figure 7.2: Example of alignment for 2 QRS complexes

Figure 7.3: QRS template in red constructed by averaging selected complexes

sample as illustrated by the red curve in Fig. 7.3.
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7.3 Template Matching and Update

The template T [n] is used to identify subsequent abnormal beats in the ECG segment. Let

yi[n] (i = 1, 2, . . . ) for 0 ≤ n ≤ 2W be the signals for detected QRS complexes in the

segment after alignment to the current template T [n] using cross-correlation. Starting with

i = N +1 each detected complex yi[n] is compared with the current template T [n] using the

RMS difference measure

D(yi, T ) =

√∑2W
n=0 (yi[n]− T [n])2

2W + 1
. (7.3)

If D(yi, T ) is less than a threshold then yi[n] matches the template T [n]. Figure 7.4 illustrates

the comparison between a template and a series of QRS complexes.

The QRS template can be updated if the amplitude and morphology of the beats change

over time. If N consecutive yi[n] complexes do not match the current template T [n], then

an updated template is generated by applying the process described in Section 7.2 to the

N complexes. This updated template is compared with subsequent QRS complexes yi[n]

using the difference measure in equation (7.3). We give an example of a template update

in Figure 7.5. The current template at the beginning of the sequence is shown in red with

each of the first ten QRS complexes. This template matches the first two complexes and

then fails to match each of the next eight as shown by the green checks and red x’s above

the ECG. A new template is derived from beats three to ten and applied starting with beat

eleven, circled in yellow. Starting with beat eleven, nine of the next twelve complexes match

the updated template. Figure 7.6 shows more detailed comparisons between a template and

a beat before and after update from Figure 7.5. The original template is for a sinus rhythm

(SR) and is updated to a template for ventricular tachycardia (VT) which is a series of
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Figure 7.4: ECG example of QRS template matching. The 3rd, 5th, and 6th complexes
match the template shown in red.

Figure 7.5: ECG example of QRS template update. The red crosses above the beats indicate
no match between the template and the complexes, whereas the green checkmarks above the
beats indicate a match.

premature ventricular contractions. The small beat in Figure 7.6a and the first red X in

Figure 7.5 do not match the SR template, so they are counted as an abnormal heartbeat.

The SR template is compared with each of the next 7 beats. Since these beats do not match

the SR template, a VT template is generated, and the algorithm switches from the SR to the

VT template for matching future beats. An example of a beat matching the VT template is

shown in Figure 7.6b.
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(a) SR tem-
plate not
matching a
QRS complex

(b) VT tem-
plate matching
a QRS com-
plex

Figure 7.6: Comparison between a template and a QRS complex before and after update
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7.4 P Wave Detection

AF detection can be enhanced by the detection of P waves [8] [9] [99]. Since P wave shape

can change over time, a P wave template is generated for each ECG segment. A typical P

wave is depicted in Figure 2.1 and occurs in a P Wave Time Window defined from 300ms

to 60ms before the R peak in a QRS complex. These R peaks are detected as described

in Chapter 6. A P Wave Time Window must have a maximum signal value within a range

consistent with P wave morphology to qualify as a candidate P wave. All candidate P waves

in a segment are aligned and averaged as described in Section 7.2 to create a P wave template

as shown in the example in Fig. 7.7. Candidate P waves that are similar to the P wave

template using cross-correlation equation (7.2) are detected P waves.
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Figure 7.7: P wave template in red constructed by averaging candidate P waves in ECG
segment
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Chapter 8

Data Analysis

8.1 ECG Data

Data from the following four MIT-BIH databases are used to evaluate the AF detection al-

gorithm: Arrhythmia Database [109], Atrial Fibrillation (AF) Database [110], Normal Sinus

Rhythm (NSR) Database [111] [112], and Supraventricular Arrhythmia (SVA) Database [113].

The ECG signals were originally sampled at 360 Hz for Arrhythmia, 250 Hz for AF, and

128 Hz for NSR and SVA. For consistency, all signals were represented at a frequency of

360 Hz for analysis. The signals were divided into 2.5-minute segments where each segment

is assigned a label of “AF” or “Not AF”. The result is a total of 11,857 2.5-minute ECG

segments from 167 patients. Table 8.1 shows the breakdown of ECG segments across the

databases.

Table 8.1: Summary of MIT-BIH patient databases

Database ECG Segments Patients
Arrhythmia 1141 48

Atrial Fibrillation 581 23
Normal Sinus Rhythm 9200 18

Supraventricular Arrhythmia 935 78
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8.2 Machine Learning

8.2.1 Descriptor Definition

Several descriptors that are derived from each ECG segment are used for AF detection. C

is the RR consistency measure from equation (6.1) using Coefficient of Variation (CoV). C ′

is the RR consistency measure from equation (6.1) computed using only the detected QRS

complexes in the segment that match the template using equation (7.3). NR is the total

number of detected R waves in the segment and NR′ is the number of detected R waves in

the segment that do not match the template. NP is the number of P waves detected in the

segment using the method in Section 7.4.

8.2.2 Model Generation

The data are split into training and testing sets with 5900 ECG segments in the training set

and 5957 ECG segments in the testing set. The training data is used to build a model for

the probability P (AF| x) that a segment corresponds to AF given a vector of n explanatory

variables x = (x1, x2, . . . , xn) that are derived from the features described in Section 8.2.1.

The model is of the form

P (AF| x) = 1

1 + e−S
(8.1)

where
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S = c0 + c1x1 + c2x2 + · · ·+ cnxn (8.2)

and the ci coefficients are derived from the training data using logistic regression [114]. The

logistic function in equation (8.1) ensures that the probability P (AF| x) will be between zero

and one.

Three different models for P (AF| x) are generated using different vectors x of explanatory

variables. Model 1 considers only variables related to RR intervals. This is representative of

current methods that are used in ICMs. Model 2 considers variables related to RR intervals

and QRS template matching. Model 3 considers variables related to RR intervals, QRS

template matching, and P wave detection. For each model, variables are included which

have p-values that are less than 0.1. The estimated coefficients of the variables for each

model and their standard errors and p-values are shown in Table 8.2 to Table 8.4.

Table 8.2: Table of estimated coefficients for model 1

Variable Coefficient SE pValue
(Intercept) -3.0551 0.0658 0.0000
C 0.0055 0.0016 0.0004

Table 8.3: Table of estimated coefficients for model 2

Variable Coefficient SE pValue
(Intercept) -0.6927 0.1129 0.0000
C -0.0090 0.0034 0.0080
NR′ -0.0871 0.0056 0.0000
C ∗NR′ 0.0004 0.0001 0.0081
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Table 8.4: Table of estimated coefficients for model 3

Variable Coefficient SE pValue
(Intercept) -0.1978 0.1183 0.0945
C -0.0077 0.0030 0.0111
NR′ -0.0648 0.0050 0.0000
NP -0.3467 0.0029 0.0536
NP/NR 0.3489 0.1596 0.0289
C ′ ∗NP -0.0090 0.0016 0.0000

8.3 Results

A model P (AF| x) can be used to classify an ECG segment as “AF” or “Not AF” by

computing the value of the model for the vector x for the segment and comparing to a

threshold T. The three models described in Section 8.2.2 were used to define three algorithms

for AF detection. Each algorithm was evaluated using the testing data. As we vary T for each

algorithm, we obtain the receiver operating characteristic (ROC) curves shown in Figure 8.1.

We see that performance improves as we add features from Algorithm 1 to Algorithm 2 to

Algorithm 3. This shows the utility of using QRS template matching and P wave detection

in addition to RR intervals. Table 8.5 shows the area under the ROC curve for each of the

three algorithms.

Table 8.5: Tables of AUCs for AF detection

Algorithm 1 Algorithm 2 Algorithm 3
Testing Set 0.8660 0.9393 0.9489
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Figure 8.1: AFD ROC curves for three algorithms
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Chapter 9

Conclusion

We have developed and demonstrated new methods for AF detection. The methods utilize

adaptive templates for QRS complexes and P waves which allows use over long periods during

which signal morphology can change. The algorithms are therefore amenable to use with

devices such as insertable cardiac monitors that can continuously acquire ECGs for several

months. We use a modular probabilistic methodology which enables detection performance

to be quantified as we add ECG descriptors to the model. Data from four MIT-BIH databases

are used to show that the approach is significantly more accurate than methods based on

the consistency of RR intervals. We also show that the use of both QRS templates and P

wave templates play an important role in AF detection.
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[99] Helmut Pürerfellner, Evgeny Pokushalov, Shantanu Sarkar, Jodi Koehler, Ren Zhou,
Lubos Urban, and Gerhard Hindricks. P-wave evidence as a method for improving
algorithm to detect atrial fibrillation in insertable cardiac monitors. Heart Rhythm,
11(9):1575–1583, 2014.

69
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