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ABSTRACT: Halide perovskites have attracted much 
attention over the past five years as a promising class of 
materials for optoelectronic applications. However, 
compared to hybrid organic-inorganic perovskites, the 
study of their pure inorganic counterparts, like cesium lead 
halides (CsPbX3), lags far behind. Here, a catalyst-free, 
solution-phase synthesis of CsPbX3 nanowires (NWs) is 
reported. These NWs are single crystalline with uniform 
growth direction, and crystallize in the orthorhombic 
phase. Both CsPbBr3 and CsPbI3 are photoluminescence 
(PL) active, with composition-dependent temperature and 
self-trapping behavior. These NWs with a well-defined 
morphology could serve as an ideal platform for the 
investigation of fundamental properties and the 
development of future applications in nanoscale 
optoelectronic devices based on all-inorganic perovskites.  

  Halide perovskites have been demonstrated to be a 
promising class of materials for optoelectronic 
applications1, including high-efficiency photovoltaic cells1a, 
light-emitting diodes1b, lasers1c, and photodetectors1d.  The 
advantages of these compounds include their excellent 
charge-transport properties1e and the broad chemical 
tunability1f. While recent studies have been mostly focused 
on hybrid organic-inorganic compounds, the study of their 
inorganic analogues, like AMX3 (A = Rb, Cs; M = Ge, Sn, 
Pb; X = Cl, Br, I) is limited2. 
  Previous studies on the all-inorganic halide perovskites 
have revealed that these materials have great potential in 
optoelectronic applications. CsGeX3 are known for their 
nonlinear optical properties and potentially useful for 
nonlinear optics in the mid-infrared and infrared region2c,2d. 
CsSnI3-xFx has been demonstrated to be an effective hole-
transport material and is able to replace the problematic 
organic liquid electrolytes in dye-sensitized solar cells2e. 
Theoretical calculations on ASnX3 (A = Cs, CH3NH3, 
NH2CH=NH2; X = Cl, I) suggested that their electronic 
properties strongly depend on the structure of the inorganic 
SnX6 octahedral cage2f, which implies good prospects for 
the all-inorganic halide perovskites. 

  However, most of these studies were based on 
polycrystalline perovksite films deposited on substrates 
using vapor phase co-evaporation2e or solution deposition2b 
of a mixture of AX and BX2. The uncontrolled precipitation 
or evaporation of the perovskite produces large 
morphological variations, making it a non-ideal platform 
for understanding these materials’ fundamental properties. 
  Controlled synthesis of materials with high quality and 
well-defined morphology not only benefits fundamental 
research but also offers great promise for practical 
applications3. Examples include the development of 
semiconducting quantum dots (QDs)3a, one-dimensional 
(1D) NWs3b, and two-dimensional (2D) nanosheets3c, 
which can have superior optical and electrical properties to 
their bulk counterparts. In terms of inorganic halide 
perovskites, with the exception of single crystalline QDs2a, 
there have been no reports of 1D or 2D nanostructures.  
Semiconductor NWs, in particular, currently attract 
widespread interest due to the great potential to advance 
fundamental and applied research towards new classes of 
inherently 1D photonic and electronic nanostructures. 
  Here, a catalyst-free, solution-phase synthesis of CsPbX3 
NWs is reported. Detailed structural characterization 
reveals that these NWs are single crystalline with uniform 
growth direction and crystalize in an orthorhombic phase. 
Optical measurements show that both CsPbBr3 and CsPbI3 
are PL active, with CsPbBr3 showing strong 
photoluminescence, CsPbI3 exhibiting a self-trapping 
effect, and both displaying temperature-dependent 
photoluminescence. These single-crystalline NWs could 
serve as an ideal platform for further investigation of 
structure-function relationships critical to the development 
of future applications in nanoscale optoelectronics. 
 
Synthesis of CsPbX3 NWs: The preparation of CsPbX3 
NWs was performed under air-free conditions using 
standard Schlenk techniques, by reacting Cs-oleate with 
Pb-halide in the presence of oleic acid and oleylamine in 
octadecene (ODE) at 150 - 250 °C. To analyze the NWs 
formation mechanism, the reaction was quenched to room 
temperature at different points in time and the respective 
intermediates were separated by centrifugation and 
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however, that the lattice term was dominant in CsSnI3
10; we 

hypothesize that CsPbBr3 behaves similarly here. 
  Our CsPbI3 PL spectrum (Fig. 3b, dotted line) consists of 
two distinct peaks centered at 446 nm (2.78 eV) and 523 
nm (2.37 eV) with widths of 115 meV and 530 meV 
(FWHM), respectively. The narrow, high-energy peak 
likely stems from excitonic emission similar to CsPbBr3, 
but the broad, low-energy peak observed for CsPbI3 has 
been attributed previously to the formation of self-trapped 
excitons (STE)12.  Exciton self-trapping has been observed 
for a variety of ionic compounds including a number of 
recently studied organometal halide perovskite 
materials11a,13. The temperature-dependent PL of CsPbI3 
NWs is also significantly more complex than CsPbBr3 (Fig. 
S11). At low temperatures, only STE emission is observed. 
Upon heating past 100 K, the excitonic emission peak 
appears and grows monotonically with temperature. Unlike 
CsPbBr3, the excitonic peak red-shifts with increasing 
temperature, suggesting that strong electron-phonon 
coupling contribution dictates band gap behavior. This is 
consistent with the self-trapping of excitons; increased 
electron-phonon coupling results in greater lattice 
distortion in the proximity of the exciton, thereby 
increasing the probability of trapping13a. Additional PL 
discussion may be found in the SI (Table S2).  
   In summary, a catalyst-free, solution-phase synthetic 
approach has been developed to obtain single crystalline, 
orthorhombic CsPbX3 NWs with uniform growth direction. 
Optical studies determined that both CsPbBr3 and CsPbI3 
are PL active, and exhibit both unique compositional and 
temperature-dependent behavior. Future studies with these 
NWs will concentrate on the investigation of their 
electronic and thermoelectronic properties as well as the 
development of their optoelectronic applications. 
Additionally, while this work focuses on the CsPbX3 class 
of compounds, the synthetic method reported here can 
potentially be applied to other inorganic perovskites, such 
as tin-based perovskites, which will be less toxic. 
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