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Abstract

Background

Photoplethysmography (PPG) is a low-cost and easy-to-implement method to measure vital

signs, including heart rate (HR) and pulse rate variability (PRV) which widely used as a sub-

stitute of heart rate variability (HRV). The method is used in various wearable devices. For

example, Samsung smartwatches are PPG-based open-source wristbands used in remote

well-being monitoring and fitness applications. However, PPG is highly susceptible to

motion artifacts and environmental noise. A validation study is required to investigate the

accuracy of PPG-based wearable devices in free-living conditions.

Objective

We evaluate the accuracy of PPG signals—collected by the Samsung Gear Sport smart-

watch in free-living conditions—in terms of HR and time-domain and frequency-domain

HRV parameters against a medical-grade chest electrocardiogram (ECG) monitor.

Methods

We conducted 24-hours monitoring using a Samsung Gear Sport smartwatch and a Shim-

mer3 ECG device. The monitoring included 28 participants (14 male and 14 female), where

they engaged in their daily routines. We evaluated HR and HRV parameters during the

sleep and awake time. The parameters extracted from the smartwatch were compared

against the ECG reference. For the comparison, we employed the Pearson correlation coef-

ficient, Bland-Altman plot, and linear regression methods.
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Results

We found a significantly high positive correlation between the smartwatch’s and Shimmer

ECG’s HR, time-domain HRV, LF, and HF and a significant moderate positive correlation

between the smartwatch’s and shimmer ECG’s LF/HF during sleep time. The mean biases

of HR, time-domain HRV, and LF/HF were low, while the biases of LF and HF were moder-

ate during sleep. The regression analysis showed low error variances of HR, AVNN, and

pNN50, moderate error variances of SDNN, RMSSD, LF, and HF, and high error variances

of LF/HF during sleep. During the awake time, there was a significantly high positive correla-

tion of AVNN and a moderate positive correlation of HR, while the other parameters indi-

cated significantly low positive correlations. RMSSD and SDNN showed low mean biases,

and the other parameters had moderate mean biases. In addition, AVNN had moderate

error variance while the other parameters indicated high error variances.

Conclusion

The Samsung smartwatch provides acceptable HR, time-domain HRV, LF, and HF parame-

ters during sleep time. In contrast, during the awake time, AVNN and HR show satisfactory

accuracy, and the other HRV parameters have high errors.

Introduction

Heart rate (HR) and heart rate variability (HRV) are physiological parameters reflecting auton-

omous nervous system regulations and general well-being. HR shows the number of heartbeats

per minute, and HRV indicates the variation of time between two consecutive heartbeats or

interbeat intervals (IBIs) [1]. Various HRV parameters can be extracted from IBIs, such as

average normal IBIs (AVNN), standard deviation of normal IBIs (SDNN), and root mean

square of the successive difference (RMSSD). HR and HRV parameters can provide insight

into cardiovascular and autonomic nerve dysfunction [2]. Studies in the literature show the

relationship between HRV parameters and different health issues such as diabetes [3], hyper-

tension [4], depression [5], and autonomic imbalance [6]. Moreover, HRV parameters are

associated with mental and physiological stress [7, 8], and sleep quality [9].

HR and HRV can be monitored using noninvasive methods such as Electrocardiography

(ECG) and Photoplethysmography (PPG). ECG is the golden standard for HR and HRV

parameters monitoring used in clinical trials. The method measures the electrical activity of

the cardiovascular system using electrodes connected to the skins. However, it cannot be

employed in home-based and/or long-term monitoring when people are engaged in different

activities. Alternatively, PPG is a noninvasive optical method for HR and HRV monitoring.

PPG—enabled by a light emitter and a photodetector—measures the volumetric variations of

blood flow [10]. The method collects pulse rate variability (PRV), which widely used as a surro-

gate of HRV [11–19]. Although some studies report the difference between PRV and HRV, for

example, in response to cold exposure [11, 20], they indicated that HRV is the major determi-

nant of PRV. The authors in [13] also showed that HRV parameters could reliably be estimated

by PPG signals.

PPG is a low-cost and convenient method implemented in many clinical and commercial

wearable devices [21–23]. Recently, several PPG-based wearable devices have been proposed

for health parameters monitoring in everyday life settings. Several studies leveraged different
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wearable devices, such as Samsung Gear Sport, Apple Watch, Fitbit, and Garmin Vivosmart,

for health monitoring in different population-based groups [22–24]. With advancements in

technology, it is expected that the use of such wearable devices will grow further as they

become smaller and lighter with longer battery life.

However, PPG-based wearable devices are prone to environmental noises and motion arti-

facts (when users engage in various physical activities). These noises are inevitable in everyday

life settings and affect the signal quality, resulting in poor/invalid health parameters extraction

[25]. Therefore, using commercial PPG-based wearable devices for HR and HRV monitoring

necessitates accuracy assessment, especially if the devices are used for health monitoring

applications.

Several studies investigated the validation of HR measurements using wristbands in various

situations across different population groups. In [26], the authors evaluated the HR of several

wristbands—including Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2,

PulseOn, and Samsung Gear S2—during different physical activities. Other studies validated

the HR extracted from Garmin Forerunner [27], the everlast smartwatch [28], Fitbit Charge

HR [29], Empatica E4 [30], and Basis peak [31]. These studies showed the high accuracy of

PPG-based wristbands for HR monitoring during resting and low-intensity activity in labora-

tory settings. The results also showed a decrease in the accuracy of HR when the intensity of

activity increased. However, these studies are restricted to certain physical activities in labora-

tory settings. They are also limited to HR measurements. The accuracy of HR and HRV

parameters is affected by different factors. For example, the accuracy of RMSSD can be affected

by a distortion in a small part of the signals. However, SDNN accuracy can be impacted by out-

liers affecting the IBIs variations [32]. These characteristics of HRV parameters indicate the

need to validate the accuracy of HRV parameters individually.

Studies evaluated the accuracy of HRV parameters extracted from wristbands and smart-

watches including Apple Watch [14], Empatica E4 [15, 16], Microsoft band 2 [33], and the

Wavelet wristband [34] against medical-grade ECG device. These studies indicated high accu-

racy of the smartwatches and wristbands in terms of HR and HRV parameters while the partic-

ipants were resting. They also showed that motion artifacts highly affect the reliability of HRV

parameters. However, these studies were limited to short-term data collection –less than one

hour– in laboratory settings [16, 30, 33]. In addition, the majority of the previous works col-

lected data only in seated positions [14, 15, 34].

We believe that there is a need to evaluate the accuracy of the smartwatch in everyday life

settings where participants can engage in different activities and conditions. Such evaluation

should also comprehensively assess the accuracy of time-domain and frequency-domain HRV

parameters extracted from the raw PPG signals.

In this paper, we assess the validity of the Samsung Gear Sport smartwatch in terms of HR

and several HRV parameters. The evaluation is performed against a medical-grade chest ECG

monitor in a 24-hours continuous free-live setting monitoring. The data from 28 individuals

are included in the evaluation. We use PPG and ECG signals collected from the Samsung

smartwatch and ECG monitor to extract HR, AVNN, RMSSD, SDNN, pNN50, LF, HF, and

LF/HF ratio in five-minute windows. We evaluate the parameters during sleep time and awake

time. The evaluation is performed using a linear regression method, the Pearson correlation

coefficient, and the Bland–Altman plot. Finally, We discuss the validity of the parameters

based on the obtained results in everyday settings. In summary, the main contributions of this

paper are as follows:

1. We investigate the validity of PPG signals acquired by the Samsung Gear Sport smartwatch

in terms of HR and HRV parameters compared with a medical-grade chest ECG monitor
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2. We conduct a 24-hours study in which 28 healthy participants are monitored remotely and

continuously.

3. We analyze the HR and HRV parameters in five-minute windows during sleep-time and

awake-time using the linear regression method, the Pearson correlation coefficient, and the

Bland–Altman plot.

Method

Study design

An observational study was conducted to assess the validity of HR and HRV parameters col-

lected under free-living conditions via Samsung Gear Sport smartwatches. The assessment was

performed in comparison with an ECG monitor as the golden standard. The study included a

convenience sample of healthy individuals recruited in Southwest Finland in July-August

2019.

Participants and recruitment

Forty-six healthy individuals between the age of 18 and 55 were recruited to participate in this

study. The inclusion criteria were individuals who 1) were able to use wearable devices for 24

hours, 2) had no diagnosed cardiovascular disease, 3) had no symptoms of illness during the

recruitment time, and 4) had no restrictions in physical activities.

In a face-to-face meeting with researchers, the eligible participants were informed about the

purposes of the study, the procedure, and the instructions to use the devices. After the written

informed consent, the devices—a Samsung Gear sport smartwatch [35] and a shimmer3 ECG

device [36]—were delivered to the participants. The participants were asked to wear the wear-

able devices for 24 hours continuously while engaging in their daily routines and log their

sleep and awake time.

After the data collection, we excluded the data of 18 participants due to technical and prac-

tical issues during the monitoring, for example, ECG electrodes were not adequately attached

to the skin, and participants forgot to log their sleep and awake time. Therefore, the data of 28

participants (i.e., 14 female and 14 male) were included in the analysis. Table 1 summarizes the

background information of the participants.

Research ethics

The study was conducted according to the ethical principles based on the Declaration of Hel-

sinki and the Finnish Medical Research Act (No 488/1999). The study protocol received a

favorable statement from the ethics committee (University of Turku, Ethics committee for

Human Sciences, Statement no: 44/2019). The participants were informed about the study,

both orally and in writing, before the written informed consent was obtained. Participation

was voluntary, and all the participants had the right to withdraw from the study at any time

and without giving any reason. To compensate for the time used for the study, each participant

got a gift card to the grocery store (20 euro) at the end of the monitoring period when return-

ing the devices.

Data collection

The data collection included two wearable devices and self-report and background question-

naires. The participants were asked to wear a Samsung Gear Sport smartwatch on the wrist of
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their non-dominant hand. Moreover, they were asked to wear a Shimmer3 ECG device using a

chest strap. The ECG was collected via four limb electrodes placed on the torso (i.e., left arm,

right arm, left leg, and right leg). More details can be found in [37]. We also used self-report

questionnaires by which the individuals logged their sleep and non-wear time. In our analysis,

the self-report data were used to extract the sleep and awake time.

The Shimmer3 ECG device was selected to measure ECG as the gold standard method in

our assessment. The Shimmer ECG is a compact and lightweight device that can be configured

to measure ECG, accelerometer/gyroscope data, and skin temperature continuously [36]. The

device also has sufficient internal memory and battery life for 24 hours of continuous data col-

lection. We configured the Shimmer device to collect data with the sampling frequency of

512HZ, used in clinical trials to extract HR and HRV parameters accurately [38]. The data

were stored on the device during the monitoring and were transferred to our cloud server after

the monitoring for the analysis. In this study, Lead II ECG (right arm—left leg) was selected to

extract the cardiac rhythm accurately.

The Samsung Gear Sport watch is a commercial open-source smartwatch that enables

remote health monitoring [35]. The smartwatch provides PPG signals and gyroscope/acceler-

ometer data at the sampling frequency of 20Hz. The watch runs an open-source Tizen operating

system and has a built-in inertial measurement unit (IMU) to extract physical activity and sleep

data. We developed a customized data collection application for the watch to collect 16 minutes

of PPG signals every 30 minutes continuously. In the analysis, we removed the first minute of

each PPG record, as it was unreliable due to sensor calibration. With this setup, the smart-

watch’s battery life was more than 24 hours, so no battery charging was needed during the mon-

itoring. The data was stored in the watch’s internal storage during the monitoring. Similar to

the Shimmer device data, we transferred the watch’s data to the cloud after the monitoring.

Data analysis

In this section, we describe HR and HRV extraction from the collected PPG and ECG signals.

We used short-term HRV analysis, which considers five-minute windows of signals for the

Table 1. Participants background information n = 27 (one participants didn’t fill the background questionnaire.

Parameters Values

Age, years, mean (SD) 32.5 (6.6)

BMI, mean (SD) 25.4 (5.2)

Exercise

Almost daily 8

A few times a week 13

Once a week or fewer 6

Education

Primary school 1

High school 6

College 6

University 14

Employment status

Working 22

Student 1

Unemployed 3

Other 1

https://doi.org/10.1371/journal.pone.0268361.t001
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analysis [32, 39]. The short-term HRV analysis was selected based on the duration of PPG

recordings (16 minutes per 30 minutes). We then outline the statistical analysis methods used

in this study.

HR and HRV extraction pipeline. The HR and HRV extraction pipeline consists of four

steps: filtering, peak detection, abnormal peak removal, and feature extraction (see Fig 1). The

raw PPG and ECG signals are divided into five-minute segments. In the following, we provide

a detailed description of each step:

1) Filtering: In this step, we remove frequencies that are out of the human heart rate range.

We used a 5-order high-pass Butterworth filter with a cutoff frequency of 0.5 Hz for PPG

signals and a bandpass Butterworth filter with 0.5 and 100 Hz cutoff frequencies for ECG

signals. The cutoff frequencies were selected based on valid HR range and input signals’

frequencies.

2) Peak detection: This step finds the peaks corresponding to the heartbeat in PPG and ECG

signals.

PPG peak detection—We used a deep-learning-based method introduced by Kazemi et al.
[40] for PPG peak detection. The method outperforms other state-of-the-art methods [41,

42], particularly when the signal is noisy. The method is enabled by a dilated Convolutional

Neural Networks (CNN) architecture. The dilated convolutions provide a large receptive

field, enhancing the efficiency of time-series processing with CNNs. The model outputs the

probability of a signal point being a systolic peak. A peak finder function then detects the

peaks’ locations in the signal. The peak finder function first makes a list of all points in the

signals with a probability value higher than a pre-defined threshold (selected experimen-

tally). Then, this function extracts the peaks’ locations using a local maximum finder.

ECG peak detection—We developed a two-round peak detection algorithm to locate peaks in

ECG signals. In the first round, the algorithm computes the average value of filtered ECG

signals in a 5-minute window. Then, it uses this average value as a threshold to detect all

possible peaks, including the real and false peaks. In the second round, the algorithm com-

putes the average value of all detected peaks from the first round as a new threshold. By

using the new threshold value and the heartbeat range (i.e., 20-200 beats per minute), the

undetected R peaks are added, and false peaks are removed. Our peak detection method

obtains higher accuracy in comparison with Pan-Tompkins [43] and Hamilton [44] algo-

rithms. Fig 2 shows a sample of the peak detection results in a 30 seconds segment of PPG

and corresponding ECG signals.

3) Abnormal peak removal: We used a rule-based method to remove invalid peaks extracted

in the previous step. The invalid peaks removal rules are as follows:

• We assume that the minimum and maximum heart rates are 20 and 200 beats per minute.

Accordingly, the minimum and maximum peak-to-peak distances are 3000 and 300

milliseconds.

Fig 1. HR and HRV extraction pipeline.

https://doi.org/10.1371/journal.pone.0268361.g001
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• If the variation in NN intervals exceeds 20% of the average NN intervals, the exceeding

part is removed. Accordingly, if more than 50% of the total NN intervals were removed,

then the result of the entire 5-minute segment is not considered.

4) Feature extraction: In this step, we extracted HR and HRV parameters from normal inter-

beat intervals (NN intervals). The extracted time-domain HRV parameters are AVNN,

SDNN, RMSSD, Percentage of successive NN intervals that differ by more than 50 ms

(PNN50), and the frequency-domain parameters are low-frequency power (LF), high-fre-

quency power (HF), and LF to HF ratio (LF/HF). Table 2 indicates the HRV parameters

used in this study.

Statistical analysis. We investigated the linear relationship between the smartwatch and

Shimmer3 by performing the Pearson Correlation coefficient test on extracted parameters

from two devices. We also applied a linear regression analysis method to assess the accuracy of

the smartwatch’s HR and HRV parameters. We used the Samsung Watch’s data points (HR

and HRV parameters) to fit the linear regression line. Then, we computed the R-squared value

(r2) using the regression line and corresponding ECG data points to evaluate the closeness of

baseline data to the smartwatch’s fitted regression line. We also computed the mean absolute

Fig 2. The peak detection results for a 30 seconds segment of PPG and ECG signals.

https://doi.org/10.1371/journal.pone.0268361.g002
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error (MAE) using PPG data points and corresponding ECG data points to investigate the

mean error.

Moreover, the Bland-Altman analysis was utilized to illustrate and estimate the agreement

between the PPG and ECG results. The Bland-Altman analysis provides mean bias, standard

deviation, and ±95% confidence intervals (CI) based on the differences between the Samsung

Watch and Shimmer3. We leveraged python libraries including Scipy [45], sklearn [46], and

Statsmodels [47] to implement the statistical analysis.

Results

We validated the PPG data collected via the Samsung smartwatch against the ECG data of the

Shimmer device in free-living conditions. The analysis includes the data collected from 28 par-

ticipants (i.e., 14 females and 14 males). We first assess the HR and HRV parameters derived

from five-minute segments collected during sleep. Then, the five-minute PPG segments col-

lected during the awake time are evaluated.

Comparisons of HR and HRV parameters of Samsung smartwatch and

Shimmer3 in 5-minute time windows during sleep time

The sleep duration was acquired from the self-report questionnaires collected during the mon-

itoring. We obtained the correlation between the HR and HRV parameters of the smartwatch

and Shimmer3 in 5-minute segments. Table 3 indicates the Pearson correlation coefficient

with the corresponding P-values, 95% Confidence Interval, mean biases, r2, and MAE of the

HR and HRV parameters. As shown in Table 3, the HR, AVNN, SDNN, and PNN50 between

the Samsung smartwatch and Shimmer3 are highly correlated. The correlation values of the

RMSSD, LF, and HF are still high (positive) but slightly lower. The LF/HF ratio value shows a

moderately positive relationship.

The regression analysis was used to compare the accuracy of the extracted parameters from

the Samsung smartwatch against the reference ECG. Fig 3 illustrates the HR and HRV parame-

ters collected by the Samsung smartwatch (PPG) and Shimmer3 (ECG). The regression analy-

sis was performed for the five-minute segments, and the regression lines (in red) are indicated.

There are also y = x lines (in black), representing the best outcome if the PPG and ECG values

are equal. The r2 values are shown in Table 3, indicating the scatter of the data around the

regression lines. As shown in Fig 3, the fitted lines of the HR, AVNN, and pNN50 closely fol-

low ideal lines, and their r2 values are considerably high. However, the regression lines of other

HRV parameters, including RMSSD, SDNN, LF, HF, and LF/HF relatively diverge, and their

corresponding r2 values are moderate. In addition, MAE shows low errors for HR, AVNN,

Table 2. Time domain and frequency domain HRV features and the descriptions.

Feature Units Description

Time domain features

AVNN ms Mean of NN intervals

SDNN ms Standard deviation of NN intervals

RMSSD ms Root mean square of successive NN interval differences

pnn50 % Percentage of successive NN intervals that differ by more than 50 ms

Frequency domain features

LF power s2 Power in low frequency band (0.04–0.15)

HF power s2 Power in high frequency band (0.15–0.4)

LF/HF % LF to HF ratio

https://doi.org/10.1371/journal.pone.0268361.t002
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and PNN50, moderate errors for RMSSD, SDNN, LF, and HF, and relatively high errors for

the LF/HF ratio.

In addition, the Bland-Altman analysis was carried out to determine the agreement of the

parameters extracted from the Samsung smartwatch and the reference ECG. The 95% confi-

dence intervals and the mean biases are given in Fig 4 and Table 3. The results show that the

smartwatch underestimates AVNN values (on average) but overestimates other parameters. In

addition, there is a narrow 95% confidence interval for HR, RMSSD, SDNN, and PNN50;

however, AVNN, LF, HF, and LF/HF ratio have relatively wider confidence intervals.

Comparisons of HR and HRV parameters of the Samsung smartwatch and

Shimmer3 in 5-minute time windows during awake time

This section describes the comparison of the Samsung smartwatch and the reference ECG dur-

ing awake time. The awake time was obtained by excluding the sleep time from 24-hours. The

assessment was performed by comparing the HR and HRV parameters in 5-minute segments.

Table 4 represents the Pearson correlation coefficients along with the corresponding P-values,

95% confidence interval, and mean biases of HR and HRV parameters collected during awake

time. As shown in Table 4, the results show a high positive correlation between AVNN values,

a moderate positive correlation between HR values, and low positive correlations of the other

HRV parameters (i.e., RMSSD, SDNN, LF, HF, and LF/HF ratio) during awake time.

We used regression analysis to compare the accuracy of the Samsung smartwatch with the

ECG device. Fig 5 illustrates the regression line (in red) of the HR and HRV parameters of the

five-minute segments. In addition, the y = x line is shown in these plots, which indicate the

highest accuracy when the watch’s parameters are equal to the golden standard values. The r2

values and MAE values are also shown in Table 4. The fitted lines of AVNN and HR are close

to the ideal line. The r2 value for AVNN is relatively high and HR has moderate r2 value. How-

ever, the data points of the other HRV parameters, including RMSSD, SDNN, pnn50, LF, HF,

and LF/HF ratio, are dispersed, and their r2 values are low. Moreover, MAE values are low for

AVNN, moderate for HR, RMSSD, and SDNN, and high for the other HRV parameters.

We also utilized the Bland-Altman analysis to examine the agreement between the HR and

HRV values during awake time. The mean biases and 95% confidence intervals are indicated

in Fig 6 and Table 4. The results show that, on average, the Samsung smartwatch overestimates

AVNN, RMSSD, PNN50, and HF, while it underestimates HR, SDNN, LF, and LF/HF ratio

during awake time. Moreover, the 95% confidence intervals of the HR and HRV parameters

are relatively wide.

Table 3. Pearson correlation coefficient, P-values, 95% confidence interval, mean difference, r2 and mean absolute error between smartwatch and Shimmer3 HR

and HRV parameters in 5-minute window during sleep.

Parameter Pearson correlation coefficient P-value Confidence Interval Mean Bias r2 Mean Absolute Error

HR 0.941 < 0.001 [−7.53, 6.77] −0.38 0.882 1.06

AVNN 0.960 < 0.001 [−83.87, 108.59] 12.36 ms 0.909 19.79

RMSSD 0.778 < 0.001 [−68.49, 32.01] −18.24 ms 0.405 22.44

SDNN 0.802 < 0.001 [−72.66, 28.29] −22.19 ms 0.246 23.31

PNN50 0.964 < 0.001 [−13.21, 11.58] −0.81 0.926 4.31

LF 0.784 < 0.001 [−1763.66, 834.77] −464.45 ms2 0.206 476.13

HF 0.782 < 0.001 [−1188.67, 693.23] −247.72 ms2 0.462 299.77

LF/HF ratio 0.622 < 0.001 [−2.24, 1.72] −0.26 0.216 0.693

https://doi.org/10.1371/journal.pone.0268361.t003
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Discussion

Principle results

In this paper, we validated the accuracy of HR and HRV parameters extracted from PPG sig-

nals collected by the Samsung smartwatch during sleep and awake time. We used short-term

HRV analysis, in which HRV parameters are obtained from five-minute PPG signals [32]. Our

Fig 3. The scatter plots and regression analysis of the HR, AVNN, RMSSD, SDNN, PNN50, LF, HF, and LF/HF collected from the Samsung

smartwatch and Shimmer ECG in 5-minute segments during the sleep time. The regression lines and ideal lines are indicated in red and black

colors, respectively.

https://doi.org/10.1371/journal.pone.0268361.g003
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findings during sleep time show very low mean biases of HR and AVNN, relatively low mean

biases of RMSSD, SDNN, pNN50, and LF/HF ratio, and moderate mean biases of LF and HF.

During the awake time, the mean biases of RMSSD and SDNN are relatively low, while the

biases of HR and other HRV parameters are moderate.

Moreover, HR, AVNN, RMSSD, SDNN, pNN50, LF, and HF extracted from the Samsung

watch indicated high positive correlations, while LF/HF ratio showed a moderate positive cor-

relation with the baseline during sleep time. However, during awake time, AVNN has a high

Fig 4. Bland-Altman plots of the HR, AVNN, RMSSD, SDNN, PNN50, LF, HF, and LF/HF in 5-minute segments obtained by smartwatch and

Shimmer3 during sleep.

https://doi.org/10.1371/journal.pone.0268361.g004
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positive correlation, HR has a moderate positive correlation, and the other HRV parameters

have low positive correlations with the baseline. The Samsung smartwatch underestimates HR,

SDNN, LF, and LF/HF ratio but overestimates AVNN during sleep time and awake time.

Moreover, the watch underestimates RMSSD, pNN50, and HF during sleep time, although it

overestimates these parameters during awake time.

The error variance of the parameters is higher during awake time compared with sleep

time. During sleep time, the HR, AVNN, and pNN50 have relatively low error rates, RMSSD,

SDNN, LF, and HF have moderate error rates, and LF/HF ratio has a high error rate. However,

during awake time, AVNN has a moderate error rate, and HR and other HRV parameters

have high error rates.

In conclusion, our findings show high accuracy of HR, AVNN, and pNN50 during sleep.

RMSSD, SDNN, LF, and HF have satisfactory accuracy during sleep. However, during awake

time, only AVNN and HR have acceptable accuracy. HRV collection—using the Samsung

smartwatch during daily activities—requires 1) noise cancellation techniques [48] to improve

the signal quality and/or 2) signal quality assessment techniques [49, 50] to ensure the collected

signal is not distorted and subsequently the parameters’ accuracy is acceptable.

Comparison with previous studies

To the best of our knowledge, this is the first paper validating the HR and HRV parameters

extracted from PPG signals of a smartwatch in free-living conditions. Previous studies showed

high accuracy and low bias in HR extracted from wristbands including Empatica E4, Apple

watch, Microsoft band, Fitbit, Garmin, PulseOn, Basis Peak, and the Wavelet wristband com-

pared to ECG results [15, 16, 26–31, 34]. Our results also show high correlation and low bias in

HR results during sleep. However, in comparison with the previous works, our results show a

lower correlation of HR during the awake time when participants are involved in different

activities.

Other studies validated HRV parameters during rest and specific activities. They showed

the high accuracy of HRV parameters extracted from the Empatica E4 wristband for different

population groups during rest and non-movement conditions [15, 16, 30]. The authors in [34]

showed high correlations in SDNN and RMSSD extracted from the Wavelet wristband com-

pared with the golden standard while resting in seated positions. Our results show a slightly

lower correlation during sleep compared with previous results.

Moreover, previous studies indicated poor agreement of HRV parameters during activities

for Empatica E4 [33, 51]. These studies also showed that the reliability of HRV parameters

decreases with an increase in the intensity of activity. Their results follow our findings, show-

ing higher accuracy during sleep time and lower accuracy during awake time.

Table 4. The calculated Pearson correlation coefficient, P-values, 95% confidence interval, and mean difference between the smartwatch and Shimmer3 HR and

HRV parameters in 5-minute window slots in awake time.

Parameter Pearson correlation coefficient P-value Confidence Interval Mean Bias r2 Mean Absolute Error

HR 0.675 <0.001 [-43.58, 24.65] -9.47 0.293 11.10

AVNN 0.833 <0.001 [-135.12, 254.44] 59.66 ms 0.582 63.62

RMSSD 0.251 <0.001 [-79.59, 91.89] 6.15 ms -0.191 32.11

SDNN 0.404 <0.001 [-76.99, 61.36] -7.81 ms 0.099 24.94

PNN50 0.277 <0.001 [-26.0, 60.99] 17.5 -1.62 20.35

LF 0.350 <0.001 [-1727.72, 1402.18] -162.77 ms2 0.075 484.98

HF 0.130 <0.001 [-1215.82, 1599.31] 191.75 ms2 -0.493 504.18

LF/HF ratio 0.211 <0.001 [-3.38, 2.12] -0.63 -0.453 1.04

https://doi.org/10.1371/journal.pone.0268361.t004
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Previous studies also indicated that time-domain HRV parameters have higher accuracy

compared with the frequency-domain parameters. For example, the results in [14] showed

high agreements of time-domain parameters during rest and mental stress but lower agree-

ments of frequency-domain parameters for the apple watch. Microsoft Band 2 also had a

higher error rate in LF/HF compared to time-domain parameters during rest and activity [33].

The results are in accordance with our results showing higher accuracy in time-domain

parameters compared with frequency-domain parameters during sleep and awake time. In

Fig 5. The scatter plots and regression analysis of the HR, AVNN, RMSSD, SDNN, PNN50, LF, HF, and LF/HF ratio collected from the Samsung

smartwatch and Shimmer ECG in 5-minute segments during awake time. The regression and ideal lines are indicated in red and black, respectively.

https://doi.org/10.1371/journal.pone.0268361.g005
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addition, the results in [14, 30] indicated that LF has higher accuracy than HF during the activ-

ity, which is in accordance with our results.

PPG signals also provide opportunities to assess the parameters of blood pressure (BP) and

peripheral blood flow. [52–54]. Almarshad et al. showed that PPG and BP signals have the

same frequency components as sequences of RR intervals in the LF band [52]. With the unique

association of LF oscillations in RR intervals with autonomic processes, LF oscillations in PPG,

as well as local regulation mechanisms, reflect the mechanism of autonomic control of blood

Fig 6. Bland-Altman plots of the HR, AVNN, RMSSD, SDNN, PNN50, LF, HF, and LF/HF in 5-minute segments obtained by the smartwatch and

Shimmer3 during awake time.

https://doi.org/10.1371/journal.pone.0268361.g006
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circulation. According to the high coherence between BP and PPG signals, it is possible to

study autonomic control of blood pressure using the PPG signal instead of BP. Moreover,

other studies have demonstrated the functional autonomy of the LF oscillations of the heart

rhythm and peripheral blood flow by PPG signal analysis [53, 54]. Extracting accurate HRV

parameters and their oscillation is also desired for other health applications such as blood pres-

sure measurement.

Limitations

This study is limited to 24-hours data collection in everyday life settings. In the future, we will

consider validating the HR and HRV parameters extracted from the smartwatch in a longer

data collection period (e.g., several days or weeks). Therefore, the assessment will provide a

higher confidence level on the validity results of HR and HRV parameters.

Moreover, the generalizability of the results is limited to healthy populations as we only

included healthy individuals in this study. Previous works showed that the accuracy of wear-

able devices can vary for different population group [55, 56]. Cardiovascular disorders, such as

atrial fibrillation, may cause irregular heartbeats in PPG, which will affect the HRV parameters

[1]. Our future work will consider validating PPG-based HRV parameters for different age

groups and various health conditions.

Conclusion

In this paper, we comprehensively assessed the validity of HR and HRV parameters extracted

from PPG signals collected for 24-hours by the Samsung Gear Sport smartwatch. The data

from 28 participants were included in the study. The smartwatch was compared with an ECG

device placed on the user’s chest. Our results showed low mean biases of HR, time-domain

HRV, and LF/HF while moderate mean biases of LF and HF during sleep. The findings also

indicated low error variances of HR, AVNN, and pNN50, moderate error variances of

RMSSD, SDNN, LF, and HF, and a high error variance of LF/HF ratio during sleep. Moreover,

there were high positive correlations for HR, time-domain HRV parameters, LF and HF, and a

moderate positive correlation of LF/HF compared with the baseline parameters during sleep.

During the awake time, RMSSD and SDNN had low mean biases, while the other parame-

ters showed moderate mean biases. Our findings indicated a low error variance of AVNN and

a moderate error variance of HR, while the other parameters had high error variances. In addi-

tion, AVNN had a high positive correlation with the baseline, and HR had a moderate positive

correlation. However, the other parameters had low positive correlations with the baseline

parameters.

The smartwatch can accurately measure HR, AVNN, and pNN50 during sleep and AVNN

during awake time. Moreover, the smartwatch can provide acceptable RMSSD, SDNN, LF,

and HF during sleep and HR during awake time. Future work should include the assessment

of the Smartwatch’s HR and HRV parameters of various population groups with different

health conditions.
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14. Hernando D, Roca S, Sancho J, Alesanco Á, Bailón R. Validation of the apple watch for heart rate vari-

ability measurements during relax and mental stress in healthy subjects. Sensors. 2018; 18(8):2619.

https://doi.org/10.3390/s18082619 PMID: 30103376

15. Schuurmans AA, de Looff P, Nijhof KS, Rosada C, Scholte RH, Popma A, et al. Validity of the Empatica

E4 wristband to measure heart rate variability (HRV) parameters: A comparison to electrocardiography

(ECG). Journal of medical systems. 2020; 44(11):1–11. https://doi.org/10.1007/s10916-020-01648-w

PMID: 32965570

16. Menghini L, Gianfranchi E, Cellini N, Patron E, Tagliabue M, Sarlo M. Stressing the accuracy: Wrist-

worn wearable sensor validation over different conditions. Psychophysiology. 2019; 56(11):e13441.

https://doi.org/10.1111/psyp.13441 PMID: 31332802

17. Bhowmik T, Dey J, Tiwari VN. A novel method for accurate estimation of HRV from smartwatch PPG

signals. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology

society (EMBC). IEEE; 2017. p. 109–112.
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