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Introduction: Blood metabolomics-based biomarkers may be useful to predict mea-
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Methods: We tested the association between 707 blood metabolites measured
in 1451 participants from the Hispanic Community Health Study/Study of Lati-
nos (HCHS/SOL), with mild cognitive impairment (MCI) and global cognitive change
assessed 7 years later. We further used Lasso penalized regression to construct a
metabolomics risk score (MRS) that predicts MClI, potentially identifying a different set
of metabolites than those discovered in individual-metabolite analysis.

Results: We identified 20 metabolites predicting prevalent MCI and/or global cogni-
tive change. Six of them were novel and 14 were previously reported as associated
with neurocognitive aging outcomes. The MCI MRS comprised 61 metabolites and
improved prediction accuracy from 84% (minimally adjusted model) to 89% in the
entire dataset and from 75% to 87% among apolipoprotein E €4 carriers.

Discussion: Blood metabolites may serve as biomarkers identifying individuals at risk

KEYWORDS

1 | INTRODUCTION

Hispanics/Latinos in the United States are at higher risk for mild cog-
nitive impairment (MCI) and Alzheimer’s disease and related demen-
tias (ADRD), compared to non-Hispanic Whites, and are a rapidly grow-
ing ethnic population in the United States.! Various risk factors may
explain the rate differences between populations, including genetic
susceptibility, health conditions, lifestyle, and environmental factors.?
For example, cardiovascular disease and diabetes are more prevalentin
Hispanics/Latinos compared to non-Hispanic Whites and are known to
increase the risk for ADRD. On the other hand, the strongest known
genetic risk factor for ADRD, apolipoprotein E (APOE) ¢4, demon-
strates a weaker association in Hispanics/Latinos, compared to other
populations.?

MCI is the stage between the expected cognitive decline of nor-
mal aging and the development of dementia,* although some individ-
uals with MCI may revert to normal.® Individuals diagnosed with MClI
experience mild changes in thinking, memory, language, and/or judg-
ment abilities greater than age-related expected changes. MCI can
result from a variety of etiologies, some of which are reversible, and are
affected by medications, injuries, sleep, exercise, education, and diet.®
These MCl risk factors may lead to metabolic dysregulation. In the last
decade, metabolome assessment has emerged as a new approach for
biomarker discovery, and for evaluating the progress of disease and its
underlying pathophysiology.” Recent studies have demonstrated risk
prediction of MCl and ADRD based on blood metabolite biomarkers
in prospective studies.2? For example, higher plasma anthranilic acid
levels were associated with a greater risk of dementia in the Framing-
ham Offspring Study.!® Thus, metabolome screening in middle-aged
adults can detect plausible biomarkers that may improve risk pre-
diction for MCI and can facilitate modifiable interventions at earlier

for MCl among US Hispanics/Latinos.

global cognitive change, Hispanics/Latinos, metabolite biomarkers, metabolomic risk score, mild
cognitive impairment, risk prediction

stages of the disease.’>12 However, most studies were conducted in
non-Hispanic US populations,® and metabolite associations may not
generalize between populations. In one study, 10 prospectively pre-
dictive phospholipids metabolites for MCI or dementia found in non-
Hispanic Whites failed replication in a Black cohort.’® Another study
in European Americans?? replicated only one (out of seven) prospec-
tive predictive metabolite for dementia previously found in Blacks.
Given the differences in risk factors and rates of cognitive decline and
MCI across populations, we hypothesized that optimal metabolomics
biomarkers in Hispanics/Latinos may differ from those in other
populations.

We examined the associations of blood metabolites with MCI and
global cognitive change over an average 7-year follow-up period among
middle-aged and older adults in the Study of Latinos-Investigation of
Neurocognitive Aging (SOL-INCA).1* SOL-INCA is an ancillary study to
the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).
The analysis steps are described in Figure 1. We hypothesized that
there are metabolites associated with MCI and cognitive decline in
Hispanics/Latinos. We first tested the association of 707 metabo-
lites with MCI and global cognitive change (Step A). We assessed the
single-metabolite associations based on previous literature (Step B)
and generalization to Europeans and Blacks from the Atherosclero-
sis Risk in Communities (ARIC) study using a proxy-trait approach
by testing metabolite associations with change in cognitive tests
(Step C). Next, we used a Lasso regression to construct a metabo-
lite risk score (MRS, Step D). An MRS is a combined metabolomics
measure, integrating information across multiple metabolites at once.
Therefore, an MRS can potentially serve as a better biomarker
of the metabolic environment related to a specific outcome com-
pared to individual metabolites. Finally, we also explored whether
previously reported metabolite associations with cognitive function
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generalize to the Hispanics/Latinos in the SOL-INCA target population
(Step E).

2 | METHODS

2.1 | Study population

The HCHS/SOL is a US population-based longitudinal cohort study
with 16,415 Hispanic/Latino participants recruited from four field cen-
ters (Bronx, NY; Chicago, IL; Miami, FL; and San Diego, CA, USA) by a
sampling design previously described.'>1¢ Adults ages 18 to 74 years
old were recruited during the first visit, between 2008 and 2011, and
various biospecimen and health measures were collected. At baseline,
cognitive function was assessed in 9714 individuals aged 45 years or
older. The baseline cognitive battery included the Six-ltem Screener
(SIS; mental status),’’” Brief-Spanish English Verbal Learning Test (B-
SEVLT: verbal episodic learning and memory),'® Word Fluency (WF;
verbal functioning),!’ and Digit Symbol Substitution test (DSS; pro-
cessing speed, executive function).2? SOL-INCA is an ancillary study
of HCHS/SOL, focusing on the middle-aged and older adult group who
underwent cognitive assessment at Visit 1. Overall, 6377 individuals
50 years or older with baseline cognitive testing participated in the
SOL-INCA examination, taking place at or after HCHS/SOL Visit 2,
with an average of 7 years since Visit 1. Metabolites were measured in
serum, after fasting, on a random subset of 3978 from HCHS/SOL par-
ticipants from Visit 1. The current study population consists of 1451
individuals who participated in SOL-INCA and additionally have mea-
sures of metabolites.

All study participants provided written informed consent in their
preferred language (Spanish/English) to use their genetic and non-
genetic data. The study was reviewed and approved by the institutional
review boards at all collaborating institutions.

2.2 | Neurocognitive outcomes

We studied two primary neurocognitive outcomes: MCI at the SOL-
INCA visit, and global cognitive change in the 7-year follow-up between
the HCHS/SOL Visit 1 and the SOL-INCA visit. Individuals were clas-
sified with MCI according to National Institute on Aging-Alzheimer’s
Association criteria.2! Details about the SOL-INCA MCI diagnos-
tic operational procedures have been previously published.1?2 The
global cognitive change is a continuous measure constructed using
a confirmatory latent factor model based on the HCHS/SOL base-
line and SOL-INCA cognitive function tests, as previously described.*
We performed secondary analyses in which we studied the associa-
tion between the top identified metabolites and change in cognitive
function measured by three cognitive tests. These cognitive tests cor-
respond to different domains: B-SEVLT for new learning and verbal
memory, WF for verbal fluency, and DSS for psychomotor speed and
sustained attention.?! The changes were computed as the difference
between the test scores in the SOL-INCA and Visit 1. These associ-
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HIGHLIGHTS

* Blood metabolomic biomarkers may predict measures of
neurocognitive aging.

* Metabolite levels are affected by both genetics and
lifestyle.

* Optimal metabolomics biomarkers may differ among pop-
ulation groups.

* We identified metabolites associated with neurocognitive
aging in US Hispanics/Latinos.

* Metabolite risk score improved the prediction of mild cog-

nitive impairment in this population.

RESEARCH IN CONTEXT

1. Systematic Review: The authors reviewed the litera-
ture using traditional sources. In the last decade, sev-
eral studies have demonstrated risk prediction of early
neurocognitive aging outcomes, such as mild cognitive
impairment (MCI), by testing blood metabolites. How-
ever, these predictions may not generalize between pop-
ulations, and only a few studies were conducted in the
US Hispanic/Latino population. Publications are appro-
priately cited.

2. Interpretation: We identified novel metabolite associa-
tions and replicated several previously published metabo-
lite associations. We also constructed a metabolomic risk
score, improving the accuracy of MCI prediction models
in Hispanics/Latinos.

3. Future Directions: Future studies are needed to confirm
the effectiveness of metabolomic biomarkers in the pre-
diction of MCI, and compare the metabolite biomarkers

across diverse populations.

ations were used for the analysis in Figure 1, Step C, as described
later.

2.3 | Metabolomics measurement and processing

Metabolites were measured in serum of blood drawn after at least
8 hours of overnight fasting. Profiling was done using untargeted liquid
chromatography-mass spectrometry (LC-MS) using the discovery HD4
platformin 2017 at Metabolon Inc. (Durham, NC). Of 1136 metabolites
quantified, 784 were identified as known compounds, and 352 were
unidentified.23 Further details on metabolites’ quality control are pro-
vided in Figure S1 in supporting information. Overall, we tested 707

metabolites in this study.
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1,451

SOL-INCA participants
with measures of
metabolites

Single metabolite
association analysis

Metabolite risk score

|
FDR significant
I

Step B |

Generalization in SOL-

INCA of previous
metabolite associations

Review of previous

metabolite associations

Step C

Generalization in ARIC

FIGURE 1 Metabolite—neurocognitive outcomes analyses flowchart in the Study of Latinos-Investigation of Neurocognitive Aging
(SOL-INCA) analytic dataset. Step (A), association analysis between single metabolites and neurocognitive outcomes. Step (B), review of previous
literature reporting the metabolites with false discovery rate (FDR)-significant associations. Step (C), generalization of the FDR-significant
metabolite associations in the Atherosclerosis Risk in Communities (ARIC) dataset. Step (D), construction of a metabolite risk score (MRS) for
neurocognitive outcomes. Step (E), generalization of previously reported metabolite-neurocognitive associations in SOL-INCA

2.4 | Statistical analysis

We characterized the target population that the sample represents
using weighted analysis, stratified by MCI. The weights are used to
obtain estimates of characteristics generalizable to the target popula-
tion of SOL-INCA. A detailed discussion of the sampling design, includ-
ing the generation and use of weights for the HCHS/SOL, was previ-
ously published.1>16

2.5 | Single metabolite association analyses

We tested the associations of each metabolite with each of the neu-
rocognitive outcomes accounting for the complex survey design of the
data using the R “survey” package,?* with a “quasi-Poisson” family for
a binary outcome (Figure 1, Step A). We used three nested regres-
sion models, the first with basic adjustment for sex, age, study cen-
ter, self-reported background (Dominican, Central American, Cuban,
Mexican, Puerto Rican, South American, or more than one/other her-
itage), education, and years between HCHS/SOL Visit 1 and the SOL-
INCA visit. The second model with further adjustment for health mea-
sures including body mass index (BMI), estimated glomerular filtration
rate (eGFR, estimated from serum creatinine using the CKD-EPI equa-
tion), type Il diabetes (T2D), and hypertension. The third model with
further adjustment for APOE ¢4 carrier status (dominant mode), and
lifestyle variables including alcohol consumption, and smoking status.
We also stratified models 1 and 2 by APOE ¢4 allele carrier status.

The significance threshold was false discovery rate (FDR) adjusted P-
value < .05 (g-value) computed in each analysis separately. Biological
pathways for metabolites were provided by Metabolon’s annotation
file.

2.6 | Evidence from previous publications for
single-metabolite-identified associations

For each metabolite significantly associated with MCI or global cog-
nitive change after multiple-testing correction, we searched for rel-
evant published associations in Google Scholar, PubMed, PubChem,
and The Human Metabolome Database (HMDB). Keywords included in
the search: the name/identification (eg., HMDB ID) of the metabolite,

“cognitive function,
Step B).

dementia,” “Alzheimer’s disease (AD)” (Figure 1,

2.7 | Generalization analysis of metabolite
associations in the Atherosclerosis Risk in
Communities (ARIC) study

We evaluated the generalizability of the discovered metabolite associ-
ations in the ARIC study (Figure 1, Step C). ARIC is a longitudinal cohort
study with cognitive measures and metabolite profiling based on a simi-
lar Metabolon platform. ARIC did not have equivalent measures of MCl

and global cognitive change; therefore, we used a proxy-generalization
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approach testing the metabolites’ associations with change in
cognitive test results. Further details are provided in the supporting
information.

2.8 | Metabolic risk score for MCI

We performed Lasso-penalized regression to optimally select and esti-
mate the joint effect of multiple metabolites that together predict MCI
in the HCHS/SOL analytic sample (Step D in Figure 1).2°> Based on the
selected metabolites and their estimated effects, we constructed an
MRS for MCI. Further details are provided in the supporting informa-
tion.

2.9 | Generalization of previously reported
metabolite associations with neurocognitive
outcomes in SOL-INCA

We identified two manuscripts reporting associations of metabolites
with MCI and AD, using a similar Metabolon platform.122¢ To study
whether their reported associations generalize to associations with
MCl and global cognitive change in Hispanics/Latinos, we inspected the
metabolites they reported in our single-metabolite association analy-

ses (Figure 1, Step E).

2.10 | Data availability

HCHS/SOL and SOL-INCA data can be obtained from dbGaP under
accession number phs000810.v1.p1. Summary statistics from associ-
ation analyses of all metabolites and all studied phenotypes are avail-
able in a GitHub repository. In addition, code for constructing the MCI
MRS based on the Lasso-selected metabolites is provided in the same
GitHub repository.

3 | RESULTS

Table 1 characterizes demographic, health, and lifestyle characteristics
of the study population, stratified by MCI status. Overall, our dataset
included 1451 individuals (558 men, 893 women), with a weighted

mean age of 56 years at Visit 1.

3.1 | Single metabolite association analyses
(Figure 1, Step A)

We performed metabolite association analysis across the total analytic
sample and stratified by APOE ¢4 carrier status. Table 2 summarizes
the associations that passed the FDR-adjusted threshold in any one of
the three nested regression models. Table S1 in supporting information

provides annotations for these metabolites. Across the three regres-

Disease Monitoring

sion models, we identified 13 metabolites associated with MCl and 8
metabolites associated with global cognitive change. Effect directions
persisted across the three models for all associations (data not shown).
One metabolite, quinolinate, was associated with both MCl and global
cognitive change.

Results from complete-cases metabolite analyses were similar to
the analyses of the imputed metabolites. All but three associations
were identified in one of the APOE ¢4 stratification groups (carriers
or non-carriers), with most lipid metabolites identified in the APOE ¢4
non-carrier group. Figure 2 visualizes the correlations between the
metabolites predicting MCI and/or global cognitive change as outlined
in Table 2.

Table 3 summarizes previously reported metabolite associations
for the metabolites from Table 2 (Figure 1, Step B). Six metabo-
lites associated with MCI in our study had no previously reported
associations with neurocognitive phenotypes. Of these, three lipids
were associated with MCI in APOE ¢4 non-carriers: 1-arachidonoyl-
GPE (20:4n6), 2-hydroxyoctanoate, and 1-Palmitoyl-2-arachidonoyl-
gpe (16:0/20:4). Two xenobiotics, tartarate and sulfate, and one
nucleotide, aminoisobutyrate, were associated with MCI in APOE ¢4
carriers. All other 14 metabolites were previously reported as associ-
ated with relevant neurocognitive phenotypes in primarily non-Latino
White and Black populations. Eight metabolites had a consistent direc-
tion of effects with the published literature, and six metabolites had

opposite direction of effects.

3.2 | Generalization analysis of metabolite
associations in ARIC (Figure 1, Step C)

Tables S2-S5 in supporting information summarize proxy-phenotype
selection for the ARIC cohort generalization study as described in
the supporting information. Out of the 20 associated metabolites
with either MCI or global cognitive change in our analytic dataset,
11 were available for ARIC generalization tests. Table Sé in sup-
porting information summarizes the results from the generalization
study in ARIC stratified by race: European American and Black. One
association was generalized; 7-methylguanine was associated with
improved cognitive change in the total analytic sample was associ-
ated with improved DSS change in Black ARIC APOE ¢4 carriers and

non-carriers.

33 |
Step D)

Metabolic risk score for MCI (Figure 1,

We performed Lasso regression to jointly select metabolites associ-
ated with MCI and estimate their effects. Sixty-one metabolites were
selected by the algorithm and formed an MRS. Figure 3 compares MCI
classification accuracy in a model accounting for baseline covariates
only (sex, age, study center, self-reported Hispanic/Latino background,
education, and time between visits), and a model further accounting for

the MRS. Comparison of both models shows an increase in accuracy of
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TABLE 1 Demographics, health, and lifestyle characteristics of the study population by MCl status
Without MCI With MCI Total
Sample size 1,286 165 1,451
Age at visit 1 (mean [SD]) 54.33(7.05) 58.12(8.01) 56.03(8.18)
Sex =M (%) 506 (49.1) 52 (40.6) 558(48.1)
Study center (%)
Bronx 330(30.0) 40(25.8) 370(29.5)
Chicago 266(10.1) 38(12.2) 304 (10.3)
Miami 386(37.0) 45(41.4) 431 (37.5)
San Diego 304 (23.0) 42(20.6) 346(22.7)
Self-reported background (%)
Dominican 139(11.6) 16 (9.0) 155(11.3)
Central American 134 (7.5) 16 (9.0) 150(7.6)
Cuban 239(26.1) 27(27.4) 266(26.3)
Mexican 461(31.3) 57(24.8) 518(30.6)
Puerto Rican 216(16.0) 35(17.2) 251(16.1)
South American 76(4.4) 9(3.9) 85(4.3)
More than one/other heritage 20(3.2) 5(8.7) 25(3.8)
Education years (%)
<12 468 (32.7) 85(50.3) 553(34.8)
12 294(22.9) 30(12.9) 324(21.7)
>12 524 (44.4) 50(36.7) 574 (43.4)
BMI (mean [SD]) 29.91(5.35) 30.37 (5.50) 29.50(5.13)
eGFR (mean [SD]) 90.64 (15.75) 87.25(15.96) 88.72(16.41)
Type |l diabetes (%) 308 (25.4) 68 (45.4) 376(27.8)
Hypertension (%) 511(42.0) 91 (63.3) 602 (44.5)
APOE €4 carriers (%) 288(22.0) 41(20.3) 329(21.8)
Alcohol consumption (n [%])
Never 249 (18.9) 45(27.9) 294 (20.0)
Former 403 (27.8) 55(28.6) 458 (27.9)
Current 634 (53.3) 65 (43.5) 699 (52.1)
Smoking status (n [%])
Never 726 (55.6) 97 (51.1) 823(55.1)
Former 324(25.1) 35(24.5) 359(25.0)
Current 236(19.3) 33(24.4) 269(19.9)
Years between visits (mean [SD]) 7.05(1.16) 7.17 (1.16) 7.06 (1.16)

Abbreviation: APOE, apolipoprotein E; BMI, body mass index; eGFR, estimated glomerular filtration rate; MCI, mild cognitive impairment; SD, standard devi-

ation; SOL-INCA, Study of Latinos-Investigation of Neurocognitive Aging.

Notes: (%) were computed using sampling weights and therefore characterize the SOL-INCA target population.

All measures are provided from visit 1.

5% in the model that accounts for MRS within the total dataset, reach-
ing an 89% accuracy. Within the APOE ¢4 carriers, the increased accu-
racy due to the addition of the MRS to the model is 12%, reaching 87%
accuracy, and in the APOE ¢4 non-carriers, the increased accuracy is 7%,
reaching a total of 90% accuracy. The MRS had a P-value < .0001 in all
three models.

Of the 61 metabolites forming the MRS, four metabolites

(aminoisobutyrate, quinolinate, 2-hydroxyoctanoate, and 1-
palmitoleoyl-GPC [16:1]) were associated with MCI in single-
metabolite analysis. Figure S2 in supporting information presents
the MRS selected metabolites’ associations with SOL-INCA cognitive

outcomes.
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FIGURE 2 Correlations between significant false discovery rate (FDR)-adjusted metabolites associated with mild cognitive impairment (MCI)
or global cognitive decline. The metabolite correlations were computed within the total study population (not stratified by apolipoprotein E ¢4

carrier status)

3.4 | Generalization of previously reported
metabolite associations with neurocognitive
outcomes to SOL-INCA Hispanics/Latinos (Figure 1,
Step E)

Figure S3 in supporting information provides generalization results of
14 previously reported associations of Metabolon-measured metabo-
lites available for SOL-INCA, with all primary and secondary neu-
rocognitive outcomes. The metabolites were reported either in the
Black population or in a primarily White population. Five associa-
tions were generalized (one-sided P-value < .05) to MCl: androstene-
diol, docosapentaenoate, glycodeoxycholate, taurodeoxycholate were

associated with increased risk of MCI (previously associated increased

risk of dementia, AD, and reduced performance in DSS over time), and
ursodeoxycholate was decreased risk for MClI (previously reported as
decreasing risk for AD).

4 | DISCUSSION

We studied the association of 707 serum metabolites with MCI and
global cognitive change phenotypes in Hispanics/Latinos from SOL-
INCA. Overall, we identified 20 metabolite associations with either one
or both of the phenotypes, mostly detected in APOE ¢4 non-carriers.
To the best of our knowledge, 6 of the metabolites are novel associ-

ations and 14 had previously published evidence of association with
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MCI Classification Accuracy
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FIGURE 3 Mild cognitive impairment (MCI) prediction accuracy for the total analytic dataset, and stratified by apolipoprotein E (APOE) €4
status, for models adjusted for sex, age, study center, self-reported Hispanic/Latino background, education, and time between visits, with and

without the metabolite risk score

neurocognitive phenotypes. The published evidence is from either
diverse population-based, clinical, animal, or in vitro studies. We con-
structed an MRS based on 61 metabolites to form a single score pre-
dictive of MCI, improving the accuracy of minimally adjusted MCI
prediction models in our Hispanic/Latino population. Finally, we gener-
alized to our Hispanic/Latino participants 5 out of 14 metabolite asso-
ciations with neurocognitive phenotypes reported in previous publi-
cations that used the same metabolomics platform. All generalized
associations were of lipid metabolites.

There were 13 metabolites associated with MCI after FDR control
in our analysis. Of these, eight were lipids, and seven of them were
identified in APOE ¢4 non-carriers (Table 2). As outlined in Table 3,
five of the eight lipids were previously reported as associated with
neurocognitive phenotypes with similar directions of associations (gly-
colithocholic acid 3-sulfate, glycodeoxycholatesulfate, 1-palmitoleoyl-
GPC[16:1], 3-hydroxy-3-methylglutarate, and 9,10-DiHOME). The sin-
gle lipid association detected in APOE ¢4 carriers was with 3-hydroxy-
3-methylglutarate previously reported as a risk-decreasing factor for
AD.Z’ Lipids are known for their crucial function in cell signaling, phys-
iological processes, and disease pathology, especially in the brain.2®
APOE &4 genotype is known to disrupt lipid transport and metabolism
in AD. Our results from the APOE ¢4 non-carriers emphasize the impor-
tance of lipids dysregulation in neurocognitive phenotypes, even in the
absence of the APOE ¢4 allele.28 Isocitrate is another metabolite asso-
ciated with increased MCI risk in APOE ¢4 carriers. It was previously
reported as having a higher concentration in serum of AD patients com-
pared to cognitively normal older adults.?? Isocitrate is a part of the cit-
rate cycle pathway, responsible for the oxidation of carbohydrates and
fatty acids.

We identified eight metabolites associated with global cognitive

change; all were previously implicated with neurocognitive pheno-

types (Table 3). The directions of six of the associations were inconsis-
tent with the literature. The associations were risk-decreasing in the
present study whereas they were risk-increasing in previous reports.
All these six metabolites also were highly positively correlated in our
dataset (Figure 2). The direction of association in our dataset remained
consistent after adjusting for additional neurocognitive risk factors in
regression models 2 and 3, though they became less statistically sig-
nificant. One of these metabolites, 7-methylguanine was also associ-
ated with improved cognitive function (change in DSS test) in ARIC
Blacks (P-values = .03 and .04 in APOE &4 carriers and non-carriers,
respectively). The inconsistencies between our findings and prior lit-
erature could result from different neurocognitive phenotypes evalu-
ated across studies, differences in population characteristics such as
age and genetic architecture, or other lifestyle and environmental fac-
tors that could not be adequately accounted for in the models.3° Such
differences between populations may also explain the overall low gen-
eralization in the ARIC population (Table Sé). Further investigation
of these metabolites in additional data collected in Hispanics/Latinos,
and across diverse populations, is needed to clarify the role of these
metabolites in neurocognitive health.

A single metabolite, quinolinate, was associated with both MCI and
cognitive change in our analysis. Quinolinate is part of the kynurenine
pathway of tryptophan catabolism, involved in response to inflamma-
tion and infection. The kynurenine pathway is increasingly recognized
as contributing to cognitive function.3132 Higher concentrations of
both quinolinate and kynurenine were associated with improved cog-
nitive change in our study, while previous studies primarily reported
these two metabolites as associated with neuronal damage.?? In gen-
eralization analysis in European Americans from ARIC, quinolinate was
nominally associated (P-value = .05) with worse 6-year cognitive per-

formance in the DSS test in APOE &4 carriers. A possible explanation
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for these contrasting results could be the recognition that quinolinate
is a double-edged sword, acting as both an essential metabolite in the
kynurenine pathway of tryptophan catabolism and a potent neurotoxin
with a pro-apoptotic effect on some cell types.33 In fact, kynurenine
pathway metabolites have recently been proposed as a potential treat-
ment or therapeutic biomarker for neuropsychiatric disorders.3! Inter-
pretation of these contrasting results is further complicated because
metabolites measured in peripheral blood, as done in this study, may
show a different effect compared to other studies that measure the
brain metabolites.3! Future work is needed to elucidate their complex
association and therapeutic potential for neurocognitive conditions.

We identified six novel associations of metabolites with MCI that
were not previously implicated with neurocognition. Aminoisobu-
tyrate, a risk decreasing factor, is a nucleotide in the pyrimidine
metabolism pathway produced by skeletal muscle during physical
activity. This metabolite was suggested to decrease the risk for
metabolic syndrome and its cardiovascular complications, which are
known risk factors for dementia.?* Three other metabolites are
lipids: risk-increasing 1-arachidonoyl-GPE (20:4n6), risk-decreasing
2-hydroxyoctanoate, risk-increasing 1-palmitoyl-2-arachidonoyl-gpe
(16:0/20:4); and the two other metabolites are xenobiotics, chemicals
that are not derived in humans and enter the body via food or other
environmental exposure: risk-increasing tartarate and risk-decreasing
sulfate. Of these, only the sulfate was available for generalization anal-
ysis in ARIC, with DSS as proxy-phenotype, and there was no evidence
of association (P-value > .5 in both Whites and Blacks). Tartarate is an
organic acid occurring in many fruits, thus it is regulated in the body
by dietary consumption. Similarly, the quinolinate mentioned above is
regulated by dietary consumption of vitamin B3,%° thus supporting the
investigation of diet as a risk factor for neurocognitive outcomes.

The MCI MRS created by Lasso comprised 61 metabolites, and MCl
prediction models that included the MRS improved prediction accu-
racy compared to the minimally adjusted models for both the entire
dataset and among the APOE ¢4 carriers and non-carriers. Future tar-
geted data collection is needed to test the performance of the MRS in
the prediction of MCI in an independent dataset with similar and/or
different ancestries. Validation using existing datasets is challenging
because measured metabolites often do not overlap between different
studies, in addition to differences in measured phenotypes. Because
MCl is often a transitional stage before the development of dementia,
the MRS, if validated, could potentially be used as an early detection
biomarker allowing for prevention strategies. The identified metabo-
lites, individually and as an integrated measure represented by the
MRS, are potential mediators of the effect of environmental exposures
such as nutrition, on neurocognitive outcomes.

The present study adds to the growing body of research that uses
fasting blood metabolites to predict neurocognitive aging outcomes.
We provide an in-depth analysis of the associations of a broad panel
of metabolites with neurocognitive outcomes studied in a unique
prospective cohort comprised solely of the US Hispanic/Latino under-
studied population. However, our study also has some limitations. First,
despite the relatively large HCHS/SOL dataset, comprising 1451 par-

ticipants, only 10% of them were classified as MCI, due to their rela-

Disease Monitoring

tively young age, thus limiting statistical power. Another limitation is
that we used a prevalent, rather than the incident, MCI because MCI
status is not available at baseline, so we could not verify that all indi-
viduals with MCI at the SOL-INCA visit did not already have MCI at
baseline. However, the majority of participants likely did not have MCI
at baseline. Moreover, in association analysis within the stratum of
APOE ¢4 carriers, the sample size is quite small (n = 329), limiting the
power and potential generalizability to other populations, and increas-
ing the likelihood of overfitting. Second, despite accounting for sev-
eral covariates in the nested models, these covariates may not fully
capture the relationship of lifestyle and environmental confounders
with both metabolites and cognitive outcomes, resulting in additional
unobserved confounding. Finally, we were not able to fully test our
novel metabolite in an independent study population. The ARIC gen-
eralization study was also conducted in young adults, used different
phenotypes, and had only one of the six novel metabolites detected in
the present study. Nevertheless, most of our findings validated previ-
ous metabolite associations with cognitive functions, offering external
validity. Further analyses with other Hispanic/Latino data are needed
to replicate our novel associations.

Overall, this study shows evidence those optimal metabolomics
biomarkers predicting prevalent MCI and global cognitive change in
Hispanics/Latinos are different than those in Whites and other pop-
ulations. We found novel associated metabolites that may be specific
to our population and replicated previously published metabolite asso-
ciations, but some showed the opposite direction of associations. Fur-
ther work should study the similarity and differences in metabolomics
biomarkers predicting neurocognitive phenotypes across diverse pop-
ulations.
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