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Abstract

Modeling Visual Cortical Development

by

Andrew Christian de la Cruz Ligeralde

Doctor of Philosophy in Biophysics

University of California, Berkeley

Professor Michael R. DeWeese, Chair

Representation is a critical component of visual neuroscience. While there is an exten-
sive body of literature on the nature of visual representations, we lack a set of guiding
principles for understanding how representations are learned during development. Our
analysis here focuses on this question at a computational level. The first set of results ad-
dresses how representations are learned under the assumption of a sparse prior on the
data. It is well known that sparse coding models trained on natural images learn basis
functions whose shapes resemble the receptive fields (RFs) of simple cells in the primary
visual cortex (V1). However, it is unclear whether certain types of basis functions emerge
more quickly than others, or whether they develop simultaneously. We train an overcom-
plete sparse coding model (Sparsenet) on natural images and find that there is a spectral
bias in the order of development of its basis functions, with basis functions tuned to lower
spatial frequencies emerging earlier andhigher spatial frequency basis functions emerging
later. We observe the same trend in a biologically plausible sparse codingmodel (SAILnet)
that uses leaky integrate-and-fire neurons and synaptically local learning rules, suggest-
ing that this result is a general feature of sparse coding. These results are consistent with
recent experimental evidence that the distribution of optimal stimuli for driving neurons
to fire shifts towards higher frequencies during normal development in mouse V1. We
find that the input data statistics can fully account for the spectral bias in sparse coding,
and propose that visual experience is sufficient to drive the spectral bias in receptive field
development. Our analysis of sparse codingmodels during training yields experimentally
testable predictions for V1 development.

In the next set of results, we investigate the potential for innately generated neural ac-
tivity to drive the development of efficient representation in the visual cortex. Prior to
the onset of vision, neurons in the developing mammalian retina spontaneously fire in
correlated activity patterns known as retinal waves. Experimental evidence suggests that
retinal waves strongly influence the emergence of sensory representations before visual
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experience. We model this early stage of functional development by using movies of neu-
rally active developing retinas as pre-training data for neural networks. Specifically, we
use unsupervised learning to train models on movies of retinal waves, then evaluate its
performance on image classification tasks. We find that pretraining on retinal waves sig-
nificantly improves performance on tasks that test object invariance to spatial translation,
while slightly improving performance on more complex tasks like image classification.
Notably, these performance boosts are realized on held-out natural images even though
the pre-training procedure does not include any natural image data. We then propose
a geometrical explanation for the increase in network performance, namely that the spa-
tiotemporal characteristics of retinal waves facilitate the formation of separable feature
representations. In particular, we demonstrate that networks pre-trained on retinal waves
are more effective at separating image manifolds than randomly initialized networks, es-
pecially for manifolds defined by sets of spatial translations. These findings indicate that
the broad spatiotemporal properties of retinal waves prepare networks for higher order
feature extraction.
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Chapter 1

Vision as Representation Learning

1.1 Overview
At every turn, the E. coli bacterium is faced with a binary choice: “run” or “tumble”.
During “run”, the bacterium rotates its flagella counterclockwise, forming a bundle that
propels it in a straight line. During “tumble”, the bacterium rotates its flagella clockwise,
which unravels its bundle and causes it to randomly change direction [1]. This choice
is informed by two sensory mechanisms: one which records the current concentration of
food in its surroundings, and another which records the concentration of food moments
earlier. If the bacterium senses a positive gradient of an enticing chemical, it will continue
swimming in a straight line. If not, it will tumble until it does [2].

Many times during graduate school, I felt like the E. coli. In the literal sense, I was
constantly looking for free food. More figuratively, the research process often resembles
the E. coli’s random walk, especially in the early days. I’m not sure whether my sense
for detecting positive gradients improved over time, or whether my graduation timeline
compelled me to commit to more audacious leaps forward in my last couple years. Either
way, this thesis represents the sum total of my randomwalk. The purpose of this overview
is to describe the path that led me to Modeling Visual Cortical Development — for one, to
give this thesis some narrative structure— but also to be forthcoming about the nonlinear
nature of finding a good research question, a process which is typically omitted (for good
reason) in scientific writing.

My first real exposure to neurosciencewas as an undergradworking in AminaQutub’s
lab, where I was tasked with developing a protocol to grow neural progenitor cells sus-
pended in a three-dimensional matrix. The idea was to more closely mimic how they
might form connections during development, so we could image them and analyze their
network properties. For a whole summer, I triedwhat must’ve been ten iterations of a pro-
tocol that all inevitably ended in mass cell death, before they even formed any synapses.
It was maybe at this point that I decided I would pivot to computation.

I was lucky that one of my early tumbles in graduate school led me to a project that,
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while not a chapter in this thesis, informed my research immensely. The broader goal of
this project, led by Charles Frye, was to understandwhy it’s so easy to optimize neural net-
works without frequently landing in bad local minima. Prior work proposed the explana-
tion, substantiated by numerical evidence, that there simply are no bad local minima. We
studied the algorithms used to gather this evidence— critical-point finding algorithms—
and found that they often fail on neural networks, which previouswork hadn’t considered
[3]. Through this project, I dove intomachine learning and optimization theory, learned to
write good research code, and most importantly, developed instincts for casting complex
problems as simpler, illustrative toy problems. In a much broader sense, I began thinking
more about how complex systems — from the artificial neural networks we studied, to
biological neural networks in the brain — actually learn to do the tasks they’re good at
solving.

Without a well-defined research question in mind, it took me many months of read-
ing and playing around with different existing models for neuroscience — including the
sparse codingmodels I discuss inChapter 2—before I came across an article called “Could
a Neuroscientist Understand a Microprocessor?” [4] that helped me crystallize the ques-
tion I was really after. I realized what I wanted to ask essentially fell under Marr’s famous
three levels of analysis: 1) If brain development is optimizing to solve a particular com-
putational problem, what is it? 2) What algorithms does it employ to solve this problem?
And 3) What are the substrates the brain uses to execute these algorithms? [5].

Brain development is a huge area of research. But at the time, I decided to focus on the
development of the visual system, out of a self-imposed pragmatism that I felt the need
to adopt in order to finish my Ph.D. in a reasonable time. After all, it seemed like vision
had been widely studied as a computational problem, with image classification models
achieving state of the art performance [6] and deep networks being extensively applied to
understand visual cortical responses [7, 8]. Vision presented what I felt at the time was a
tractable path forward: a testbed for asking new questions, but within a well-developed
area of research.

Visionwas themedium throughwhich I became interested in representation—howsen-
sory neurons, and the brain in general, represents information — a topic which concerns
the majority of the work in this thesis. The first project in this thesis, which constitutes
Chapter 2, started out with a simple question: which receptive fields develop first, sec-
ond, third, and so on and so forth in a sparse coding model? To orient this question in
terms of the three levels of analysis, this makes an assumption about the answer to 1) and
asks specifically about 2). That is, we assume the problem neurons in V1 are learning to
solve during development is to efficiently represent visual stimuli [9]. We then ask, at a
descriptive level, how is it doing this, and how does it prioritize which features to learn
first?

In Chapter 3, we explore how the substrates of biological development (Question 3)
lead to efficient representations (Questions 1 and 2). Specifically, we look at how retinal
waves — spontaneous neural activity patterns that occur during development — influ-
ence the geometry and efficiency of representations. At a computational level, we take
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biologically plausible “training data” and explore the scope of visual functions that can
be learned.

Butchering a quote from amovie that came out at the time of writing this: computation
can only take you so far. Given infinite time and resources, a hypothetical Chapter 4would
get at testing the hypotheses for development we pose in Chapters 2 and 3. That is, at
a high-level, running experiments to directly record from visual neurons in-vivo during
development, and analyze the population activity to look at representation. I’ll leave it
up to a future meandering graduate student with the energy and capacity, who luckily
tumbles, like I did, into this line of work.

In the remainder of this chapter, I’ll discuss the guiding principle of this thesis, the
efficient coding hypothesis, and how it can be used to understand the problem of repre-
sentation (Section 1.2). In Section 1.3, I’ll then give a broad overview of the development
of the visual system and the questions that concern Chapters 2 and 3.

1.2 The Efficient Coding Hypothesis
A central goal of systems neuroscience is to establish a precise quantitative description of
how neurons learn to encode sensory stimuli. A principle that inspires the majority of
the analyses in this thesis is the efficient coding hypothesis, which posits that the goal of
visual perception is to efficiently represent incoming visual stimuli [10]. It was later hy-
pothesized that sensory neurons do this by minimizing statistical redundancy of sensory
inputs [11].

One useful hypothetical that helpedme get an intuition for this principle is, given a set
of sensory neurons, how would I pick their tunings to represent a yellow car? One way of
doing this is to make each neuron tuned for both object and color, so that one neuron fires
when it sees a yellow car, another neuron fires when it sees a red car, another neuron fires
when it sees a yellow bus, etc. On one hand, whenever you see one of these represented
objects, only one neuron is firing at a time, which is efficient as far as metabolic costs
are concerned. However, this configuration is highly inflexible. The number of neurons
in the visual cortex is finite, and there are an uncountable number of visual stimuli that
could be drawn up that exceed the capacity of such a system. An alternative way to do
this is to have each neuron represent one of any potentially observable car-related feature
— one neuron represents wheels, one neuron represents windshields, etc. This system
avoids the problem of the first, in that we can more flexible represent a greater number
of objects, the number of which now depends on permutations of firing neurons, rather
than the number of neurons itself. However, for any given stimulus, the a large number of
neurons would have to fire, which is metabolically inefficient (assuming that the steady
state of each neuron requires sufficiently low energy such that adding more neurons to
the system doesn’t significantly add to the overall metabolic cost). Metabolic cost aside, it
may be difficult for downstream neurons to interpret a dense neural code, as opposed to
a sparse one that prioritizes only the most salient features of the input.
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Figure 1.1: Two stages of development. Left: Many functions are established without
visual experience. Right: The visual system is refined and maintained with visual experi-
ence.

Where on this spectrum of efficiency and flexibility does the visual cortex lie? The effi-
cient coding hypothesis proposes that rather than have the system assign equal likelihood
to every possible feature (as in system 2), the system encodes for the features of the en-
vironment that are most likely. It’s not obvious, however, which features these are, and
which configuration can balance the tasks the neurons (and more generally, the organism
to which they belong) have to perform with metabolic costs.

One way of getting at this question is to directly examine the statistical properties of
neural population activity in response to visual stimuli [12]. I mention in the previous
section that this experiment can test all of the predictions that I make in this thesis based
on computational results. An alternative approach is to derive a model of representation
based on statistical properties of the external environment [9, 13]. While this thesis is a
computational work, we draw inspiration from both approaches. In Chapter 2, we discuss
directly how such a model of representation, the sparse coding model, prioritizes learn-
ing frequencies with more power in the data, which we show accords with experimental
evidence. In Chapter 3, we discuss how features of population activity are a viable in-
structive signal for “training” the visual system to recognize objects under certain spatial
transformations.

1.3 Development of the Visual System
Development is a huge area of research. For a comprehensive review of nearly a cen-
tury’sworth of research concerning visual development, I highly recommend [14]. For the
purposes of this thesis, the key idea to understand is the distinction between experience-
dependent and experience-independent development.
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Interestingly, many key aspects of visual function are well-established before visual
experience, such as topographic maps, orientation selectivity, and ocular dominance [14],
suggesting external stimuli are not necessary for the initial development of the visual sys-
tem, and axon targeting can largely be learned by internally generated signals such as
spontaneous neural activity and molecular guidance cues [15, 16, 17, 18, 19].

Visual experience, on the other hand, doesn’t appear to be necessary for the initial
development of the visual system, but it does maintain responsiveness and selectivity
of neural responses. For example, the V1 response to the ipsilateral eye becomes much
stronger if animals are permitted visual experience, and responses to both eyes gradually
deteriorate if the animals are binocularly deprived [20].

This roughly two-stage timecourse of development (Fig. 1.1) has interesting implica-
tions from a theoretical perspective. For one, given that visual experience is not necessary
for the initial formation of the visual system, how do we quantify and describe the effects
of visual stimuli on representation learning? This is the question we tackle in Chapter 2.

Moreover, the nature of biological development suggests that visual function can be
learned without explicit external visual input in the form of natural image stimuli. This
is contrary to how models of vision are typically trained: on millions of labeled natural
images [6, 7, 8]. That is, while existing models may mimic visual responses, they do not
address the question, how does the visual system learn the representations that lead to
these responses in the first place? This is the question we tackle in Chapter 3.
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Chapter 2

The Spectral Bias of Sparse
Representations

2.1 Chapter Summary
This chapter deals with the order of emergence of learned representations. That is, given
a set of data or stimuli, which features are learned first in forming a representation?

We are interested in this question on two levels. At a purely computational level, we
want to characterize the behavior of a particular class of representation learning algo-
rithms, sparse coding algorithms, which are a particular realization of the principle of
efficient coding. At a biological level, we want to use sparse coding as a descriptive model
for how neurons learn their sensory tunings during development. It’s natural to assume
there is indeed an order in which sparse representations are learned, both in a model
and biological context. Any system, whether theoretical or biological, that has been op-
timized to perform a particular task, can only achieve high performance at the expense
of performance on a different set of tasks, a notion that has been dubbed the “No Free
Lunch Theorem” [21]. Neurons in particular have additional physical limitations — such
as metabolic and wiring constraints — that impose restrictions on their computational ca-
pabilities [9]. Given these constraints, we hypothesize that there exists a task-dependent
priority in representation learning that imposes an order in the rate at which features are
learned.

Simple cells in the primary visual cortex (V1) have well-studied response properties
[22, 23, 24, 25] and therefore offer a useful model system for understanding how these
representations of the visual world are learned during development. In this chapter, we
use computational models of neural encoding to understand how V1 simple cells learn to
represent the world from a stream of visual input. While many response properties of V1
simple cells can emerge before eye-opening without the need for visual experience (e.g.,
orientation selectivity and ocular dominance), observations of changes in receptive field
(RF) properties that depend on the nature of the visual environment suggest that plasticity
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in V1 is experience-dependent [20, 14]. Experimental evidence also shows that early post-
natal visual experience is necessary for natural scene representation and discriminability
in V1 [26].

The process of learning to encode visual information in V1 has been modeled as an
unsupservised learning problem in which neurons adapt their tuning properties in order
to optimize some objective function based on the statistical structure of stimuli in the nat-
ural environment. One coding principle that has proven to be useful for understanding
sensory representations is sparseness, which posits that the neural population should not
only maximize fidelity to input stimuli, but also minimize the number of active units (L0

population sparseness), or the amount of neural activity across the population (L1 pop-
ulation sparseness) [9]. Sparseness is an appealing concept for biological systems, both
in terms of conserving metabolic costs and efficiently representing natural scenes, which
have sparse structure [27]. Indeed, sparse coding models trained on natural image data
to jointly optimize both fidelity to the input and sparseness have been shown to learn ba-
sis functions whose response properties replicate simple cell receptive fields (RFs) of V1
neurons [13, 28, 29].

Experimental work demonstrates that over the course of development, the distribution
of frequency tuning of V1 neurons shifts towards higher spatial frequencies, and this shift
requires visual experience [30, 31]. However, the question remains whether this shift is
due to high spatial frequency RFs emerging later after the early development of low spatial
frequency RFs, or whether there is a global shift during development across all receptive
fields towards higher spatial frequencies. We find that the Sparsenet model [13] predicts
the former to be true: low spatial frequency basis functions tend to emerge earlier in train-
ing, and high spatial frequency basis functions tend to emerge later. In fact, we observe
the same behavior for the SAILnet model [29] of sparse coding, which implements leaky
integrate-and-fire neurons and synaptically local learning rules, suggesting both that this
result is a general feature of sparse coding and that it is biologically plausible.

In the following section, we introduce the mathematics and intuition for sparse coding
(Section 2.2). Next, we present results that demonstrate the spectral bias in traditional and
biologically plausible implementations of sparse coding models (Section 2.3). We then
propose a likely explanation for the spectral bias, namely that it arises from the statistics
of the input data (Section 2.4). Finally, we discuss the implications of this prediction for
the development of the visual system (Section 2.5).

2.2 Sparse Codes Are Efficient Representations of Data
Understanding the computations performed by visual neurons is a difficult task. One ap-
proach is to start from the statistical structure of the stimulus set, rather than the neuron,
and use efficient coding strategies to gain insight into computations the brain may be im-
plementing [32]. This is the motivation behind sparse coding, the goal of which is to find
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Figure 2.1: Inferring a sparse representation of an image patch as a linear combination
of basis functions. The basis functions Φ (small patches multiplied by coefficients) are
analogous to receptive fields, and the coefficients a (2, 0, 0) are analogous to neural activ-
ities (blue traces: the first one has two spikes, and the second and third have zero spikes,
corresponding to the coefficient values) in response to the given input x (green square).

a model of the data x (Fig. 2.1). Sparse coding models the data as a linear combination of
basis functions Φ weighted by sparse coefficients a:

x = Φa+ ϵ, (2.1)

where ϵ is the error of the reconstruction.
Without the constraint of sparsity, there are many ways to find a suitable Φ (a matrix

with each column corresponding to a basis function in the form of a vector) and a (a vec-
tor of coefficients, each corresponding to a column/basis function), principal components
analysis being one of the most common. In fact, there is a link between PCA and neuro-
science via linear Hebbian learning, a biologically plausible synaptic learning rule, which
can be formulated to learn the principal components of the data [33, 32]. However, PCA
is not a suitable model for understanding V1: reconstructions based on the basis functions
with the highest variance (the top PCs) do not resemble the images they encode, andmore
importantly, the basis functions themselves don’t resemble the receptive fields of V1 [32].

An alternate way of tackling this problem is to find the maximum likelihood,

p(x|Φ) =
∫

p(x|a,Φ)p(a)da, (2.2)

where p(a) is a sparse prior over the coefficients. The integral with respect to a signifies
the mean of p(x|a,Φ) over the distribution of all possible coefficients, which is intractable
[34]. Rather than directly calculate this integral, we can approximate the mean using the
maximum a-posteriori estimate of a, given by

â = max
a

[log p(x|a,Φ) + log p(a)] . (2.3)
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Figure 2.2: Overcomplete dictionaries are composed of basis functions that resemble
V1 simple cell receptive fields. A) A sample of 100 basis functions from a 10 × overcom-
plete sparse coding model (Sparsenet). B) A sample of 100 basis functions from a 10 ×
overcomplete sparse coding model with biologically plausible learning rules (SAILnet).

The first term in the brackets in Eq. 2.3 is the log of the likelihood of the signal, which
we model as Gaussian with mean Φa and variance σx. The second term is the log of the
sparse prior over the coefficients, whichwe assume to be exponentially distributed. Taking
the negative of Eq. 2.3, we can recast the optimization as a minimization problem of the
sparse coding objective function E with respect to a:

â = min
a

1

2σ2
x

∥x− Φa∥2 + λ
∑
i

|ai| (2.4)

â = min
a

E(x, a,Φ). (2.5)

We infer a, as well as learn Φ, by gradient descent on E, which can be re-expressed in
component-wise notation as

E =
1

2

∑
n

[
xn −

∑
j

ajΦn,j

]2

+ λ
∑
j

|aj|. (2.6)

The resulting expression for E is the sparse coding objective. Alternately optimizing this
objective subject to a and Φ leads to a sparse representation 2.1.
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It’s not obvious from the mathematical description that such a model would have bi-
ological relevance, but it turns out that the learned basis functions resemble V1 recep-
tive fields: localized, oriented, bandpass filters that tile the space of natural images [13].
We show examples of these basis functions in Figure 2.2 from two sparse coding models:
Sparsenet, the original version of sparse coding reported in [13], and SAILnet, a biologi-
cally plausible version of sparse coding reported in [29]. Importantly, unlike PCA, which
only captures the lowest frequency components of natural images (since they have the
highest variance), a small number of these basis functions can be used to reconstruct an
input image.

2.3 Sparse Coding Predicts a Spectral Bias in the Order of
Development of V1 Simple Cell Receptive Fields

The Spectral Bias of Sparse Coding
Because sparse representations are parsimonious reconstructions of input data, it’s natu-
ral to assume that sparseness imposes a priority on certain basis functions being learned
sooner than others. Indeed, it has been observed that only classical Gabor filters are
learned in a complete or slightly overcomplete regime, while center-surround and high-
frequency bases emerge only in highly overcomplete dictionaries [35]. A similar phe-
nomenon has been observed in overparametrized neural networks, which learn lower fre-
quency functions earlier in training [36, 37]. In this particular case, it was shown that given
uniformly distributed data, lower degree spherical harmonics are learnedmore easily, and
the learning rates for individual harmonics correspond to a direction determined by the
eigenfunctions of the neural tangent kernel, a construct which allows neural networks to
be analyzed as kernel methods [38, 39]. This suggests the driving cause of the spectral
bias is the model specification (over-parametrized neural network) rather than arising
from properties of the data.

In this section, we analyze sparse coding models during training to answer the fol-
lowing question: do some types of basis functions develop sooner than others, and if so,
why? There are two preliminary steps to tackling this question: 1) Establish a notion of
development, and 2) Establish a system to assign “type” to each learned basis function.

To address 1), we introduce ametric we call similarity that quantifies the development
of a basis function. Given a basis function at a point t in training, denoted by BFt, its
development is measured by its degree of similarity to its final learned shape at the final
training time step, denoted by BFfinal. We quantify this using the cosine similarity, the
cosine of the angle between two vectors, of BFt and BFfinal. This is expressed as

similarity(BFt, BFfinal) =
BFt ·BFfinal

∥BFt∥ ∥BFfinal∥
, (2.7)
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where ∥·∥ denotes the L2 norm. By definition, the maximum similarity between any two
basis functions is 1, which indicates that they are equal up to a re-scaling of the pixel
intensities. Two orthogonal basis functions have a similarity of 0.

Regarding 2), prior work in sparse coding has typically described learned basis func-
tions qualitatively by manual sorting each function into a “canonical” type (Gabor, edge
detector, etc.) [35] or quantitatively by reporting parameter values obtained from fitting
Gabor functions [29]. We found that in the highly overcomplete regime, neither approach
is robust enough to account for the full diversity of the learned dictimonary. Qualitative
inspection by eye is simply too time consuming, low-throughput, and likely unreliable.
We found some success through fitting — simple gradient descent on different random
initializations of a 2D Gabor function turns out to be robust for most basis functions [40].
However, classification on the learned function parameters still requires either user-set
thresholds or labeling data to train a network classifier, both of which reintroduce the bi-
ases of manual inspection. Unsupervised clustering on the parameters via k-means or
UMAP gave inconsistent results, but is perhaps worth revisiting.

We get around these issues by classifying basis functions according to their power spec-
tra. Not only can we calculate the power spectrum for any basis function via discrete
Fourier transform, regardless of its resemblance to a canonical type, it provides a direct
way to classify a basis function into a discrete classwithoutmanually imposing thresholds,
namely the frequency with maximum power fmax in its power spectrum P (f)

fmax = argmaxP (f). (2.8)

To ensure that we only categorize converged basis functions, rather than those that are
still at or near their random white noise initialization, we only admit fmax categories with
at minimum 100 basis functions.

Taking 1) and 2) together, we can track the convergence of each basis function to its final
learned state and examine the mean convergence for each frequency bin, defined by fmax

(Fig. 2.3). To obtain these results, we train a Sparsenetmodel via gradient descent (Euler’s
method) with a Laplace prior (L1 penalty) over the coefficients [41]. The model is trained
on 16 × 16 patches of whitened natural images that were obtained from David Field’s
original dataset for sparse coding [13, 41]. Prior to drawing patches, the full images are
whitened with a cutoff frequency of f0 = 150 (Section 2.4). To ensure sufficient diversity
of the learned dictionary, we used an overcomplete model with 512 basis functions. The
model is trained for 50000 iterations with a batch size of 100 patches, 300 iterations of
inference per batch, sparsity penalty λ = 0.3, coefficient learning rate η = 1e-3, and a
dictionary learning rate α = 1e-3. The basis functions in the model are initialized with
Gaussian-distributed white noise.

We find that on average, low frequency basis functions converge to their final learned
shapes (reach similarity of 1) first, followed by the mid frequency basis functions, and the
high frequency basis functions converging last (Fig. 2.3). We also find that at a dictionary-
wide level, the learned representation hasmore power at lower frequencies earlier in train-
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Figure 2.3: Convergence of basis functions in Sparsenet grouped by fmax. Top: A value
of 1 on the y-axis denotes a basis function that has fully converged to its final learned shape
BFfinal, so the higher the curve, the faster the basis function has converged. The shaded
regions denote standard deviation about the mean for each category. Bottom: Represen-
tative examples of one basis function developing (left to right, shown every 5000 training
iterations) from each frequency category, starting from random initialization.
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Figure 2.4: Power spectrum of Sparsenet dictionary over training. We characterize the
power of the whole dictionary at each training iteration by taking the mean power spec-
trum of the basis functions. We normalize the power on a 0-1 scale by the maximum and
minimum power at a given frequency and iteration. Notably, the spectral bias emerges
quickly in the first 1000 iterations of training.

ing (Fig. 2.4). Taken together, these results demonstrate that the rate at which basis func-
tions are learned is characterized by a spectral bias towards lower frequency features in the
data. Moreover, this spectral bias occurs at both the local level of individual basis func-
tions — the lower frequency basis functions emerge first — and at a global level across
all basis functions — the dictionary as a whole is tuned for lower frequencies earlier in
training.

The coincidence of local and global spectral biases is non-trivial, in that one does not
necessitate the other. Consider a population of developing sensory neurons. In a scenario
where local but not global spectral bias would occur during their development, a small
handful of neurons with fmax values at low frequencies may emerge early on in develop-
ment, while the rest of the neurons have initially uniform responses that gradually increase
in power at higher frequencies throughout development. In this case, since the small pop-
ulation of low-frequency tuned neurons develops more quickly, a similarity-like metric
would reveal a local spectral bias. However, because there are so few of them, at a popula-
tion level, the whole population neuronal response to all frequencies may appear uniform
throughout development, given the many small contributions to the population response
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from neurons slightly tuned for higher frequencies. In a scenario where global but not
local spectral bias would occur, a majority of neurons are tuned for low-frequencies, but
develop at vastly different rates. Meanwhile, a handful of high-frequency tuned neurons
develop quickly. However, because there are so few, they don’t contribute much to the
global response to high-frequency stimuli, whereas the many low-frequency neurons on
average can encode low-frequency stimuli well early on in development. There are many
other hypothetical edge cases where the notion of spectral bias as defined here would fail,
for instance, if neurons change their optimal tuning frequency over development. In this
setting, which we discuss in Section 2.3, local spectral bias would be impossible to define
based on a convergencemetric, though perhaps some other method could be used to track
the average response of a neuron over time.

All this being said, the simultaneous occurrence of both local and global spectral biases
indicates that 1) the relative sizes of each frequency category also follow a spectral bias
that is consistent with the bias in their convergence rates, and 2) the convergence rates
within the same frequency category defined by fmax are similar. We explore the reasons
for the spectral bias in Section 2.4. But first, we examine whether these results hold in a
biologically plausible implementation of sparse coding.

Biologically Plausible Sparse Coding
We perform the same analysis as in the previous section using the SAILnet model, a bio-
logically plausible sparse coding model that uses leaky integrate-and-fire (LIF) neurons
and local learning rules [29]. The model is distinct from traditional sparse coding in that
the inferred coefficients are in the form of discrete spike counts, and the learning rules are
synaptically local, neither of which is true in Sparsenet.

In SAILnet, each model neuron, indexed by i, is associated with a receptive field (basis
function)Qi. At each inference step t, the neuron’s spike is recorded by the binary-valued
activity variable yi, and at the end of inference, its total activity over the inference period
ni is calculated as

ni =
∑
t

y
(t)
i , (2.9)

a discrete value that serves as the inferred coefficient. Whether or not the neuron fires
(yi = 1) is determined by two factors: 1) excitatory feed-forward input from the stimulus
image pixel Xk weighted by Qik, and 2) inhibitory input from the activity nj ̸=i of other
neurons in the model, weighted by inhibitory synapses Wij . If the net input to a neuron
exceeds its threshold value θi in response to a given image at inference step t, the neuron
will fire:
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Figure 2.5: Convergence of basis functions in SAILnet grouped by fmax. Notably, addi-
tional considerations apply to training SAILnet that don’t apply to Sparsenet. First, SAIL-
net requires a greater degree of whitening of the input data. Here, we impose a cutoff
frequency of f0 = 256 cycles per image, the Nyquist frequency of the Field images. Sec-
ond, a learning rate schedule is set to ensure the stable convergence of the learned basis
functions.
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yi =

{
1 if

∑
k QikXk −

∑
j ̸=i Wijnj ≥ θ

0 otherwise.
(2.10)

The approximate pixel reconstruction is given as

X̂k =
∑
i

niQik. (2.11)

After each inference period, SAILnet is trained onHebbian and anti-Hebbian rules sim-
ilar to those used in [42], with the additional constraint that learning is localized to each
synapse without information from any other synapses in the network. The feed-forward
weights Q and inhibitory synapses W are both trained by iterative local learning rules
such that the update rule for an individual synaptic weight only depends on information
available at that synapse during training. A third learning rule trains each neuron’s firing
threshold θi, which modulates how often that neuron fires for a given amount of input.
This rule is also local in that it only trains each threshold based on the current firing rate
of that neuron, without access to the firing rates of any other neurons in the network. We
emphasize these features of themodel to demonstrate that this model achieves sparse rep-
resentations while incorporating biologically plausible learning mechanisms — as could
occur in real neuronal networks such as the population of simple cells in V1. The three
learning rules are summarized below:

∆Qik ∝ niXk − n2
iQik (2.12)

∆Wim ∝ ninm − p2 (2.13)
∆θi ∝ ni − p, (2.14)

where p is a globally set target firing rate. The two synaptic updates modulate the im-
age reconstruction and pairwise decorrelation, respectively. The latter update encour-
ages neurons to learn distinct receptive fields. The threshold update encourages lifetime
sparseness for each individual neuron so that it doesn’t fire too frequently. It can also be
shown that these learning rules approximately minimize the Lagrangian,

L =
∑
k

(Xk −
∑
i

niQik)
2 +

∑
i

λi(ni − p) +
∑
i ̸=m

τim(ninm − p2), (2.15)

where λi and τim are Lagrange multipliers corresponding to the sparseness and pairwise
decorrelation parameters, respectively [29].

There are two additional considerations to training SAILnet that don’t apply to training
Sparsenet. The first is that while Sparsenet does not require whitened training data to
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Figure 2.6: Power spectrum of SAILnet dictionary over training. Despite being highly
overcomplete, the model hardly learns frequency content of 4 cycles or higher, if at all.

Figure 2.7: SAILnet basis functions exhibit fluidity during training in certain hyperpa-
rameter regimes. Each row depicts the time evolution of a basis function over training,
each corresponding to a observed mode of fluidity. Panels are plotted every 1000 training
iterations. Top row: In the first mode, a basis function will converge to a particular solu-
tion, then gradually diverge into a new, similar solution. Middle row: In the second mode,
a basis function will converge to a solution for a fixed number of training iterations, then
abruptly shift into a seemingly dissimilar solution. Bottom row: In the third mode, a basis
function will rapidly fluctuate without any temporary or long term stability.
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learn V1-like basis functions, SAILnet does. This observation suggests sparse coding with
biologically plausible local learning rules requires decorrelated inputs [43]. We explore
this idea further in Section 2.4. For now, we note a key difference in our SAILnet training
procedure is that during preprocessing, we whiten the data with a cutoff frequency of
f0 = 256, the Nyquist frequency of the full Field images. The second consideration in
training SAILnet is that in certain hyperparameter regimes, the basis functions might only
learn low-frequency features or exhibit what we will refer to as “fluidity” and continue to
change indefinitely rather than converge to a final shape (Fig. 2.7). The latter phenomenon
was independently identified as “drift” in [44], where they find that the drifting receptive
fields of individual neurons trained using Hebbian/anti-Hebbian learning rules can be
characterized by a coordinated random walk. This work proposes that the objective has
a degenerate solution space, and fluidity is the result of exploring this space via noisy
synaptic updates.

To properly measure basis function convergence (Eq. 2.7), we need a set of hyperpa-
rameters that guarantees that each basis function stably reaches a particular solution. To
do this, we impose a learning rate schedule: the initial learning rate in the original SAILnet
for the first 103 iterations; the initial learning rates reduced by a factor of 10 from that point
until 5 × 104 iterations; and tuned down by another factor of 10 from that point until the
end of training. To ensure a range of learned basis functions, we used a highly overcom-
plete dictionary of 2048 elements, relative to the originally reported dictionary size of 1536
[29]. Accordingly, we set the lifetime sparseness parameter p, which modulates the target
number of spikes per image, at p = 0.025, and θ0, the initial firing thresholds, at θ0 = 4.0.
Notably, these values impose twice as much sparseness as the original hyperparameters
in [29].

Despite its differences from Sparsenet, SAILnet also learns basis functions in a hierar-
chical manner: lower frequency basis functions are learned early in training, and higher
frequency basis functions are learned later in training, as measured by individual basis
function convergence (Fig. 2.5). This effect also persists at the global level, although fewer
frequencies are learned, which is surprising given the greater degree of whitening (Fig.
2.6). We explore this further in Section 2.4. Because Sparsenet and SAILnet represent two
substantially different model architectures, we argue that these results are indicative of
a general property of sparse coding, as opposed to being particular to a specific model
architecture or optimization algorithm.

Highly Overcomplete Sparse Coding
In the previous section, we analyzed an 8× overcomplete SAILnet model relative to the
patch dimension, whereas we analyzed a 2× overcomplete Sparsenet model. The reasons
for this is that first order optimization methods used in training the original formulation
of Sparsenet are computationally slow, particularly when scaling up the number of basis
functions [13, 45, 46]. However, the overcomplete case is of particular interest due to
the fact that higher frequency basis functions only emerge in overcomplete models. [35].
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Figure 2.8: Convergence of basis functions in a highly overcomplete Sparsenet model
grouped by fmax.
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Figure 2.9: Power spectrum of highly overcomplete Sparsenet model over training. No-
tably, due to FISTA, the power spectrum ismore visible at amuch earlier training timepoint
than in the traditional, Euler-optimized Sparsenet model.

This case provides us a way to test whether the degree of overcompleteness influences the
degree of spectral bias, analogous to how overparametrization drives the spectral bias in
neurla networks [39].

To get around the computational cost, we train a highly overcomplete Sparsenet model
(2048 basis functions) using the Fast Iterative Shrinking-Thresholding Algorithm (FISTA)
to solve the linear inverse problem of sparse coding, as described in [46]. We implement
this algorithm in PyTorch based on code publicly distributed by Yubei Chen (https:
//github.com/yubeic/Sparse-Coding/). The model is trained for 105 iterations with a
sparseness parameter of λ = 0.8. All learning rates are held constant throughout train-
ing and are specified in the source code. We find that, as in the 2 × overcomplete case, a
highly overcomplete Sparsenet dictionary learns basis functions in a hierarchical manner,
with low frequencies learned earlier in training (Figs. 2.8, 2.9). Notably, a complete range
of frequencies (up to the basis function Nyquist frequency of 8) is learned.

In the following section, we show that the observed spectral bias in both Sparsenet and
SAILnet is determined by the statistics of the input data.
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2.4 The Spectral Bias Arises from Input Data Statistics
There are several possible causes for the spectral bias. One possibility is that it requires
more spatial precision to specify higher frequency basis functions, and therefore theymay
take more time (i.e., more training data) to converge. Another is that the sparse coding
objective itself rewards converging towards low frequencies. It’s also possible that over-
parametrization encourages learning simple patterns first, which can generalize to more
complex patterns [36, 37]. While we don’t disprove any of these possibilities, in this sec-
tion we present evidence that one explanation can sufficiently explain the observed spec-
tral bias in training, namely that the frequencies with more power in the training data are
those that are learned first.

Whitening and the power spectrum of natural images
We initially discounted this explanation due to the whitening procedure used in pre-
processing prior to training the models. Whitening effectively flattens the power spec-
trum of the data. It’s suggested that this procedure simulates the function of the retina
in visual processing: retinal ganglion cell spike trains are less correlated compared to the
corresponding visual input stimuli, and the effect of this decorrelation is to enhance effi-
cient coding [43, 47]. However, we find that the whitening procedure traditionally used in
sparse coding doesn’t completely eliminate the spectral characteristics of the input data.

Natural images, like the ones used as training data, have characteristic power spectra
that roughly obey a 1/f 2−η power law with 0 < η < 0.3 [48, 49]. Remarkably, any image
you take of the real world (i.e., not computer generated) roughly conforms to this power
law.

Given the falloff at high frequencies, whitening natural images effectively boosts high
frequencies while attenuating low ones. We whiten in the frequency domain by multiply-
ing with the following filter:

W (f⃗) = |f⃗ |e−
(

|f⃗ |
f0

)n

, (2.16)

where f⃗ denotes the two-dimensional spatial frequency. The steepness parameter n is
set to 4 to produce a sharp cutoff without introducing ringing in the space domain [41].
Increasing the cutoff frequency f0 produces a more whitened image. In our case, where
the original images are 512×512 pixels, themaximum f0 possible is the Nyquist frequency
of 256 cycles per image.

We compute the mean power spectra across 10 images before and after whitening un-
der different values of f0 (Fig. 2.10). We perform a best line fit (R2 = 0.99) to the aver-
age power spectrum of the raw, pre-whitened images and find that the average estimated
power P̂ = 10.1/f 2.39, slightly steeper than the theoretical 1/f 2−η power law. The power
spectra under varying f0 do not make it obvious why sparse coding might have such a
clear spectral bias in training, especially given the behavior at lower frequencies. How-
ever, recall that we’re training on patches drawn from whitened images, rather than the
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Figure 2.10: Power spectrum of natural image data before and after whitening with var-
ious cutoff frequencies f0. We perform a best line fit (R2 = 0.99) to the average power
spectrum of the raw, pre-whitened images and find that the average estimated power
P̂ = 10.1/f 2.39, slightly steeper than the theoretical 1/f 2−η power law. Inset: The power
spectra at high frequencies. Note the order of the traces is reversed, with the higher cutoff
frequency data having higher power in this range.

full images themselves. The average power spectra taken over a sample of 100 natural im-
age patches drawn from the full whitened images does in fact have a clear power law (Fig.
2.11) that is consistent with the observed spectral bias in training.

That being said, this fact alone doesn’t directly show that the power spectrum of the
training data is sufficient to produce the effect. Without any other evidence, it’s still pos-
sible, for instance, that lower frequencies are learned first, regardless of the frequency
content of the data. To more precisely interrogate of how the power spectra of the data af-
fect the spectral bias during training, we must devise a method to manipulate directly the
power spectrum of the training data and observe the effect on basis function convergence.
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Figure 2.11: Power spectrum of natural image patches. Mean power spectra across 100
16 × 16 patches drawn from the full whitened 512 × 512 images obey a clear power law.

The input data power spectrum fully accounts for the spectral bias
To directly examine the effect of the frequency content in the data on basis function con-
vergence, we generate synthetic 1-D training data with varying power spectra. The setup
is similar to the one used in [37]: given frequencies k = (k1, k2, ...)with associated ampli-
tudes A = (A1, A2, ...) and phases Φ = (Φ1,Φ2, ...), we generate data vectors λ according
to the function

λ(z) =
N∑
i

Ai sin (2πkiz + Φi), (2.17)

where z is a positive, non-zero integer equal to the index of the corresponding vector
element. To create a training set, we generate 200000 unique vectors λ, each with k =
(1, 2, ..., 14, 15), N = 256, and Φi ∼ U(0, 2π). We generate three such training sets: 1)
low frequency, where A falls off with increasing k according to a power law P (k); 2) flat,
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Figure 2.12: Examples drawn from three synthetic 1-D datasets. A) Low frequency B)
Flat C) High frequency.

where A is equal at all k; and 3) high frequency, where A increases with k according to
a power law P ′(k), which is obtained by reversing the order in which power is assigned
to frequency in P (k) (Fig. 2.12). The high frequency data is generated this way so that
the high and low frequency datasets have symmetric power laws. Each λ, regardless of
dataset, is normalized to have the same total power as every other λ.

For Sparsenet, we use synthetic data generated according to P (k) = 1/k1.3. We train
a model with 512 1-D basis functions for 100 iterations with a batch size of 100 vectors,
300 iterations of inference per batch, sparsity penalty λ = 0.3, coefficient learning rate η =
5e-4, and a dictionary learning rate α = 1e-3. The basis functions in the model are initial-
ized with Gaussian-distributed white noise. If the spectral bias during training occurred
independently of the power spectrum of the synthetic data, we would expect that 1) the
low and high frequency convergence plots and heatmaps would be asymmetric, with low
frequency basis functions converging sooner for the low frequency training set than high
frequency basis functions for the high frequency training set; and 2) low frequencies con-
verge sooner for the flat training set. However, we do not observe either. Rather, the low
frequency and high frequency convergence plots and heatmaps are nearly perfectly sym-
metric, and all basis functions converge at a nearly equal rate for the flat dataset, with no
clear frequency-dependent pattern emerging (Fig. 2.13). These results suggest that the
spectral bias is entirely determined by the input data statistics.

For SAILnet, we use synthetic data generated according to P ′(k) = 0.1k. Due to the
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Figure 2.13: Convergence of 1-D basis functions in Sparsenet. Top: Convergence plots
for the low frequency (left), flat (middle), and high frequency (right) training sets. In-
set of mean similarities (plotted without standard deviations to clearly show the mean
values by category) for the flat dataset shows no clear frequency-dependent effect on con-
vergence, with all basis functions converging at the same rate. Bottom: Corresponding
power heatmaps showing power spectra of learned dictionary over training.

well-documented poor performance of SAILnet on datasets with steep power laws [43], a
gentle, linear power law was necessary to achieve learning while still being able to visu-
alize the separation in convergence between basis functions. We train a model with 2048
1-D basis functions for 1000 iterations with a batch size of 100 vectors, inhibitory synaptic
learning rate of 0.2, excitatory synaptic learning rate of 0.002, threshold learning rate of
0.02, lifetime sparseness parameter p = 0.05, and initial firing thresholds θ0 = 2.0. We
do not employ a learning rate schedule, since we only train for a short period of time, and
good convergence was achieved on the training data without decreasing the learning rates
at later iterations. As in Sparsenet, we observe a symmetry in the low and high frequency
regimes, as well as equal convergence for all basis functions on the flat dataset (Fig. 2.14).
Our results in SAILnet suggest that even under synaptically local learning rules and nearly
perfectly whitened data, the spectral bias is entirely determined by input data statistics.
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Figure 2.14: Convergence of 1-D basis functions in SAILnet. Top: Convergence plots for
the low frequency (left), flat (middle), and high frequency (right) training sets. Inset of
mean similarities (plotted without standard deviations to clearly show the mean values
by category) for the flat dataset shows no clear frequency-dependent effect on conver-
gence, with all basis functions converging at the same rate. Bottom: Corresponding power
heatmaps showing power spectra of learned dictionary over training. Despite the gentle
linear power law of the training set, the convergence of SAILnet basis functions by fre-
quency is still highly sensitive to the input data statistics.

2.5 Implications for Experience-Dependent Development
of the Visual System

In this chapter, we demonstrate that sparse coding models learn basis functions in a hier-
archical manner: lower frequency basis functions are learned early in training, and higher
frequency basis functions are learned later in training. Given the substantial algorithmic
differences between Sparsenet and SAILnet, these results suggest a general property of
sparse coding, rather than a property of a specific architecture or optimization procedure.
In addition, because SAILnet is a biologically plausible model of sparse coding, it further
suggests that this observed spectral bias may be a feature of RF development in V1.

Prior work has also used SAILnet as a model of V1 development using a similar ap-
proach. By tracking the changes in sparseness of the learned representations throughout
model training, it has been shown that SAILnet recapitulates the experimentally observed
decrease in sparsity of V1 neural encodings over development in ferrets [50]. Traditional
sparse coding has also been used to understand the role of visual experience in devel-
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opment. Previous work has shown that training sparse coding models with unnatural
training images results in basis functions resembling the RFs that arise when animals are
reared with abnormal visual input (such as only being able to view stimuli consisting of
a single orientation), suggesting that sparse coding is a feature of experience-dependent
development [51].

Our results make a prediction for the timecourse of development of V1 neurons that is
consistent with experimental evidence. It has been shown that during development, the
distribution of frequency tuning of V1 neurons shifts towards higher spatial frequencies,
and this shift requires visual experience [30, 31]. However, the question remains whether
this shift is due to high spatial frequency RFs emerging later after the early development
of low spatial frequency RFs, or whether there is a global shift during development across
all receptive fields towards higher spatial frequencies. Our results may provide additional
insight into this phenomenon because we are able to directly observe the development of
each individual basis function in the model, as opposed to just sampling from the distri-
bution of tuning across the V1 neuronal population at different timepoints during train-
ing. In particular, our results suggest that this shift in the distribution is due to higher
frequency receptive fields emerging later than the low frequency receptive fields. Future
experimental work can help distinguish whether one or both of these explanations can ac-
count for the observations in [30] and [31]. It may be experimentally challenging to track
individual neuronal receptive fields over the full course of development, which would be
the ideal way to tackle this problem. Whether or not this can be done, it should be possi-
ble to sample from the population of receptive fields at various points in development and
estimate the relative proportions of low, mid, and high frequency receptive fields at each
time point. This could provide indirect evidence for one or the other of these possibilities,
depending on the details of the distribution of RF shapes.

Here, we only consider the development of V1 simple cells, rather than complex cells
or neurons in higher visual areas. Other sparse coding models have the capacity to learn
complex cell receptive field properties and topography [52]. We also do not consider exci-
tatory connections between cells, which are a feature of the sparse codingmodel described
in [53]. Future work could analyze development of the basis functions in these extensions
of sparse coding. We also do not account for the temporal properties of receptive fields,
since the receptive fields we model here only have spatial dependence, not time depen-
dence. Indeed, accounting for the full spatio-temporal receptive fields of V1 simple cells
would give us a more complete picture of spectral bias during development, as it has been
shown that a large proportion of V1 neurons are “two-peak” cells in that they shift their
preferred tunings to higher spatial frequencies over the stimulus period; meanwhile, “one-
peak” cells, which have peak responses that occur at the same time, prefer lower spatial
frequencies [54]. However, results are still consistent with these experiments, which show
that visual experience increases the relative proportion of two-peak cells, and therefore the
relative proportion of cells that are tuned for higher spatial frequencies.

As discussed in Section 2.3, for certain hyperparameters, individual model neurons in
SAILnet do not each converge to one final learned shape. Rather, individual neurons fluc-
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tuate, morphing from one shape to another throughout training; these fluctuations do not
terminate even after training for many iterations. We refer to this phenomenon as fluidity.
This is in contrast to Sparsenet, for which we have only observed smooth convergence of
basis functions to their respective final shapes after many training iterations. We note that
when the basis functions are fluid during training, the metric of similarity over training
time, and by extension, most simple metrics of convergence, are no longer meaningful, as
there is no point at which every basis function has fully converged. Therefore, our main
findings hold for a set of parameters and initial conditions that are sufficient to suppress
fluidity. Whether fluidity is a biological phenomenon is an interesting open question that
we hope will be the subject of future experimental work.

Finally, there are many factors potentially affecting spectral bias in biological devel-
opment that we do not consider in our modeling. For example, increasing spatial acuity
occurs during development [55], both in terms of the optical properties of the eyes [56]
and changes in visual perception from infancy to adulthood [57], both of which are likely
to influence the ability to distinguish between visual stimuli. Moreover, changes in the
RFs of neurons upstream of V1, such as in the retinas or the lateral geniculate nucleus of
the thalamus, are undoubtedly changing during development.

Our spectral bias prediction is derived in the context of experience-dependent devel-
opment, during which neuronal tuning adapts to natural scene statistics. It is possible
that this particular order of development may not hold for experience-independent devel-
opment, such as occurs in V1 prior to eye opening. This question could be addressed by
considering different input data to the model. One possible input could be internally gen-
erated spontaneous neural activity, such as retinal waves, which play a role in the wiring
of circuitry in early visual areas. For example, Dähne and colleagues implement slow fea-
ture analysis to encode retinal wave signals and find that the learned features correspond
to the shapes of V1 complex cells [58]. We explore the role of spontaneous neural activity
in the development of visual functions in the next chapter.
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Chapter 3

Efficient Representation Geometry
Emerges from Structured Spontaneous
Neural Activity

3.1 Chapter Summary
At the end of the previous section, we discussed how receptive fields can be learned via
spontaneous neural activity, which suggest that innate mechanisms prior to visual experi-
ence prime V1 for feature extraction on external stimuli [59, 58]. We now ask whether the
internal representations that support higher-level visual function in the cortex can also be
learned via innate mechanisms.

One such high-level visual function is object recognition. The visual system has an
extraordinary capacity for rapidly and accurately recognizing distinct objects in the face
of identity-preserving transformations [60, 61, 62]. Evidence suggests that this is a result
of efficient representation: neural recordings reveal a high degree of linear separability
between neural responses to different stimuli [63, 61]. More precisely, sensory represen-
tations of distinct objects in the early visual system are tangled together and gradually
untangle as they are transformed and re-mapped in a feedforward manner along the ven-
tral stream [61]. However, the manner in which such representations are learned in the
brain is still unknown.

Models trained to classify images can perform invariant object categorization at near
human-level accuracy [64]. However, the supervised learningmethods used to train these
models are unlikely to explain how the brain learns object recognition, given that large
amounts of labeled examples are not necessary for visual development [65, 66, 67, 68]. In
this work, we explore the potential of innate neural activity as pre-training data for neural
networks and ask whether the internal representations that enable object recognition can
be learned without access to any external visual information.

The motivation for this work is grounded in developmental neurobiology. Many key
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aspects of visual system organization are well-established before visual experience, such
as topographic maps, orientation selectivity, and ocular dominance [14]. Notably, axon
targeting can largely be learned by innately generated signals such as spontaneous neural
activity and molecular guidance cues [69]. These findings suggest external stimuli are
unnecessary for the initial development of the early visual system.

Here, we investigate whether a particular form of spontaneous activity known as reti-
nalwaves can instruct formation of the feed-forward connections that support object recog-
nition. Retinal waves are a developmental phenomenon characterized by correlated pat-
terns of propagating, network-level activity among groups of retinal ganglion cells (RGCs)
prior to eye-opening [70]. Experimental and computational evidence suggests that reti-
nal waves instruct the formation of retinotopic maps, enabling RGC axons to reach their
targets in the superior colliculus and lateral geniculate nucleus before the onset of visual
experience [15, 16, 17, 18, 19, 71]. Given that 1) higher-order feature extraction in the
visual system presumably depends on the representations induced by these axonal pro-
jections and that 2) these projections are well formed prior to visual experience, in this
chapter we explore whether retinal waves are sufficient for learning the mappings that
enable object recognition.

Our core result in this chapter is that networks pre-trained on movies of retinal waves
producemore linearly separable representations of natural images compared to randomly
initialized networks, despite the fact that these representationswere never trained onnatu-
ral images. This task-independent phase is meant to simulate the experience-independent
period of visual development prior to eye-opening. To quantify the efficiency and ro-
bustness of the learned representations, we turn to the framework of manifold geometry,
which we present in the first section. Manifold geometry is a statistical framework for
determining the separability of object representations in high-dimensional feature space
[72, 73].

We characterize the geometry of the networks’ internal feature representations in two
networks: a simple network with one hidden layer pre-trained on retinal wave patterns
via Hebbian learning [74, 75], and a DCNN pre-trained on retinal wave patterns via a
contrastive learning objective [76]. In both cases, we find the efficiency of the learned rep-
resentations increases network performance on a set of image classification tasks, particu-
larly classifying noisy data (in the case of the Hebbian network) and classifying spatially
translated data (in the case of the DCNN). Our results suggest that the spatiotemporal
information in retinal waves is relevant for object recognition in natural scenes and point
towards an instructive role for retinal waves during early synapse formation in visual cir-
cuits.

3.2 The framework of manifold geometry
The neural population response to different presentations of the same perceptual object
under different transformations — such as orientation, pose, lighting and location— con-
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Figure 3.1: Binary classification of 2 object manifolds. The task of discriminating be-
tween the dog and cat image manifolds can be thought of as finding re-mapping f(x) of
the data x into a space where the manifolds are more easily separable. On the left, the two
manifolds— each consisting of different presentations of the same object in varying scales
and orientations — are highly tangled in pixel space, making them difficult to separate
with a linear classifier. On the right, a transformation by a well-trained f(x) compresses
and pushes apart the manifolds in feature space, enabling classification with a linear hy-
perplane.

stitutes a neural object manifold (Fig. 3.1). Discriminating between different objects is
therefore a problem of separating object manifolds. This is analogous to finding a sepa-
rating hyperplane in the perceptron problem, only instead of the counting units for data
being individual points, they are manifolds of different objects. The theory of manifold
geometry provides a statistical framework to quantify the linear separability of theseman-
ifolds as a function of their geometry [73]. We examine three quantities of manifolds that
determine their separability, namely the capacity αc, the dimension DM , and the radius
RM .
Activation extraction: For all theoretical manifold quantities, the outputs of the interme-
diate network layer activations are extracted to analyze the internal representations of the
task or wave manifolds at each layer.
Capacity αc: We consider a set of P object manifolds fully linearly separable if they can be
classified into binary classes by a hyperplane inN -dimensional feature space. The theory
of manifold geometry shows that the value of the manifold capacity αc determines the ex-
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Figure 3.2: Illustration of point cloud manifolds. (A) Tangled manifolds exhibit low ca-
pacity. (B) Untangled manifolds exhibit high capacity and are separable by a hyperplane
(C) Manifold dimension measures the spread of anchor points across the manifold axes
by projection of a Gaussian vector onto an anchor point. Manifold radius measures the
norm of an anchor point in the manifold subspace. These two geometrical quantities de-
termine the manifold capacity.

tent of separability in the limit of large P andN : if P/N < αc, the manifolds are separable
with high probability; if P/N > αc, the manifolds are inseparable with high probability.
Therefore, the higher the value of αc, the higher the probability of separability for a given
set of manifolds (Figs. 3.2A,B). For point-cloud manifolds, in which each manifold con-
sists of M data points each corresponding to an example of the given object, the capacity
can be shown to be bounded as 2

M
≤ αc ≤ 2 [72]. The theory of manifold geometry also

shows that capacity is determined by two quantities which describe the geometry of the
object manifolds in N -space: the dimension DM and the radius RM . These are statistical
quantities defined for each manifold by considering spread of points in the manifold’s
convex hull, called anchor points, over variations in the manifold’s labeling and location
inN -space (Fig. 3.2C). For largeN , αc is inversely proportional to

√
DM and RM [77]. All

three quantities — αc, DM , and RM — are estimated using algorithms based on statistical
mechanical mean-field techniques described in [78].
Dimension DM : Dimension is the spread of anchor points across the manifold axes and
estimates the average embedding dimension of the manifold (Fig. 3.2C).
RadiusRM : Radius is the average distance between themanifold center and anchor points
and reflects the scale of themanifold compared to the overall data distribution. (Fig. 3.2C).
Simulation capacity αsim: We note that αc is a theoretical estimate of linear separabil-
ity that may deviate from the true capacity in the regime of finite manifolds P and fea-
ture dimensions N [72]. Simulation capacity provides a numerical approximation of the
ground-truth manifold capacity. We calculate simulation capacity by first running linear
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Figure 3.3: 3-layer feed-forward network with ReLU activations after the hidden (FC1)
layer.

classifications with fixed P and varying N until the probability of manifold separation
converges to 0.5. The final value of N = Nc is used to calculate the simulation capacity
αsim = P/Nc.

3.3 Analysis of a simple linear network

Architecture
The first model architecture we consider is a feedforward network consisting of an input
layer, a layer with pre-trained weights (the receptive fields) and ReLU activations, and a
support vector machine (SVM) as the classifier/output layer (Fig. 3.3). The input layer
consists of 3200 model retinal ganglion cells randomly placed on a square grid. The hid-
den linear layer consists of 400-units with ReLU activations. The output/classifier layer
consists of 1 unit.
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Figure 3.4: Area of an isolated retina used to obtain real retinal wave data. Retina (11
mm2) shown in pink.

(a) Pre-trained (real) (b) Scrambled (real)

Figure 3.5: Receptive fields of hidden layer weights (real waves). Left: Receptive fields
for Pre-trained (real) network. Right: Receptive fields for Scrambled (real) network,
which are obtained by shuffling the pixels of the receptive fields in the Pre-trained (real)
network.
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(a) Pre-trained (sim.) (b) Scrambled (real)

Figure 3.6: Receptive fields of hidden layer weights (simulated waves). Left: Receptive
fields for Pre-trained (sim.) network. Right: Receptive fields for Scrambled (sim.) net-
work, which are obtained by shuffling the pixels of the receptive fields in the Pre-trained
(sim.) network.

Pre-training on retinal waves
To pre-train the network, retinal waves are propagated across the input layer to train the
weights (receptive fields) to the first hidden layer units by awinner-take-allHebbian learn-
ing rule as in [75]. Retinal waves are obtained from epifluorescent macroscope calcium
imaging ofmouse retinas (Fig. 3.4). For comparison, we also pre-train a network on simu-
lated spontaneous activity according to the structured noise dynamics in [75]. We analyze
five networks: “Pre-trained (sim.)”, a network with receptive fields pre-trained on sim-
ulated retinal waves according to the dynamics in [75] (Fig. 3.6a), “Pre-trained (real)”;
a network with receptive fields pre-trained on real retinal wave data (Fig. 3.5a); “Scram-
bled (sim.)” and “Scrambled (real)”, networks inwhich each receptive field is the result of
randomly permuting the pixels of its corresponding receptive field in “Pre-trained (sim.)”
and “Pre-trained (real)”, respectively (Figs. 3.6, 3.5); and a network whose hidden layer
is a Gaussian random projection “Control (rand. proj.)”, which reduces dimensionality
while preserving geometrical properties of the input [79].

Task training on MNIST
After pre-training, we train the SVM to classify MNIST digits, which are pre-processed
by binarizing the pixel values and projecting them onto the input layer units. The net-
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Figure 3.7: MNIST classification accuracy with increasing noise. While all networks
have similar accuracy in the 0-noise regime, networks pre-trained on retinal waves have
the highest robustness to noise perturbations as noise increases.

work is trained by freezing the input and hidden layer weights as is, doing a forward pass
of the projected task data through the second layer, and training the SVM layer on the
400-dimensional hidden layer output representations of the data. Only the SVM layer is
trained on the MNIST data, such that it learns to classify the network’s internal represen-
tations of the digits. Once trained, models are then evaluated on test data. The training
set consists of 60,000 samples and the test set consists of 10,000 samples.

All networks considered have the same width and depth. We find that classification
accuracy is higher for pre-trained networks relative to their scrambled counterparts (Fig.
3.7. Pre-trained networks also maintain higher classification performance given noisy ver-
sions of MNIST data, which are generated by bit-flipping a randomly selected proportion
of the pixels. Interestingly, in the 0-noise regime, the networks all have similar perfor-
mance and in [75], it was found that pre-training on what we are calling the Pre-trained
(sim.) data was slightly better than random (all networks were reported to have between
89 and 92 % test accuracy). It’s possible that given the relatively simple dataset (MNIST),
pre-training does not substantially increase performance — however, adding noise to the
data increases the performance gap, as we show here. Similar noise robustness has been
observed for sparse coding, which has been applied to de-noising tasks [35]. Neverthe-
less, we build on this finding by analyzing the manifold geometry of the object manifolds
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Figure 3.8: Capacity of objectmanifoldswith increasingnoise. The pre-trained networks
have manifolds with higher capacity relative to their scrambled counterparts.

as represented by the network’s hidden layer weights, which can give us a richer insight
on the effects of pre-training on representation.

Manifold analysis
To examine how pre-training with retinal waves affects the geom- etry, and in turn the
separability, of neural object manifolds for each task, we extract the network activations at
the ReLU layer for P = 10 manifolds (each corresponding to an MNIST digit) consisting
of M = 100 examples. Based on these digit manifolds, we analyze three manifold proper-
ties of the networks’ internal representations of the MNIST data: capacity, defined as the
maximum number of object manifolds that can be linearly separated using random binary
labels divided by the dimension of the representation; manifold dimension, the spread of
anchor points (which define the optimal separating hyperplane between two perceptual
manifolds) along the manifold axes; and manifold radius, the variance of anchor points
normalized by the average distance between manifold centers. For each of these quanti-
ties, we report the average across the MNIST digit classes/manifolds.

The lower the dimension and radius of the object manifolds, the more linearly sepa-
rable they are, yielding higher manifold capacity (Fig. 3.2). We show that the internal
representations of pre-trained networks generally exhibit higher capacity, lower dimen-
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sion, and lower radius relative to those of their scrambled counterparts, particularly in the
presence of moderate noise. Notably, the pre-trained networks exhibit consistently lower
dimension than the control (random projection) network (Fig. 3.10), but lower radius
only in the presence of considerable noise (Fig. 3.9). Moreover, the dimension of the net-
works pre-trained on simulated waves tends to be lower than that of networks pre-trained
on real waves, while the real wave networks tend to exhibit lower radius.

Our results show that pre-training with both simulated and real retinal waves yields
receptive fields with spatial structure favorable for separation and classification of object
manifolds. The purpose of using simulated waves is a groundtruth to determine whether
receptive fields are sufficiently in response to a simple pattern, as the real wave data con-
tains noise that make it harder to determine whether learning has occurred based on in-
spection of the networkweights. Becausewe are comparing to scrambled networks, whose
receptive fields share the same pixel distribution as the pre-trained networks but lack their
spatial structure, these results suggest that learning the spatial structure in retinal wave
patterns, as opposed to just the overall distribution, is relevant for object recognition. We
also find that networks trained on simulated waves exhibit higher accuracy and manifold
capacity compared to networks trained on real retinal waves. We suspect this is because
the real data contains considerably more noise and is less local in its spatial structure,
which may lower performance on the relatively simple binarized MNIST dataset.

Interestingly, it appears simulated wave and real wave networks have different effects
on the manifold geometry. Simulated wave networks have a greater effect on reducing the
manifold dimension, while real wave networks have a greater effect on reducing the man-
ifold radius. The disparity in dimension reduction may be due to the local structure of the
simulated wave receptive fields, which could act as feature detectors for low dimensional
structures induced by correlated nearby pixels. The reasons for disparity in radius reduc-
tion do not appear as straightforward, considering that the random projection network
tends to exhibit lower radii. One factor could be that the high magnitude of the synaptic
strengths induced by the slower, localized simulated waves increases the effective sizes of
the data manifolds and thus their radii. The real retinal waves propagate less frequently
and diffusely, so the synaptic strengthening during the Hebbian learning phase occurs at
a lower rate. This explanation is consistent with the fact that the random projections have
unit magnitude and generally lower radii, though it is not clear why their radii are higher
in noisier regimes. Normalizing the receptive fields in the pre-trained networks to control
for the effect of synaptic strength on radius may elucidate these questions

Finally, we highlight that the task (as well as the dynamics of the simulated retinal
waves) were chosen as a simple benchmark to compare with previous similar work [75]
and as a proof of concept, limiting the scope of our findings. Amore ethologically relevant
task, like classifying natural images (without binarization of the pre-training and training
data, as is done here), would be a more direct examination of the role of retinal waves
in biological development and for this reason may be more amenable for networks pre-
trained on real data. Another direction for future work is to examine the effect of network
architecture in this regime, in particular by introducing layers that more accurately mimic
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Figure 3.9: Radius of hidden layer representations. We report averages across digit
classes for networks trained on real retinal waves (top) and simulated retinal waves (bot-
tom).
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Figure 3.10: Dimension of hidden layer representations. We report averages across digit
classes for networks trained on real retinal waves (top) and simulated retinal waves (bot-
tom).
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the structure and dynamics of higher visual areas like LGN and V1. We address this in
the next section, where we perform a more in-depth analysis on a deep neural network.

3.4 Analysis of a deep network
Deep convolutional neural networks (DCNNs) can classify objects at near human-level
accuracy [64] and have been shown to exhibit representations similar to neural activities in
mammalian systems [80, 81]. Furthermore, DCNN layers have analagous properties to the
visual hierarchy, whereby feature transformations at each layer induce linear separability
in the object manifolds [82]. DCNNs therefore offer a useful testbed for modeling the
visual system [83, 84, 85, 86]. These features of DCNNs allow us to explore how self-
supervised pre-training on retinal waves affects representation formore complex data and
tasks that require higher-order feature extraction.

Pre-training on retinal waves
To test whether spatiotemporal features of retinal waves learned during pre-training will
improve performance on visual tasks, we follow the pipeline described in Fig. 3.11. Given
a movie of a neurally active developing retina (Fig. 3.11A), we first train a ResNet-18
to compress temporally consecutive frames of the movie in output space, while pushing
apart temporally distant frames (Fig. 3.11B) using the SimCLR training objective [76].
This is in accordancewith the finding that temporally close activity bursts convey themost
spatial information about relativeRGCposition [87, 88]. Because retinalwaves occur only
before eye-opening in developing animals, this phase is meant to simulate the period
of cortical development prior to visual experience. We pre-train two kinds of networks:
the first using macroscope movies of retinal waves obtained via calcium imaging of whole
retinas dissected from postnatal mice, and the second using simulated movies of retinal
waves from a parametrized, reaction-diffusion based model [89].

To filter out calcium transients, periods of inactivity, and random noise in the calcium
imaging data, watershed image segmentation is used to identify periods of continuous
retinal wave activity spanning a given number of frames, with each period denoted as a
“wave event”. We aggregate movies from four retinas, resulting in ∼60,000 total frames
of real retinal wave pre-training data. The frames are downsized to 32 × 32 pixels.

We consider simulated retinal wave data generated using the model in [89] “out-of-
the-box” (Fig. 3.12). The area parameter of the simulation is changed tomatch the average
pixel-wise area of the four isolated real retinas, which was calculated using open source
Fiji software and then converting to metric units based on macroscope resolution. The
“strength” parameter α is modified to 0.5 to increase the wave frequency and eliminate
long periods of inactivity. The model frame rate is matched to that of the macroscope
data. Themodel is run to obtain a total of∼237,000 frames of simulation data. Because the
simulated data is far less noisy than the real data, wave events are simply taken as the sets



CHAPTER 3. EFFICIENT REPRESENTATION GEOMETRY EMERGES FROM
STRUCTURED SPONTANEOUS NEURAL ACTIVITY 42

Figure 3.11: Network training pipeline. (A) Retinal wavemovies and three permutations
of the original movies are used as pre-training datasets. As an example, three permuta-
tions are shown on the same 8-frame excerpt taken from an original movie, which consists
of consecutive frames of retinal wave activity. (B) Contrastive learning is used to train net-
works to learn temporally close spatial correlations in the movies. (C) Each’s network’s
performance is evaluated on three labeling tasks.
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of frames in between periods of cell inactivity, without the need for image segmentation.
Both real and simulated retinal wave datasets are normalized to have a global mean and
variance of 0 and 1, respectively.

To isolate the effects of the spatial and temporal characteristics of retinal waves, we
pre-train networks on three additional types of datasets created by modifying the original
movies, described below and depicted in Fig. 3.11A.
Spatially shuffledwaves: Pixels of each frame are randomly permuted. Spatially shuffled
waves contain information about how the overall distribution of RGC activities changes
over time, but lack the continuously varying spatial structure present in the originalmovies.
As such, pre-training on spatially shuffled waves controls for how much task information
can be inferred only through temporally local changes in the population statistics of RGC
activity.
Temporally shuffled waves: The sequence of frames is randomly permuted. This condi-
tion controls for the amount of task-relevant, temporally non-local information in retinal
waves.
Spatiotemporally shuffled waves: Both the pixels of each frame and the sequence of
frames are randomly permuted. If correlations between temporally distant frames are rel-
evant for a given task, networks pre-trained on temporally shuffledwaves should perform
better than those trained on spatiotemporally shuffled waves.
We compare all pre-training conditions to a He random initialized control network that
has not been pre-trained, for a total of nine conditions (four sets of pre-training data —
unshuffled, spatially shuffled, temporally shuffled, and spatiotemporally shuffled — for
both real retinal waves and simulated retinal waves, plus one randomly initialized control
netowork).
Model architecture: For all pre-training, we use a ResNet-18 network [90] (without the
fully connected classification layer) followed by a projector layer. The projector consists of
three linear layers with 8192 output units. The first two linear layers in the projector are
each followed by a batch normalization layer and ReLU activations. The ResNet-18 back-
bone without the classification layer is sometimes referred to in self-supervised learning
as an “encoder”, and the outputs of the projector layer are referred to as “embeddings”
[91]. The SimCLR loss is computed on the embeddings during pre-training, and during
task training, the projector is swapped out with a 512×10 linear readout layer. This proce-
dure of swapping out the projector has been shown empirically to be beneficial in transfer
learning, where there is a misalignment between the pre-training and training tasks [92].
Hyperparameters: Networks are pre-trained with a projector layer [91] of dimensions
8192 × 8192 × 8192 for 100 epochs with a learning rate of 0.0001 and Adam optimization
based on a grid hyperparameter search. Because wave events occur for varying lengths of
time, batches are formed by randomly sampling whole wave events from the movie until
the total number of sampled frames exceeds a threshold value of 3000. Positive examples
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Figure 3.12: Qualitative comparison of representative examples from real and simulated
retinal wave movies. While we do not perform a direct quantitative comparison between
the real and simulated retinal waves in this work, we present 3 representative examples
from each dataset taken over a time period of about 18 sec. For each example, every 12th
frame is presented in order to visualize wave activity over longer a period of time. A key
difference between the two datasets is that in the real retinal wavemovies, the waves must
terminatewhen they reach a boundary of the imaged retina (Fig. 3.4), but in the simulated
retinalwavemovies, the “retina” is a uniform surface that extends beyond the field of view.
For this reason, in the simulated movies, the waves may continue past the frame. We
partially adjust for this difference by setting the area parameter of the simulated retinal
wave model as the average area of the calcium imaged retinas, though this adjustment
does not account for any variations in wave characteristics induced by the retinal border.

are defined as consecutive frames within the same wave event, and negative examples are
defined as all frames outside of that wave event.

Task-training on CIFAR images
To test the effects of pre-training on task performance, we add a linear readout layer to
the pre-trained weights and train linear readout layer weights on labeled images while
leaving the pre-trained hidden layer weights fixed (Fig. 3.11C). This phase is meant to
simulate a test of the functionality gained from retinal wave activity at the onset of
visual experience. We evaluate network performance on three labeling tasks to examine
and bound the scope of functions that be learned from pre-training on retinal waves.
Classification task: The first task is standard image classification on CIFAR-10. The test
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Figure 3.13: Base images and labels for spatial translation and color change tasks.

of function this task is meant to simulate is linking semantic and visual information.
Spatial translation task: For the second task, we train networks to classify spatially trans-
lated images drawn from CIFAR-100. The test of function this task is meant to simulate
is recognizing an object in the face of affine spatial transformations. To generate the task
data, we first choose 10 of 100 classes at random and draw a random image from each
class, which we denote as a “base” image (Fig. 3.13). An image in the task dataset is then
generated as a random affine transformation (up to 16 pixels in the x and y directions) of
one of the 10 base images. Using this procedure, each base image is used to generate 5000
training images and 1000 test images, for a total of 50,000 training images and 10,000 test
images. The networks are trained to classify a given training image with the label of its
original base image.
Color change task: For the third task, we train networks to classify recolorations of the
same 10 base images used in the spatial translation task. The test of function this task is
meant to simulate is recognizing an object that has been recolored. The task data is gener-
ated by the same procedure, as the spatial translation task, only instead of random affine
transformations, we apply randomcolor transformations to the base image that range from
50 to 100% changes in saturation, brightness, contrast, and hue. The networks are trained
to classify a given training image with the label of its original base image.
Model architecture: For task training, the projector from the pre-trained ResNet-18 is
swapped out with a 512 × 10 linear readout layer. This procedure of swapping out the
projector has been shown empirically to be beneficial in transfer learning, where there is
a misalignment between the pre-training and training tasks [92].
Hyperparameters: In task training, the projector dimension used in pre-training is re-
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Figure 3.14: Test accuracy for pre-trained networks in three labeling tasks. Asterisks
indicate that the performance increase from pre-training on both real and simulated reti-
nal waves (relative to random baseline performance) is highest for the spatial translation
task. Pre-training yields only a slight performance boost for the standard CIFAR-10 clas-
sification and color change tasks.

moved and replaced with a 512×10 linear readout layer [91]. The readout layer is trained
for 100 epochs, batches of size 100, and learning rate of 0.0001 on 50,000 labeled training
images. The performance is evaluated on 10,000 labeled test images.

Pre-training on retinal waves improves task performance
Ourmain result is that self-supervised pre-training of networks onmovies of retinal waves
improves object separability for labeled images. In particular, we find that pre-training on
the original, unshuffledwavemovies yields the highest performance increase in the spatial
translation task (Fig. 3.14, middle). This suggests that retinal waves contain information
that supports learning object invariance to spatial translation. Pre-training on spatially
shuffled waves yields a moderate improvement above random initialization in this task,
suggesting that learning temporally local changes in the overall distribution of activities
is also relevant for this function. Destroying the temporal structure of the waves, how-
ever, yields performance below random initialization, as shown in the temporally and spa-
tiotemporally shuffled pre-training conditions. This suggests that temporally local, rather
than global correlations in retinal waves are most relevant for learning spatial invariance.
This is consistent with the previous finding that little information is gained by considering
RGC activity bursts more than 3 sec (around 35 frames) apart [87, 88]. These networks
perhaps even learn non-local features that actually hinder task learning, as suggested by
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their below-random-network performance. We further explore this idea in Sec. 3.4.
Classification is a far more complex task than spatial translation as it requires map-

ping visual information onto higher level semantic structures, information not present
retinal waves. Accordingly, performance for this task is significantly lower for pre-trained
networks overall than for spatial translation. However, networks trained on unshuffled
waves still perform slightly better than the others (Fig. 3.14). A similar trend emerges for
the color change task, for which we also did not expect pre-training to yield any advan-
tage. A potential reason for the performance increases in both cases is the persistence of
similar features across examples in the same class. Visual patterns like edges and curves
are features that retinal waves may train the visual system to recognize [59]. We further
explore reasons for these small performance boosts in Section 3.4.

While accuracy provides a proxy for the task-specific relevance of retinal waves, it does
not give insight into how retinal waves influence learned feature representations. In the
next section, we address this question by examining the geometry of task object manifolds
across pre-training conditions.

Pre-training on retinal waves increases capacity for manifolds defined
by invariance to spatial translation
To examine how pre-training with retinal waves affects the geometry, and in turn the sep-
arability, of neural object manifolds for each task, we extract the network activations at
each ReLU layer for P = 50 manifolds consisting of M = 20 examples. For standard clas-
sification, each manifold corresponds to an image class in CIFAR-100. Examples for each
manifold are drawn from the given class based on the ranked 20-highest softmax prob-
ability scores output by a well-trained classifier. For both spatial translation and color
change, each manifold corresponds to one random base image drawn from CIFAR-100.
Examples for each spatial translation manifold are generated by applying random affine
shifts up to 3 pixels in both directions to the base image. Examples for each color change
manifold are generated by applying random 50− 150% changes in saturation, brightness,
hue, and contrast to the base image. For all theoretical manifold quantities (αc, DM , RM ,
correlation, PR,EV ) the outputs of the intermediate ReLU activations in the encoder (for
a total of 9 activation layers [90]) are extracted to analyze the internal representations of
the task or wave manifolds at each layer. Due to the high computational cost, we only
calculate the simulation capacity at the last ReLU in the encoder.

Previous work shows that DCNNs trained to classify images increase the object man-
ifold capacity from the input to output layers [82]. We only observe this behavior for the
spatial translation manifold. Consistent with the accuracy results, networks trained on
unshuffled waves and spatially shuffled waves yield increases in capacity relative to ran-
domly initialized networks, while networks trained on temporally and spatiotemporally
shuffled waves do not substantially change the capacity between the input and output
layers (Fig. 3.15).
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Figure 3.15: Changes in classification capacity over network layers. Asterisks indicate
that the capacity of spatial translation manifolds increases the most along the hierarchy of
the network pre-trained on unshuffled retinal waves. Insets (top left and bottom left plots)
show that there is little difference in capacity across pre-trained and random networks for
the CIFAR class manifolds. Unexpectedly, pre-training on simulated, but not real retinal
waves yields a slight increase in capacity above random for the color change manifolds.

In all networks, the capacity of the CIFARs class manifold (see inset, Fig. 3.15) remains
nearly constant around the theoretical lower bound of 0.1 (Sec. 3.2). All networks also
yield a decrease in capacity for the color change manifold at each successive layer (Fig.
3.15). Although the network trained on simulated unshuffled waves appears to have a
relatively high capacity for the color change manifold, this particular value actually over-
estimates the ground truth simulation capacity, which we show in Fig. 3.16. To determine
why this overestimation is more pronounced for the network trained on simulated waves,
a useful followup would be to more closely inspect the statistics of anchor points used in
calculating the mean field theoretic capacity 3.2. The correction provided by calculating
the simulation capacity, however, demonstrates that there is no substantial improvement
in the color change task with regards to representation after pre-training on retinal waves.
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Figure 3.16: Correspondence between theoretical and simulation capacity. Each point
represents mean over three random network initializations at the last activation layer in
the encoder. Dotted gray line denotes exact match between αc and αsim. We note a high
degree of correspondence between theoretical and simulation capacity, with the exception
of the CIFAR and color change manifolds for networks pre-trained on simulated retinal
waves (second row, first and third columns).

With exception of this overestimation, we generally observe a high degree of correspon-
dence between theoretical and simulation capacity.

Pre-training on retinal waves decreases radius and dimension for
manifolds defined by invariance to spatial translation
As expected, the spatial translationmanifolds in networks pre-trained onunshuffledwaves
have lower dimension and radius compared to those in the other networks, while net-
works pre-trained on spatially shuffled waves only appear to decrease the radius (Fig.
3.17). These results suggest that pre-training on retinal waves has a direct influence on
the geometry and separability of neural object manifolds for tasks that involve learning
spatial invariance. Meanwhile, the dimensions and radii of the CIFAR class and color
change manifolds do not show any consistent ordering that points to a clear advantage
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of pre-training on retinal waves relative to the random baseline (Fig. 3.17). These results
are consistent with the poor accuracy in the classification and color change tasks across
all networks.

However, if pre-training does not substantially affect these object manifolds, what ac-
counts for the slight boost in performance on these tasks for the networks pre-trained on
unshuffled waves (Fig. 3.14)? To address this question, we explore two factors external
to the geometry of individual manifolds, namely the inter-manifold correlation and the
effective dimensionality of the feature space.

Figure 3.17: Changes in manifold geometry over network layers. Asterisks indicate that
networks pre-trained on unshuffled retinal waves most effectively compress spatial trans-
lation manifolds, as indicated by the decreases in both dimension and radius in deeper
layers.

Pre-training on retinal waves decreases inter-manifold correlations
A high degree of correlation between manifold centers may lead to clustering of object
manifolds in feature space, making them more difficult to separate and decreasing the
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Figure 3.18: Changes in inter-manifold correlation and participation ratio along net-
work layers. Only the network pre-trained on unshuffled waves consistently reduces cor-
relation and avoids vanishing/exploding dimensionality.

effective capacity. Previous work demonstrates that training DCNNs leads to decorrela-
tion of the manifold centers [82]. Here, we measure the pairwise correlation coefficient
between manifold centers at each network layer and find that networks pre-trained on
unshuffled retinal waves decrease center correlations relative to randomly initialized net-
works and networks pre-trained on spatially shuffled waves for all three tasks (Fig. 3.18).
Unshuffled pre-training also leads to a generally consistent decrease in correlation along
at each successive network layer. Interestingly, temporally and spatiotemporally shuffled
pre-training also produce networks that exhibit this behavior, in addition to having lower
correlations than in the unshuffled case. However, based on their poor task performance
and low capacities of their feature representations, it is likely this is simply due to the
explosion in dimensionality of their respective feature spaces, which we discuss next.
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Pre-training on retinal waves maintains effective dimensionality of the
data
Ideally, a well-trained classifier will extract the features that correspond to the highest
sources of variance in the data, while separating out low-variance features that do not
correspond to meaningful distinctions between samples. Participation ratio (PR) varies
from 1 toN and measures how data variance is spread out across the feature dimensions:
if PR = 1, the variance is concentrated entirely in one feature; if PR = N , the variance
is spread out evenly across all features [93]. In general, a good classifier will maintain a
PR > 1 in the feature dimensions so as to preserve the latent dimensionality in the data
(which is in the vast majority of applications is higher than 1), while also keeping PR < N
so as to extract only the meaningful (high variance) features as the basis for classifica-
tion. The layer-wise participation ratio suggests that networks pre-trained on unshuffled
waves maintain this happy medium in all three tasks (Fig. 3.18). Networks pre-trained
on spatially shuffled waves decrease participation ratio to near the lower bound, consis-
tent with the idea that they broadly capture population-level statistics, but fail to learn
many spatially local features that likely lie along other dimensions. The large increase
in PR observed in networks trained on temporally and spatiotemporally shuffled waves
suggests that they do in fact learn features that are not relevant for the task dataset, as
proposed in Section 3.4. These extraneous features would account for the increase in PR
above the values observed in other networks. Notably, correlation and PR are inversely
related, suggesting that high effective dimensionality is a factor in separation of manifold
centers.

The trends observed in PR are consistent with the trends in layer-wise explained vari-
ance, which measures how many feature dimensions account for a given percentage of
variance in the data (Fig. 3.19). We measure explained variance as the number of dimen-
sions in feature space that account for 90% of the variance in the examples considered for
manifold analysis. The trend in EV in all tasks reflects that observed in center correla-
tion and PR (Fig. 3.18), whereby the networks pre-trained on unshuffled waves maintain
higher feature dimensionality and lower center correlation than the random networks,
without producing a dimensionality explosion like the networks pre-trained on tempo-
rally shuffled waves.

The network learns to efficiently represent wave events
To analyze how the network learns to represent the retinal waves themselves over pre-
training, we examine how the geometry of the retinal wavemanifolds changes throughout
the network layers. A wave manifold as described in Fig. 3.20 is defined from a set of 50
frames from a randomly chosen single wave event in the original, unshuffled wave movie.
We consider 50 such manifolds for all such metrics computed in Fig. 3.20 across the five
pre-training conditions. Explained variance is the number of dimensions in feature space
that account for 90% of the variance in the frames considered for manifold analysis.
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Figure 3.19: Changes in inter-manifold correlation and participation ratio along net-
work layers. Only the network pre-trained on unshuffled waves consistently reduces cor-
relation and avoids vanishing/exploding dimensionality.

As expected, networks pre-trained onunshuffledwaves yield the highest capacity amongst
all pre-training conditions for the wave manifolds. Interestingly, the manifolds for real
retinal waves appear to have higher capacity at all layers compared to those for simulated
waves. This may be due to the smaller size of the real retinal waves dataset, which could
lead to less variability across frames than in the simulated dataset. This explanation is
consistent with the fact that the PR and EV for simulated waves is higher than for real
waves. The trend in correlation, PR, and EV for both real and simulated wave manifolds
reflects that observed in the task manifolds (Fig. 6), whereby the networks pre-trained
on unshuffled waves maintain higher feature dimensionality and lower center correlation
than the random networks, without producing a dimensionality explosion like the net-
works pre-trained on temporally shuffled waves.

We also note that for retinal wavemanifolds, calculation of αsim is numerically unstable
in the last activation layer for networks not trained on unshuffled waves (fourth column).
This may occur when the manifold capacity is low relative to the feature dimension N ,
resulting in poor separability. For this reason, we instead report the values of αc and αsim

for the wave manifolds in the projector layer.
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Figure 3.20: Changes in (unshuffled) wave manifolds over network layers.

3.5 Implications for Experience-Independent
Development of the Visual System

To our knowledge, this is the first computational work that directly explores how real
retinal waves can influence neural object representations, demonstrating a bioplausible
means of learning spatial invariance without training on large datasets of labeled images.
While DCNNs trained on labeled images achieve state-of-the-art performance and even
predict neural responses [80, 7], thesemodels are unlikely to explain howbiological vision
develops. Unsupervised and self-supervised learning mechanisms have therefore been
proposed as biologically plausible means of learning object recognition [68]. However,
standard implementations of these algorithms still require natural images or videos as
training inputs, which effectively simulate a visual experience. Though visual experience
certainly shapes cortical functional development [94, 95, 26, 96], models that wholly rely
on image data do not account for the functionality, connectivity, and feature selectivity al-
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ready observed in animals prior to the onset of vision [97, 98, 99, 100, 101]. Consistentwith
our results, previous work has demonstrated that self-supervised learning on structured
noise can improve classification accuracy on unseen images [75, 74, 102]. Additionally,
simulated retinal waves have been shown to yield V1-like receptive fields when used as
inputs for sparse coding algorithms [59, 19, 103] and slow feature analysis [58].

We demonstrate that pre-training on retinal waves has two primary effects on learned
representations that can account for increases in task performance. The first is an increase
in the separability of individual object manifolds. This effect is pronounced in the spatial
translation task, suggesting that the spatiotemporal characteristics of retinal waves train
networks to learn spatial translation invariance. To show this, we analyze the geometry
of the neural object manifolds defined by affine transformations of a single object (image)
and find they are more linearly separable when represented in networks pre-trained on
unshuffled retinal waves (Figs. 3.15, 3.17). Both the spatial and temporal characteristics of
retinal waves are necessary for learning this task, as pre-training on spatially and/or tem-
porally shuffled retinal waves leads to poor separability of spatial translation manifolds.
Pre-training does not have a significant effect on the separability of the manifolds defined
by CIFAR image classes or color changes of a single object (Figs. 3.15, 3.17), suggesting a
qualitative bound on the scope of tasks for which retinal waves are useful training signals.

We also observe that pre-training on retinal waves reduces center correlations between
neural object manifolds and increases the effective dimensionality of the feature space
(Figs. 3.18). Both effects are directly correlated with linear separability and appear to be
independent of the effect on individual manifold separability, as they are observed in all
three tasks.

Together, these two effects of pre-training on retinal waves correspond to distinct local
and global mechanisms of transforming object representations, both of which are impor-
tant for separability. At the local level, pre-training increases the compressibility of indi-
vidual neural object manifolds, as shown in the increase in capacity and the concurrent
decreases in dimension and radius. At the global level, pre-training places neural object
manifolds in higher dimensional feature space, as shown by the increase in participation
ratio and concurrent decrease in center correlation. These two regimes point to distinct
ways in which retinal waves may influence emerging sensory representations.

We do not observe a significant difference between pre-training on real versus simu-
lated retinal waves from the model. The advantage of the model is that we can generate
an arbitrarily large set of pre-training data, at the risk of introducing free parameters that
may lead to deviations from real data. Though we do not perform a direct comparison be-
tween the simulated and real data in this work, no clear difference emerges between these
two datasets in terms of model performance or the geometry of the object representations.
This suggests that for the tasks considered, the common features of these datasets — such
as spatiotemporal continuity between frames — are the primary drivers of the observed
effects. In future work, themodelmay be a useful tool for examining the effect of changing
the waves’ spatiotemporal characteristics on representation learning.

We note that our findings are subject to our choice of network architecture (ResNet-
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18), learning algorithm (SimCLR), and dataset (postnatal mouse retinal waves). Retinal
waves occur during multiple stages of development [104] and drive formation of visual
circuitry in numerous ways [70]. Retinal waves are also not the only form of spontaneous
activity during development [105]. Along this line of work, future studies may consider
the role of cortical feedback [106], introduce bioplausible, synaptically local learning rules
[107], or investigate the role of spontaneous activity in other modalities like temporal pre-
diction [108]. Additionally, laboratory experiments that test object recognition in mice
[109] performed at the onset of vision could verify our model predictions and provide
richer insight into the capacity of neural object manifolds during this early developmental
period.
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