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ABSTRACT
This paper discusses the creation of targeting and segmentation
information about non-residential buildings that are equipped with
advanced metering infrastructure (AMI) meters, or smart meters.
Statistics, model, and pattern-based temporal features are extracted
from over 36,000 smart meters. They are then merged with a data-
base of past energy efficiency interventions such as lighting, HVAC,
and controls retrofits from 1,600 buildings. The buildings are di-
vided into Good, Average, and Poor performing classes according
to consumption from before and after the retrofits. Classification
models are developed that improve the ability to predict retrofit
success and standard industry class by 18.3% and 27.6% respectively
over baselines. This study serves as an example of better leveraging
smart meter data from non-residential buildings for utility targeted
incentive programs. The methodology outlined is preliminary and
further models and temporal features are to be tested.

CCS CONCEPTS
• Information systems→Data analytics; •General and refer-
ence→ Empirical studies; •Applied computing→Multi-criterion
optimization and decision-making;
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1 INTRODUCTION
As of 2015, there are 64.7 million smart meters in the United States,
with 7.3 million of those installed in non-residential buildings1. Util-
ities are searching for ways to convert these data into insight that
improve the operations of their distribution systems. They often
help building owners improve the efficiency and demand response
capabilities of their building through targeted energy audits, retrofit
assistance, and improvement incentives. Commercial and industrial
buildings are especially a challenge due to their heterogeneity and
complex energy-consuming systems as compared to residential. A
component of these programs is the ability to target the customers
most likely to benefit from incentive programs. A part of this pro-
cess is known as segmentation as it seeks to create groups of similar
accounts.

This paper outlines a process performed on a smart meter data
set of over 36,000 buildings. These data are aggregated by the Ver-
mont Energy Investment Corporation (VEIC) on behalf of several
electrical utilities. The first step in this process is to collect, clean
and perform an extensive feature engineering process on the sub-
hourly meter data itself. These features are then used to train two
different classification models. The first model uses the temporal
features from before and after an energy savings intervention to
predict the potential success of the implementation. This step is
done by combining the meter data from a subset of 1,600 buildings
with historical project data from multiple years of energy audits
and retrofit applications. The second model predicts the primary
standard industry classification (SIC) one-digit code of the building.
For commercial facilities, this piece of meta-data is important in
understanding the main use of the building. Both of these objec-
tives are valuable for a utility to better target future buildings for
retrofit programs. Much of the work in this publication is part of
the author’s Ph.D. dissertation [8].

1.1 Related work
Previous work in classification of smart meter data focuses primar-
ily the ability to predict demographics, appliance characteristics,
and renewable energy integration potential from residential build-
ings [1, 2, 5]. Residential customer segmentation is a part of this
effort [6]. One study used smart meter data for anomaly and be-
havior detection to uncover sub-optimal consumption [10]. So far,

1How many smart meters are installed in the United States, and who has them? - https:
//www.eia.gov/tools/faqs/faq.php?id=108&t=3
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no large utility smart meter study has focused on non-residential
buildings and their specific challenges.

Another significant body of work is in the area of building retrofit
analysis and the prediction of energy intervention success. A large
review of energy retrofit analysis toolkits and case studies identifies
the status quo of analysis; typically only a single building or a small
set of buildings is analyzed [7]. Another study illustrates the use of
clustering to group buildings in a community into similar potential
retrofit combinations using data-driven approaches [4]. The largest
study found on retrofit implementation is the case study using the
CityBES tool to predict savings for 540 buildings [3]. These studies
do not utilize the combination of a large smart meter or building
energy retrofit success data sets.

1.2 Points of departure
This paper makes two advances within the field of utility smart
meter data analytics. The first is the focus on a large data set of non-
residential buildings. This context is differentiated from the more
typical target of residential buildings and customers. Commercial
and industrial buildings are inherently more complex and systems-
driven than residential, thus they are often neglected in much of
the previous research.

The other point of departure is related to the segmentation of
commercial buildings according to their potential for energy savings
interventions. In the author’s knowledge, this the first study of its
kind to merge a significant retrofit implementation data set with
smart meter data. The number of buildings analyzed from both the
smart meter (36,000) and retrofit analysis (1,600) is significantly
larger than any previous non-residential building study.

2 TEMPORAL FEATURE EXTRACTION
Temporal features are aggregations of the behavior exhibited in
time-series data. They are characteristics that summarize sensor
data to inform an analyst through visualization or to use as training
data in a classification or regression model. Feature extraction is a
step in the process of machine learning as form of dimensionality
reduction of data. This process quantifies various qualitative be-
haviors. A set of 28 temporal features types are extracted in this
process from the three categories of statistics, regression model,
and pattern-based. Two example features are exhibited in detail
along with a heat map illustrating the range of behavior over time.
These 28 features are part of a larger temporal feature library for
non-residential buildings that is explained further in the literature
[8].

The first category of features, basic statistics-based metrics, are
created that utilize the time-series data vector for various time
ranges to obtain information using concept such as mean, me-
dian, maximum, minimum, range, variance, and standard deviation.
These metrics are further combined into ratios that describe daily,
weekly or monthly behavior. An example of a ratio-based feature is
daily maximum versus minimum, or daily load ratio. Distribution
descriptors such as skewness and kurtosis are implemented. Finally,
metrics that quantify the relationship between the electricity con-
sumption and outdoor weather conditions are created. The use of
the Spearman rank order correlation coefficient is an example of
such a metric. Monthly coefficients of this type are developed for

each month from a time range of 2.5 years of smart meter data. Fig-
ure 1 shows a heat map of these data with the x-axis representing
the time range and the y-axis representing rows of one dimensional
color bands quantifying the coefficient. Each band is a building
and has color range from -1 (highly heating correlated) as red to
+1 (highly cooling correlated) as blue. They are sorted vertically
with the most cooling-influenced buildings at the top and most
heating-affected at the bottom. This figure shows the general range
of behavior related to weather impact and summer cooling and
winter heating phases are easily identified.

Figure 1: Heat map visual representation of the monthly
Spearman rank order correlation coefficient for over 36,000
smart meters. This metric an example of a statistics-based
feature that characterizes weather influence.

The secondary category is model-based features that are devel-
oped from multivariate, piece-wise regressions using daily con-
sumption and outdoor air dry-bulb temperature. These models
approximate the electricity consumption used for heating and cool-
ing, the balance point temperature in which the building transi-
tions from the various phases, and an approximate base-load. Some
metrics are extracted from model-fit statistics to characterize ap-
propriateness of the models.

The last category is the pattern-based features extracted from
the daily, weekly, monthly and long-term shape and magnitude
behavior of the buildings. The first type of pattern-based models
is daily load patterns that are created using clustering techniques.
Several features identify the percentage of time that a building’s
daily profiles occur within a particular typical pattern. Another key
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feature that is extracted quantifies the volatility of the consump-
tion of buildings over a medium time range. Figure 2 illustrates
an algorithm that detects breakouts, or large shift in steady-state
consumption of the building. The breakouts in this figure are shown
with a change in color on the heat map bands for each building.
The bands are sorted top to bottom from the most to least volatile
consumption patterns. The less volatile buildings are most likely
from use types such as data centers or laboratories that have a
consistent pattern of use over time. More unstable buildings could
include schools and dormitories that have regular shifts in occu-
pancy throughout the year.

Figure 2: Heat map visual representation of the volatility
feature implemented on approximately 36,000 smartmeters
across 2.5 years of data. This feature uses a breakout detec-
tion algorithm to detect pattern-based shifts of consump-
tion.

3 PREDICTION MODELS
3.1 Energy efficiency measure implementation

success prediction
The prediction of future energy savings measures implementations
using the past data is implemented as a means of targeting potential
projects for retrofits. For this proof-of-concept, data from before
and after measure implementation are utilized from 1,600 buildings
that had one or more actions implemented. The difference in mean
daily consumption before and after the measure implementation is
calculated to achieve a rough indication of measure success. The

measures are divided into three classifications according to where
the difference in daily consumption for each account fits in the
range of values. In this analysis, the accounts in the lowest 33% are
considered "Poor," while the 66% percentile are "Average" and the
top 33% are considered "Good." Figure 3 illustrates a breakdown of
the measure categories within the tested data set. These retrofits in-
clude energy savings interventions on the lighting, heating, cooling,
ventilation, and compressed air systems.

Figure 3: Breakdown of energy savings measure categories
implemented on the 1,600 buildings from the retrofit data
set

A Random Forest algorithm is implemented to use the temporal
features to predict the class of potential measure success (Good,
Average or Poor). The labeled data is split into 80% training and
20% test data. Figure 4 illustrates the classification error matrix
for this model. The baseline model with these data can predict the
success within this set of classification at 32.8% accuracy while the
model based on the extracted features achieved 51.1% accuracy, an
increase of 18.3%. An important aspect in this analysis is that the
misclassification rate between Good and Poor is less than 20%.

Figure 4: Classification error matrix for prediction of mea-
sure implementation success using a random forest model
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3.2 Predicting industry class membership
The next task is to characterize the general industry for which a
building is being used. The primary usage of a building is a type
of meta-data that is not always known in the case of smart meter
data. It is used to supplement the energy savings targeting process.
Temporal data are used to build a Random Forest classification
model to predict the general use type of the building. In this case,
the label for use type is the one digit Standard Industrial Class
(SIC). This classification type is used because it is the primary
tag used by the utilities to segment their customers. These labels
include ten classifications from agriculture, finance, two types of
manufacturing, mining, public administration, two types of services,
transportation, and wholesale uses.

The baseline model correctly predicts the labels with an 18.1%
accuracy, while the developed temporal features have an accuracy
of 45.7%, an increase of 27.6%. The baseline model represents com-
mon practice in which a class is chosen based on the probability
distribution of that type occurring in the labeled data set. The tem-
poral feature set more than doubles the likelihood of predicting
this piece of meta-data.

4 CONCLUSIONS
This paper illustrates preliminary work in combining and analyzing
two key data sets related to performance in buildings: hourly smart
meter data and energy savings intervention data. The goal of these
data is to supplement a process of targeting buildings for energy
conservation implementation measures. Utilization of temporal fea-
tures is discussed in the context of assisting to label the approximate
building use type and predicting measure success implementation.
Tests using a classification algorithm showed an 18.3% increase in
accuracy of predicting whether it would perform well with a set
of performance interventions and a 27.6% increase in accuracy in
predicting the industry type of a building.

4.1 Limitations
This work is in the early stage, and there are several fundamental
limitations. The first is that only accuracy of classification predic-
tion has been tested and released in this paper. Other classification
metrics such as precision, recall, and the Fmeasure should be eval-
uated and discussed in the targeting context. There is a strong
incentive to explore further the ways of analyzing and utilizing
classification models in this context to convert the results into real
insight for utilities. Also, the author concedes that the overall ac-
curacy of the classification model in this preliminary work is still
low relative to what a good targeting process would need. Another
limitation is in the way the energy savings implementations success
is approximated. The data from before and after the retrofits are
analyzed without normalization for weather, occupancy, and other
factors that influence consumption beyond the effect of the energy
savings technique implemented. This challenge could be overcome
by merging weather or building management system data into the
process to account for these factors.

4.2 Future work
The biggest opportunity ahead is to characterize missing meta-data
and predict measure implementation success for future projects.

Much work is also yet to be done to utilize more types of temporal
features and input information to bring the overall prediction accu-
racies higher in absolute terms. Other prediction models from the
extensive library found in the machine learning domain should be
implemented and various approaches benchmarked against each
other. Model prediction can also be improved incrementally as the
temporal meter, and measures implementation data are better in-
tegrated. The building energy efficiency upgrades could also be
analyzed separately to understand not only if a building is a good
candidate for a retrofit, but also which retrofit is most appropriate.

Unfortunately, the exact data from this study is not available
publicly due to privacy requirements. A fruitful future direction for
this work would be in improving failsafe privacy measures for these
type of data to be shared more freely for the benefit of the research
community. Another study by the author uses similar techniques
on a different, open data set of 507 buildings that are part of the
Building Data Genome Project [9]. The open data from this project
is available for download and collaboration on Github2.
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