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Abstract

Patterns of variability in brain and behavior across spatiotemporal scales

by

Joshua M. Mueller

Brain systems span a wide range of spatial and temporal scales, from individual neu-

rons firing every few milliseconds to whole-brain connectivity changing over many years.

Network models offer a mathematical framework for describing, predicting, and control-

ling a diverse array of brain-related phenomena. Regardless of the particular system of

study, it is possible to characterize the range of observed variability in system behavior

over time by calculating topological and statistical metrics from inferred networks. In

this thesis, tools from network science, computational neuroscience, and statistics are

applied to data sets spanning several systems and spatiotemporal scales to characterize

patterns of variability in brain activity and behavior within and between individuals over

time.

First, electrophysiological activity of dissociated rat hippocampal neurons in vitro is

analyzed to reveal the emergence and persistence of stereotyped activity patterns over

time in the absence of external stimuli. These discoveries motivate further use of in vitro

hippocampal cultures as model systems for studying developmental phenomena related

to learning and memory.

Next, fruit fly behavior is modeled using tools from computational ethology and statis-

tics to define and compare the syntax of grooming, a common behavior in Drosophila.

We identify duration dependence in syntax for the first time, suggesting that central

pattern generators contribute to organizing behavior in a partially sensory-independent

manner.
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We also identify inter- and intra-species variation in grooming syntax, but do not

observe a significant correspondence between genetic heterogeneity and grooming vari-

ability. We also examine optogenetically-stimulated flies and find variability in grooming

responses despite careful control of sensory presentation. Taken together, these results

demonstrate that genetic differences can produce variation in grooming behavior, but

that sensory experiences and stochastic effects contribute more strongly than genetics to

the natural range of expressed grooming phenotypes.

Finally, we characterize the stability and changes in human brain network connec-

tivity over the course of a complete menstrual cycle in a “dense sampling” experimental

paradigm. We identify stable communities that persist for the majority of the menstrual

cycle. However, we also discover a correspondence between sex hormones and transient

large-scale brain network reorganization, implicating hormones in shaping network topol-

ogy.

Despite the differences in systems and phenomena of interest in this thesis, the work

contained within is unified by a concern for variability in brain activity and behavior.

Across contexts, we demonstrate the utility of network models in describing changes in

complex systems over time.
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Chapter 1

Introduction

1.1 Networks, brains, and behavior

Across systems and scales, complex dynamics emerge from the interactions between

many individual elements. The growth of microbial populations, the patterns formed by

flocking birds, and even shifts in voting preferences have all been described by network

models[1, 2, 3], which decompose these systems into component parts and the inter-

actions between them. These models are complementary to, and sometimes reducible

to, analytical approaches, such as mean-field theories, that describe bulk or statistical

behavior of large systems.

In this formalism, components are referred to as nodes and connections between

them as edges, which together make up a graph (graph and network may be used inter-

changeably here)[4]. Network models possess several useful features not present in other

formalisms. For one, networks possess observable topology that can be formally quantified

using mathematical metrics. More simply, with network models it is possible to inspect

which components are connected to one another, how strongly they are connected, and

whether geometric patterns (such as loops) occur. By analyzing metrics such as these,
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Introduction Chapter 1

it is possible to characterize more abstract properties of the network, such as the ability

to “traverse” from one node to another along edges.

In perhaps the most famous example of the this approach, the layout of the city of

Königsberg, Prussia was formulated as a network by Leonhard Euler in 1736. As shown

in Figure 1.1 below, Euler conceptualized the land masses of the city that were connected

by seven bridges as a mathematical object to prove that one could not walk the entire

city in a loop while crossing each bridge only once, laying the foundations for modern

graph theory.

Figure 1.1: The seven bridges of Königsberg. On the left is a map schematic
of the city of Königsberg, which consisted of four landmasses connected by seven
bridges. On the right is a simple graph representation of the city, with numbered nodes
corresponding to landmasses and edges indicating the presence of a bridge between
landmasses. Since graphs are abstract representations, their particular spatial layout
does not matter; identifying the connections between nodes fully defines the graph
topology.

1.1.1 Structural and functional brain networks

The seven bridges of Königsberg network is an example of a structural network,

which provides information only about whether components are connected to one an-

other. Additionally, this network is referred to as undirected and unweighted, as edges

2



Introduction Chapter 1

are reciprocal and use only binary values to indicate the presence or absence of connec-

tions. These types of networks can be extended, however, to consider situations in which

connections may be directed or weighted. Mathematically, these graph objects may be

represented simply as an adjacency matrix, A, where the matrix entry Aij indicates the

strength of the connection from node i to node j.

Figure 1.2: Common graph representations. On the left is a weighted, directed
network graph schematic. Edge thicknesses indicate weight and arrows indicate direc-
tionality of connections. On the right is a heatmap representation of the same graph;
these objects are mathematically identical. In this representation, the color of entry
(i,j) indicates the strength of the edge from node i to node j. Due to the abstract
nature of graphs, these objects can represent a wide variety of systems and processes.

Though the brain is a biological organ that seemingly shares few, if any, similarities

with urban geography, it is fundamentally an object composed of spatially segregated

subunits (neurons) connected by long-range projections (axons and dendrites). This

observation has motivated researchers in the field of connectomics to map the physical

connections between neurons, circuits, and brain regions in organisms ranging in scale

from C. elegans to humans [5]. By mapping these features, researchers have discovered

general topological properties of brain organization, such as “small-world structure”, that

may provide insight into how the brain coordinates activity across large spatial scales

while maintaining coherent function at the level of microcircuits [6, 7].

In the human brain, gray matter regions, which are composed of cell bodies and

3
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form the outer cortical surfaces of the brain, form connections with one another via

bundles of axons (white matter) that pass through deeper layers of the brain. Using

magnetic resonance imaging (MRI) to measure diffusion in the brain, several techniques

enable mapping the white matter connections between gray matter regions [8]. Structural

networks generated from this imaging exhibit a wide range of topological features that

correspond to cognitive task performance and disease state [9, 10], indicating that brain

architecture is an important determinant of brain function.

Graphs may also be used to represent functional networks, where edges indicate

interactions between nodes. Here, the usage of “interactions” is loose and allows for

many definitions. For example, correlation metrics are commonly used to define edges in

functional networks when nodes represent objects that possess time series data, providing

a proxy for potential interactions between elements without attributing causality.

In human brain studies, several techniques can measure brain activity directly or

indirectly to generate time series data of activity in different regions at rest or during

task performance. Functional MRI (fMRI), which detects blood-oxygen-level-dependent

(BOLD) signal as a proxy for brain activity, is commonly used to generate functional

brain networks. As stated previously, despite the nomenclature, the resulting networks

are typically correlational, indicating coupling between regions without ascribing causal

influence. Even so, differences in functional brain networks have been associated with

cognitive task performance and disease state as well [11], affirming the principle that

cognition is often dependent on coordinated activity between spatially disparate brain

regions.

4
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1.1.2 Dynamics of networks, dynamics on networks

Though the structural and functional networks described above may use time series

data to define the network structure, they are still intrinsically static networks in the

sense that relationships between nodes are fixed. It is possible, however, to consider

dynamics of networks if there is reason to believe that edges change over time. One way to

represent dynamic networks is using multilayer (or multislice) networks, which can extend

structural and functional networks to include a temporal dimension by incorporating

many “snapshots” of the network over time. Formally, these networks can be defined

using a multilayer adjacency tensor similar to an adjacency matrix, but where entry

Aijt represents the connection between nodes i and j at time (layer/slice) t. Multilayer

networks can be extended further to include links between layers, so that Aijst denotes

the connection between nodes i and j between layers s and t. Figure 1.3 provides a

schematic overview of a multilayer network.

Figure 1.3: Multilayer networks capture changes in network structure over
time. Shown here is a schematic of a multilayer network. At each time step, the
graph connectivity undergoes changes in topology, but the identity of the nodes stays
the same. Tools from network science can be used to characterize these changes,
providing insight about the stability of network structure over time.

As tools for measuring, describing, and analyzing brain networks have advanced, ef-

forts to link structure and function have also proliferated. In particular, patterns of

human brain activity coordination at rest and during tasks have been found to strongly

5
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correspond to existing inter-regional structural connections [12]. However, this corre-

spondence is not one-to-one, illustrating that dynamics on networks must be accounted

for to generate the observed functional data given structural constraints. That is to say,

both the physical connections and the rules by which brain regions influence one another

(e.g. activation or inhibition) are needed to fully understand brain functioning; studying

dynamics of networks (as opposed to dynamics on networks) only yields partial infor-

mation by describing changes in topology over time without necessarily explaining the

underlying mechanistic sources of observed time series data.

Both inferring dynamics on networks in a data-driven fashion and generating mech-

anistic models of brain dynamics from first principles are difficult, as illustrated by the

well-known example of C. elegans connectivity. C. elegans is a relatively simple organism

containing only 302 neurons whose nervous system wiring diagram been fully mapped

[13]. However, a model that fully recapitulates C. elegans behavior by implementing

dynamics on the structural network has yet to be described, though efforts at generating

individual behaviors, such as crawling and bending, in a biologically-plausible fashion

have been successful [14]. Given the challenges of understanding even relatively sim-

ple nervous systems, using model systems, such as fruit flies or mice, to understand

the neuroscientific underpinnings of behavior is a necessary and powerful complement to

investigations of the human brain.

Finally, beyond characterizing and reproducing brain activity from structural and

functional measurements, networks also provide a basis for graphical models. Broadly

speaking, these models represent probabilistic relationships between variables represented

by nodes and are typically explicitly non-biological, as they abstract brain dynamics even

further to a purely statistical process.

One of the most commonly used graphical models is a Markov chain, in which edges

represent transition probabilities between states (nodes). Just like nodes, these states

6



Introduction Chapter 1

are abstract and can represent a wide variety of objects, such as behaviors. A simple

example of a Markov chain is a first-order process, in which the probability of the system

entering a state is dependent only on the current state of the system. Mathematically,

the transition probabilities are given by the transition matrix P , where Pij provides the

probability of entering state j at time t + 1, given that the system is in state i at time

t. This graphical model possesses identical structure to a weighted, directed graph, so

similar topological analysis is possible, but these models are often used as an alternative

to biologically-derived network models.

For example, Markov chains may be used generatively to produce time series data

related to brain activity or behavior. In particular, Markov models have been used to

describe observed fluctuations in resting-state fMRI connectivity [15] and spontaneous

behavior in fruit flies [16]. While such models do not directly correspond to reductionist

biological processes, they still serve as a useful guide by connecting phenomenological

scales; successful approximate models provide measurable benchmarks for future efforts

to discover mechanistic models that reproduce the behavior of their coarse-grain coun-

terparts. Additionally, by identifying relevant dimensions of a phenomenon or behavior,

these graphical models may suggest targets for further biological investigation even if the

model components do not correspond directly to anatomical elements.

Due to their flexibility and interpretability, network models offer a mathematical

framework for describing, predicting, and controlling a diverse array of system dynamics.

When these models possess dynamics, it is possible to characterize the range of observed

variability in system behavior using topological and statistical metrics. In this thesis,

tools from network science, computational neuroscience, and statistics are applied to

data sets spanning several systems and spatiotemporal scales to characterize patterns

of variability in brain activity and behavior within and between individuals over time.

Figure 1.4 provides a schematic of the systems analyzed here.

7
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Figure 1.4: Analysis of variability in brain activity and behavior across tem-
poral and spatial scales. In this thesis, three different neuroscientific systems are
characterized using tools from network science. In Ch. 2, electrophysiological activity
of rat hippocampal neurons in vitro is analyzed to reveal the emergence of stereotyped
activity patterns over time in the absence of external stimulus. This system occupies
the smallest spatial scale and fastest temporal scale. In Chs. 3 and 4, fruit fly behav-
ior is modeled to define and compare the syntax of grooming. This behavior occurs
at the spatiotemporal mesoscale. In Ch. 5, human brain imaging data is studied
to uncover reorganization of large-scale brain networks over the course of a complete
menstrual cycle. This system exhibits the slowest temporal dynamics and a range of
spatial scales.

1.2 Variability

Despite the differences in systems and phenomena of interest in this thesis, the work

contained within is unified by a concern for variability in brain activity and behavior.

Here, variability is defined as the natural range of phenotypic expression within a ge-

8
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netically identical or highly similar population, following Ayroles et al [17]. Techniques

from statistics and machine learning, such as dimensionality reduction and supervised

classification, can be used to quantify variability. In this thesis, these techniques are

applied to various systems, as described below.

1.2.1 In vitro neuronal cultures

Recent advances in neuroscience propose that a variety of cognitive deficits may arise

from disruptions in function at the level of the neuronal microcircuit. An effort has been

made to characterize the organization of neurons in vitro, meaning existing in an artifi-

cial setting outside of a living organism. In one experimental platform, neurons can be

grown on a multi-electrode array (MEA), which possesses electrodes that detect changes

in extracellular voltage due to action potentials. Such a platform is advantageous for

studying the function of neuronal microcircuitry because it allows for the collection of

firing activity from individual neurons with better than millisecond resolution while also

admitting the possibility of various manipulations, such as electrical or chemical inter-

vention. In addition, neuronal cultures grown in vitro permit pre-experimental genetic

manipulations and post-experimental screenings such as single cell RNA-seq.

Due to their accessibility and relative simplicity, rodent neuronal cultures in vitro are

a common system for studying functional properties of networks of neurons. Neuronal

cultures in vitro exhibit spontaneous firing activity that begins within days of seeding

and that persists for several weeks. Phenomena such as coordinated bursting events

have been shown to develop in many types of in vitro preparations [18]. Several types of

bursts have been identified as well, suggesting that in vitro cultures possess a repertoire of

possible activity patterns [19]. Although cultures of dissociated rat hippocampal neurons

exhibit synchronous bursts of activity reminiscent of sharp wave ripples observed in

9
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the mammalian hippocampus, little is known about the developmental origins of these

bursting events.

Chapter 2 characterizes the range of patterns that develop within dissociated rat

hippocampal cultures in vitro over the course of approximately 30 days. In this case,

variability refers to the size of the observed firing repertoire, as the neuronal populations

are derived from a common progenitor and are not subjected to genetic manipulation

over the course of the experiment.

We demonstrate the emergence of several distinct neural activity trajectories in a low-

dimensional space over time in this system. Clustering of longitudinal spike train data

collected from rat hippocampal dissociated cultures on multi-electrode arrays identifies

repeated, separable patterns of neural activity. The observed activity patterns in specific

subpopulations become both more frequent and distinct over time, suggesting that in

vitro neuronal cultures may share functional properties of neuronal populations in vivo

such as distributed population codes. These findings encourage the use of dissociated

cultures as model systems for probing the development of coding schemes in hippocampal

networks.

1.2.2 Fruit fly grooming as a model of sequential behavior

Fruit flies perform grooming actions after exposure to irritants, which is thought to

maintain sensory fidelity and prevent buildup of pathogens [20]. These grooming actions

are stereotyped at the level of movement primitives, but the order in which the grooming

movements are arranged varies within and between individuals [21]. Experiments demon-

strate that, following stimulation by an irritant, grooming progresses gradually from an

early phase dominated by anterior cleaning to a later phase with increased walking and

posterior cleaning. Mathematical modeling of behavioral sequences yields insight into

10
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the rules and mechanisms underlying sequence generation, which can illuminate general

sensorimotor principles and provide targets for future investigations.

In Chapter 3, we develop a series of data-driven Markov models that isolate and

identify the behavioral features governing transitions between individual grooming bouts.

We identify action order as the primary driver of probabilistic, but non-random, syntax

structure, as has previously been identified. Subsequent models incorporate grooming

bout duration, which also contributes significantly to sequence structure. Our results

show that, surprisingly, the syntactic rules underlying probabilistic grooming transitions

possess action duration-dependent structure, suggesting that sensory input-independent

mechanisms guide grooming behavior at short time scales. Finally, the inclusion of a

simple rule that modifies grooming transition probabilities over time yields a generative

model that recapitulates the key features of observed grooming sequences at several time

scales. These discoveries suggest that sensory input guides action selection by modulating

internally generated dynamics. Additionally, the discovery of these principles governing

grooming in D. melanogaster demonstrates the utility of incorporating temporal infor-

mation when characterizing the syntax of behavioral sequences.

Having established the structure of grooming syntax, in Chapter 4 we investigate

genetic differences as a possible source of variation and variability in grooming behavior.

Grooming features of five drosophilid species exposed to an irritant were analyzed. We

found that components of grooming behavior were conserved between species. However,

significant differences in grooming syntax were identified between and within drosophilid

species, corresponding largely to differences in transition probabilities between grooming

actions involving the posterior set of legs. These findings indicate that genetic differ-

ences may contribute to variation in grooming behavior, but the degree to which genetics

dictate the natural range of observed grooming phenotypes within a homogeneous pop-

ulation is not yet understood.

11
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To address this, melanogaster flies bred for maximal (minimal) genetic heterogeneity

were examined to determine whether and how genetic heterogeneity within a population

corresponds to the observed range of phenotypic variability. Genetic heterogeneity was

not found to be related to grooming variability, as melanogaster flies interbred to in-

crease (decrease) genetic heterogeneity did not exhibit increased (decreased) variability

in grooming syntax. These results suggest that differences in sensory and life experience

outweigh genetic contributions to grooming variability.

To assess the contribution of sensory experience to grooming variability, optogenetically-

stimulated flies were examined. Despite tighter standardization of sensory presentation,

these flies exhibited a similar range of variability as dusted flies. Taken together, these

results indicate that further stochastic sources of variability, such as intrinsic circuit noise

and developmental history, also contribute to grooming and require further investigation.

1.2.3 Longitudinal human brain functional organization

The human brain exhibits variable activity patterns on a broad range of scales. Even

at rest, brain activity fluctuates noticeably on time scales as short as hundreds of millisec-

onds and on spatial scales as large as entire functional-anatomical networks. Sex steroid

hormones have been shown to alter regional brain activity, but the extent to which they

modulate connectivity within and between large-scale functional brain networks over

time has yet to be characterized. In Chapter 5, we examine functional connectivity at

rest in a single subject over the course of a complete menstrual cycle. Here, variabil-

ity refers to changes in coupling strengths between regions over time in concert with

naturally-fluctuating hormone levels characteristic of the menstrual cycle.

We applied dynamic community detection techniques to data from a highly sampled

female with 30 consecutive days of brain imaging and venipuncture measurements to

12
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characterize changes in resting-state community structure across the menstrual cycle.

Four stable functional communities were identified consisting of nodes from visual, default

mode, frontal control, and somatomotor networks. Limbic, subcortical, and attention

networks exhibited higher than expected levels of nodal flexibility, a hallmark of between-

network integration and transient functional reorganization.

The most striking reorganization occurred in a default mode subnetwork localized

to regions of the prefrontal cortex, coincident with peaks in serum levels of estradiol,

luteinizing hormone, and follicle stimulating hormone. Nodes from these regions exhib-

ited strong intra-network increases in functional connectivity, leading to a split in the

stable default mode core community and the transient formation of a new functional

community. Probing the spatiotemporal basis of human brain-hormone interactions with

dynamic community detection suggests that ovulation results in a temporary, localized

patterns of brain network reorganization.

1.3 Permissions and Attributions

1. The content of Chapter 2 and Appendix A is the result of research performed under

Dr. Jean M. Carlson and is currently in submission.

2. The content of Chapter 3 and Appendix B is the result of a collaboration with

Dr. Julie H. Simpson and has previously appeared in PLoS Computational Biol-

ogy (Mueller JM et al. Drosophila melanogaster grooming possesses syntax with

distinct rules at different temporal scales. PLoS Computational Biology 15(6):

e1007105). It is reproduced here with permission under the Creative Commons

Attribution (CC BY) license.

3. The content of Chapter 4 and Appendix C is the result of a collaboration with
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Dr. Julie H. Simpson and is currently available as a pre-print via BioRxiv (Mueller

JM et al. Variation and variability in Drosophila grooming behavior. MS ID#:

BIORXIV/2020/252627).

4. The content of Chapter 5 and Appendix D is the result of a collaboration with Dr.

Emily G. Jacobs and is currently available as a pre-print via BioRxiv (Mueller JM

et al. Dynamic community detection reveals transient reorganization of functional

brain networks across a female menstrual cycle. MS ID#: BIORXIV/2020/178152).

5. The images in Figure 1.1 are reproduced from Creative Commons with permission

under the CC0 1.0 license.

14



Chapter 2

Spontaneous Development of

Low-dimensional Spatiotemporal

Activity Patterns in Neuronal

Cultures In Vitro

2.1 Introduction

Technology for recording electrophysiological activity from neuronal populations has

advanced sufficiently to allow researchers to generate large-scale data sets (> 100 neurons

observed for several hours) of neuronal firing activity [22, 23]. In vitro neuronal cultures

serve as convenient model systems due to their scale, cost, ease of recording access,

and potential for multimodal manipulation. Though they lack physiological context,

recordings of hundreds of neurons spanning several hours can capture many aspects

of the functional repertoire of neuronal ensembles, such as coordinated bursts. Since

the mammalian hippocampus exhibits complex population-wide firing patterns during
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important functions such as sleep and navigation but is experimentally difficult to access

due to its subcortical location, it is a candidate for in vitro studies, which may uncover

fundamental principles underlying circuit activity.

The role of the hippocampus in navigation and memory formation is well-documented

[24, 25], as are some of the mechanisms underlying these functions [26]. Researchers

have experimentally observed propagating waves of neuronal activity in the hippocam-

pus across species, preparations, and recording modalities, suggesting that this brain

region utilizes population-wide coordinated responses as a coding strategy [27, 28]. Sev-

eral in vivo studies suggest that oscillatory activity in the hippocampus plays a role in

episodic replay and memory consolidation [29], connecting dynamics to high-level func-

tion. However, the complex interplay between intrinsic developmental phenomena and

extrinsic feedback to the hippocampus has made it difficult to fully understand how such

functionality emerges.

To investigate this further, researchers have utilized ex vivo and in vitro hippocampal

preparations. In these contexts, hippocampal preparations display a wide repertoire

of spontaneous oscillatory phenomena and culture-wide synchrony [22, 30], motivating

further study of spontaneous and evoked activity patterns [31] in the hopes that new

results will shed light on the developmental and computational mechanisms responsible

for hippocampal function. To determine the appropriateness of generalizing from this

model system, further specific quantitative comparisons are necessary.

Several in vivo studies have demonstrated that dimensionality reduction is a helpful

mathematical tool for characterizing complex neural activity. For example, projection

of high-dimensional neural firing activity into a low-dimensional space can reveal the

existence of neural activity trajectories which correspond to behavioral states [32, 33].

This phenomenon is in line with population coding theories, which propose that neural

circuits carry out their functions via sparse, sequential firing patterns implemented by
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multiple neurons. Not all brain networks are thought to use population coding schemes,

so any assumptions about coding strategies in vitro should correspond to the observed

phenomena in related regions in vivo. Specifically, rate codes and temporal codes have

been identified in several cortical regions, such as V1 and M1, respectively [34], suggesting

that analyzing activity for population codes in dissociated cultures derived from those

regions may be misleading.

Recent in silico work complements biological experiments by identifying fundamental

dynamics that allow for the spontaneous formation of complex neural trajectories in

simulated neuronal populations. Specifically, a few simple local synaptic weight update

rules can entrain a simulated neuronal network in an unsupervised manner to exhibit

repeated, complex, spatiotemporally constrained neural trajectories [35, 36]. Moreover,

this work identifies patterns consistent with a population coding scheme, as activity exists

in a low-dimensional space with far fewer dimensions than the number of neurons. It is

an obvious extension of this work, then, to search for such low-dimensional activity in

dissociated cultures.

Here, we combine dimensionality reduction techniques with clustering analysis to

demonstrate that spontaneous activity in dissociated rat hippocampal cultures can be in-

terpreted as a low-dimensional population code which develops over time to become both

more tightly stereotyped and frequent (Fig 2.1). Specifically, we find that linear com-

binations of neuronal firing, discovered using principal components analysis (PCA), re-

peatedly trace out activity “trajectories” with distinct spatiotemporal signatures. These

trajectories begin to appear at approximately 8 days in vitro (DIV) and persist for several

weeks - some remain until 35 DIV.

Additionally, we characterize sub-population activity and find that relatively few

neurons consistently contribute to repeated trajectories. This is suggestive of a sparse

population coding scheme, which has been documented in the mammalian hippocampus
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Figure 2.1: Rat dissociated hippocampal neurons develop stereotyped activity pat-
terns over the course of development. (A) The electrical activity of rat dissociated
hippocampal neurons (N = 424 recordings, 1 hr. each) was recorded on a multi-elec-
trode array (MEA) by Timme et al. [37]. Spike sorting was applied to yield binary
spike train data (right). (B) Applying dimensionality reduction techniques, namely
principal component analysis (PCA), to smoothed spike data yielded low-dimensional
activity trajectories. The “maximum excursion point”, which is the point on a trajec-
tory in activity space furthest from the origin, is shown for each trajectory. Early in
development, these trajectories are random and disorganized. (C) After several weeks
of development, some stereotyped trajectories are repeated and can be clustered into
groups (indicated by trajectory color). This discovery illustrates that dissociated
cultures retain some fundamental features of the hippocampus, as this phenomenon
resembles memory formation and consolidation.

[38, 39]. However, we also find that, over their entire life spans, cultures exhibit many

population-wide synchronized bursts, as has been previously reported [19]. These events

recruit many neurons and are distinct from the trajectories we identify, though several

classes of bursts in dissociated cultures have also been shown to develop and persist over

time [40].

Surprisingly, we find that some sub-populations responsible for the observed low-
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dimensional trajectories are highly stable over the course of several days but that others

change dramatically between recordings. This variability may result from the lack of

external feedback in this system, which may be necessary to fully consolidate activity

patterns over long periods of time.

These results illustrate the development of coherent, complex spatiotemporal activity

patterns in dissociated hippocampal cultures for the first time. The existence of these

patterns suggests that this system is potentially useful as a substrate for studying the

development of memory-like functions in artificial biological settings. Since these cultures

display a capacity to acquire and retain nontrivial firing sequences (i.e. sequences that do

not simply recruit every neuron in an fully synchronized “avalanche”), external electrical

or chemical feedback could be used in future experiments to promote and maintain the

development of activity trajectories. The development of such feedback systems would

provide significant opportunities to further study aberrant hippocampal dynamics, which

are believed to underlie Alzheimer’s disease and other types of dementia.

2.2 Methods

Data

The data used in this study were provided courtesy of Nicholas M. Timme, Najja

Marshall, Nicholas Bennett, Monica Ripp, Edward Lautzenhiser, and John M. Beggs [37].

The data consist of spiking activity of rat hippocampal dissociated cultures (N = 28)

observed at semi-regular intervals from days in vitro (DIV) 6 through 35, producing 424

recordings in total. The raw electrophysiological data was collected using a Multichannel

Systems multi-electrode array with 60 flat electrodes in a square lattice with 30 µm

diameter and 200 µm spacing between electrodes. Recordings were sampled at 20 kHz
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for approximately 1 hour. The data was then spike sorted using wave Clus, as described

in [41], resulting in binary neuronal spike trains. Fig 2.2 shows summary statistics for

this data set.

Figure 2.2: Summary statistics of neuronal recordings are relatively stable over the
course of development in dissociated rat hippocampal neuronal cultures. Here, box
plots illustrate summary statistics, with the circle representing the mean value across
cultures and color indicating day in vitro (DIV). Shaded rectangles indicate the bound-
aries of the top and bottom quartiles. Whiskers indicate the 95% bound. Outliers are
shown as colored points. The number of active channels detected by the MEA (left)
is relatively consistent over time (mean = 53.9 channels, 1.7 neurons per channel),
though early recordings possess slightly more active channels. Likewise, the distri-
bution of firing rates (middle) is stable (mean = 1.9 Hz). However, the number of
trajectories detected (Methods) changes over the course of development (right). Be-
tween approximately 20 and 30 DIV, cultures exhibit a greater number of trajectories
than younger or older cultures. This suggests that cultures possess the most dynamic,
biologically relevant behavior during this period.

The data described above were then further modified from their original format before

analysis. Spike trains of neurons recorded by the same electrode were collapsed into a

single unit, resulting in binary electrode spike trains. This step obscures information

about neuron identity, but has been used successfully before to follow the development of

functional networks in vitro [42], so we adapt it here. In doing so, we follow the activity

of what we assume to be the same neurons over many days, as it is unlikely that neurons

drift far enough in space to be recorded on a different electrode across different days.

Additionally, this step eliminates the potential ambiguities introduced by attempting to
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map neuron identities across days using spike waveform profiles.

Electrode spike trains were then smoothed using a Gaussian filter with standard

deviation σ = 150 ms. This value is in line with standard smoothing kernels used for

decoding in brain-machine interfaces [43] and is smaller than the average inter-spike

interval in this data set, ensuring that it is a reasonable choice of parameter. Filters with

σ = 50 and 100 ms were also used but did not affect the results.

Data Partitioning

Recordings were placed in one of three classes, as determined by their age: young

(6-14 DIV), middle (15-25 DIV), and old (26-35 DIV). These classes contained N =

139, 147, and 138 recordings, respectively. These boundaries were chosen so that each

category would have as close to the same number of recordings as possible. Changing

the boundaries by one day in either direction did not change our results.

Trajectory Identification

Neural activity trajectories were identified in activity space using a thresholding

method (2.3). A trajectory was identified if the culture-wide smoothed firing activity

exceeded 20% of the maximum possible value for the recording, given by 0.2nfmax, where

n is the number of neurons identified in the recording and fmax is the maximum value of

the filter used to smooth the spike train data. We also examined threshold values tang-

ing between 0.2nfmax and 0.4nfmax, at which point we began to observe a change in our

results (Appendix A.1), so we used 0.2nfmax to be more permissive in our definition of

neural trajectories and to examine trajectories that do not necessarily fit the description

of synchronous burst or neural “avalanche”.

Then, looking backward in time from when activity exceeded this threshold, a tra-
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Figure 2.3: Example of trajectory identification. (A) Example raster plot of spiking
activity recorded from a single culture. Black bars indicate a spike at a given time
point. (B) Illustration of trajectory identification protocol. Curve shows the instan-
taneous overall firing rate after smoothing the spike train using a Gaussian kernel
with σ = 150 ms. The grey line indicates the threshold for trajectory identification,
which was set at 20% of the maximum firing rate for the recording. Red portions of
the firing rate curve represent individual trajectories and periods of below threshold
activity are shown in blue.

jectory began at the latest time point where culture-wide activity was below the median

value for the recording. Similarly, a trajectory ended when activity first decreased back

to the median value after having crossed the threshold. As a result, a trajectory as de-

fined here consists of the time series of firing activity across all electrodes between its

start and end time.

For the subsequent analysis, trajectories are referred to in a condensed format. Specif-

ically, each trajectory is represented by the single point at which the sum of culture-wide

activity was the largest, which we refer to as the “maximum excursion point”.
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Dimensionality Reduction

Trajectories for each recording were transformed with principal component analysis

(PCA) using the MATLAB pca function. PCA captures the covariance structure of

high-dimensional data, yielding a new set of orthogonal basis vectors that maximize the

amount of variance captured when the data is projected onto those vectors. Fig 2.4

shows an example of PCA-transformed trajectories projected onto the first 3 principal

components. Since principal components are a linear combination of electrode firing

activities, each dimension in principal component space can be interpreted as a weighted

sum of neuronal activities. Though PCA is simpler than many other dimensionality

reduction approaches, the results of this method are easily interpretable and therefore

useful for understanding the dynamics of neural population activity as a sum of individual

neuronal activities [44, 45].

The composition of an example principal component is shown in Fig 2.4. In sub-

sequent analysis, data were projected onto only the first 5 principal components. This

number of components is roughly 10% of the original dimensionality, providing significant

compression, and accounts for 80.7% of the variance on average, indicating that we are

not discarding an excessive amount of information about trajectories.

Clustering

After transformation by PCA, maximum excursion points of trajectories were initially

clustered with density-based spatial clustering of applications with noise (DBSCAN) [46]

using the MATLAB 2019a function dbscan. Maximum excursion points were chosen as

clustering objects because they represent the largest deviation from baseline activity and

can serve as a representative “signature” of a trajectory without including potentially

noisy activity near the baseline. The DBSCAN algorithm has two free parameters: ε,
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Figure 2.4: Shown on the left are 100 activity trajectories from culture 12 on day 13 in
vitro projected onto the first three principal components. Each trajectory is indicated
by a different color and originates and terminates near the origin. From inspection,
it is apparent that many trajectories follow a similar path through PCA space, indi-
cating similar spatiotemporal dynamics at the population level. Notably, this culture
appears to exhibit two distinct trajectory classes which are nearly orthogonal to one
another. Shown on the right is a heat map of the principal component composition
for this set of trajectories. Principal components are column vectors composed of a
linear combination of weighted activity values, providing an interpretable illustration
of sub-populations which co-vary in their firing behavior. Colors indicate the weight
each electrode contributes to a principal component. Positive weights indicate correla-
tions between electrodes while negative weights indicate anti-correlated activity. Here,
only three principal components are shown for the sake of illustration, but subsequent
clustering analysis uses five principal components.

a sensitivity parameter, and m, the minimum number of points in a cluster. Here, we

restrict ε to values between 0.01 and 0.02, as smaller values result in nearly as many

clusters as points and larger values result in all points being assigned to a single cluster.

Null Model Validation

To validate the significance of the clustering results, we generate permuted versions,

or null models, of the observed trajectories for comparison (Fig 2.5). We consider two

null models. In the first, spikes are randomly reassigned across electrodes within a time

bin, preserving instantaneous firing rate. In the second, spikes are randomly reassigned

24



Spontaneous Development of Low-dimensional Spatiotemporal Activity Patterns in Neuronal
Cultures In Vitro Chapter 2

across time bins within an electrode, preserving individual electrode firing rate statistics.

We apply the methodology as previously described to ten instantiations of these per-

muted trajectories to determine whether perturbing various aspects of trajectory struc-

ture changes the results of clustering.

Figure 2.5: Shown here are the null model permutations used to identify neural activity
trajectory features. Actual trajectories (top) are shuffled in one of two ways: spike
times for an electrode are randomly distributed (middle) or the identity of a spike
at a given time is randomly assigned (bottom). When spike times are permuted,
the firing rate of each electrode is preserved but culture-wide instantaneous firing
rates are disrupted. In contrast, when spike assignments are permuted, culture-wide
instantaneous firing rates are preserved, but individual electrode firing rates are not.
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2.3 Results

Distinct neural activity trajectories emerge in rat dissociated

hippocampal cultures over the course of development

Collecting trajectory clustering statistics reveals that the number of clusters identified

varies as cultures age. Young, middle, and old cultures contained 3.64± 4.66, 5.88± 5.04,

and 4.14± 3.96 trajectory clusters, respectively (mean± standard deviation). Differences

between distributions for young, middle-aged, and old cultures were evaluated using a

two-sided Kruskal-Wallis test. Fig 2.6 illustrates these distributions and indicates that

the observed clustering distributions are statistically significantly different between each

age condition. In contrast, null models exhibit far fewer clusters, indicating that the

permutations used here disrupt the ability of the clustering procedure to discriminate

between trajectories.

Trajectories become increasingly separable during development

We find that, over the course of development, trajectory clusters move further apart

in activity space. Panel B of Fig 2.6 illustrates this phenomenon; young trajectories

(left) are tightly packed, whereas middle-aged trajectories (middle) visit distinct regions

of activity space. We define the distance between clusters as the Euclidean distance

between cluster centroids in three-dimensional PCA space. The density plots of these

between-cluster distances are shown in Fig 2.6.

Though we find that the median between-cluster distances are nearly identical across

young, middle, and old categories (0.107, 0.132, and 0.145, respectively), the tails of the

distribution differ significantly. This is illustrated by the fact that a two-sided Kruskal-

Wallis test differentiates between each pairwise comparison of distributions with p <<
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Figure 2.6: Trajectory clusters emerge and consolidate over the course of development
(A) As dissociated hippocampal cultures age, they exhibit stereotyped firing activity
patterns that can be classified into clusters. Shown in the top row are density plots
of the number of identified clusters across 424 hour-long recordings, with the median
value shown in red. In the observed data (left), middle-aged cultures (15-25 DIV, grey)
exhibit the highest number of distinct clusters (median = 4). In contrast, young (<
15 DIV, blue) and old (> 25 DIV, red) cultures possess fewer clusters (median values
= 2 and 3, respectively), indicating that the repertoire of firing patterns develops over
the first few weeks in vitro but eventually decays without external feedback. Across
time periods, the distribution of the number of clusters are statistically significantly
different (Kruskal-Wallis test, *p < .05, **p << .01). The middle and right panels
display the clustering statistics for two null model permutations of the data. In each
condition, null model permutations of the data have fewer clusters (median = 1),
indicating that there is structure in the data related to neuron identity and firing
rate. Shown in the bottom row are the density plots of the corresponding distances
between cluster centroids. Distances between clusters are determined by calculating
the Euclidean distance between cluster centroids in three-dimensional PCA space.
Over the course of development, trajectory clusters become better separated compared
to those exhibited by young cultures. Notably, null model clusters exhibit a more
pronounced trend in separability, suggesting that true firing patterns are restricted
to certain regions of activity space, constraining their separability. (B) Example of
trajectory development over time. Young cultures (left) typically exhibit few activity
patterns, whereas middle-aged cultures (middle) possess several distinct patterns. Old
cultures (right) display a decrease in the number of activity patterns.
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.01.

Notably, null model clusters exhibit similar properties, though at a more pronounced

scale. This effect is potentially driven by the fact that actual neuronal firing patterns

are constrained by the underlying connectivity of the culture, restricting patterns to a

few regions of activity space. In contrast, null model permutations of trajectories may

consist of arbitrary activity patterns, allowing them to sample a larger volume of activity

space than real cultures.

Co-varying sub-populations that participate in neural activity

trajectories are stable over time

To assess whether neural sub-populations become functionally coupled and remain

so, we compared the first three principal component eigenvectors over the course of each

culture’s development using the standard dot product as the measure of similarity, as

shown in Fig 2.7. Across cultures, we find that the eigenvector corresponding to the first

principal component is remarkably stable, as the dot product of the first eigenvector of

temporally adjacent recordings (i.e. the first and second recording sessions, second and

third sessions, etc.) has a value of 0.63± 0.03 (mean± standard deviation). Additionally,

the second PC was significantly less stable, as demonstrated by a dot product value of

0.37 ± 0.05. The third eigenvector was even less self-similar over time, with a dot product

value of 0.26 ± 0.03.

In contrast, both null models exhibit disrupted principal component stability. The

first null model, which permutes spike timing, possesses second and third principal com-

ponents that are almost orthogonal in consecutive recordings, as indicated by a near-zero

dot product (Fig 2.7, middle). In addition, the first principal component is markedly less

stable than observed in real data, with a wide range in stability over null model runs.
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Figure 2.7: Co-active neurons consolidate into stable sub-populations over several
weeks in vitro. Principal component eigenvectors, which represent a weighted sum
of neuronal firing activity, can be compared using the dot product as a measure of
similarity. This similarity value ranges from 0, indicating fully orthogonal vectors,
to 1, indicating identical vectors. Shown here are the three-day moving average dot
products between the first three principal components and their variances (shaded
region) on consecutive recordings for the observed data (top) and null models (middle
and bottom). In each condition, the first principal component (blue shading) is the
most stable over time. In the real data, the first principal component has a mean
similarity of 0.63. The second and third components are less consistent but gradually
increase in stability. The second principal component has a mean dot product of
0.33 from 7-15 DIV which increases to 0.40 from 25-34 DIV. Similarly, the values
for the third component increase from 0.21 to 0.28 over that same period. Notably,
the second null model, which permutes spike timing but maintains the firing rate
within an electrode during a trajectory, possesses a similar stability profile, potentially
indicating that trajectories represent a rate coding scheme. In contrast, the first
principal component of the first null model is both less stable and has a higher variance
across cultures and the second and third components are almost completely orthogonal
across consecutive recordings. This indicates that trajectories possess characteristic
spatial structure and do not rely purely on bulk culture-wide firing rate.
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The second null model, which permutes spike identity, exhibits stability profiles which

are more similar the real data, but mean stabilities are still lower and the variance is

significantly wider than is observed in real data. Taken together, these results suggest

that the covarying activity structure observed in the data persists over time more than

would be expected if spike timing and identity did not matter.

2.4 Discussion

Low-dimensional neural trajectories in dissociated cultures in

vitro suggest a self-organizing population code

Dissociated neuronal cultures consist of cells that have been removed from a living

brain and homogenized, severing any physical connections between cells that may have

formed during development. These systems serve as a simple alternative to organotypic

slices removed from developed animal brains, often referred to as ex vivo preparations.

In either case, these model systems are useful to neuroscientists for many reasons; impor-

tantly, they are more accessible to measurement and manipulation than in vivo systems,

they are simpler than fully connected in vivo systems, and they provide realistic biological

context that may be missing from in silico models.

In contrast to ex vivo systems, dissociated neuronal cultures have no developmentally-

guided network structure and therefore are subject only to intrinsic cellular mechanisms

as they age. Consequently, while slices exhibit complex firing patterns, there is no ex-

pectation dissociated cultures should as well. In order to explain the development of

coherent spatiotemporal firing patterns, we must consider plausible cellular mechanisms

that could result in this phenomenon. Perhaps the most well-studied mechanism relating

to network formation is Hebbian learning - often sloganized as “cells that fire together,
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wire together.” Hebbian learning via spike timing-dependent plasticity (STDP) has been

implicated in the formation of associative memory and navigation reward learning in

hippocampus [47, 48], so it is a natural candidate for the trajectory consolidation and

maintenance observed here. Additionally, recent in silico work shows that simple STDP-

like rules are sufficient to entrain an initially randomly connected network of neurons to

learn and maintain a limited repertoire of specific low-dimensional spatiotemporal firing

patterns [49, 35].

Several in vitro studies describe the existence of repeated spatiotemporal firing pat-

terns in dissociated neuronal cultures [50, 19, 51, 52, 40, 53, 54, 18]. However, no work

to date has demonstrated that dissociated hippocampal cultures, which have been estab-

lished as model systems of culture-wide synchronous activity [31, 30], exhibit this type

of structured spontaneous activity, which is typically identified in neocortex. Taken to-

gether, these lines of evidence suggest that, absent external guidance, isolated hippocam-

pal networks can develop a repertoire of sub-bursting firing patterns in a self-organizing

manner. Moreover, this phenomenon may require only a few simple rules, making it an

attractive target for study via genetic and electrochemical manipulation.

Dissociated cultures as a model system

Many proposed population coding schemes require covariant activity in subsets of

neurons involved in a functional circuit [29, 55, 56, 57]. Sparse, distributed codes pro-

vide robustness to both external signal noise and internal transmission noise while also

providing flexibility, as individual neurons may serve different roles in multiple subnet-

works. The functional roles of coupled subnetworks in vivo are well-studied at multiple

spatiotemporal scales, providing mechanistic insight into how brains execute complex

behavior [33, 32]. However, less is known about the processes which govern the devel-
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opment of functional circuitry. Dissociated cultures in vitro provide excellent models for

studying this problem, as they presumably develop connections in a purely unsupervised

manner, disentangling the roles of genetics and intrinsic activity during maturation from

externally-provided feedback and manipulation. However, their usefulness is contingent

upon whether or not they exhibit activity which could plausibly serve as an analog to in

vivo dynamics.

While general properties of in vitro cultures, such as the development of synchronous,

culture-wide bursting activity after an initial period of sparse, asynchronous firing, are

well-documented across cell types and recording modalities [22, 23, 19], little is under-

stood about to what extent in vitro dissociated hippocampal cultures serve as useful

models for spontaneous activity in microcircuits in vivo, which exhibit complex, repeated,

multi-neuron firing patterns. Attractor-like patterns, replay activity, and chaotic trajec-

tories have all been proposed to play roles in brain function [58, 56, 59, 60]; if similar

dynamics exist in in vitro cultures, researchers would be able to probe fundamental

properties of complex neural activity in these simplified systems.

The results presented here provide crucial context for future in vitro studies, as they

demonstrate that such systems are at least partially appropriate models for developing

circuits in vivo. This remains an unresolved issue and is a weakness of in vitro studies

which attempt to generalize claims about network activity properties observed across

contexts. As with other studies, however, there are limitations to how broadly applicable

the results presented here may be. First, changes in preprocessing methodology may

introduce slight differences to downstream analysis. In this case, spikes were assigned

to an electrode rather than individually identified neurons. This makes longitudinal

comparisons of principal component eigenvectors possible but obscures information about

cell-level activity. In addition, the number of active electrodes can vary across recordings

from dissociated cultures. This illustrates the inherent stochastic nature of development
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in cultures of this type, suggesting that researchers produce many technical replicates to

ensure a representative sample of outcomes.

This work suggests several interesting avenues of investigation. First, it would be a

significant advance in the field of in vitro research if the types of trajectories identified

here could be trained, initiated, or ablated by pharmacological, genetic, or electrical

manipulation, as such functionality would make these systems more valuable as model

microcircuits. In addition, if these trajectories can be modified through intervention, they

could be used as appropriate model systems for hippocampal replay, memory formation

and consolidation, and potentially even brain-machine interfaces.

Stability of neuronal activity patterns

Here, we find that co-varying sub-populations do exist within developing in vitro

cultures but that these sub-populations exhibit differences in composition and stability

over time. Principal components analysis reliably identifies a small number of co-varying

sub-populations which explain a significant amount of the variance observed in hour-long

recordings. This demonstrates that dimensionality reduction successfully identifies re-

dundancies in the culture-wide activity in the form of co-varying activity, allowing for

compression of the activity into a simplified, low-dimensional form. Importantly, since

each principal component eigenvector is a linear combination of electrode activities, we

can retain information about the contribution of specific electrodes to sub-population

dynamics. It should be noted that, while many nonlinear dimensionality reduction tech-

niques exist and have been used to uncover the dynamics of behaviorally relevant neuronal

firing patterns [44, 61], linear methods such as principal components analysis are often

sufficient to reveal complex co-activation patterns [45, 32]. Since population codes are

common across brain regions and model systems, PCA is a reasonable first choice of di-
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mensionality reduction technique, though other techniques may reveal further properties

of in vitro dissociated cultures.

Due to the abundance of evidence that coordinated population activity plays a role in

the execution of cognitive and motor tasks in vivo, the presence of non-trivial population

dynamics in vitro is a prerequisite for treating these systems as appropriate models.

Many computational studies treat connectivity in dissociated cultures as random, which

may limit the range of activity patterns the systems can produce. It is also possible that

the character of coordinated population activity changes over the course of development

in dissociated cultures, making it necessary to understand not only if it is present but

also when and to what degree.

From a computational standpoint, questions still remain about the robustness and

flexibility of population codes as they are actually implemented in biological systems.

Specifically: how stable are firing patterns over time? How much variability exists within

firing patterns corresponding to the same function? How quickly can this pattern-function

mapping be altered? In this vein, several studies have characterized the functional reper-

toire of neuronal populations by performing similarity analysis on sequences of spike

activity [19, 51, 40, 53, 54, 18]. These studies illustrate that several types of repeated

spiking patterns emerge in dissociated cortical cultures over approximately two weeks

of development. One set of studies relies on template matching algorithms which stipu-

late that only the order of spikes in activity patterns must be consistent in order to be

considered a repeated sequence, largely disregarding the temporal dynamics and distri-

bution of spikes across the culture. Implicit in such analysis is the proposition that these

systems utilize a temporal coding strategy that cares only about spike order. Another

set considers spike timing more explicitly, assuming a temporal coding scheme. Finally,

another set restricts analysis to bursting activity, using the total culture-wide firing rate

as the signature of complex, distributed activity. In order to generalize these findings to
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in vivo systems, this type of analysis assumes a rate coding scheme.

The observation that our null model which permutes spike timing while retaining

firing rate statistics within electrodes possesses a similar sub-population stability profile

as the observed data suggests that the trajectories we observe in vitro are a type of

distributed rate coding scheme (Fig 2.7). Additionally, the fact that the null model which

permutes spikes across electrodes while preserving instantaneous culture-wide firing rates

does not possess the same profile indicates that such trajectories are neuron-specific. This

is a useful property for model systems to possess, as it is a close analog to in vivo systems

of interest [33, 34]. Our results indicate that dissociated cultures can serve as a valuable

model system, provided that adequate technology for recording and manipulation are

accessible.
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Chapter 3

Discovery and Characterization of

Duration Dependence in Fruit Fly

Grooming Syntax

3.1 Introduction

Sequential animal behaviors are often composed of repetitions of simple subroutines.

In driving motor action execution, nervous systems must integrate sensory information

with internal priorities and dynamics. Both external and internal conditions contribute to

sequence organization, but their respective weights are unknown. At one extreme, purely

sensory-driven, reflexive processes produce actions, such as larval escape sequences, solely

based on recent sensory input [62]. At the other, internally generated and maintained

nervous system dynamics, such as those found in the crustacean stomatogastric ganglion,

may produce behaviors which proceed irrespective of changing external conditions [63,

64].

Grooming, a common behavior across species, confers social and survival benefits [65,
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66] and provides a rich source of data for discovering rules that organisms use to produce

behavioral sequences. The vocabulary of grooming consists of the possible actions that

may be executed and has been cataloged in mice and several species of flies [67, 68,

69]. However, the rules for grooming action sequence organization, or syntax, remain

poorly understood. In Drosophila melanogaster, or fruit flies, these sequences are variable

between individuals and within individuals across grooming sessions, suggesting that

flies use non-deterministic rules to make grooming decisions. Because of the complex

structure of these sequences, analysis of D. melanogaster grooming can reveal distinct

rules of sequence generation at different temporal scales: the long time scale of bulk

behavioral progression, the intermediate scale of grooming motifs, and the short scale of

individual grooming bouts.

On long time scales, D. melanogaster grooming in response to exposure to an irritant

is well-described as a process that typically progresses from an early phase characterized

by preferential grooming of anterior body parts, such as eyes, to a later phase which

exhibits heightened proportions of walking, abdomen cleaning, and wing cleaning. This

progression occurs gradually over the course of many minutes. Previously published

computational models which utilize either hierarchically structured suppression or graded

sensory gain exhibit gross features of this progression, namely a gradual transition from

early anterior-heavy grooming to a later quasi-steady state featuring increased posterior

grooming and walking levels [70].

At an intermediate temporal scale, grooming is organized in units that we refer to

as motifs. We identify two classes of motifs (anterior and posterior), which are named

for the set of legs used to execute them (front and back, respectively). Motifs consist of

consecutive alternations between body-directed grooming bouts and leg rubbing bouts.

Bouts are defined as sustained periods of a single grooming action (e.g. head cleaning

or wing cleaning). Grooming bouts occur at the shortest time scale we consider here, as
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individual bouts typically last somewhere between 150 ms and 2 s. Flies use the same

pair of legs to execute bouts within a motif, allowing them to transition between within-

motif actions easily. Specifically, an anterior grooming motif consists of consecutive

alternations between bouts of head cleaning and front leg rubbing. A posterior motif

consists of alternating bouts of abdomen cleaning, wing cleaning, and back leg rubbing.

Analysis of freely-behaving flies reveals behavioral structure at multiple time scales,

with coarse-grained descriptions being sufficient to describe long-term trends and higher

resolution descriptions providing increased predictive power at shorter time scales [71].

This finding suggests that there is value in examining sequential data at several levels of

temporal resolution. Additionally, it suggests that treating behaviors as both continu-

ously varying and discretely separated in the same analysis can yield more insight than

considering either purely continuous or discrete models. Currently, we do not know how

flies integrate sensory information with internal states in order to produce multi-scale

grooming behavior. It is possible that long time scale grooming trends are governed

principally by changing sensory conditions, as grooming results in the removal of irritant

over time. Several studies also provide evidence that sensory input is sufficient to drive

grooming behavior in a reflex-like fashion at short time scales [72, 73]. Here, we use sta-

tistical models to characterize grooming syntax at each of the temporal scales mentioned

above.

Several classes of Markov models, in which the probability of an event occurring is

contingent upon previous events, have been used to describe factors involved in non-

deterministic decision-making in various animals. Different Markov models vary in their

structure and number of parameters but they each require a well-defined state space.

Navigation and foraging have been described using Markov models, as these sequential

behaviors can be decomposed into subroutines which can be categorized using easily

observable dimensions such as direction and velocity [74, 75, 76]. These models are ap-
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plicable to common behaviors exhibited by D. melanogaster as well, such as courtship

and locomotion [77, 78, 79]. Recent work from Tao et al. uses a Hierarchical Hid-

den Markov Model (HHMM) to analyze fruit fly locomotor behavior in the presence of

odors [80]. They find that, although locomotor behavior is non-stereotyped, it can be

decomposed into stereotyped units, making it suitable for analysis within a Markovian

framework. Berman et al. [81] use high-order Markov models to describe the behavior of

freely-roaming D. melanogaster, suggesting the applicability of such models to behavioral

subsets identified in their analysis, including grooming behavior.

It should be noted that non-Markovian dynamics have also been identified in animal

vocal sequence production, suggesting that other classes of models may be useful for

describing behavioral generation [82, 83, 84]. In fact, Berman et al. [81] report that,

although a Markovian framework is useful for illustrating some features of behavioral

transitions, they observe long time dependencies in their data that cannot be captured

by their Markov models.

Here, we use our in-house Automatic Behavior Recognition System (ABRS, [85]),

which can classify different grooming movements from videos of flies covered in dust,

to generate a large data set of ethograms - records of cleaning actions over time - from

wild-type flies removing dust. We analyze more than 40 total hours of video from over

90 flies (Fig 3.1).

First, this data set allows us to quantify behavioral trends at several temporal scales

on a larger data set than has been previously described. Fig 3.2 provides a schematic

overview of the temporal scales we analyze here. Notably, we observe the progression

from anterior to posterior grooming that has been identified by Seeds et al. [70]. We

also observe a strong correlation between body-directed and leg-directed cleaning actions

within motifs. That is, the amount of head cleaning and front leg rubbing are extremely

strongly correlated over the entire course of grooming, as are the amount of back leg
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Figure 3.1: Applying the ABRS classifier to video data generates large-scale
ethogram data sets. A: The ABRS classifier is trained to annotate video data with
labels corresponding to one of five grooming actions observed in D. melanogaster or
two non-grooming actions. Color bar (right) displays the corresponding color code
used for visualization of grooming action sequences. B: Flies are covered with dust,
placed in a chamber, and recorded from above. Video data is then passed through the
ABRS classifier, which locates the fly in each frame and applies a behavioral label.
Here, the fly is shown performing a front leg rub. C: After classification, video data
can be represented by a vector. Each vector element represents one frame and contains
a behavioral label, visualized here using a color code. Without loss of information,
the real time ethogram (left) is recast as a discrete bout ethogram, defined by discrete
transitions between individual bouts, which are labeled by both action and duration.
This results in a vector (right) containing both an ordered list of grooming action labels
(color) and grooming action durations (number). For illustrative purposes, we choose
bout durations, shown below the discrete bout ethogram, that are representative of
the observed distributions. We refer to instances of sustained identical grooming
actions as bouts. D: Real time ethograms for 92 dusted flies (left) are shown as
a matrix containing 92 rows and 50,000 columns. After discretization, ethograms
contain variable numbers of bouts but retain information about bout order and bout
duration (right).

rubbing and the sum of abdomen and wing cleaning. Finally, we observe a relaxation

into steady state-like behavior after approximately 13 minutes of grooming.
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Figure 3.2: Schematic overview of the multiple time scales present in
Drosophila melanogaster grooming ethograms. Grooming ethograms possess
at least three distinct time scales. The grooming progression (top), which takes many
minutes to observe in its entirety, occurs at the longest time scale we consider here.
We refer to this phenomenon as a progression because we observe that, on average,
flies begin grooming with anterior-oriented actions and end with posterior-oriented ac-
tions and more walking. At an intermediate time scale, ethograms consist of grooming
motifs (middle). Motifs are composed of consecutive grooming bouts which use the
same pair of legs (either anterior or posterior). At the shortest time scale, we observe
individual grooming bouts (bottom), which consist of sustained grooming movements
that range from several hundreds of milliseconds to a few seconds in duration.

Next, we use a set of Markov models to characterize probabilistic rules governing

grooming action transitions. We use a Markovian framework as a first approximation

in order to discover relevant features of grooming, since Markov models are simple and

carry few assumptions. As such, these models serve as a tool for grooming sequence

feature identification rather than as a full explication of grooming decision-making fac-

tors. Previous work has indicated that such analysis can reveal temporal relationships

in sequential behavioral data, indicating that, even if the behavior being analyzed is not

fully Markovian in reality, Markov models can still be useful as a descriptive exploratory

tool [77, 78, 79, 81, 80].

The simplest of our models, a first order discrete time Markov chain, highlights the

presence of grooming motif structure. Subsequent models incorporate temporal informa-
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tion by considering grooming bout durations. By comparing these models to statistical

null model hypotheses, which shuffle bout order or bout duration, we discover the con-

tribution of bout duration to grooming sequence structure at short time scales.

Though we rely on a Markovian framework to identify features of grooming syntax,

our analysis does not preclude the possibility of non-Markovian dynamics in fruit fly

grooming. Indeed, our data exhibits two notable nonstationarities. First, we observe an

overall trend in grooming proportions, as has been reported previously [70], wherein flies

favor anterior grooming immediately after being dusted but favor posterior grooming and

walking after approximately 10-15 minutes. Second, grooming transition probabilities

change slightly over the course of grooming (though they are unexpectedly stationary over

time), indicating that a purely stationary model is an oversimplification. To account for

this, we extend our analysis to include a simple nonstationarity which captures sequence

progression more closely than a first order Markov chain.

We find that a time-varying Markov renewal process (MRP) which incorporates bout

duration dependence recapitulates the observed grooming structure at long, intermediate,

and short time scales. This model is partially Markovian, as transition probability matri-

ces dictate state transition dynamics. However, the model also includes renewal process

dynamics, in which the duration of the ensuing bout is determined using a random draw

from the empirically observed bout duration distribution. This model is nonstationary

due to the fact that Markov transition probabilities change over time. This model re-

capitulates both the observed bulk grooming progression statistics and the fine-grain

temporal structure of grooming motifs, suggesting that sensory drive can modulate in-

ternal programs in a simple manner to prioritize different grooming strategies in different

contexts.

Our models clarify the syntax of grooming, demonstrating that, at the scale of in-

dividual bouts, transitions are dictated by both the identity and duration of the pre-
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ceding bout. While previous studies have established the non-random nature of fruit

fly grooming [67, 70, 77, 78, 79, 81], this work reveals the previously unknown contri-

bution of grooming bout duration to sequence structure, suggesting a role for sensory

input-independent decision-making. Finally, a model that includes duration dependence

at the scale of individual grooming decisions and a linear progression to mimic dust re-

moval is able to generate synthetic ethograms that closely resemble observed data at the

intermediate scale of motifs and the long scale of the grooming progression.

The discovery of duration dependence in grooming sequence structure suggests the

existence of neural circuits in D. melanogaster that can generate patterned behavior ir-

respective of sensory drive, as transition rules and bout durations remain nearly constant

even as the dust distribution varies over the course of grooming. Additionally, the tight

correlation between body and leg-directed actions within motifs demonstrates for the first

time the existence of duration dependence at an intermediate temporal scale. Finally, the

model improvements provided by the inclusion of a simple nonstationarity suggest that

sensory drive plays a role in guiding the implementation of internal programs over long

time scales rather than serving a purely reflexive action selection function at short time

scales. These discoveries provide the groundwork for future experiments and analysis

of the neural underpinnings of duration-dependent action selection and sensory-driven

modulation of decision-making in grooming and related behaviors.

3.2 Methods and Models

Ethogram generation

Drosophila melanogaster (N = 92) were recorded at 30 Hz for 27.8 minutes after being

uniformly covered in Reactive Yellow 86 dust (Organic Dyestuffs Corporation, Concord,
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North Carolina). To generate labeled ethograms, we apply the ABRS classifier to video

(https://github.com/AutomaticBehaviorRecognitionSystem/ABRS). Following this, real

time ethograms are converted to discrete bout ethograms and de-noised (Fig 3.1).

Briefly, the classifier is trained on grooming data using a combination of supervised

and unsupervised protocols in several steps. First, a Fourier transform is performed on

pixel intensity data across 17-frame sliding windows (∼0.5 s), resulting in two-dimensional

spectra referred to as space-time images (ST-images). ST-images are subsequently mod-

ified by Radon transformation, which can be used to represent 2D shapes in a rotation

and translation-invariant manner. Fast Fourier transformation is then applied to the

Radon transformed ST-images, resulting in position and orientation-invariant ST-images

[86].

ST-images are then decomposed using singular value decomposition (SVD) and clus-

tered using linear discrimination analysis (LDA) with human labeled behavioral cate-

gories. Clusters identified using LDA correspond to five predefined grooming behaviors

(f = front leg rubbing, h = head cleaning, a = abdomen cleaning, b = back leg rubbing, w

= wing cleaning) and two non-grooming behaviors (wk = walking, s = standing). After

classification, each video is represented by a 50,000-element vector, with each element

containing a label denoting the behavior identified in the corresponding frame. Classifier

performance and validation are shown in Appendix B.1.

To generate discrete bout ethograms, each 50,000-element vector is transformed into

a two-dimensional vector in a series of steps. The first row of this discrete bout ethogram

contains the bout identity, or the label corresponding to one of the seven behaviors

described above. The second row contains the bout durations, or the amount of time

spent in the corresponding behavior before transitioning to another behavior.

Consecutive frames containing identical actions are consolidated into one bout iden-

tity entry. Then, the corresponding bout duration entry is calculated by counting the
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number of consecutive identical frames and converted into seconds by dividing by the

video frame rate (30 Hz). As a result, the number of entries in discrete bout ethograms

corresponds to the number of observed bouts, which varies between flies. However, the

sum of bout durations for each ethogram is identical (27.8 minutes).

After ethogram generation, behavioral bouts persisting for less than 167 ms are

deemed artifacts and deleted. This threshold is chosen because manual inspection of

video data suggests that individual leg sweeps occur at approximately this time scale.

This is also the approximate average transition time between behavioral states described

by Berman et al. [71]. Deleted bouts account for 1.03% of total recording time. In

subsequent analysis, we also neglect standing bouts, as they account for < 1% of total

recording time.

Data binning

In order to include bout duration as a data dimension, we introduce a binning scheme.

To implement this change, the continuous-valued entries in the second row of discrete

bout ethograms are collapsed into duration category labels. Grooming bouts are classified

into three categories (short, medium, and long) based on the duration of the associated

bout. Although our results are consistent even when using more than three duration

categories (Appendix B.2), we limit analysis to three categories for the sake of simplicity.

Bin edges for these categories are determined independently for each grooming action

(f, h, a, b, w) and walking (wk), as each action possesses a unique duration distribution.

Bin edges are chosen such that each bin is populated by an equal number of samples (i.e.

the total number of actions labeled “short” is equal to the number of “long” actions) and

are depicted in Fig 3.3.
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Figure 3.3: Binning grooming bouts by duration allows for analysis of tem-
poral dependence. Ethograms are modified by introducing a binning scheme based
on grooming bout duration. Here, we show the binning strategy used to create three
duration categories for grooming actions. Grooming actions are classified as short,
medium, or long bouts, indicated by the red, green, and blue regions of the proba-
bility density functions, respectively. Region boundaries are chosen such that each
duration category contains an equivalent number of samples. Notably, anterior mo-
tif actions (f, h) possess strikingly similar duration distributions, suggesting coupling
between these actions.

Markov chain analysis

Markov processes are a class of probabilistic models that describe transitions between

states of a system in terms of previous states. The simplest version obeys the Markov

property, which declares that the next transition between states depends only on the

current state. As such, long-term history dependence can be neglected when considering

Markov processes, greatly simplifying the models. In discrete time, the dynamics of a

first order Markov chain are described by the equation

xt+1 = xtM, (3.1)

where xt denotes the state probability vector at time t. The entries of xt represent the

probability of the system being in the state corresponding to that entry at time t. M

is the matrix of state transition probabilities such that entry Mij is the probability of
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transitioning from state i to state j. The vector xt will have dimensionality corresponding

to the number of possible states in the system. In this case, there are either six, twelve, or

eighteen grooming states, depending on whether grooming bout duration is incorporated

into the model. Given sufficient data about state transitions in a real system, it is

possible to generate a maximum likelihood estimate (MLE) transition probability matrix,

denoted by M̂, which provides the best estimate of the transition probabilities governing

the observed transitions. The entries of M̂ are given by

M̂ij =
nij∑v
u=1 niu

, (3.2)

where nij is the total number of observed transitions from state i to state j. The sum-

mation over niu is a normalization factor which counts the total number of transitions

from state i to any other state, indexed by u, and v denotes the total number of possible

states.

First order Markov chain maximum likelihood transition probabilities are determined

for each ethogram as described in Eq 3.2. Probabilities are determined for ethograms

with either one, two, or three bout duration bins. The resulting matrices represent

population-wide average transition probabilities. We also calculated transition matrices

for individual flies, examples of which are shown in Appendix B.3.

Null model hypothesis generation

Statistical null models, which randomize isolated features of data while maintaining

overall statistical features, provide a basis for hypothesis testing to determine the signif-

icance of results obtained from experimental data. To assess the contributions of bout

identity and bout duration to sequence structure, we generate null hypotheses which

independently randomize these features of the ethogram data while preserving bout du-
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ration frequency distributions within grooming action types. Null hypothesis transition

probabilities are analytically tractable in the limit of infinite permutations, so we use ex-

act formulas to calculate matrix entries (Appendix Table B.1). A representative example

of each permutation on grooming bout order and duration is shown schematically in Fig

3.4. Our null hypotheses are as follows:

1. Duration permuted: This null hypothesis preserves action order information, but

transition matrix entries are independent of duration.

2. Order permuted: This null hypothesis preserves action duration information, but

transition matrix entries are independent of action order.

Figure 3.4: Statistical null model hypotheses (schematic). By shuffling bout
duration or bout order and comparing the resultant null hypothesis transition matrices
to the maximum likelihood estimate, we identify which features are statistically signif-
icant in the data and contribute to sequence structure. Shown here are schematics of
the permutations we perform on the observed ethograms to generate null hypothesis
transition matrices. In the duration permuted hypothesis, bout order is preserved but
duration categories are randomly permuted (h = head, wk = walking, f = front leg,
s = short, m = medium, l = long). In the order permuted hypothesis, bout order is
permuted but the durations associated with each bout remain the same.

The resulting model fit is determined using the Bayesian Information Criterion (BIC),
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defined as

BIC = log (n)k − 2 log (L), (3.3)

where n is the number of data points observed, k is the number of free model parameters,

and log (L) is the maximized log-likelihood value. For first order Markov chains,

log (L) =
T−1∑
t=1

P (x
t+1
|xt), (3.4)

and

P (x
t+1
|xt) = M̂ij , (3.5)

where i is the row index for the behavior observed at time t and j is the column index

for the behavior observed at time t+1.

The BIC provides a metric for evaluating model goodness-of-fit by penalizing models

which use a large number of free parameters (the first term in Eq 3.3) and rewarding

models which accurately predict unobserved data (the second term in Eq 3.3). Thus,

models with low BIC values possess more explanatory power than models with higher BIC

values but still avoid overfitting. BIC is similar to a related metric, Akaike’s Information

Criterion (AIC), but penalizes models with more free parameters more severely than

AIC in cases where the number of data points is much larger than the number of free

parameters.
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Synthetic ethogram generation

To evaluate the ability of our models to generate sequences that are similar to our

observed data, we use them to create synthetic ethograms. Synthetic sequences are gen-

erated using Monte Carlo methods within a Markov renewal process (MRP) framework.

In an MRP, state transitions are governed in a manner identical to Markov chains (i.e.

using a transition probability matrix). However, the amount of time spent in each state is

determined in parallel by a renewal process, in which action durations are drawn from a

known distribution. Here, we use the empirically observed duration distributions shown

in Fig 3.3.

3.3 Results

Drosophila melanogaster grooming behavior progresses from

anterior to posterior motifs on long time scales

After exposure to an irritant, D. melanogaster grooming begins with an initial phase

of mostly front leg rubbing and head cleaning (f, h). We refer to these behaviors as

anterior motif grooming actions. After roughly 13 minutes, flies reach an approximate

steady state consisting of heightened amounts of abdomen cleaning, back leg rubbing,

and wing cleaning (a, b, w). Together, these actions constitute the posterior motif. Flies

also exhibit an increased proportion of walking (wk) during the late phase of grooming.

Our result, visualized in Fig 3.5 corroborates a similar finding reported by Seeds et al.

[70] but utilizes a much larger, automatically annotated data set.
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Figure 3.5: Drosophila melanogaster grooming progresses from anterior mo-
tif to posterior motif actions. A: Average grooming progression of D. melanogaster
population (N = 92) after exposure to an irritant. Colored lines show the percentage
of time spent in each action (f = front leg, h = head, a = abdomen, b = back leg,
w = wing, wk = walking) across a 16.7 second sliding window (500 frames). Front
leg rubbing and head cleaning proportions track closely with one another for the en-
tire course of grooming. Additionally, back leg rubbing tracks closely with the sum
of abdomen and wing cleaning. Dashed gray vertical line indicates the boundary
between early and late grooming phases, which occurs after approximately thirteen
minutes, or nearly half of the recording duration. B: Proportion of time spent in each
action during the early phase (left) and late phase (right) of grooming. During the
early phase, D. melanogaster spend the majority of time performing anterior groom-
ing movements. In the late phase, they spend a relatively larger proportion of time
engaged in posterior grooming movements and walking.

Grooming bouts possess characteristic duration structure

We find that grooming bouts possess action-specific duration distributions. Fig 3.3

depicts this result. We find that anterior motif grooming actions possess remarkably
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similarly shaped action duration profiles, with peaks in their probability functions near

1 s. In contrast, posterior motif actions tend to be shorter. Most notably, abdomen

and wing cleaning exhibit sharp distribution with peaks near 250 ms, whereas back leg

rubbing exhibits a smoother distribution which more closely resembles those of anterior

motif actions.

Interestingly, bouts durations are not normally distributed, suggesting a mechanism

other than random generation of durations around a mean value. Instead, anterior motif

duration distributions possess “shoulders” on each side of the central peak, suggesting

that dividing actions into bout duration categories is not an unnatural distinction. More-

over, these “shoulders” are relatively broad due to the fact that grooming bouts consist

of many quanta of individual leg sweeps (in the case of body-directed actions) or rubs

(in the case of leg-directed actions), which are cyclical in nature and last approximately

150 ms per cycle. Due to video frame rate resolution limitations, we do not consider

this extremely fast behavioral scale here. In this analysis, we highlight results which

divide grooming actions into three duration categories in order to provide an intuitive

demarcation between “short”, “medium”, and “long” actions. However, it is important

to note that our conclusions are not strictly dependent on this choice of categorization

scheme, as our results hold for higher numbers of duration categories as well (Appendix

B.2).

Intra-motif grooming actions are tightly coupled

We find that the vast majority of transitions occur within grooming motifs. Approx-

imately 88% of transitions from anterior motif grooming bouts are to another anterior

motif behavior, while about 70% of transitions from posterior motif bouts are to another

posterior motif behavior. This tight intra-motif coupling is illustrated in Fig 3.5, as the
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amount of front leg rubbing tracks the amount of head cleaning extremely closely. The

amount of back leg rubbing also tracks the sum of abdomen and wing cleaning very

closely. This result is not affected by the choice of sliding window, as we observe a simi-

larly strong correlation even when using a 1.67 s (50 frame) window instead of the 16.7

s (500 frame) window used to illustrate the progression shown in Fig 3.5.

We find that this strong coupling emerges from the structure of individual grooming

motifs. Fig 3.6 provides an illustrated example of the structure of an anterior motif.

We find that, across flies and independent of the time after grooming, anterior motifs

contain nearly perfectly correlated amounts of body and leg-directed grooming. This

strong correlation is somewhat surprising given that consecutive anterior grooming bouts

exhibit a non-linear relationship (Appendix B.4).

This tight intra-motif coupling is also reflected in the structure of Markov transition

matrices fit to our behavioral data (ethograms). We fit a first order discrete time Markov

chain to our data and the resulting matrix, denoted by M̂ (Eq 3.2), contains the maximum

likelihood estimates of the probabilities of transitioning from one grooming action to

another. Fig 3.7 depicts the structure of these transitions in both network and matrix

form, illustrating the transition probabilities used to define the Markov chain in Eq 3.1.

In Fig 3.7, anterior and posterior motif grooming actions are indicated by light red and

blue outlines, respectively. Note that self-transitions are explicitly prohibited as a result

of the ethogram discretization method. Consequently, the network diagram lacks self-

loops and all diagonal elements in transition matrices are blacked out, signifying zero

value entries.
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Figure 3.6: Anterior motifs are composed of highly correlated amounts of
body-directed and leg-directed actions. A: Schematic of an anterior motif. An-
terior motifs are defined as continuous consecutive bouts of head grooming (h) or
front leg rubbing (f) flanked by non-anterior motif actions on either side. Posterior
motifs are defined similarly, but consist of abdomen grooming, back leg rubbing, and
wing grooming (a, b, and w). Both motifs contain body-directed actions (h, a, and
w), which clear irritant from the body. Leg-directed actions (f and b) clear irritant
from the legs, which collect irritant during body-directed grooming actions. In this
example, the anterior motif consists of six grooming bouts of varying duration. B:
Anterior motifs exhibit a strong linear relationship between the total amount of time
spent performing body and leg-directed actions (left). Each point corresponds to an
observed motif consisting of four or more actions. Posterior motifs (right) display a
weaker linear trend with greater amounts of leg-directed grooming.

Grooming bout duration contributes to sequence structure at

short time scales

In Fig 3.7, we illustrate the fine-grain temporal structure present within the identified

motifs. Transition matrices with either two (left) or three (right) duration bins reveal the
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Figure 3.7: Within-motif transitions dominate grooming syntax. A: The max-
imum likelihood transition matrix, M̂ (Eq 3.2), provides the best estimate of the
Markov chain dynamics observed in grooming behavior (Eq 3.1). The network repre-

sentation of M̂ (left) illustrates transition probabilities using edge thickness (thicker
edges indicate higher probabilities). Shown on the right is the matrix representation of
discrete time transition probabilities, with probability magnitude indicated by color.
Here, the anterior motif is indicated by the red circle (left) and red square (right).
The posterior motif is delineated by the blue circle (left) and blue square (right). B:
Maximum likelihood transition probabilities for ethograms binned according to the
schema shown in Fig 3.3. Matrices fit to data with two (left) and three (right) du-
ration categories show similar within-motif structure with increased resolution (s =
short, m = medium, l = long). For example, both matrices illustrate that anterior
motif transitions between long bouts dominate syntax.

presence of certain high-probability transitions. Most notably, we observe that transitions

between long anterior grooming actions dominate to an extent not found in the null

hypotheses we use for comparison. For example, when using three duration categories,

the probability of transitioning from a long front leg rub to a long head cleaning bout
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is ∼39%. This is significantly higher than the corresponding transition probabilities in

the duration permuted and order permuted null hypotheses, which are ∼28% and ∼13%

respectively. These differences are depicted in greater detail in Fig 3.8.

Additionally, we observe that, regardless of the number of duration bins, the anterior

motif transition probability structure is nearly mirror symmetrical along the diagonal

(i.e. transitions between front leg rubbing and head cleaning bouts have the same prob-

abilities). In contrast, posterior motif transitions are less strongly symmetrical, with

transitions between abdomen cleaning and back leg rubbing exhibiting the highest prob-

abilities (Fig 3.7).

We find that the probabilistic rules describing transitions between consecutive bouts

depend on two features of immediate behavioral history: previous bout identity and

previous bout duration. To validate this observation, we evaluate the quality of the

maximum likelihood model using the Bayesian Information Criterion (BIC). This metric,

which is described mathematically by Eq 3.3, rewards models that produce accurate

predictions and penalizes those that contain more parameters. The model with the

lowest BIC score is considered the best fit to the observed data. Using BIC, we show

that, compared to statistical null model hypotheses, the maximum likelihood transition

probability best describes the data without overfitting. BIC values and null hypothesis

matrices used for comparison are shown in Fig 3.8. Since each null hypothesis matrix

contains fewer free parameters than the maximum likelihood model, the advantage of the

maximum likelihood matrix in BIC is due entirely to its superior explanatory power.

Inspection of BIC values indicates that bout order is the strongest individual deter-

minant of grooming syntax and that bout duration provides an additional contribution.

Fig 3.8 shows the BIC values for each matrix as determined using data binned into three

duration categories. The order permuted null hypothesis possesses a significantly larger

BIC value than the duration permuted null hypothesis, indicating that disrupting bout
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Figure 3.8: Grooming bout duration contributes to syntax at the scale of
individual transitions. A: Probabilities from the maximum likelihood transition
matrix (top) differ significantly from null hypothesis transition matrices (bottom)
to varying degrees, indicating that both grooming action order and bout duration
contribute to grooming syntax. Shown on the top left is the anterior motif transition
network, with edge withs proportional to transition probabilities. Transitions between
actions belonging to the same duration category possess high probabilities and appear
nearly symmetric, suggesting a coupling mechanism between anterior motif actions.
BIC values (right of matrices) provide validation that the maximum likelihood model
captures statistically significant features of the data. The maximum likelihood tran-
sition matrix has a lower BIC value than the null hypotheses used for comparison,
indicating that both bout order and duration contribute to sequence syntax. B: The
residual values illustrate that specific transitions differ from what the null hypotheses
would predict. The duration permuted null model matrix exhibits block structure
but fails to capture the temporal relationship between bouts, as illustrated by the red
values in several “long-to-long” transitions, for example. The order permuted null
model differs even more severely, indicating that, while duration dependence plays a
role in sequence structure, action order is still the primary determinant.
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order degrades predictive power most significantly.

By construction, each null hypothesis transition matrix contains identical row struc-

ture within sets of rows corresponding to the same grooming action. However, only the

duration permuted transition matrix possesses block structure similar to that found in

the maximum likelihood matrix, as seen in Fig 3.8. This feature also reinforces the claim

that action order provides a relatively larger contribution to syntax, since preserving

action order results in the preservation of transition matrix block structure.

Bout-to-bout transitions are largely stationary despite changing

sensory conditions

Fig 3.9 shows the average transition probability matrices with three duration cat-

egories for the early and late phases of grooming, as separated by the dashed line in

Fig 3.5. Data were separated into early and late phase data for each fly and maximum

likelihood transition probabilities were determined as described in Methods and Models.

Here, we determine the boundary between phases to be the average time elapsed after

flies have performed half of their discrete grooming actions. We also conducted a similar

analysis in which we fit transition matrices only to the first and last third of data so

as to avoid using the middle portion of the progression. This did not alter our results

(Appendix B.5).

Qualitatively, these matrices exhibit strong similarities, despite the differences in

grooming proportions, as shown in Fig 3.5. In particular, transitions between anterior

motif grooming movements are similar across phases of the recording. Additionally, we

find that 253 of the 266 (95.1%) non-zero entries change by less than 5% and 168 (63.2%)

entries change by less than 1% (Appendix B.6). This suggests that the rules for sequence

generation are nearly fixed, in spite of changing sensory input. Most notably, transitions
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Figure 3.9: Transition probabilities are largely stationary across the entire
grooming progression despite changing sensory conditions. Shown here are
the population average transition probabilities for the early phase (left) and late phase
(right) of grooming. The border between these phases is indicated by the dashed gray
line in Fig 3.5. In the early phase, flies prioritize anterior grooming motifs, indicated
by the thick red outline. In the late phase, flies perform more posterior grooming,
indicated by the thick blue outline. We observe that transitions between front leg
rubbing and head cleaning bouts exhibit consistent duration dependence regardless
of when they occur in the sequence. Posterior motif transitions display similarities as
well, but transitions between long abdomen grooming bouts and long back leg rubbing
bouts are significantly more likely late in grooming. Overall, the relative stationar-
ity of these transition probabilities despite changing sensory conditions suggests the
existence of an internal mechanism that dictates bout durations. However, sensory
stimuli also appear to play a role in modulating grooming transitions on long time
scales, as transitions from posterior motif actions to anterior motif actions become
less likely in the late phase.

between long abdomen grooming bouts and long back leg rubbing bouts are enriched

in the late phase of grooming, illustrating that grooming rules, while similar, are not

completely stationary over time.
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A slowly varying model captures grooming syntax at long, inter-

mediate, and short time scales

Markov models are steady state models and, as such, only exhibit equilibrium dynam-

ics when used in a generative manner to create synthetic data. The first order maximum

likelihood Markov model presented above is best suited for describing the late stages of

grooming, which resembles steady state behavior. This is an obvious shortcoming of us-

ing a Markovian framework for analyzing the ethograms presented here, as flies display a

dynamic progression (Fig 3.5), likely due to changing amounts of irritant over the course

of grooming.

In order to more explicitly model these changing sensory dynamics, we utilize a non-

stationary, or time-varying, Markov renewal process (MRP). Here, we introduce a non-

stationarity in the form of a time-varying transition probability matrix. In order to

maintain as parsimonious a model as possible, we define the transition probability ma-

trix as a time-dependent convex combination of an early phase matrix and a late phase

matrix (Eq 3.6). The early phase matrix is determined using maximum likelihood fitting

on only the first 200 actions of each fly. Likewise, the late matrix uses each fly’s final 200

actions. This ensures that early and late phases are well-separated, as each ethogram

averages approximately 1000 bouts.

The time-varying transition probability matrix M(t) used in the MRP is defined as

M(t) =


13−t
13

Mearly + t
13

Mlate, t <= 13,

Mlate, t > 13

(3.6)

where t is in minutes. After 13 minutes, the late phase transition matrix is used due to

the observation that flies exhibit steady state behavior after approximately that amount
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of time. Bout duration distributions used in the MRP do not change over time, as we

did not find any significant difference between early and late bout durations (Appendix

B.7).

Surprisingly, using this simple linear interpolation as a proxy for changing sensory

conditions yields a model which produces ethograms that closely resemble our observed

data (Fig 3.10). This interpolation serves as a first-order approximation to changing

sensory drive, as flies constantly remove dust at an unknown rate over the course of

grooming. Synthetic flies prioritize anterior grooming early on and gradually transition

into a late phase which prioritizes posterior grooming and walking. This synthetic pro-

gression closely matches the actual progression shown in Fig 3.5. The synthetic ethograms

also exhibit a tight coupling between the amount of anterior grooming actions over time.

Moreover, synthetic motifs possess similar structure to observed motifs, as shown in panel

C of Fig 3.10. Finally, the use of empirical transition matrices and bout duration dis-

tributions in our MRP guarantees that synthetic ethograms possess the same duration

dependence at short time scales as actual data.

3.4 Discussion

Drosophila melanogaster respond to irritant by executing struc-

tured, modular sequences of cleaning movements

After exposure to an irritant, D. melanogaster engage in a series of grooming actions

in order to clear the irritant from their body. These movements are highly non-random,

as indicated by their structure at three separate temporal scales. On the longest time

scale, grooming progresses over several minutes from an early anterior-heavy phase to

a later phase which contains elevated levels of posterior-directed actions and walking as
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Figure 3.10: A nonstationary Markov renewal process recapitulates groom-
ing progression and bout structure. A: Illustration of the time-varying transition
matrix, M(t), used for generating synthetic ethograms. To approximate changing sen-
sory conditions in the simplest possible manner, two transition matrices, Mearly and
Mlate, are fit to the first and last 200 actions in the discrete time ethogram with 3
duration categories, respectively. As time evolves in the synthetic ethogram simula-
tion, M(t) changes as described in Eq 3.6. At the beginning of the simulation, M(t)
is identical to Mearly and after 13 minutes, it is identical to Mlate. Between those
times, it is a linear combination of the two matrices. B: Synthetic ethograms dis-
play the characteristic progression from anterior to posterior grooming, as seen from
comparison with Fig 3.5. C: Synthetic ethograms reproduce observed anterior motif
composition. Synthetic anterior motifs (left) exhibit a similar, though slightly weaker,
trend as observed in our data (Fig 3.6). Posterior motifs are less similar, indicating
that other factors may be necessary to explain posterior motif structure.

illustrated in Fig 3.5. At an intermediate time scale, anterior and posterior grooming

motifs exhibit strong correlations between the amount of body and leg-directed move-
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ments present in each motif, as shown in Fig 3.6. Finally, grooming syntax exhibits

non-random structure at the short time scale of individual grooming bout decisions,

as illustrated by the non-random structure of transition matrices shown in Fig 3.7. To-

gether, these findings suggest that there are distinct syntactic rules that govern grooming

sequence structure at different temporal scales.

Here, we isolate short time scale grooming syntax by using a binning scheme to

represent grooming bouts as semi-discrete actions (e.g. short, medium, or long bouts).

Across different binning schemes, within-motif transitions (i.e. anterior-to-anterior or

posterior-to-posterior) dominate syntax at the scale of consecutive bouts, as indicated by

the block-like structure of transition matrices in Fig 3.7. The likely functional explanation

for this tight correlation is that D. melanogaster engage in leg-centric grooming as a way

to clear irritant that has collected on their limbs after body-centric grooming. Past work

on blowflies also suggests that this coupling may be due to postural considerations, since

fewer motor actions are required to transition between movements which use the same

set of legs [67].

Moreover, the amount of front leg rubbing over the course of the grooming progression

corresponds nearly exactly to the amount of head cleaning performed by the flies. The

amount of back leg rubbing is also directly proportional to the amount of abdomen

and wing cleaning (Fig 3.5). Though the total amount of time spent performing actions

within motifs is tightly coupled, consecutive bout durations do not exhibit a simple linear

relationship (Appendix B.4). Instead, transitions between body-centric and leg-centric

actions of certain durations dominate. In particular, anterior motif movements exhibit

nearly symmetric dynamics, with a preference for long-to-long transitions. In contrast,

posterior motif transitions are asymmetric - this can be seen in Fig 3.7, as transitions from

body-directed actions to leg-directed actions have different values than transitions in the

opposite direction. This suggests a mechanism whereby internally generated dynamics
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that are specific to each motif guide intra-motif transitions.

Symmetric anterior motif transition rules suggest higher-level

transition frequency control

Anterior motif transitions display symmetric transition rules, as shown in Fig 3.7. The

transition from head cleaning to leg rubbing may exhibit a strong correlation in duration

for the following reason - the longer the head cleaning bout, the more particulate the

legs accumulate, which subsequently requires more time to clear. However, it is more

surprising that after performing a bout of leg rubbing the animal should display a similar

duration preference upon transitioning back to head cleaning; once the front legs are

sufficiently clean, we would not expect the animal to exhibit any duration preference

on the subsequent bout. Additionally, the bout duration distributions for grooming

actions remain strikingly similar across the entire recording, suggesting that sensory

considerations do not account for the duration dependence we observe (Appendix B.7).

These observations support the hypothesis that alternations between anterior groom-

ing bouts are regulated by a common source or common dynamics that dictate intra-motif

transition frequency. If this is the case, future investigation of neural circuitry could focus

on identifying neural activity that oscillates in phase with grooming bout alternations.

Under this model, flies would then need to combine discrete decisions about which motif

to perform with continuous decisions about how long to maintain a motif. This provides

other targets for future experiments, as we could look for neural activity correspond-

ing to transitions between motifs, explore manipulations that induce transitions between

motifs, and search for factors that affect the duration of motifs.
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Modeling suggests that sensory input modifies internal grooming

programs

Although sensory input is sufficient to initiate individual grooming bouts, it has been

difficult to assess the role of sensory input in grooming on longer time scales, since direct

quantification of irritant relies on invasive protocols [87]. To date, the contribution of

internal dynamics to grooming sequence generation also remains unknown. The discovery

of duration dependence in grooming suggests that flies do not rely exclusively on sensory

information to make grooming decisions, leaving open the possibility that sensory input

modifies pre-existing autonomous grooming programs.

Here, we abstract the contribution of sensory input, incorporating it as a parameter

in a time-varying Markov renewal process. Specifically, we approximate changing sensory

conditions as a linear phenomenon which dictates the degree to which flies favor early

versus late grooming rules (Fig 3.10). This choice of nonstationarity preserves the parsi-

mony of our MRP, as it precludes the necessity of re-calculating transition probabilities

over time. Additionally, the similarity between early and late intra-motif transition prob-

abilities (Fig 3.9) provides some leeway for the choice of nonstationarity, bolstering our

confidence that a simple linear rule is sufficient to approximate true sensory conditions.

Since our MRP reliably reproduces true ethogram statistics without explicitly mod-

eling sensory input, we propose that, rather than acting in a purely reflexive manner, D.

melanogaster instead use sensory information to modulate internal grooming programs.

This type of slowly varying process has been observed in other organisms, suggesting that

it is a useful framework for describing sequential behaviors [88]. Additionally, this hy-

pothesis can be tested in future experiments which manipulate sensory conditions using

irritants with different properties or optogenetic stimulation of sensory receptors.
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A role for sensory information-independent transition rules in

grooming

From a computational perspective, sensing is costly when it requires high-frequency

updates and can provide readouts at a high resolution, as specialized neural circuits must

be formed, maintained, and integrated in order to provide accurate, real-time readouts.

This can lead to increased metabolic costs on several fronts, as increased neural activ-

ity and behaviors intended to protect and maintain sensory machinery can also require

energetic resources [89]. In contrast, autonomous internal dynamics require only sparse

sensory updates and may not require the same level of neural activity as is needed for

sensory processing. If sensory drive alone, triggered by the presence of an irritant, dic-

tates sequence generation in a purely reflexive manner, competing priorities may lead to

rapid alternations between actions without any distinctive duration structure, consistent

with neural circuity implementing competitive inhibition with a transition cost [70].

During the execution of a grooming motif, frequent, high-resolution sensory updates

may not be necessary. Instead, the moment-to-moment decisions about execution of

grooming bouts can be automated by utilizing patterned internal dynamics. Several

models of behavioral generation in which internal triggers drive sequence generation have

been proposed [90, 91]. Since we show that intra-motif transitions exhibit bout duration-

dependent structure, we suspect that internal triggers may provide a basis for transitions

on short time scales after a discrete grooming motif decision is made. We consider this

a strong possibility due to the fact that anterior motif transition probabilities are nearly

stationary across grooming even though the dust distribution on the body is constantly

changing. The near stationarity of these rules in spite of a changing stimulus suggests to

us that behavior possesses an internally generated, fixed component. The discovery that

grooming progresses gradually from anterior to posterior movements suggests that, on
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long time scales, D. melanogaster utilize sensory information to dictate decisions about

which grooming motif to perform, since the dust distribution changes over the period of

cleaning.

In discussing temporal correlations between neural activity across spatial scales,

Berman et al. [71] note that “(a)lthough no such correlation has been specifically found

in Drosophila, our results suggest that such neuronal patterns may exist: perhaps by

combining descending commands from the brain with local circuitry within and emerg-

ing from the ventral nerve cord.” This observation is consistent with our interpretation of

our results, as local circuitry in the ventral nerve cord could plausibly generate internal

dynamics which introduce duration dependence to action selection.

By combining sensory input and internal dynamics, Drosophila melanogaster ner-

vous systems may utilize multi-level control algorithms which make discrete, “ballistic”

decisions about the onset and type of continuous behaviors, allowing them to update

infrequently at low sensory resolution. Once the decision is made, the execution of the

behavior can be guided primarily by autonomous internal dynamics. In flies, these inter-

nal dynamics may not be unique to grooming, as freely-behaving D. melanogaster exhibit

hierarchical Markov-like behavior in the absence of external sensory stimuli [79, 71]. Ad-

ditionally, the identification of stereotyped subroutines in D. melanogaster locomotion

further supports the idea that specialized neural circuits can automate and reproduce

portions of behavior, reducing the need for constant calibration via sensory feedback [80].

We can further explore this idea by studying whether spontaneously grooming flies or

those stimulated using optogenetic methods exhibit similar syntactic rules.

In larval and mature D. melanogaster, specialized, isolated neural circuits known as

central pattern generators (CPGs), use rhythmic activity to guide execution of locomotion

and courtship song sequences [92, 93]. In humans, CPGs are believed to facilitate chewing

and breathing subroutines, such as individual jaw or pharyngeal movements [94, 95],
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indicating that such neural circuit elements are common and flexible enough to carry out

a wide variety of functions.

Since CPGs can modulate motor programs independently of sensory input, they are a

natural candidate to execute grooming behavior on the scale of individual leg sweeps and

rubs within a grooming bout. We do not explicitly model behavior at this temporal scale,

but the ABRS classifier applied to video at the frame rate used here identifies actions

nearly at the temporal resolution of individual leg movements. We plan to extend analysis

to this time scale in future work.

Additionally, robotic systems that utilize multi-layer CPG architectures can carry

out locomotor tasks, indicating that hierarchical CPG structures can generate sequential

behaviors from smaller elements [96]. Recent work indicates that circadian rhythms and

genetic factors contribute to D. melanogaster grooming behavior as well, leaving open a

role for internal regulation of sequence generation at longer time scales [97].

3.5 Conclusion

When describing complex behavioral phenomena, formal mathematical models can

bridge the gap between phenomenology and biological mechanisms by providing param-

eters that may correspond to underlying neuronal activity. In many cases, statistical

model parameters do not directly describe to underlying biological structures, but data

analysis can suggest hypotheses for future exploration.

Here, we analyze large-scale automatically annotated data sets to reveal the syntax

of D. melanogaster grooming. Using Markov models to detect features of grooming

sequences, we find that grooming actions exhibit duration dependence at the scale of

individual bouts and grooming motifs. Then, we produce realistic synthetic ethograms

by introducing a slow modulation of grooming rules meant to abstract the contribution of
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sensory input. Together, these findings suggest that internal programs dictate grooming

decision on fast time scales but are modulated by sensory input over longer time scales.

As the tools for computational analysis of behavioral data continue to develop, inter-

disciplinary approaches that use mathematical tools to illuminate biological mechanisms

will yield further insight into the generation of sequential behavior. Future experiments

involving the manipulation of sensory experiences using optogenetic stimulation or other

methods will also allow researchers to test hypotheses with unprecedented precision and

scope. Together, these advances promise to improve our understanding of sequence gen-

eration by connecting mathematical descriptions of behavior with the underlying neural

circuitry, as we are now motivated to search for circuits controlling long, intermediate,

and short time scale grooming rules and determine how they interact with sensory cir-

cuits. Finally, our work suggests that temporal dynamics can and should be included

when using statistical models to assess complex behaviors.

69



Chapter 4

Variability and Variation in

Drosophila Grooming Syntax

4.1 Introduction

For over a century, researchers have understood that phenotypic variation arises from

genotypic differences between organisms [98]. Animal behavior is a phenotype partially

under genetic control, so a sizable research effort has been dedicated to uncovering spe-

cific genes associated with observable differences in behavior between and within species

[99]. Different mouse species exhibit variation in monogamous behavior and parental care

and different fly species show variation in courtship song [100, 101]. Within a species,

natural variability produces individual mice that differ in aggression and flies that imple-

ment different foraging strategies [102, 103]. Mutant screens have also uncovered genes

associated with differences in locomotion, courtship routines, and sleep patterns, among

other complex behaviors [104, 105, 99, 17].

Fruit flies live in dirty environments, from laboratory vials to rotting fruit, and per-

form grooming actions to remove accumulated particulate. This behavior has been ob-
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served in several drosophilid species and is important for social behavior and survival

[20, 106, 107]. Past work has demonstrated that the leg movements used in grooming

are stereotyped, but that sequences of actions are probabilistic and variable as opposed

to fixed. However, the rules, or syntax, underlying grooming exhibit observable struc-

ture [21, 108]. Different sensory experiences and life histories may influence probabilistic

grooming behavior, leading us to ask: how much variability in fruit fly grooming is due

to genetics?

To address this question, N = 372 flies were covered in dust and their grooming be-

havior was recorded for approximately 30 minutes each (Figure 4.1A). We analyzed flies

from five drosophilid species (melanogaster, santomea, sechellia, simulans, and erecta),

which are genetically distinct and inhabit different ecological niches. We also examined

four common melanogaster stocks (Canton-S, Oregon-R, Berlin-K, and w1118), and sev-

eral isogenic lines derived from parent stocks in the laboratory. To analyze this large

data set, we used tools from computational ethology [109]. An automated behavioral

recognition system (ABRS, [85]) was used to classify fly behavior into one of five groom-

ing actions (front leg cleaning, head grooming, abdomen grooming, back leg cleaning,

wing grooming) and two non-grooming actions (walking and standing). After generating

ethograms (behavioral time series records) for each fly, several grooming features were

extracted (Figure 4.1B). Measures of central tendency and spread in the distributions of

these features were calculated for each group and classification analysis was performed

to determine the degree of separability between groups.

We found that several features of grooming are conserved across different drosophilid

species. All species performed stereotyped movements in a probabilistic sequence and

tended to groom anterior body parts before posterior portions.

We evaluated different grooming features by comparing their average values between

groups and their range within groups, using the concepts of variation and variability
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as defined by Ayroles et al. [17]. Variation refers to differences in phenotype between

genetically distinct populations, such as drosophilid species. For example, inter-species

variation in drosophilid larval digging behavior has been identified based on the duration

distributions of “dives” into an agarose substrate [110].

Here, inter-species comparisons were used to look for variation in grooming features

(such as syntax and action duration distributions) between flies with large genetic dif-

ferences. Several significant differences in syntax were identified, allowing for highly

accurate species-specific classification.

Next, we looked for variation within melanogaster stock lines using similar analysis.

Although grooming features were more similar between melanogaster stocks than between

species, some lines did exhibit detectable differences in grooming, largely related to overall

grooming activity levels (e.g. after dusting, some lines spend a large proportion of time

grooming, while others walk or stand more).

In contrast, variability describes how a trait differs within a genetically similar popu-

lation. Intra-species variability has been characterized in the locomotor behavior of fruit

flies, as some populations exhibit a wide range of locomotor behaviors, whereas others

exhibit a narrower range [17].

We hypothesized that if a heterogeneous gene pool contributes to variability in groom-

ing behavior, it should be possible to observe trends in variability between melanogaster

populations with high and low genetic diversity. Starting from different commonly used

stocks, flies were interbred for several generations to produce flies with high genetic vari-

ability and, in parallel, individuals were isogenized to minimize genetic variability. All

three groups exhibited similar variability in measured grooming features.

Furthermore, flies tested on sequential days revealed that between-fly differences in

syntax were similar to within-fly differences over several sessions. Finally, flies stimulated

using optogenetic manipulation to induce grooming exhibited within-individual variabil-
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ity in grooming syntax comparable to dusted flies. These results suggest that genetic

diversity is not a primary contributor to the variability in grooming action sequences.

Future work that controls for sensory experience and life history could shed light on the

degree to which stochastic effects influence behavioral variability.

4.2 Results

Drosophilids exhibit a robust grooming response but different

syntax after irritant exposure

Regardless of genotype, all flies possessed several common grooming features. Here,

five grooming actions were observed consistently across all five species of drosophilids

(erecta, sechellia, santomea, simulans, melanogaster), indicating a conserved behavioral

response. In this analysis, melanogaster flies interbred between stock lines for maximum

genetic heterogeneity (MaxVar) were used as the representative melanogaster group to

avoid any stock-specific trends.

To quantify the behavioral response to dusting, the proportion of time spent grooming

(as opposed to walking and standing, the two non-grooming actions identified here)

was calculated for each fly (Figure 4.2A). Overall, the distributions were statistically

indistinguishable with one exception: drosophila erecta groomed significantly less than

every other species (Wilcoxon rank-sum test, p < .05 after Bonferroni correction).

Grooming proportions were then examined in more detail by considering the progres-

sion of all seven actions over time, as in Figure 4.1B. All species exhibited a qualita-

tively similar grooming progression characterized by initial anterior grooming followed

by increased posterior grooming, walking, and standing, but the relative proportions of

behaviors over time differed between several populations (Appendix C.4).
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Figure 4.1: Grooming variability dataset and analysis overview. A. In total,
N = 372 flies were dusted and their grooming activity was recorded for approxi-
mately half an hour each. Five drosophilid species, four melanogaster stock lines,
one interbred melanogaster line, and six isogenic melanogaster lines were analyzed for
similarity, differences, and variability in grooming behavior. On the left is a schematic
of the different drosophilid groups included in this analysis. Higher levels of the tree
indicate higher levels of genetic diversity (scale is relative, not absolute). On the
right is a sample of ethograms generated by automated annotation of grooming video.
Color indicates the occurrence of the five grooming actions (front leg cleaning, head
grooming, abdomen grooming, back leg cleaning, wing grooming), walking, and stand-
ing. B. Features scored from ethograms provide summary representations of grooming
behavior. The proportion of time spent grooming, overall or over time, provides the
coarsest description of the behavioral response to a dust stimulus. Regardless of geno-
type, all flies exhibit probabilistic (not fixed) action sequences consisting of the same
set of five grooming actions, walking, and standing after exposure to irritant. Ad-
ditionally, most flies follow a typical grooming progression pattern: initial anterior
grooming followed by increased posterior grooming. The amount and timing of walk-
ing and standing, however, can vary significantly between flies. Grooming transitions
(syntax) and action (bout) duration distributions provide representations of individ-
ual grooming decisions within a recording session. Shown here are example features
scored from Canton-S flies.

Grooming syntax (the transition probabilities between discrete behaviors) was calcu-

lated from the ethogram of each dusted fly (N = 372). With seven behavioral states, 42

transitions were possible, excluding self-transitions. Thus, syntax was represented as a
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42-dimensional vector for subsequent classification analysis and visualization. Grooming

syntax across all flies was probabilistic with high transition probabilities within anterior

grooming actions (front leg cleaning, head grooming) and posterior grooming actions

(abdomen grooming, back leg cleaning, wing grooming). The average syntax for each

species is illustrated as a weighted, directed graph in Figure 4.2.

Finally, action duration distributions were calculated from ethograms. Distributions

of grooming actions were similar across species and had probability peaks between 500

and 750 ms (Appendix C.6).

Several significant differences in grooming syntax between melanogaster and non-

melanogaster species were identified. To compare syntax, transition probability distri-

butions for each action transition were compared between species in a pairwise manner.

38 of 42 unique syntax elements (90.5%) were significantly different between at least two

species (Wilcoxon rank-sum test, p<0.05 after Bonferroni correction). Overall, 148 of

420 (35.2%) of pairwise syntax comparisons revealed differences between species.

Of these syntactic differences, 100 (67.6%) occurred between melanogaster and non-

melanogaster species. In particular, posterior motif grooming transitions (i.e. transitions

between abdomen grooming, back leg rubbing, and wing grooming) were consistently

significantly different, on average, as were transitions between back leg rubbing, standing,

and walking. Figure 4.2B illustrates these syntactic differences.

Figure 4.2C depicts a low-dimensional embedding of species syntax using t-SNE. This

visualization suggests that different species possess distinguishable syntax, as points are

aggregated by species. Classification and clustering analysis was applied to species syn-

tax to probe this interpretation. Logistic regression classified flies by species according

to syntax with >90% accuracy in 9 of 10 pairwise comparisons (Figure 4.2D). K-medoids

clustering reinforced this finding, as these groups were classified with >90% accuracy us-

ing fewer than 20 syntax elements (Appendix C.12). Classification according to progres-
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Figure 4.2: Drosophila species share grooming features but exhibit be-
tween-species variation in grooming syntax. A. Dusting elicits a conserved
grooming response across drosophilids. All species produce a probabilistic grooming
sequence (as shown in Figure 4.1A), which can be characterized by the transition prob-
abilities (syntax) between grooming actions (as represented in Figure 4.1B, calculated
as in as in [108]). Shown are violin plots of grooming proportions for each species
examined here. Colored points represent a single fly, with color indicating species
(as indicated by points next to species names in A and B). White points indicate
the median value and plot with indicates density. B. Several syntax elements differ
between drosophilid species. The mean syntax for each species is depicted as a graph,
with nodes representing grooming actions and edges indicating transition probability.
Thicker edges indicate higher probabilities. On the melanogaster syntax graph, the 10
action transitions exhibiting the largest magnitude differences between melanogaster
and non-melanogaster species are highlighted in red. These differences are largely
found in posterior motif transitions, which use the back legs to perform grooming
actions. C. Each fly’s 42-dimensional syntax vector was plotted in two dimensions
after dimensionality reduction using t-SNE. t-SNE preserves local distance structure,
indicating that tightly grouped clusters of points are similar to one another. In this
case, dimensionality reduction reveals that drosophilid species exhibit significant dif-
ferences in grooming syntax, as syntax vectors congregate by color. D. Classification
analysis confirms the qualitative clustering observed in C. Shown is a heat maps of
accuracy rates resulting from pairwise logistic regression classifiers trained on syntax
vectors. Samples used for classification were chosen to be the same size, so classifi-
cation at chance levels would be 0.5. Consistent classification accuracy values > .9
indicate that species are highly separable by syntax.
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sion and grooming proportions achieved similar performance, but using bout durations

performed the worst (Appendix C.10).

Melanogaster strains exhibit variation in grooming behavior

Standard lab strains (Canton-S, Berlin-K, Oregon-R, w1118) were analyzed for dif-

ferences in grooming proportions, progression, syntax, and bout duration distributions.

Grooming syntax differed between stocks, allowing for classification above chance levels.

Grooming progressions were also different between stocks. Overall grooming proportions

and bout durations achieved the worst classification performance, indicating that these

features are more highly conserved.

The grooming syntax of melanogaster stocks is depicted in Figure 4.3A. Similar to the

species analysis, all action transition probability distributions were compared in a pair-

wise manner to look for variation in syntax. Only 37 of 252 syntax element comparisons

(14.7%) differed significantly between any two stocks and, of these, only two within-motif

transitions (posterior motif) differed significantly. Within-motif syntax elements are of

particular interest because they represent the most common, most highly stereotyped

action transitions observed across flies of all genotypes (see Figure 4.2A and B for vi-

sualizations of these transitions). However, these differences allowed for classification of

stocks above chance, as illustrated in Figure 4.3A.

Examination of other grooming features revealed that overall grooming proportions

could also account for differences observed between stocks. Figure 4.3B shows a ternary

plot of action proportions, showing that Canton-S flies spend more time walking than

other stocks. Relatedly, the syntax element exhibiting the greatest stastically significant

difference was the wing grooming to walking transition, shown in the middle of Figure

4.3A. Classification accuracy was poor when using grooming proportions but comparing
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Figure 4.3: Within melanogaster, different stocks exhibit similar syntax but
different activity levels. Genetic homogeneity does not correspond to be-
havioral stereotypy. A. Compared to inter-species differences in grooming syntax
(Figure 4.2), melanogaster stocks did not exhibit strong variation in grooming fea-
tures. This is indicated by the high degree of overlap in the t-SNE plot of grooming
syntax vectors (left). The middle panel displays distributions of one representative
strong grooming transition; 215/252 (85.3%) of transition distributions were not sig-
nificantly different from one another. Of the 17 unique transitions that were signif-
icantly different, only two were within-motif transitions; both were posterior motif
transitions. Due to the strong similarity of syntax between stocks, classifier analysis
was not able to distinguish between stocks with greater than 70% accuracy (right).
B. Most syntax elements are similar between melanogaster stocks, but Canton-S flies
walked more than other stocks. On the left is a ternary plot of grooming, walking,
and standing proportions for each species. Colored points represent individual flies.
The large black point with arrows indicates how to read activity proportions; the ex-
ample point corresponds to 20% grooming, 30% walking, and 50% standing. Due to
differences in activity levels, some walking-related syntax elements differed between
Canton-S flies and other stocks. The middle plot illustrates the most significantly
different syntax element between stocks (Wilcoxon rank-sum test, p<.05 corrected for
multiple comparisons). Classifier performance on action proportions (right) is similar
to performance on syntax, indicating that syntax differences are not a more informa-
tive source of variation between stocks than activity levels. C. Genetic homogeneity
did not correspond to behavioral variability. Shown are the distributions of wing to
back leg transitions for a line bred for maximum genetic heterogeneity (MaxVar), each
stock line, and lines derived from stocks to minimize genetic heterogeneity (iso). Max-
Var flies did not consistently exhibit a higher degree of variability than stock lines.
Isogenized lines did not exhibit a lower degree of variability than their parent stocks.
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grooming progressions, which are similar to proportions but account for changes in groom-

ing behavior over time, yielded significant differences. Canton-S flies higher propensity

to walk after grooming their wings is reflected both in their syntax and grooming pro-

portions, resulting in similar classification accuracy (Figure 4.3B, right) whether using

syntax or progressions.

Figure 4.3B also illustrates the high degree of variability in melanogaster syntax. The

wing grooming to back leg cleaning transition exhibited the largest difference between

median values of any syntax element (comparison of Canton-S and Oregon-R yielded this

difference), but none of these distributions possessed detectable statistical differences due

to their concomitantly large variances.

Grooming behavioral variability is similar across melanogaster

genotypes

To examine the relationship between genetic heterogeneity and behavioral variability,

each melanogaster lab strain was compared to lines bred to minimize genetic heterogene-

ity (“isogenic” lines). To quantify this, the variances of grooming transition probability

distributions were calculated and compared.

Only 6/252 (2.4%) syntax element distributions possessed statistically significantly

different variances between MaxVar, Canton-S, and the isogenic lines out of all possible

pairwise comparisons (Levene’s test, p < .05 after Bonferroni correction). Moreover, none

of these differences corresponded to within-motif transitions, indicating that variability of

common transitions is similar regardless of genetic heterogeneity in a population. These

findings were similar for Oregon-R (8/252), Berlin-K (18/108), and w1118 (2/108) stock

and isogenic comparisons.

Figure 4.3C provides the transition probability distributions for the most common
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posterior motif transition (abdomen grooming to back leg cleaning) for all stocks and

stock-derived isogenic lines. This transition exhibits wide variability in many populations

and even populations with smaller variability (CS iso 2) are not different enough to

achieve statistical significance after accounting for multiple hypothesis testing.

Standardizing sensory experience does not abolish grooming be-

havioral variability

Finally, we analyzed 15 Canton-S flies that were recorded over three consecutive days

after irritant exposure. In this experiment we aimed to isolate the magnitude of grooming

variability that is due to differences in sensory experience (since the dusting protocol does

not allow for perfect replication of sensory experience) and life history (since flies will

have been exposed to the same irritant several times by the end of the experiment).

Ethograms from three example flies are provided in Figure 4.4A.

Flies did not exhibit strong longitudinal grooming trends. Observing individuals over

several sessions provided no evidence of stable between-individual variation (individual-

ity) in grooming proportions, progression, syntax, and bout duration distributions. Intra-

individual variability across three sessions was statistically similar to inter-individual

variation on any given day, suggesting that non-genetic factors account for a significant

proportion of grooming variability (Appendix C.13).

To further probe the sensory basis of within-individual variability, 10 Bristle-spGAL4-

1 flies (Bloomington Stock Center, RRID: BDSC 71032) were stimulated using opto-

genetic manipulation to induce anterior grooming (as in [111]). Figure 4.4B provides

ethograms from this experiment, with red bars indicating the two stimulation windows.

Even when sensory experience was controlled using optogenetic stimulation, flies exhib-

ited variability in their grooming response. Grooming stereotypy was quantified using the
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Figure 4.4: Within-individual grooming variability suggests non-genetic fac-
tors account for a significant portion of differences in behavior. A. Shown
are portions of ethograms from three Canton-S flies observed on consecutive days af-
ter dust irritant exposure. The qualitative differences in ethograms on consecutive
days indicate that non-genetic factors must account for some amount of within-in-
dividual grooming variability. B. Shown are ethograms of 10 Bristle-spGAL4-1 flies
([111]). Flies were optogenetically stimulated to induce anterior grooming in two
separate one-minute windows, indicated by the red bars. Between these windows,
flies still exhibit within-individual grooming variability even though the sensory ex-
perience is presumed to be more uniform than repeated dust exposure. C. Markov
chain entropy, a measure of grooming stereotypy, was calculated from syntax. Opto-
genetically stimulated flies (right) exhibited lower entropies, corresponding to a higher
degree of stereotypy, than dusted flies (left). However, optogenetically stimulated flies
exhibited differences in stereotypy between stimulation windows, implicating sources
of grooming variability beyond genetic and sensory influences.

entropy rate of the grooming syntax, represented as a first-order Markov chain. While the

entropy rate for optogenetically stimulated flies was lower than for dusted flies, indicat-

ing a higher degree of stereotypy, we nonetheless observed within-individual variability in

grooming stereotypy between stimulation windows. Figure 4.4C illustrates this finding,

as the differences in entropy between sessions for three example flies are highlighted using

red lines.

4.3 Discussion

Here, we analyzed the grooming behavior of 372 flies, including five different drosophilid

species and four common melanogaster stocks, to investigate the relationship between

genetic heterogeneity, variation, and variability in grooming behavior. Large genetic
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differences (species-level) correspond to identifiable differences in several grooming fea-

tures. Within melanogaster flies, stocks also exhibited variation in grooming features.

However, increased genetic heterogeneity did not correspond to increased behavioral vari-

ability. Analysis of 15 Canton-S flies recorded over consecutive days found no evidence for

individuality in grooming behavior, as all flies possessed highly similar grooming features

across all days.

Genetic influences of behavioral variation and variability

In a classic example of behavioral variation, fruit fly larvae expressing the rover and

sitter alleles of the foraging gene exhibit, respectively, greater or lesser propensities to

leave patches of food [104, 112, 103]. Several genes that affect fruit fly grooming behavior

have been identified in mutant screens [113], but the degree of normal variability due to

genetic factors has not been characterized.

Here, we identified significant inter-species variation in grooming syntax, suggesting

a genetic basis for group differences in grooming behavior. Some species differ from

melanogaster in their propensity to perform posterior grooming actions, providing an

avenue for future research directions aimed at exploring differences in posterior neuronal

circuitry and sensory physiology further.

We also identified differences in grooming behavior between commonly used melanog-

ster stock lines. Other work has identified differences in locomotor behavior between

ostensibly “standardized” melanogaster sub-strains [114], suggesting that within-species

genetic differences, perhaps introduced by founder effects or laboratory selection, may

impact behavioral phenotypes. Such considerations are important in designing and in-

terpreting experiments aimed at relating genetics to behavior [115].

We also examined whether greater genetic heterogeneity within a population corre-
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sponded to greater behavioral variability. The grooming syntax variability in a population

of melanogaster flies bred to maximize genetic diversity was statistically equivalent to

the variability of parent stocks and isogenic lines, suggesting that non-genetic factors

contribute significantly to grooming variability.

Variability also encompasses individuality in animal behavior, typically defined as a

trait-like feature that persists stably over several observations. Individuality has been

identified in fruit fly turning decisions [116], mouse roaming behavior [117], and bum-

blebee foraging behavior [118], among others [119, 120], indicating the importance of

considering within-individual variability, or the degree to which an individual’s behavior

varies in repeated trials.

Our analysis found no evidence for individuality in grooming, as Canton-S flies ex-

hibited similar degrees of within-individual variability and between-individual variation.

One explanation for this observation is that, within a species, genetic influences on groom-

ing behavior are outweighed by differences in sensory experience, which is controlled here

to the greatest extent possible using standardized experimental protocols but some dif-

ferences in sensory experience between trials is assumed to exist. Grooming variability

was also assessed in optogenetically-stimulated flies, which allowed for greater stimulus

standardization. However, optogenetically-stimulated flies exhibited non-trivial groom-

ing variability across trials, suggesting that other factors also contribute to grooming

variability.

Environmental and stochastic influences of behavioral variation

and variability

Environmental (or contextual) differences have long been considered a source of be-

havioral variation, visible most notably perhaps in the canonical “nature vs. nurture”
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paradigm of phenotypic differentiation. In Drosophila, environmental enrichment has

been shown to affect variability in several behaviors, including locomotion and photo-

tactic behaviors [121]. Limiting genetic diversity within a population, then, allows for

characterization of environmental and stochastic effects on behavior.

Comparing several grooming features between populations of melanogaster flies, in-

creasing genetic homogeneity did not decrease behavioral variability. This suggests

that grooming variability may be weakly under genetic control, but the influence of

genotype is likely outweighed by environmental and stochastic factors. A recent study

of melanogaster visual object orientation demonstrated that stochastic, developmental

asymmetries in dorsal cluster neuron projections to the medulla yield stable “personali-

ties” in this paradigm [120].

Differences in sensory experience and life history likely contributed to the variable

nature of grooming sequences within and between flies observed here. Even if sensory

experience were perfectly controlled, however, neural circuits in genetically identical or-

ganisms are not guaranteed to be identical due to developmental differences arising from

epigenetic factors, transcriptional variability, or post-translational regulation. Recently,

these stochastic effects, defined as non-heritable effects that cannot be predicted from

measurable variables, have been suggested to be important drivers of variability [122].

Studies of phototactic and thermotactic responses in Drosophila provide evidence that

a single genotype is subject to enough developmental stochasticity to produce different,

stable, non-heritable behavioral phenotypes [123].
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4.4 Materials and methods

Genetic stocks

Canton-S, Oregon-R, Berlin-K, and w1118 stocks were obtained from the Blooming-

ton Stock Center. Isogenic (more accurately, reduced genetic variability) stocks were

made by crossing single males to double-balanced stocks and then back-crossing males to

the double balancer stock to isolate single second and third chromosomes. Single pairs

were mated to reduce variability of X and IV. ∼ 2 independent isogenic lines from each

melanogaster stock were generated; note that many attempts to isogenize result in lethal-

ity, as anecdotally reported by colleagues. Maximum Variability stocks were obtained

by crossing each melanogaster strain to double balancers and then crossing the progeny

together and selecting against the balancers. This allowed combination of chromosomes

for all four strains. The progeny were allowed to interbreed for several generations to en-

able recombination in the females. Full cross schemes available on request. Drosophilid

species stocks were obtained from Tom Turner, UCSB, and the National Drosophila

Species Stock Center (https://www.drosophilaspecies.com/).

Data collection and processing

Grooming was induced and analyzed as described in Zhang et al. 2020 and Seeds et al.

2014 [111, 21]. Three chambers were used in fly dusting assay: dusting chamber (24 well

Corning tissue culture plate #3524), transfer chamber and recording chamber. Recording

chambers were coated with Insect-a-slip (BioQuip Products Cat#2871A) to discourage

wall-climbing and cleaned daily. Dust-induced grooming assays were performed in 21-

23. 4-7 day old male flies were anesthetized on ice and transferred to the middle four

wells of the transfer chamber. Flies were left in the transfer chamber for 15 minutes to
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recover. Approximately 5 mg Reactive Yellow 86 dust (Organic Dyestuffs Corporation

CAS 61951-86-8) was added into each of the 4 middle wells of dusting chamber. For

fly dusting, the transfer chamber was aligned with the dusting chamber. Flies were

tapped into the dusting chamber and shaken 10 times. After dusting, flies and dust were

transferred back into the transfer chamber. Transfer chamber was tapped against an

empty pipette tip box to remove extra dust. Dusted flies were then immediately tapped

into recording chamber for video recording. The entire dusting process was performed in

a WS-6 downflow hood. Approximately 10 individuals were recorded for each genotype.

30 Hz videos were recorded for 50,000 frames (27.78 min) with a DALSA Falcon2 color

4M camera. A white LED ring right was used for illumination.

Optogenetic stimulation protocol is replicated from [111]. Further details can be

found in Appendix C.

Videos were processed through the Automated Behavior Recognition System (ABRS,

[85]), trained on a classifier using Canton-S melanogaster flies and validated for accuracy

on other species, to generate ethograms. Grooming actions were described previously

([124]). ABRS was used to generate ethograms. Briefly, the raw video frames were

pre-processed to generate 3-channel spatial-temporal images (ST images). Features were

extracted in three timescales and saved into different channels of ST images: 1. raw frame;

2. difference between two frames; 3. spectral features extracted from a 0.5 sec window.

A convolutional network trained by ST images under different light conditions was then

used to label the behavior identified in each frame. A different network was trained for

classification of each species due to differences in body size and light conditions. All

networks achieved >70% validation accuracy, which is similar to the agreement between

human-annotated ethograms.
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Data analysis

All ethogram features were extracted using custom-written code in MATLAB 2019a.

Grooming progression vectors were generated for each fly by calculating the proportion of

each action in 10 non-overlapping windows (2.78 minutes each), yielding a 70-dimensional

vector for each fly (10 windows with 7 behavioral proportions). Grooming syntax was

defined as the first-order transition probabilities between actions. Syntax for each fly was

calculated as described in [108]. Bout duration distributions were generated as described

in [108], using a normalized histogram with 20 bins of equal width for each behavior.

Bin width was determined independently for grooming and non-grooming actions, as

standing and walking exhibit longer tailed distributions than grooming actions. Thus,

duration distribution vectors were 140-dimensional for each fly. Examples of progression,

syntax, and duration distribution vectors can be found in Appendix C.

Statistics for comparisons between grooming features were calculated using built-in

MATLAB functions. K-medoids clustering, t-SNE, and logistic regression classification

analysis were performed using built-in MATLAB functions (Appendix C).
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Chapter 5

Brain Network Reorganization Over

A Single Menstrual Cycle

5.1 Introduction

The application of network science techniques to the study of the human brain has

revealed a set of large-scale functional brain networks that meaningfully reorganize both

intrinsically and in response to external task demands [125]. One technique, dynamic

community detection (DCD), has emerged as a powerful tool for conceptualizing and

quantifying changes in mesoscale brain network connectivity patterns by identifying sets

of nodes (communities) with strong intra-community connections [126] to enable identi-

fication of communities that persist or change over time. DCD complements other sta-

tistical approaches used in fMRI data analysis by identifying when functionally coupled

brain regions undergo sufficiently large changes in connectivity to warrant re-assignment

to separate functional communities. Additionally, this method provides an interpretable

summary of whether strongly connected sets of brain regions undergo transient, but sig-

nificant, changes that could be missed when time-averaging data within and between
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sessions.

This method is particularly suited for examining relationships between brain dynam-

ics and physiological variables that vary over relatively short time scales, such as sex

hormone fluctuations over the human menstrual cycle. A typical cycle, occurring every

25-30 days, is characterized by significant rises in estradiol (∼12-fold) and progesterone

(∼ 800-fold), both of which are powerful neuromodulators that have a widespread in-

fluence on the central nervous system [127]. Converging evidence from animal studies

has established sex hormones’ influence on regions supporting higher-order cognition, in-

cluding the prefrontal cortex (PFC) and hippocampus [128, 129]. Within these regions,

fluctuations in estradiol enhance spinogenesis and synaptic plasticity while progesterone

largely abolishes this effect [130, 131]. Importantly, sex hormones are expressed broadly

throughout the cerebellum and cerebrum, suggesting that whole-brain effects might be

observed beyond the regions targeted in these studies.

Human neuroimaging studies have demonstrated that sex hormones influence brain

activity across broad regions of cortex [132, 133]. Additionally, a handful of studies have

demonstrated that menstrual cycle stage uniquely alters resting-state functional connec-

tivity (rs-fc) [134, 135, 136, 137]. However, these studies typically involve group-based or

sparse-sampling (2-4 time points) designs that are unable to capture transient day-to-day

relationships between sex hormones and functional brain dynamics, and this relatively

low temporal resolution has led to inconsistencies in the literature [138]. Therefore, new

approaches are needed that can address these spatial and temporal limitations, as doing

so will provide novel perspectives on human brain-hormone interactions.

Recently, Pritschet et al. applied a “dense sampling” approach [139, 140] to a

naturally-cycling female who underwent 30 consecutive days of brain imaging and venipunc-

ture to capture rs-fc variability over a complete menstrual cycle (Figure 5.1). The authors

found day-to-day fluctuations in estradiol to be associated with widespread increases in
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Figure 5.1: 28andMe dataset. A. Subject LP (naturally cycling female, age 23)
participated in a month-long “dense sampling” experimental protocol to provide a
multimodal, longitudinal dataset referred to as 28andMe [143]. The subject com-
pleted daily assessments of diet, mood, and sleep, provided blood for assessment of
serum hormone concentrations, and underwent a 10 minute resting-state fMRI scan.
B. For each resting-state scan, functional connectivity matrices were constructed by
calculating the pairwise mean magnitude-squared coherence between each region from
the entire 10-minute scan. The result is a 415 × 415 × 30 data structure, in which
each entry indicates the coherence between two nodes on a given day. C. The brain
was parcellated into 415 regions and regions were assigned to one of nine networks
based on previously identified anatomical and functional associations [144]. Colors
indicate regional network membership.

rs-fc across the whole brain, with progesterone showing an opposite, negative relationship.

Using time series modeling and graph theoretical analysis, they also found that estradiol

drives variation in topological network states, specifically within-network connectivity

(global efficiency) of default mode and dorsal attention networks that encompass regions

rich with estrogen receptors (ER). These findings have important implications for the

field of network neuroscience where dense-sampling, deep-phenotyping approaches have

emerged to aid in understanding sources of intra/inter-individual variability in functional

brain networks over days, weeks, months, and years [140, 141, 142].

Pritschet and colleagues’ approach identified node-averaged trends in rs-fc changes

within canonical functional networks across the cycle, but questions remain regarding

whether and where functional reorganization takes place between large-scale networks.

As changes in edge weight can result in the formation of functional “communities” not
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captured by traditional rs-fc methods, complementary approaches are needed to char-

acterize trends in brain connectivity at intermediate spatial and temporal scales. Ex-

amining mesoscale networks has further revealed fundamental principles of functional

brain networks, such as the modular, integrated architecture underpinning flexible task

performance [145, 146]. Additionally, a better understanding of mesoscale connectivity

may provide an avenue for improving personalized medicine by increasing the efficacy of

targeted therapeutic interventions [147].

Here, we applied DCD to examine whole-brain dynamics in relation to sex hormone

fluctuations across a menstrual cycle. Our results reveal that a stable set of “core”

communities persist over the course of a menstrual cycle, primarily consisting of nodes

belonging to distinct a priori defined functional-anatomical networks, namely visual, so-

matomotor, attention, default mode, and control networks. Though these core commu-

nities were largely stable, nodes from limbic, subcortical, attention, and control networks

changed community affiliation (referred to as flexibility) at higher rates than expected

compared to a null hypothesis. DCD also identified a transient split of the DMN core

into two smaller subcommunities concurrent with peaks in estradiol, luteinizing hormone

(LH), and follicle stimulating hormone (FSH) levels defining the ovulatory window. This

community split was driven by strong increases of within-network integration between

prefrontal nodes of the DMN, which subsided immediately after the ovulatory window.

The default mode, temporoparietal, limbic, and subcortical networks also exhibited sig-

nificantly increased flexibility during ovulation, suggesting a role for estradiol, LH, and

FSH in regulating localized, temporary changes in regional connectivity patterns. Taken

together, while a large degree of functional brain network stability was observed across

the menstrual cycle, peaks in sex hormones over the ovulatory window resulted in tem-

porary brain network reorganization, suggesting sex hormones may have the ability to

rapidly modulate rs-fc on shorter time scales than previously documented.
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5.2 Results

A single female underwent brain imaging and venipuncture for 30 consecutive days.

For each session, the brain was parcellated into 400 cortical regions from the Schaefer

atlas and 15 subcortical regions from the Harvard-Oxford atlas (Figure 5.1C) and 415

x 415 functional association matrices were constructed via magnitude-squared coherence

[144]. Dynamic community detection was applied to this data, revealing a stable set

of communities that persist over the course of a menstrual cycle. However, significant

transient changes in community structure occurred within the default mode network

during the ovulatory window concomitant with peaks in estradiol, luteinizing hormone,

and follicle stimulating hormone.

Stable functional cores persisted over the course of one menstrual

cycle

The degree to which functional brain network connectivity changes over the course

of a human menstrual cycle has yet to be fully characterized. Here, dynamic community

detection (also referred to as multislice or multilayer modularity maximization [148])

consistently identified four functional communities that were largely stable in a naturally

cycling female over 30 consecutive days. In this context, “community” refers to a set

of nodes whose intra-set connections are significantly stronger than would be expected

when compared to an appropriate null model. A representative example of this consensus

temporal community structure (the community designation that best matches the output

of 50 runs of the non-deterministic community detection algorithm) is shown in Figure

5.2C. This structure was conserved over a range of community detection parameter values

that, roughly speaking, must be defined to set the “spatial” and “temporal” resolutions

of community identification (see Methods for detailed description). Across all temporal
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resolutions considered here, consensus community partitions with a spatial resolution

parameter 0.975 ≤ γ ≤ 1.01 possessed exactly four communities.

For the standard parameter choice (temporal and spatial resolution parameters both

set to 1), the four identified communities had distinct compositional characteristics.

These communities were largely bilaterally symmetric, with analogous brain regions in

each hemisphere assigned to the same community 71% of the time. The four communi-

ties correspond roughly to a visual core, a somatomotor-attention core, a default mode

core, and a control core. The compositions of these four communities are shown in Figure

5.3A. The composition value was calculated by summing the total number of instances in

which a node belonging to an a priori functional-anatomical network [144] also belonged

to the community identified in the consensus community partition.

The core communities identified here were named based on the highest representation

of nodes belonging to a priori functional networks. The visual core was 81% composed of

visual network nodes and had an average size of 51.5 nodes per day. The somato-attention

core was composed of 52% somatomotor, 27% salience-ventral attention, and 13% dorsal

attention network nodes and had an average size of 134.1 nodes per day. The default mode

core consisted of 56% DMN nodes and approximately 10% of each control, limbic, and

temporoparietal network nodes and contained 132.9 nodes on average per day. Finally,

the control core consisted of 48% control and 28% dorsal attention network nodes and

contained 96.5 nodes on average per day. Importantly, for all parameter combinations

in which four communities were detected, the composition of these communities was

consistent (Appendix D.2). These community partitions were also stable across the entire

menstrual cycle. Specifically, 315 of the 415 nodes (75.9%) did not change community

affiliation across the 30-day experiment.

Taken together, these results suggest the presence of a stable solution to the dynamic

community detection algorithm and a reliable coarse-grained community architecture
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Figure 5.2: Dynamic community detection identified changing modular
structure over time at multiple scales. A. A toy network example illustrates
the dynamic community detection algorithm. For each time point, every node is as-
signed to a community so as to maximize the strength of intra-community connections
relative to inter-community links while also taking community assignments over time
into account (Eq. 1). In this case, three communities are identified and denoted
by color. B. To assess temporal structure in the 28andMe resting-state fMRI data,
community assignments were calculated for a range of parameter values. In this pro-
cedure, two parameters, ω and γ, specify the temporal and spatial scales of analysis,
respectively. After performing 50 runs of the community detection algorithm for each
parameter combination, the statistical significance of each community partition rela-
tive to a random null model was calculated. The color for each entry in the heat map
indicates the proportion of communities at that parameter combination which are
significant at the p < .05 level. C. Consensus partition structure varied according to
the choice of resolution parameters. The example network community structure (left)
changes at each time point, with node community assignment given by color on the
y-axis and time indicated on the x-axis. For three different parameter combinations
(outlined in red, blue, and green, respectively), the consensus partitions varied in the
total number of communities identified, ranging from four to fifteen, with more com-
munities identified when the temporal resolution was low and the spatial resolution
was high.
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Figure 5.3: Dynamic community detection uncovered stable cores across a
complete menstrual cycle. A. Four core communities (y-axis) were consistently
identified in the 28andMe dataset across spatial and temporal resolution parameter
values. For these parameter combinations, the compositions of the visual, default
mode, control, and somatomotor-attention network cores are shown as a heat map,
with color corresponding to the percentage of nodes in a community belonging to a
functional-anatomical network. B. The four networks that constituted the hubs of the
core communities possessed stable pairwise connectivity between nodes across days.
Scatter plots show the day-to-day correspondence between edge weights for all of the
nodes of the somatomotor, default mode, temporoparietal, and visual networks on
days t and t + 1. These network edges had Pearson correlation coefficients of 0.379,
0.573, 0.590, and 0.538, respectively. C. The subcortical, limbic, and dorsal attention
networks exhibited the highest median node flexibility. Top: Normalized flexibility
values for each node over the entire cycle are plotted as points, with color indicating
network affiliation. Thick horizontal lines on box plots indicate median values. A flex-
ibility value of 1 indicates that a node changes community assignment at each possible
time point, whereas a value of 0 indicates that the node never changes community
assignment. Bottom: A 95% cutoff value is calculated using the flexibility values for
each node over all 50 community detection runs. For each functional-anatomical net-
work, the blue bar indicates the number of nodes belonging to that network which
have flexibility values above the cutoff threshold. The red bars indicate the propor-
tion of nodes in each network that surpass the cutoff value (i.e. the value for each
blue bar is normalized by the number of nodes in the network). Once again, limbic,
subcortical, dorsal attention, and control networks contained the highest proportion
of highly flexible nodes. 95
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present in the data. In several functional-anatomical networks, there was little to no

modification of network architecture over time; for instance, greater than 85% of nodes

in each of the somatomotor, default mode, temporoparietal, and visual networks did not

change community affiliation over the entire menstrual cycle. The strong day-to-day

correlations between edge weights in these networks (Figure 5.3B) reinforce the existence

of these stable cores.

Functional-anatomical networks exhibited distinct patterns of

flexibility

Though network community structure was stable over a complete menstrual cycle

when classifying nodes into four communities, specific nodes did change community affil-

iation at levels above chance when modifying the sensitivity of the community detection

algorithm. Specifically, when γ, the spatial resolution parameter, was increased, the dy-

namic community detection algorithm subdivided the four core communities into smaller

communities, providing a finer-grained classification of subnetwork structure. At an in-

termediate parameter combination (ω = 1, γ = 1.05), nine communities significant at

the p < .05 level were identified over the course of the experiment, as visualized in Figure

5.2C (blue outlines). The subsequent analysis uses community partitions at this parame-

ter combination, but the results were consistent across a range of neighboring parameter

values (Appendix D.3).

This “higher-resolution” partition revealed trends in functional organization over time

that were not observable with coarser partitions. First, inspecting the median flexibility

value, or the proportion of times a node changed community affiliation out of the total

possible number of changes, demonstrates that functional-anatomical networks possessed

distinct flexibility distributions (Figure 5.3C, top). The limbic, subcortical, dorsal atten-
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tion, and control networks were overrepresented in terms of highly flexible nodes relative

to a null hypothesis (Figure 5.3C, bottom).

Fine-scale community reorganization occurred on experiment day 23 and persisted

until day 25, as illustrated in Figure 5.4A. Across these days, 62 nodes belonging to the

default mode core community split from the default mode core community to transiently

form a small, strongly connected community. This was the only large-scale reorganiza-

tion event detected during the experiment, as indicated by the nodal flexibility values

illustrated in Figure 5.4B. Global flexibility was significantly higher (Wilcoxon rank-sum

test, p < .05) during ovulation (days 23-25) than during follicular or luteal phases (days

11-22 and 26-10, respectively). Specifically, global mean flexibility during the ovulatory

window was 0.142, whereas flexibility during follicular and luteal phases was 0.049 and

0.050, respectively.

Notably, 31 (50%) of the nodes in the community that emerged during the ovulatory

window belonged to the DMN, 12 nodes (19%) belonged to the temporoparietal network,

and 7 (11%) were subcortical regions (as defined by functional - anatomical atlases [144,

149], Figure 5.5A). The functional-anatomical network memberships of the node-node

pairs exhibiting the strongest increases in coherence (top 5%) indicated that enhanced

connectivity between DMN nodes drove this community split, as opposed to DMN nodes

being “converted” to a new community via increased connectivity to non-DMN regions

(Appendix D.8). More specifically, nodes within prefrontal regions belonging to DMN

subnetwork B drove this reorganization event, as 118 of the 371 (32%) strongest increases

in coherence occurred between nodes in this subnetwork.
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Figure 5.4: Fine-grain community partitioning revealed a bifurcation in the
default mode core during ovulation. A. When the spatial resolution parameter
(which alters the size of communities identified by dynamic community detection) was
increased from the standard value, the four core communities identified previously were
subdivided into smaller subcommunities (reproduced from Figure 5.2C). Here, a split
in the default mode core community (light blue) appeared at day 22 (red-orange),
concomitant with ovulation and a spike in sex hormones. This community (red)
rejoined the default mode core on day 25. For illustrative purposes, only the consensus
partition for one parameter value is shown, but this trend was consistent across nearby
parameter combinations (Appendix D.3). B. Shown are flexibility values for each node
by menstrual cycle phase. Color in each region indicates flexibility value, with hotter
colors indicating higher values. The following days of the experiment corresponded to
the phases of the menstrual cycle: follicular, days 11-22; ovulatory, days 23-25; luteal,
days 1-10 and 26-30. Flexibility values are noticeably higher in many regions from the
temporoparietal, limbic, subcortical, and default mode networks during the ovulatory
phase compared to the follicular and luteal phases.
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Figure 5.5: Nodes in a default mode subnetwork drove community bifurca-
tion via strong increases in coherence. A. The newly formed functional commu-
nity on day 23 and 24 contained 62 nodes that belonged to the community on both
days. The functional-anatomical network and subnetwork affiliations of these nodes
are shown on the left and right, respectively. The new community contained 31 DMN
nodes (50%), 12 temporoparietal nodes (19%), and 7 subcortical nodes (11%). B. The
edges that exhibited large weight changes from day 22 to day 23 (top 5% of changes,
left) were predominantly within-network connections between DMN network nodes
(118/371). Examining subnetwork structure reveals that all of the strongly enhanced
connections between nodes in the DMN belonged to subnetwork B, indicating that
this subnetwork, which consists of regions in prefrontal cortex, drove the default mode
core community bifurcation at ovulation.
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Network reorganization timing coincided with peaks in hormone

levels during ovulation

Mean flexibility of each network over a 5-day sliding window is depicted in Figure

5.6A. The DMN, temporoparietal, subcortical, and limbic networks exhibited peaks in

flexibility at days 23 and 24 of the experiment, coincident with the peaks in estradiol,

LH, and FSH which are a hallmark signals of the ovulatory window (Figure 5.6B). To

determine whether the bifurcation of the default mode core community was significantly

associated with sex hormones, we compared functional-anatomical network flexibility

values to serum hormone levels.

To assess the temporal relationship between network flexibility values and sex hor-

mones, cross-covariance structure between each time series was calculated. The control,

default mode, limbic, salience/ventral attention, subcortical, and temporoparietal net-

works had maximum cross-variance values greater than 0.6 (where maximum value of

1 indicates fully shared covariance structure and 0 indicates no covariance) with estra-

diol, which were significant when compared to cross-covariance values for a null model of

time-permuted estradiol levels (Bonferroni-corrected at p < .05). Each network except

for the control and attention networks had maximum cross-variance values greater than

0.6 with LH as well (permutation test, p < .05 after Bonferroni correction). In each

case, maximum cross-covariance values occurred at lags less than 2 days and no other

significant cross-covariance structure existed, indicating that most functional communi-

ties exhibited changes in composition concurrent with significant rises in estradiol and

LH levels.
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Figure 5.6: Community reorganization was temporally localized to ovula-
tion. Changes in community assignment (A) were coordinated and closely tracked
the timing of spikes in serum hormone concentrations (B). Prior to day 20 of the ex-
periment, all networks except for the subcortical network exhibited low baseline rates
of flexibility (mean = 0.04). However, several networks exhibited sharp increases in
flexibility between days 20 and 26, indicating brain-wide functional reorganization
during the ovulatory window. The pattern of flexibility shown here corresponds to
the network reorganization observed for dynamic community detection performed with
the parameter combination ω = 1, γ = 1.05 (blue outline in Figure 5.2). To note,
flexibility is calculated over a 5 day sliding window.
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5.3 Discussion

In this study, we applied DCD to data from a densely sampled female who under-

went 30 consecutive days of brain imaging and venipuncture to investigate the extent of

intrinsic spatiotemporal functional reorganization over a menstrual cycle. We identified

four stable community cores across the cycle, represented here as visual, somatomotor,

default mode, and control network cores; interestingly, the exception to this stability

occurred simultaneously with peaks in estradiol, LH and FSH. During this event, we

observed a transient reorganization of the default mode core into a newly formed com-

munity, as well as increases in nodal flexibility among prefrontal, limbic, and subcortical

nodes. Taken together, our results suggest that the interplay between the nervous and

endocrine systems over a menstrual cycle result in temporary, localized patterns of brain

network reorganization occurring during ovulation. These results highlight DCD as a

new avenue for investigating the intricate relationship between sex hormones and human

brain dynamics.

Dynamic community detection characterizes network-specific func-

tional stability across a menstrual cycle

Dense-sampling, deep-phenotyping studies offer new ways to investigate intra/inter-

individual variability in functional brain networks by identifying features of rs-fc that

are stable traits within an individual or change in conjunction with biological factors

and state-dependent variables [140, 142]. Recent dense-sampling studies have shown

that frontoparietal regions/networks exhibit high degrees of intra-individual rs-fc stabil-

ity while also being characteristically unique across individuals, suggesting that these

higher-order regions may be especially critical for uncovering individual differences in

brain function and improving applications into personalized medicine [150, 142]. Our
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findings provide new insight towards the ongoing explorations into stability within func-

tional brain networks. In this dataset, frontal control and DMN nodes exhibited high

day-to-day connection weight correlations and low propensity to change functional com-

munity membership over the experiment (Figure 5.3), while, on average, somatomotor,

temporoparietal, visual, and salience/ventral attention networks were also largely stable.

Therefore, our results align with previous research suggesting both a high degree of net-

work stability in resting-state networks over a menstrual cycle[138] and in individuals

over time [140, 142, 150].

In conjunction with this observed stability, network-specific changes in functional

community organization were also identified. Control subnetwork C, encompassing pos-

terior cingulate cortex/precuneus regions, was the most flexible functional subnetwork

identified, with 10 of the 12 nodes exhibiting significantly higher than expected flexibil-

ity (i.e. how often a node switches community affiliation, see Appendix D.7). Limbic

and subcortical networks displayed intermediate levels of flexibility. Regions from these

systems receive input from and project to many cortical areas and are implicated in

functions such as sensorimotor integration via the cortico-basal ganglia-thalamo-cortical

loop [151]; therefore, the high degree of flexibility observed here may reflect the tendency

of these systems to serve as relays between functionally segregated communities.

Particular changes in rs-fc were significantly related to the sharp rises in sex hormones

seen across the ovulatory window. During this time, we observed a spatially-specific

transient reorganization of the DMN, during which nodes from the temporoparietal,

limbic, subcortical, and default mode networks split from the default mode core to form

a short-lived community (2 days) before rejoining the original core community. Using

time-lagged analyses, Pritschet and colleagues previously reported that within-network

connectivity of the DMN was regulated by previous states of estradiol [143]. Here, we

expand on this finding and identify a subnetwork of the DMN that is likely driving this
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reorganization. Notably, regions constituting this new community are located in PFC, an

area exquisitely sensitive to sex steroid hormones [152] where, for instance, nearly 50% of

pyramidal neurons in the dorsolateral PFC (dlPFC) express ER-alpha [128]. Together,

this presents the possibility that endocrine signaling may, in part, regulate intrinsic brain

dynamics within the frontal cortex.

Neurobiological interpretations of sex hormones on PFC function

Cross-species investigations have established estrogen’s ability to shape the PFC

[153, 154, 152, 133, 155]. In rodents, estradiol increases fast-spiking interneuron excitabil-

ity in deep cortical layers [156]; in non-human primates, estradiol treatment increases

dendritic spine density in dlPFC neurons [157] and this potentiation is observed only if

the treatment is administered in the typical cyclical pattern observed across a menstrual

cycle. In parallel, human brain imaging studies have implicated estradiol in enhancing

the efficiency of PFC-based circuits. In cycling women performing a working memory

task, PFC activity is exaggerated under low estradiol conditions and reduced under

high estradiol conditions [133]. Similarly, when estradiol declines across the menopausal

transition, working-memory related PFC activity becomes more exaggerated despite no

differences in task performance [155]. Examining rs-fc across the cycle, Petersen and col-

leagues found that women in the late follicular stage (near ovulation) showed increased

coherence within the default mode and executive control networks compared to those in

luteal stages [134]. Our findings extend this body of work by demonstrating that dlPFC

nodal flexibility tracks significantly with sharp increases in estradiol and LH across the

cycle, which may support the brain’s ability to reorganize at the mesoscale level.

This tight temporal coupling highlights the potential for a mechanistic link between

endocrine signaling and large-scale network reorganization. While future multimodal
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brain imaging studies are needed to establish this link, one possible neurobiological mech-

anism of action may be through estradiol’s interaction with the dopaminergic system.

For instance, the PFC is innervated by midbrain dopaminergic neurons that enhance the

signal-to-noise ratio of PFC pyramidal neurons and drives cortical efficiency [158]. In

turn, estradiol enhances dopamine release and modifies the basal firing rate of dopamin-

ergic neurons, providing one explanation for how alterations in estradiol could impact

cortical efficiency.

Implications for cognition and disease

Several studies have begun utilizing DCD to relate “task-free” and “task-based” func-

tional network reorganization to cognitive performance. High levels of nodal flexibility

have been associated with enhanced performance on working memory tasks [159], im-

proved learning of a motor task [160], and visual cue learning [161]. In each study,

flexibility was associated with performance in regions known to underlie each task, im-

plicating frontal, motor, and visual cortical cortices and subcortical structures such as

thalamus and striatum. Notably, similar associations were not observable when analyzing

these experiments through region-based activation patterns alone, indicating that tem-

poral organization of brain-wide functional activity (e.g. dynamic community structure)

may provide important information related to cognitive functioning that might be missed

with traditional analyses.

Indeed, Mattar et al. used DCD to characterize cognitive systems like those defined

here [144] in a 64-task battery, demonstrating that functional networks fluidly reconfigure

to form new cohesive communities under different task settings [162]. Similar work has

revealed that primary motor, visual, and auditory regions typically participate in a single

or a small number of functional networks during various tasks, whereas “hub” regions in
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frontal cortex, including precuneus and posterior cingulate gyrus participate in multiple

functional networks [163]. Together, these studies indicate that network-specific temporal

reconfiguration of functional connectivity has implications for a wide variety of cognitive

functions. While whole-brain activity patterns during task-free states differ from that of

goal-directed cognitive states, the capacity for the brain to fluctuate between integrated

and segregated (modular) states at rest allows for rapid and efficient transitions to various

task states [164, 165, 166]. Here, we leverage these techniques to characterize the brain’s

response to both subtle and pronounced hormonal changes typical of a menstrual cycle.

Highly flexible nodes were identified in precuneus and posterior cingulate gyrus, with

changes in community affiliation occurring simultaneously with sharp peaks in estradiol

and LH levels, raising the possibility that hormonal fluctuations could also be associated

with task-based network reorganization. For instance, if high levels of estradiol increase

nodal flexibility among hub regions in the PFC, one would predict that performance on

PFC-dependent tasks will improve. Further, pregnancy—a period of profound hormonal

change—leads to long-lasting gray matter reductions in regions within the default mode

network [167]. Therefore, future work examining whether task-based functional brain

networks undergo transient changes in flexibility and community structure both across

the menstrual cycle and during other hormonal transition periods, and whether this

impacts cognitive performance, will be imperative.

Examining how large-scale brain networks are disrupted between healthy and patient

populations may enhance our understanding of neurological conditions [168]. Notable

intrinsic connectivity differences within the DMN are observed among individuals with

depression [169] and Alzheimer’s disease [170] — two conditions that display a sex-skewed

prevalence towards women [171]. Recent studies have applied DCD methods to charac-

terize functional brain network reconfigurations in different disease states: region-specific

flexibility at rest has been linked to symptom severity in autism spectrum disorder [172]
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and a recent investigation used DCD to associate pronounced community reorganization

during seizures with poorer surgical outcomes [173]. Here, using similar methods, we

demonstrate that high estradiol days are associated with significant reorganization of the

default mode network and increased flexibility of several brain networks. Understand-

ing the relationship between brain network reconfiguration (time-varying communities)

and the endocrine system (dynamic fluctuations in sex hormones) may offer new ways

to understand complex neurological conditions, especially those with pronounced sex

differences in disease prevalence.

Limitations and future directions

The following limitations should be taken into consideration. First, this study in-

volved densely sampling a single female over one complete menstrual cycle, hindering

our ability to generalize these findings to other individuals. Therefore, it is critical for

this approach to be extended to a larger and more diverse set of women to establish the

consistency of these results while taking individual differences into consideration. Sec-

ond, we used a well-established group-based atlas to mitigate the limitations inherent

to a single-subject design and improve generalizability [144]. However, recent work has

demonstrated that group-based atlases can lead to loss in individual-level specificity and

overlook meaningful spatial reconfigurations in parcellations themselves [174]. Future

work using an individual-derived atlas is needed to confirm whether these results are

stable across various parcellation applications. Furthermore, an ongoing debate in net-

work neuroscience surrounds test-retest reliability and what constitutes a “substantial”

amount of data per individual. While some studies suggest that large amounts of data

(> 20 minutes) is needed [142], others contend that shorter durations (5-15 minutes) of

sampling is sufficient to achieve reliability [175, 141]. Repeating this experiment under
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longer scanning durations (>10 minutes per day) will be critical for exploring the de-

gree of network stability across the menstrual cycle. Finally, this work only considers

network reconfiguration across multiple sessions. Due to the aforementioned concerns

about test-retest reliability when using short rs-fc windows for analysis and our sample

size of N = 1, we opted not to examine within-session reorganization. However, previous

studies have used DCD methods to examine flexibility on shorter time scales [159, 176],

so extending this experimental protocol to a larger sample could allow for future analysis

of within-session network reorganization.

5.4 Conclusion

In sum, we demonstrate that resting-state functional connectivity is largely stable

within an individual over the course of a complete menstrual cycle. The exception to

this stability occurs around the ovulatory window, during which peaks in sex hormones

result in temporary patterns of brain network reorganization largely localized within

areas of the default mode network. Historically, brain-level phenomena resulting from

hormone fluctuations have been treated as an unwanted source of variance in population

studies and, consequently, studies of this relationship are sparse and underpowered. This

work demonstrates that dynamic network methods can reveal important, transient effects

of sex hormones that may be overlooked by traditional approaches and provides a novel

template for examining the nature of human brain-endocrine relationships.

108



Brain Network Reorganization Over A Single Menstrual Cycle Chapter 5

5.5 Methods

28andMe experimental protocol

Data was collected and preprocessed as reported in [143]; methods briefly reproduced

here. The participant was a right-handed Caucasian female, aged 23 years for duration

of the study. The participant had no history of neuropsychiatric diagnosis, endocrine

disorders, or prior head trauma. She had a history of regular menstrual cycles (no missed

periods, cycle occurring every 26-28 days) and had not taken hormone-based medication

in the 12 months prior to the study. The participant gave written informed consent and

the study was approved by the University of California, Santa Barbara Human Subjects

Committee.

The participant underwent daily testing for 30 consecutive days, with the first test

session determined independently of cycle stage for maximal blindness to hormone status.

The participant began each test session with a daily questionnaire (9:00am) followed

by a time-locked blood sample collection 10:00am (±30 min). Endocrine samples were

collected, at minimum, after two hours of no food or drink consumption (excluding water).

This was followed by a one-hour MRI session (11:00am) consisting of structural and

functional MRI sequences. To note, the participant refrained from consuming caffeinated

beverages before each test session.

A licensed phlebotomist inserted a saline-lock intravenous line into the dominant or

non-dominant hand or forearm daily to evaluate hypothalamic-pituitary-gonadal axis

hormones, including serum levels of gonadal hormones (17β-estradiol, progesterone and

testosterone) and the pituitary gonadotropins luteinizing hormone (LH) and follicle stim-

ulating hormone (FSH). One 10cc mL blood sample was collected in a vacutainer SST

(BD Diagnostic Systems) each session. The sample clotted at room temperature for 45

min. until centrifugation (2,000 g for 10 minutes) and was then aliquoted into three 1
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ml microtubes. Serum samples were stored at -20 C until assayed. Serum concentrations

were determined via liquid chromatography-mass spectrometry (for all steroid hormones)

and immunoassay (for all gonadotropins) at the Brigham and Women-s Hospital Research

Assay Core.

fMRI data acquisition and preprocessing

The participant underwent a daily magnetic resonance imaging scan on a Siemens

3T Prisma scanner equipped with a 64-channel phased-array head coil. First, high-

resolution anatomical scans were acquired using a T1-weighted magnetization prepared

rapid gradient echo (MPRAGE) sequence (TR = 2500 ms, TE = 2.31 ms, TI = 934 ms,

flip angle = 7°; 0.8 mm thickness) followed by a gradient echo fieldmap (TR = 758 ms,

TE1 = 4.92 ms, TE2 = 7.38 ms, flip angle = 60°). Next, the participant completed a

10-minute resting-state fMRI scan using a T2 -weighted multiband echo-planar imaging

(EPI) sequence sensitive 468 to the blood oxygenation level-dependent (BOLD) contrast

(TR = 720 ms, TE = 37 ms, flip angle = 56°, multiband factor = 8; 72 oblique slices,

voxel size = 2 mm). In an effort to minimize motion, the head was secured with a custom,

3D-printed foam head case (https://caseforge.co/) (days 8-30 of Study 1). Overall motion

(mean framewise displacement) was negligible, with fewer than 130 microns of motion

on average each day.

Initial preprocessing was performed using the Statistical Parametric Mapping 12 soft-

ware (SPM12, Wellcome Trust Centre for Neuroimaging, London) in MATLAB. Func-

tional data were realigned and unwarped to correct for head motion and the mean motion-

corrected image was coregistered to the high-resolution anatomical image. All scans were

then registered to a subject-specific anatomical template created using Advanced Nor-

malization Tools (ANTs) multivariate template construction. A 5 mm full-width at
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half-maximum (FWHM) isotropic Gaussian kernel was subsequently applied to smooth

the functional data. Further preparation for resting-state functional connectivity was

implemented using in-house MATLAB scripts. Global signal scaling (median = 1,000)

was applied to account for fluctuations in signal intensity across space and time, and

voxelwise timeseries were linearly detrended. Residual BOLD signal from each voxel was

extracted after removing the effects of head motion and five physiological noise compo-

nents (CSF + white matter signal). Motion was modeled using a Volterra expansion of

translational/rotational motion parameters, accounting for autoregressive and nonlinear

effects of head motion on the BOLD signal. All nuisance regressors were detrended to

match the BOLD timeseries.

Functional network nodes were defined based on a 400-region cortical parcellation and

15 regions from the Harvard-Oxford subcortical atlas. For each day, a summary time-

course was extracted per node by taking the first eigenvariate across functional volumes.

These regional timeseries were then decomposed into several frequency bands using a

maximal overlap discrete wavelet transform. Low-frequency fluctuations in wavelets 3-6

(0.01-0.17 Hz) were selected for subsequent connectivity analyses. Finally, we estimated

the spectral association between regional timeseries using magnitude-squared coherence:

this yielded a 415 x 415 functional association matrix each day, whose elements indicated

the strength of functional connectivity between all pairs of nodes (FDR-thresholded at q

< .05).

Dynamic community detection and analysis

A multi-layer tensor (415 x 415 x 30) was constructed from the association matrices

described above for network analysis. Each layer corresponded to the strictly positive,

weighted, FDR-thresholded rs-fc association matrix for the corresponding day of the
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experiment. Interlayer links were added only between adjacent layers. Communities in

resting-state connectivity were identified by maximizing multislice modularity, given by

Q =
1

2µ

∑
ijlr

((Aijl − γl
kilkjl
2ml

δlr + δijωjlr)δ(gil, gjr), (5.1)

where µ is the total edge weight in the network, i and j index nodes in slices l and r,

A is the adjacency matrix containing edge weights between nodes and slices, γ is the

structural resolution parameter, kil is the strength of node i in slice l, ml is the total

nodal strength in slice l, δ is the Kronecker delta, ω is the temporal resolution parameter,

and g is the community assignment index [148].

Community assignments that maximize modularity were determined 150 times over a

grid of parameter values (γ,ω) = [.97, 1.07]x[.8, 1.5] using the genlouvain function from

Jeub et al. in MATLAB 2019a [177]. From these community assignments, the consensus

partition for each parameter combination was determined using the consensus similarity

function from the Network Connectivity Toolbox (NCT, http://commdetect.weebly.com/).

Node flexibility is defined as the proportion of times a node changes community

assignment out of all possible opportunities to change its assignment. Thus, a flexibility

value of 1 indicates that a node changes community membership at every time step

and a value of 0 indicates that it never changes communities. Partition significance,

node flexibility, and persistence were also calculated using functions from the NCT [160].

Cross-covariance values were calculated and statistical tests were performed using built-in

MATLAB functions.

Head motion was low (< 220 microns), not significantly associated with hormone

concentrations (all pairwise Pearson correlations > .05 after Bonferroni correction), and

was nearly identical between days 20 and 24 of the experiment (when reorganization
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occurred), suggesting that head motion is not a confounding factor when considering

community reconfiguration. On the day of the experiment with the fewest connections

(day 26), the network had an edge density of 0.9317 (i.e. 93.17% of possible edges have

non-zero values) and the median density was 0.9713. This represents a 4% difference in

density and density was not significantly correlated with hormone levels, so we do not

believe the community detection algorithm was biased by disparities in edge density.
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Concluding Remarks

Here, a diverse set of neuroscientific systems were analyzed using tools from network

science, statistics, and computational ethology. In Chapter 2, neuronal cultures in vitro

were demonstrated to develop stereotyped activity patterns in the absence of stimula-

tion or reinforcement. Several advances in technology and experimental protocols would

provide avenues for building upon this work. First, recording apparatuses that allow

for greater spatial resolution (such as CMOS arrays or optical recording methods) will

improve the reliability and granularity of the results reported here, as one major concern

with this work is that the currently used MEA technology severely undersamples the

total number of neurons present in the experiment. Next, application of spike sorting

techniques would likely improve these results by characterizing trajectories in terms of

individual neuronal firing rates rather than summed electrode activity. As spatial reso-

lution of recording techniques is increased, this step will be increasingly necessary, since

densely packed electrodes are more likely to pick up signal from multiple neurons concur-

rently. Finally, development and implementation of technologies that can stimulate or

ablate the activity of sets of neurons would provide finer control over neuronal firing ac-

tivity, allowing researchers to attempt to construct, modify, or “delete” activity patterns
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from the repertoire. Such developments would have implications for models of learning

and memory and further illuminate the capacity of in vitro cultures to serve as useful

model systems.

In Chapters 3 and 4, Drosophila grooming behavior was characterized, revealing both

conserved syntactic structure and significant phenotypic differences within and between

species. Going forward, careful genomic and transcriptomic assessment of Drosophila

populations could identify particular sets of genes implicated in behavioral differences;

this work uses only approximate genetic distance as a measure of genotypic distance,

so more rigorous quantification would enhance the results presented here. In a similar

vein, cross-species circuit tracing comparisons could reveal the structural basis for the

observed differences in grooming behavior by identifying differences in sensory circuit

architecture, for example. More realistically, large-scale experiments utilizing targeted

optogenetic stimulation could solidify these results by reducing sensory noise, providing

a better estimate of the contribution of non-sensory factors to grooming behavior.

In Chapter 5, transient human functional brain network reorganization was linked to

hormonal fluctuations during the menstrual cycle in a single subject. Most obviously,

this analysis would be bolstered by increased sample size, sensitivity analysis across

brain parcellation schemes, and extension to multiple menstrual cycles within the same

subject. Additionally, analysis of task-based fMRI would provide insight into whether

the observed resting-state changes are present in other contexts across the menstrual

cycle. In general, widespread adoption of dense-sampling methodology in conjunction

with dynamic network methods promises to illuminate meaningful relationships between

the brain and other physiological systems.

115



Appendix A

This appendix contains additional figures to support the work presented in Chapter 2.

A.1 Supporting Figures
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Figure A.1: Clustering results are robust to choice of trajectory identifi-
cation threshold. A. Changing the trajectory identification threshold to 0.3nfmax
reduces the number of trajectories identified overall but preserves the main results of
clustering . B. Changing the trajectory identification threshold to 0.4nfmax, which
is twice the limit used in the manuscript, preserves the result related to the number
of clusters in the data but does not preserve the result related to the separability of
clusters. This suggests that trajectories with extremely high firing rates may resem-
ble culture-wide synchronous bursts, or “avalanches”, and therefore lack the complex
spatiotemporal structure identified at lower threshold values.
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Figure A.2: PCA results are robust to choice of trajectory identification
threshold. A. Changing the trajectory identification threshold to 0.3nfmax preserves
the similarity of principal components over time. B. Changing the trajectory identifi-
cation threshold to 0.4nfmax slightly changes the similarity values, but preserves the
overall trend.
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This appendix contains additional figures to support the work presented in Chapter 3.

B.1 Supporting Figures

Figure B.1: Machine classifier performance is similar to human classifica-
tion accuracy. A: Here, grooming behaviors are visualized in low-dimensional space
using t-SNE, which preserves local distances between nearby points. Color indicates
behavior type. Behaviors are well-separable by type. B: Example classifications of
ethograms of grooming behaviors are shown. Human-algorithm agreement is about
75% (in terms of number of matching frames).

Duration permuted Mij = P (xaction,j|xaction,i)P (xduration,j)

Order permuted Mij = P (xj)
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Figure B.2: Transition probability matrices exhibit duration-dependent
structure across many choices of binning schemes. When transition proba-
bilities are calculated from ethograms with 4 (left) or 5 (right) duration categories,
fine-grain temporal structure is still present. The existence of this trend across bin-
ning schemes ensures that duration dependence is a phenomenon present in the data
and not an artifact of data processing.

Table 1. Analytic formulas for null model transition matrices. Given in B.1 are

the analytic formulas for transition matrix entries, Mij , for each null hypothesis transition

matrix. Here, i denotes the row and j denotes the column of M. Note that, in the three

duration category case, each state has both an action and duration identifier (e.g. row h.s.

corresponds to a head cleaning action in the short duration category). P (xaction,j|xaction,i)

is the absolute probability of transitioning from the grooming action represented by row

i to the action represented by row j, regardless of duration. P (xduration,j) is the abso-

lute probability of the grooming action represented by row j belonging to the duration

category represented by row j. P (xj) is the absolute probability of state j.
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Figure B.3: Individual flies possess stable syntax that resembles the group
average. Two examples of individual fly transition probabilities illustrate that, al-
though syntax varies between individuals and over time, individuals are relatively
stable and resemble the group average. Though we did not fully characterize individ-
ual differences here, future studies will aim to examine individuals more closely.
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Figure B.4: Consecutive anterior bout durations do not exhibit a linear
relationship. Plotted here is the relationship between consecutive anterior grooming
action durations. Linear regression produces a poor fit, indicating that duration
dependence is not linear.

Figure B.5: Sampling early and late phases differently does not alter the
observed syntax. To ensure that our choice of boundary between early and late
phases does not alter our results, we partition our data in a stricter manner so that
the transition period which occurs during the middle of the grooming progression is
excluded. Partitioning the data into thirds produces transition matrices with structure
and stationarity similar to those shown the main text results.
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Figure B.6: Small residuals between early and late transition probabilities
indicate that most grooming rules are stationary over time. We find that 267
of the 270 (98.9%) non-zero entries change by less than 5% and 167 (61.8%) change
by less than 1%. This was a very surprising finding and suggests that, although some
non-stationarity does exist, it is much smaller than we had expected given that the
average time spent performing different behaviors varies between the early and late
phases.
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Figure B.7: Bout durations do not change between early and late phases.
Probability density plots of bout duration distributions illustrate that bout durations
remain consistent between early and late phases of grooming. Early phase data is
plotted with a thick line. Late phase data is plotted with a thin line.
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Appendix C

This appendix contains additional details about methodology and figures to support the

work presented in Chapter 4.

C.1 Supporting Methods

Classification analysis

To determine whether flies were distinguishable on the basis of several grooming

features, logistic regression classification and k-medoids clustering were applied. Logistic

regression classifiers were trained using the MATLAB function fitglm with a logit link

function. Models were validated using 5-fold cross-validation to prevent overfitting. For

each grooming feature, PCA was first applied to reduce the dimensionality of feature

vectors to 10 dimensions to ensure that the number of feature dimensions was smaller

than the number of samples.

Separate classifiers were trained on each grooming feature (syntax, progression, be-

havioral proportions, and bout duration distributions) for pairwise comparisons within

the following multi-class datasets: erecta, santomea, sechellia, simulans, and MaxVar;

Canton-S, Berlin-K, Oregon-R, and w1118; Canton-S, Canton-S isoJ3, Canton-S isoJ1;

Berlin-K, Berlin-K isoJ13; Oregon-R, Oregon-R isoJ5, Oregon-R isoJ8; w1118, w1118
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isoJ5. Strains with “iso” designations refer to isogenized lines generated as described in

the Methods section of the main text. When performing pairwise classification, sample

sizes were matched so that chance classification accuracy would be 50%.

Finally, k-medoids clustering was applied 100 times to the same data used in the

above pairwise syntax comparison using the MATLAB function kmedoids. For k = 2,

the median accuracy of each classification is shown in Appendix C.12, with normalized

mutual information between true and predicted labels serving as the accuracy measure.

Normalized mutual information ranges from 0 to 1, with 0 indicating classification at

chance and 1 indicating perfect classification.

Visualization

To visualize high-dimensional grooming features in low-dimensional space, t-Distributed

Stochastic Neighbor Embedding (tSNE) was used [178]. Briefly, tSNE performs dimen-

sionality reduction by converting high-dimensional pairwise Euclidean distances into con-

ditional probabilities (or similarities). These probabilities are given by

pj|i =
e−‖xi−xj‖

2/2σ2
i∑

k 6=i e
−‖xi−xk‖2/2σ2

i

(C.1)

where σi is the variance of a Gaussian distribution centered at xi. These prob-

abilities represent the likelihood that any two points would be nearest neighbors in

low-dimensional space, assuming a Student-t distribution of pairwise distances between

points. The low-dimensional counterpart joint probabilities, then, are given by

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

(C.2)

where yi is the low-dimensional embedding of xi. To create a map between high and
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low dimensions, the Kullback-Leibler divergence between P, the high-dimensional joint

probability distribution, and Q, the low-dimensional distribution, are minimized using

the cost function

∑
i

KL(Pi‖Qi) =
∑
i

∑
j

pj|ilog
pj|i
qji

(C.3)

where Pi is the high-dimensional conditional probability distribution of the point xi

and Qi is its low-dimensional counterpart. A non-deterministic solution to this mapping

cost function is found using gradient descent. Here, the tsne function in MATLAB was

used to perform this computation. 5000 gradient descent steps were used, as solutions

were found to converge sufficiently using that number of steps. The perplexity value, a

hyperparameter that approximates the effective number of neighbors of a point, was set

between 15 and 30. Note that typical perplexity values range between 5 and 50.

Markov chain entropy rate

Using first-order transition dynamics to define syntax, the Markov chain entropy rate

was calculated as a measure of stereotypy in grooming. An entropy rate of 0 indicates

that grooming transitions are perfectly predictable, while higher values indicate decreased

stereotypy. Entropy was defined as

H = −
∑
ij

µiPijln(Pij) (C.4)

where Pij is the transition probability from action i to action j and µ is the steady-

state action distribution.
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Optogenetic stimulation

Protocols for optogenetic stimulation of grooming are reproduced here in brief from

Zhang et al. (2020).

After cold anesthesia, flies were left to recover in recording a chamber for at least 20

min. Custom-made LED panels (LXM2-PD01-0050, 625nm) were used for light activa-

tion from below. 20 Hz 20% light duty cycle was used in all experiments. Light intensity

was measured by Thorlabs S130VC power sensor coupled with PM100D console. The

light intensity used for Bristle-spGAL4-1 flies was 0.84 mW/cm2. The Bristle-spGal4-1

line is available from the Bloomington Stock Center (RRID: BDSC 71032).

C.2 Supporting Figures

Figure C.1: Ethogram for non-melanogaster drosophilids. Shown are the
ethograms for erecta, santomea, sechellia, and simulans flies. Rows are individual
ethograms, columns indicate frame. Behaviors are coded by color.
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Figure C.2: Ethogram for melanogaster flies. Shown are the ethograms for each
group of melanogaster flies analyzed here. Rows are individual ethograms, columns
indicate frame. Behaviors are coded by color.

Figure C.3: Ethogram for Canton-S individuals recorded across multiple
sessions. Shown are the ethograms for 15 Canton-S flies recorded for 3 sessions each
over 3 consecutive days. Row labels indicate the individual fly, with rows after each
label providing ethograms for sequential days (i.e. session 1, session 2, session 3).
Columns indicate frame. Behaviors are coded by color.
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Figure C.4: Different drosophilid species exhibit robust grooming responses
in this assay. The amount of time spent grooming varies within and between species.
However, regardless of genetic background, drosophilids spend several minutes per-
forming grooming actions after exposure to a dust stimulus. Shown are violin plots
of grooming proportion distributions for four non-melanogaster species (left) and five
different melanogaster groups (right). White dots indicate median values. For all
groups except erecta and Berlin-K, the median proportion of time spent grooming in
a 27.8 minute recording after dusting is between 50 and 60% (13.9 to 16.7 minutes),
indicating that nearly all drosophilids exhibit a robust grooming response.

Figure C.5: Grooming progressions are similar across drosophilid species.
Shown are the group mean grooming progressions for non-melanogaster populations.
Grooming proportions were calculated across 10 non-overlapping windows (approx-
imately 3 min. each). Y-axis indicates the proportion of time spent in an action.
X-axis indicates the window. Note that all populations exhibit many similar trends,
including an initial high proportion of head grooming and front leg rubbing followed
by an increase in other grooming actions. Many populations differ significantly in
their propensity to walk or stand rather than groom. Though group means are shown
here, individual vectors identical in format were used for classification analysis and
visualization.
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Figure C.6: Bout duration distribution vectors of drosophilid species,
melanogaster stocks, and Canton-S. Shown here are the group mean bout du-
ration distribution vectors for several populations. Y-axis indicates density. X-axis
indicates bin. 20 bins of equal width were used, with the same bin width for all
grooming actions. Non-grooming actions had larger bin widths due to longer aver-
age action durations for these actions. Note that non-melanogaster species perform
a higher proportion of short actions, while melanogaster populations possess similar
distributions to one another.

Figure C.7: Grooming syntax separates species most strongly. When com-
paring species, non-syntactic features of grooming do not exhibit the same degree
of separability as grooming syntax. Shown here are t-SNE plots of each grooming
figure, where points represent the grooming feature of an individual fly. Color indi-
cates species. Qualitatively, a high degree of overlap between points indicates that
grooming features are similar. Notably, grooming syntax provides the most distinct
separation between species. As such, we focused on syntax analysis to a greater ex-
tent than other grooming features. However, bout duration distributions do separate
melanogaster from non-melanogaster species, suggesting that action persistence is also
an important syntactic feature.
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Figure C.8: Melanogaster progressions differ in the amount of grooming
and non-grooming actions. Shown are the group mean grooming progressions for
melanogaster populations. Grooming proportions were calculated across 10 non-over-
lapping windows (approximately 3 min. each). Y-axis indicates the proportion of time
spent in an action. X-axis indicates the window. As with non-melanogaster species,
all populations exhibited a general anterior to posterior grooming progression, with
increased amounts of standing later in the progression. Canton-S exhibited a higher to
walk than other stock lines, allowing for accurate classification when using grooming
progressions as a feature.
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Figure C.9: Grooming syntax of melanogaster stocks is highly conserved.
Shown are graphs of the group mean grooming syntax for each melanogaster stock.
Nodes denote actions and edge thicknesses indicate transition probabilities between
actions. Highlighted in red are transitions within motifs (i.e. head-front leg or ab-
domen-back leg-wing) that differ significantly (Wilcoxon rank-sum test, p < .05 after
Bonferroni correction) between stocks. Of 48 within-motif transition comparisons,
only 2 possessed statistically different group means, indicating that syntax is highly
conserved within melanogaster stock lines. In addition, none of these transition dis-
tributions possessed statistically distinguishable variances, demonstrating that vari-
ability within stocks is also similar.
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Figure C.10: Drosophilids differ in several grooming features. Shown here are
heatmaps of the classification performances of pairwise logistic regression classifiers for
between-species comparisons of four grooming features. Color indicates classification
accuracy, with 0.5 indicating chance performance. Pairwise between-species classifi-
cation is generally highly accurate, as syntax and progressions separate melanogaster
from all non-melanogaster species with > 90% accuracy.

Figure C.11: Some melanogaster stocks differ in syntax and grooming pro-
gressions. Shown here are heatmaps of the classification performances of pairwise
logistic regression classifiers for within-melanogaster comparisons of four grooming fea-
tures. Color indicates classification accuracy, with 0.5 indicating chance performance.
Pairwise between-species classification performs above chance for many syntax and
progressions comparisons, indicating that several stocks exhibit distinct grooming be-
havior. Closer inspection of syntax and progression elements that differ indicates that
the amount of non-grooming actions (walking and standing) differentiates Canton-S
and Berlin-K from other stock lines.
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Figure C.12: K-medoids clustering also separates populations by grooming
syntax. Shown here are heatmaps of the classification performances of k-medoids
clustering on between-species and within-species syntax comparisons. Normalized
mutual information (NMI) is used to evaluate the accuracy of results from k-medoids
clustering using 2 clusters and the known labels, with color indicating the value of
NMI. This metric ranges from 0 to 1, with 1 indicating perfect classification. Pairwise
between-species classification (top) is generally highly accurate, while within-species
classification (bottom) is less reliable.
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Figure C.13: Canton-S individuals do not possess distinct grooming syntax.
15 Canton-S flies were observed longitudinally three consecutive days (three record-
ings). Syntax for each fly was calculated for each session and pairwise Euclidean
distances were calculated between syntax vectors. Shown here are violin plots of the
distances between syntax vectors for inter-individual comparisons (left) and intra-in-
dividual comparisons (right). The 15 most similar inter-individual comparisons are
more similar than all of the intra-individual comparisons, indicating that flies do not
possess strongly idiosyncratic grooming syntax between individuals.

Figure C.14: Optogenetically stimulated flies exhibit similar variability to
dusted flies. Shown are grooming proportions and transition probabilities of anterior
motif transitions for undusted CS flies, undusted CS flies stimulated by optogenetic
manipulation, and dusted CS flies. Optogenetic stimulation results in high levels of
anterior grooming but does not abolish grooming variability.
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Figure C.15: Male and female Canton-S flies possess distinct grooming fea-
tures. Shown are the ternary plots of the proportion of time spent grooming, walking,
and standing for male and female flies. Female flies groom more than male flies, while
male flies walk more than female flies. LDA classifies male and female flies with high
accuracy using only two syntax elements (H to Wk and H to F transitions). Using
only two predictors, LDA classifies male and female flies with an error rate < 10%.
Similar error rates are achieved for progressions and grooming proportions, indicating
that male and female flies possess identifiable differences in grooming behavior, largely
driven by differences in locomotor behavior.
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Figure C.16: Within-individual grooming variability across multiple sessions
is comparable to between-individual variation. A. Shown here is a t-SNE em-
bedding of syntax from 15 Canton-S flies recorded three times on consecutive days.
Two example individuals are highlighted, with colored lines connecting their syntax
vectors from each session. The high degree of overlap between points and lack of
aggregation by color indicates that individual flies do not exhibit strong individual-
ity in their grooming phenotype. This was confirmed quantitatively, as classification
analysis performs poorly at discriminating between flies (Appendix D). B. Upon re-
peated trials, even highly stereotyped anterior transitions exhibit within-individual
variability. On the left are front leg to head transition probabilities for three flies,
each recorded three times. This anterior motif transition is consistently strong, but
intra-individual variability is on the same scale as between-individual variation, indi-
cating that these flies were not strongly idiosyncratic groomers but rather distributed
around a group mean. On the right is the same transition probability for ten flies from
two sessions of sensory stimulation via optogenetic manipulation (see Methods and
Appendix D for more detail). Even when sensory input is carefully controlled, flies
exhibit both between-individual variation and within-individual variability, indicating
that several factors may account for stochasticity in grooming behavior.
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Appendix D

This appendix contains additional figures to support the work presented in Chapter 5.

D.1 Supporting Figures
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Figure D.1: Resting-state networks are modular over a wide range of com-
munity detection parameter choices. Shown is a heat map of the mean modu-
larity quality value (referred to as Q in the main Methods text) of 150 runs of the
dynamic community detection algorithm for each parameter combination considered
here. Color indicates the value of Q, which ranges from -1 to 1, with a value of 0
indicating a lack of modular structure. While no cutoff exists to identify “true” mod-
ular structure per se, higher non-zero positive values of Q indicate more pronounced
modularity. Across the parameters considered here, the value of Q ranges from ap-
proximately 0.11 to 0.15, indicating weak, but present, modular structure. Consensus
partitions are similar across these parameter choices and the networks analyzed here
were weighted, undirected, and dense; these factors explain the consistency of Q val-
ues.
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Figure D.2: Core community compositions are consistent across dynamic
community detection parameter choices. Shown are heat maps of the core
community compositions for the original experiment (top) and hormone suppression
replication experiment (bottom). In each case, community compositions are averaged
over the set of parameter combinations which result in four communities being identi-
fied (.8 < ω < 2, .995 < γ < 1.01). The compositions shown here are nearly identical
to that shown in the main text results, which is the core community composition iden-
tified at the standard parameter combination for the dynamic community detection
algorithm (ω = γ = 1).
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Figure D.3: Functional communities exhibit transient reorganization around
the ovulatory window over a range of dynamic community detection pa-
rameter values. Shown are the consensus community partitions for a range of
dynamic community detection algorithm parameters (.8 ≤ ω ≥ .9, 1.05 ≤ γ ≥ 1.06).
Y-axis values indicate node identity, x-axis values indicate the day of experiment,
and color indicates community membership. The partition outlined in black (bottom
middle) is the basis of the quantitative analysis in the main text. Ovulation occurs on
day 23 (black underline in bottom middle panel). In each case displayed here, a new
subcommunity with a consistent composition splits from the default mode core during
the ovulatory window but rejoins after day 25 at the latest, concurrent with a sharp
decline in estradiol, LH, and FSH. This indicates the presence of a stable, reliable
solution to the dynamic community detection algorithm in this parameter range.
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Figure D.4: Solutions to the dynamic community detection algorithm are
similar and reliable. Since the Louvain algorithm is non-deterministic, it is im-
portant to characterize the stability/similarity of community detection solutions. To
compare the consensus partition used for analysis in the main text to results from
each run of the dynamic community detection algorithm, we used normalized mutual
information (NMI) as a measure of partition similarity and normalized variation of
information (NVI) as a measure of partition distance, per [179]. NMI ranges from 0 to
1, with a value of 0 indicating similarity between partitions at no better than chance
and 1 indicating a perfect match. NVI ranges from 0 to 1 as well, but with an inverse
interpretation (i.e. smaller distances indicate higher similarity). Pairwise NMI and
NVI values were calculated between the consensus partition and each output of the
150 runs of the dynamic community detection algorithm. Pairwise NMI and NVI val-
ues were also calculated between 100 repetitions of a null model consensus partition,
which permuted node identities, and each DCD output. This null model permutation
preserves the flexibility trends and community sizes across the experiment, but shuffles
node identity to provide a baseline hypothesis against which to test the significance
of the true community detection results. The NMI and NVI distributions are signifi-
cantly higher and lower, respectively, than the null model comparison, indicating that
the consensus partition used in subsequent analysis is much better than what would
be arrived at by chance. The median NMI between the consensus partition and each
DCD algorithm output is 0.72 and the median NVI is 0.09, indicating that the con-
sensus partition is highly representative of each individual output partition from the
150 runs. Therefore, the community detection solution is highly stable and solutions
are highly similar.
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Figure D.5: Network flexibility is significantly correlated with estradiol.
Shown on the left is a heat map of the Spearman correlation values between the flexi-
bility and hormone curves shown in the main text. Color indicates correlation values
and red outlines indicate statistical significance at the p < .05 level after Bonferroni
correction. All networks except the control, dorsal attention, and visual networks have
correlation values > 0.6 with estradiol, indicating that these variables are tightly cou-
pled. The visual network also had a statistically significant negative correlation with
progesterone, but this network was minimally flexible so the effect size was negligible.
No other hormone-flexibility relationships were significant, suggesting that estradiol
is the primary driver of flexibility. On the right, a heat map illustrates the lack of
significant relationships between hormones and mood variables, which were surveyed
each day of the experiment. Only depression correlated significantly with luteinizing
hormone.
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Figure D.6: Node identities from the Schaefer functional-anatomical atlas.
Shown here are the node identities for regions in the Control C and DMN B subnet-
works. Control C nodes are identified as being highly flexible over the entire course of
the menstrual cycle. Within-network connectivity between nodes in DMN B increases
around the ovulatory window, resulting in a transient bifurcation of the default mode
core community.
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Figure D.7: Functional-anatomic subnetworks have distinct flexibility pro-
files. Within functional-anatomical networks, nodes belonging to different subnet-
works exhibit different flexibility trends. Specifically, Control C subnetwork nodes are
the most likely to be highly flexible within the Control network, suggesting a specific
“integrator” role for this subnetwork.
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Figure D.8: Strong changes in functional connectivity during the ovulatory
window are localized to a default mode subnetwork. Shown here are the
differences in edge weights (magnitude-squared coherence values) between nodes on
days 22 and 23, with color indicating value. Positive values indicate an increase
in edge weight from day 22 to 23. On the right, only the top 5% of changes by
magnitude are displayed. As demonstrated by the extent of edge weights present in
the rows and columns labeled DMN B, it can be seen that within-subnetwork changes
in edge strength are responsible for the observed community reorganization during
the ovulatory window.
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[13] E. Towlson, P. Vértes, S. Ahnert, W. Schafer, and E. Bullmore, The rich club of
the C. elegans neuronal connectome, J. Neurosci. 33 (2013), no. 15 6380–6387.
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