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Abstract. We have integrated observations of tropospheric
ozone, very short-lived (VSL) halocarbons and reactive io-
dine and bromine species from a wide variety of tropical
data sources with the global CAM-Chem chemistry-climate
model and offline radiative transfer calculations to com-
pute the contribution of halogen chemistry to ozone loss
and associated radiative impact in the tropical marine tro-
posphere. The inclusion of tropospheric halogen chemistry
in CAM-Chem leads to an annually averaged depletion of
around 10 % (∼2.5 Dobson units) of the tropical tropo-
spheric ozone column, with largest effects in the middle
to upper troposphere. This depletion contributes approxi-
mately −0.10 W m−2 to the radiative flux at the tropical
tropopause. This negative flux is of similar magnitude to the
∼0.33 W m−2 contribution of tropospheric ozone to present-
day radiative balance as recently estimated from satellite ob-
servations. We find that the implementation of oceanic halo-
gen sources and chemistry in climate models is an important
component of the natural background ozone budget and we
suggest that it needs to be considered when estimating both
preindustrial ozone baseline levels and long term changes in
tropospheric ozone.

1 Introduction

Tropospheric ozone (O3) is one of the most important short-
lived gases contributing to greenhouse radiative forcing (RF)
(Forster et al., 2007). It is produced by photochemical oxi-
dation of carbon monoxide (CO), methane (CH4) and non-
methane volatile organic compounds (NMVOC) in the pres-
ence of nitrogen oxides (NOx). A large fraction of the tropo-
spheric ozone loss occurs within the tropical marine bound-
ary layer (TMBL) via photolysis to excited oxygen atoms
O(1D), followed by reaction with water vapour, reactions
with odd hydrogen radicals (HOx), and surface deposition
(Horowitz et al., 2003). However, since conventional HOx
chemistry and ozone photochemistry cannot account for the
observed ozone variability in the TMBL, it has been sug-
gested that reactive halogen species released into the atmo-
sphere by the photodecomposition of organohalogens and via
autocatalytic recycling on sea-salt aerosols may also con-
tribute to ozone destruction in this environment (e.g. Dick-
erson et al., 1999; Read et al., 2008).

Measurements of low ozone levels (<10 ppbv) and large
diurnal variability of surface ozone have been reported over
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the tropical regions of the Atlantic Ocean (Oltmans and Levy
II, 1992; Dickerson et al., 1999), Pacific Ocean (Johnson et
al., 1990; Kley et al., 1996; Nagao et al., 1999; Shiotani et al.,
2002; Takashima et al., 2008), and Indian Ocean (Johnson et
al., 1990; Bremaud et al., 1998; Dickerson et al., 1999; de
Laat et al., 1999; Burket et al., 2003). Tropical ozonesonde
data also show events of substantially reduced ozone lev-
els in the upper troposphere at different locations through-
out the tropics (Solomon et al., 2005), although Vömel and
Diaz (2010) claim that such events might be caused by arte-
facts in the measurement procedures. Despite the consid-
erable number of low ozone events reported, only recently
has halogen-induced ozone destruction been unambiguously
demonstrated over the tropical oceans (Read et al., 2008).

The reduction in tropospheric ozone due to bromine chem-
istry has been previously studied with 3-dimensional global
chemistry transport models (CTMs) (von Glasow et al.,
2004; Yang et al., 2005), but those studies did not include
the combined effect of bromine and iodine sources. More-
over, the resulting radiative impact of halogen-driven ozone
loss in the tropical marine troposphere has not been quanti-
fied so far. In this study we integrate observations of tropo-
spheric ozone, very short-lived (VSL) halocarbons – halo-
genated organic compounds with atmospheric lifetimes of
less than 6 months (WMO, 2011), and reactive iodine and
bromine species from a wide variety of tropical data sources
with the global CAM-Chem chemistry-climate model and ra-
diative transfer calculations to estimate the impact of halogen
chemistry on ozone loss and radiative balance in the tropical
marine troposphere.

2 Description of the chemistry-climate model

CAM-Chem is the global three-dimensional Community At-
mosphere Model (CAM) (Gent et al., 2010), modified to in-
clude interactive chemistry (i.e. with feedback to the radi-
ation calculation in the atmosphere) and calculate distribu-
tions of gases and aerosols (Lamarque et al., 2012). Here we
use CAM-Chem with a horizontal resolution of 1.9◦ (lati-
tude)× 2.5◦ (longitude) and 26 hybrid vertical levels from
the surface to approximately 40 km, with a model timestep of
30 min. The model has a full representation of tropospheric
(Emmons et al., 2010) and stratospheric (Kinnison et al.,
2007) chemistry. CAM-Chem has been used here with the
same configuration as in a variety of applications with a fo-
cus both on the troposphere (e.g. Lamarque et al., 2010) and
the lower stratosphere (e.g. Lamarque and Solomon, 2010).
Details on the bulk aerosol parameterizations are given else-
where (e.g. Lamarque et al., 2012; Ordóñez et al., 2012).

The scope of CAM-Chem has been extended to include
natural sources of VSL halocarbons from the ocean; reactive
chlorine, bromine and iodine species; related photochemical,
gas-phase and heterogeneous reactions, as well as dry and
wet deposition for relevant species. A detailed description

of the new halogen sources and chemistry scheme imple-
mented in CAM-Chem can be found in the companion pa-
per (Ord́oñez et al., 2012). Briefly, the tropospheric halogen
chemical scheme follows that of the 1-dimensional Tropo-
spheric HAlogen chemistry MOdel (THAMO) (Saiz-Lopez
et al., 2008), which has recently been used to model reactive
halogen species over the tropical Atlantic Ocean (Mahajan
et al., 2010). To determine the emissions of VSL bromocar-
bons (CHBr3, CH2Br2, CH2BrCl, CHBr2Cl, and CHBrCl2)
and iodocarbons (CH2I2, CH2IBr and CH2ICl), Ordóñez et
al. (2012) used a compilation of aircraft campaigns and some
observations available in the marine boundary layer. Over the
tropical oceans (20◦ S–20◦ N) these emission fields follow
the geographical distribution of the Phytoplankton Pigment
Concentration (PPC) retrieved from SeaWIFS satellite data,
while they consist of constant oceanic fluxes with a fixed
2.5 coast to ocean emission ratio in the extratropics (Sousa
Santos, 2008; Ord́oñez et al., 2012). Unlike in Ord́oñez et
al. (2012), the emission sources used for this study have only
been extended to the mid-latitude oceans (up to 50◦ in both
hemispheres). Emissions for methyl iodide (CH3I) are based
on the inventory from a previous modelling study (Bell et
al., 2002), while the longer-lived methyl bromide (CH3Br)
concentration is set as a lower boundary condition (see be-
low). We assume that the emission of all VSL halocarbons
is photosynthetically driven and depends on the actinic flux,
with a diurnal variation described by a Gaussian profile peak-
ing at noon and null at night. There is no clear evidence
on the dependence of the sea-air emission of VSL halocar-
bons on the actinic flux. While the surface water concentra-
tions of these species may decay with light (e.g. Hense and
Quack, 2009), other analyses (e.g. Reeser et al., 2009) sug-
gest that at least some organohalides could arise from photo-
chemical processes in salt-water solutions containing chloro-
phyll. Our approach brings the model’s predictions for these
species in reasonable agreement with observations as shown
by Ord́oñez et al. (2012), who also discussed the limitations
of the emission parameterisation used here.

Sea-salt is also an important source of reactive halogens in
the troposphere. The heterogeneous recycling of halogens on
sea-salt aerosols is treated as follows in CAM-Chem. The up-
take and subsequent hydrolysis of XONO2, HOX and XNO2
(X = Cl, Br or I) on marine aerosols produces HOX, which
equilibrates between the gas and aqueous phases according to
its Henry’s law solubility. We do not explicitly treat the aque-
ous phase chemistry in the bulk of the sea-salt aerosols. In-
stead, we assume that the rate-limiting step of the process is
the uptake of inorganic halogen species onto aerosols, which
is computed using the free molecular transfer regime approx-
imation (McFiggans et al., 2000). Then aqueous HOX is pro-
cessed to Br2, BrCl, IBr, ICl and Cl2 via reaction with Br−,
Cl− and I− on sea-salt aerosols. The resulting di-halogen
molecules are insoluble and therefore rapidly released to the
gas phase. Further details can be found in the Supplement
of Ordóñez et al. (2012). Due to their large size, sea-salt
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particles are quickly removed from the atmosphere by sed-
imentation and wet scavenging; this limits the relevance of
this process to the marine boundary layer (MBL).

One-dimensional model analyses constrained with ob-
served iodocarbon fluxes (Mahajan et al., 2010; Jones et
al., 2010) suggest that a substantial source of iodine is re-
quired to support the observed iodine oxide (IO) levels over
the tropical Atlantic Ocean. From observations at differ-
ent coastal locations there is evidence that this additional
source may be in the form of molecular iodine (I2) (Saiz-
Lopez and Plane, 2004). Laboratory studies (Garland and
Curtis, 1981; Sakamoto et al., 2009) have shown that de-
position of O3 on the sea surface may lead to the emis-
sion of I2. Similarly, there are reports on the photosensi-
tised production of volatile halogen species at the sea sur-
face (Reeser et al., 2009). Therefore, we use a flux of inor-
ganic iodine (i.e. I2) along with the iodocarbon flux to re-
produce the observed IO at the different tropical locations
where IO has been observed at pptv levels (e.g. Eastern Pa-
cific, Tropical Atlantic and Indian Ocean). In the simula-
tion presented here, this is accounted for by a global to-
tal I2 emission field of∼1200 Gg yr−1, with the same geo-
graphical distribution as that of the above mentioned VSL
halocarbons but with no diurnal variation. The average I2
flux over the tropical oceans in CAM-Chem (including open
oceans, upwelling regions and coastal areas within 20◦ N–
20◦ S) is 4.9×107 molecule cm−2 s−1, very close to the con-
stant day and night I2 flux of 5.0× 107 molecule cm−2 s−1

considered in Mahajan et al. (2010) for the tropical Atlantic
Ocean around Cape Verde. Note that the lifetime of I2 is too
short (i.e. seconds) to be transported to the mid-upper tropo-
sphere. As a consequence, the model results for that region
of the atmosphere are not expected to be very sensitive to the
I2 flux. However the emission of I2, subsequent photolysis
and further halogen-HOx-ozone reactions in the TMBL may
have an impact on the amount of ozone transported to the
mid- and upper troposphere.

At the lower boundary, the time-varying (monthly values)
zonal-averaged distributions of CO2, CH4, H2, N2O, and
long-lived halocarbons (CFC-11, CFC-12, CFC-113, HCFC-
22, H-1211, H-1301, CCl4, CH3CCl3, CH3Cl, CH3Br) are
specified following their observed surface concentrations for
2000. Emissions from anthropogenic activities and biomass
burning (natural and anthropogenically-forced) are equiva-
lent to those from a MOZART-4 simulation for the year 2004
(Emmons et al., 2010).

Two 10-yr simulations of CAM-Chem, with and without
VSL halocarbons, were conducted. For these model runs,
climatological sea surface temperatures and sea-ice extent
(Rayner et al., 2003) were set as lower boundary conditions.
Hence CAM-Chem only solved for the atmospheric and land
portions of the climate system, and the simulations do not
pertain to any specific meteorological year. The model out-
put shown here corresponds to the last year of those simula-

tions. We only present results from the simulation with VSL
halogenated species unless otherwise stated.

3 Results of the chemistry-climate model

3.1 Halocarbons and halogen radicals

Bromoform (CHBr3) and CH3I are the main VSL halo-
carbons contributing to the total tropospheric bromine and
iodine burden, respectively (WMO, 2011). Their tropo-
spheric lifetimes are long enough – local lifetime (calcu-
lated using an average tropospheric OH concentration of
1× 106 molecule cm−3 and the OH reaction rate constant
at T = 275 K) of ∼24 days for CHBr3 and ∼7 days for
CH3I (WMO, 2011) – for them to be transported to the up-
per troposphere within deep convection areas. By contrast,
emissions of other iodocarbons (e.g. CH2ICl, CH2IBr and
CH2I2), which have shorter lifetimes on the order of a few
hours to minutes, and catalytic bromine release from sea-
salt aerosols provide a source of reactive halogens in the
TMBL. The simulated vertical profiles of CHBr3 and CH3I
in the tropical troposphere are in good agreement, both in
magnitude and vertical distribution, with a composite of air-
craft observations from three field campaigns: PEM-Tropics
A (Hoell at al., 1999), PEM-Tropics B (Raper et al., 2001),
and TRACE-P (Jacob et al., 2003) (Fig. 1). Two longer lived
bromocarbons that additionally contribute to the tropospheric
halogen burden have been examined: CH3Br (total lifetime
of ∼0.8 yr considering both photochemical loss in the atmo-
sphere and uptake to oceans and soil) and CH2Br2 (local life-
time of ∼123 days) (WMO, 2011). Their average modelled
profiles throughout the tropical troposphere are also com-
parable to the observations (Fig. 1). The slight overestima-
tion of CH3Br by the model for PEM-Tropics B (1999) and
TRACE-P (2001) may be partly related to the decline in the
industrial production of this compound since the mid/end of
the 1990s (WMO, 2011). More details on the evaluation of
CH3Br and VSL halocarbon species, including the shortest
lived iodocarbons which are not shown here (i.e. CH2ICl,
CH2IBr and CH2I2), can be found in Ord́oñez et al. (2012).

The reactive species bromine oxide (BrO) and IO have
been observed over the Atlantic, Indian and Pacific Oceans
from a variety of measuring platforms. The computed day-
time average boundary layer distribution of these species
in the model lies within 0.5–2 pptv, in good accord with a
compilation of reported observations in the tropical regions
(Fig. 2). In the tropical upper troposphere there are only two
studies from balloon-based platforms reporting observations
of BrO and IO over Northern Brasil (Dorf et al., 2008; Butz
et al., 2009). The simulated mixing ratios of BrO (∼0.5 pptv)
and IO (∼0.02 pptv) are below the∼1 pptv BrO (Dorf et al.,
2008) and the upper limit of∼0.2 pptv IO (Butz et al., 2009)
reported for that location in the upper troposphere.
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Fig. 1. Comparison of average vertical profiles of CHBr3, CH3I, CH3Br and CH2Br2 as simulated by CAM-Chem (dashed lines) for the
last of a 10-yr run with a composite of aircraft observations (solid lines) in the tropical regions from the missions PEM-Tropics A (1996),
PEM-Tropics B (1999) and TRACE-P (2001). Model results are averaged within the geographical region of each campaign considering
latitudes between 30◦ N and 30◦ S and matching seasons. Shaded areas and horizontal bars represent the standard deviation of modelled
fields and observations, respectively.

3.2 Tropical tropospheric ozone

Simulated vertical profiles of ozone are compared with
Southern Hemisphere Additional Ozonesonde Network
(SHADOZ; Thompson et al., 2003a, b) and World Ozone and
Ultraviolet Radiation Data Centre (WOUDC,ftp://ftp.tor.ec.
gc.ca/) ozone profiles at three marine locations (San Cristo-
bal – Galapagos, Fiji, and Naha – Japan), where long-term
measurements are available in the vicinity of the above men-
tioned airborne field measurement campaigns (Fig. 3). The
tropical SHADOZ sites San Cristobal and Fiji are located
within the regions covered by PEM-Tropics A and PEM-
Tropics B, respectively, while Naha is a sub-tropical site
sampled during Trace-P. The model reproduces well the ob-
served magnitude and structure of ozone throughout the tro-
pospheric column. Despite the underestimation of the mea-
surements in the lower and mid-troposphere over Fiji, the
modelled ozone mixing ratios are within the variability of the
observations. Additionally, the multi-year seasonal variation
of simulated ozone mixing ratios at the surface (1000 hPa)
and in the upper troposphere (300 hPa) also agrees reason-
ably well with observations at the three sites (Fig. 4). A good
match between model and surface observations is found for
Naha while the model overestimates the ozone mixing ratios
measured at San Cristobal and underestimates them at Fiji;
note that in the case of the low ozone events the deviations
between model and observations are magnified by the loga-

rithmic scale used. No significant over- or underestimation is
found for the model results at 300 hPa.

3.3 Chemical ozone loss

In the TMBL (20◦ S–20◦ N), the annually integrated rate
of surface ozone loss due to halogen chemistry is∼6×

105 molecule cm−3 s−1 (∼0.15 ppbv h−1 at daytime) (Fig. 5,
left). The integrated contribution of iodine-mediated reac-
tions to the total rate of surface ozone loss is three times
larger than that of bromine chemistry alone. When both
chemistries are combined via the reaction of IO + BrO to
Br + OIO (75 %) and Br + I (25 %), the ozone loss rate is four-
fold that of bromine chemistry alone. On an annual average
basis, in the absence of halogens, the model sampled at Cape
Verde predicts a diurnal loss of 2.5 ppbv by mid-afternoon
(Fig. 5, right). However, in the presence of halogens the loss
is∼3.2 ppbv, shifting the timing of the minimum ozone level.
This is in agreement with observed diurnal ozone loss and
previous zero- and one-dimensional model analyses at this
location (Read et al., 2008; Mahajan et al., 2010).

In the tropical troposphere the contribution to chemical
ozone loss is dominated by ozone and HOx photochemistry
(Fig. 6, middle and top panels). However, we find that the in-
tegrated loss due to halogen-catalysed ozone destruction cy-
cles is 15–30 % of the total ozone chemical loss throughout
the tropospheric column (Fig. 6, bottom). Halogen-induced
ozone loss is enhanced in the 400–150 hPa pressure range.

Atmos. Chem. Phys., 12, 3939–3949, 2012 www.atmos-chem-phys.net/12/3939/2012/
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No. (species) Daytime avg. mixing ratio (pptv)

Modelled Observed

Ground based measurements

1 (IO) 0.4 1.2
2 (IO) 0.7 <0.2–0.8
3 (IO) 1.0 ∼2.4
4 (IO, BrO) 1.0, 2.0 1.0, 2.0
5 (BrO) 0.8 <0.5

Ship based measurements

6 (IO) 1.0 ∼3.5
7 (BrO) 0.8 <3.6
8 (BrO) 1.2 <3.0

Satellite based measurements

9a (IO) 1.0 ∼3.3
9b (IO) 1.0 ∼3.3
10 (IO) 1.0 ∼2.4

Balloon based measurements

11 (IO) 0.02 ∼0.1
11 (BrO) 0.5 ∼1.0

Fig. 2.Mixing ratios of iodine oxide (IO) and bromine oxide (BrO)
in the TMBL. Observations were compiled from ground-, ship-,
satellite- and balloon-based platforms. Modelled mixing ratios sim-
ulated by CAM-Chem correspond to averages for the same areas
and months as the observations. Daytime represents sunlit hours.
Where indicated the mixing ratios are estimated from differential
slant column densities (dSCD). 1: Allan et al. (2000); 2: Butz et
al. (2009); 3: estimated from dSCD = 3.5× 1013 molecule cm−2

(Oetjen, 2009); 4: Read et al. (2008); 5: estimated from dSCD
(Theys et al., 2007); 6: peak mixing ratio, estimated from dSCD
= 7× 1013molecule cm−2 (Volkamer et al., 2010); 7: Leser et
al. (2003); 8: dSCD<1.2×1013molecule cm−2, observations from
the upwelling region around Mauritania with values up to 10 pptv
are excluded for comparison with modelled data (Martin et al.,
2009); 9: estimated from dSCDs = 8× 1012molecule cm−2 con-
sidering an air mass factor (AMF) of 1 and a mixed layer of 1 km
at the surface (Schönhardt et al., 2008); 10: as (9) but with dSCD =
6× 1012molecule cm−2; 11: upper limit of IO (Butz et al., 2009)
and BrO (Dorf et al., 2008) in the upper troposphere.

From a climate perspective, this finding is particularly rel-
evant because the sensitivity of long-wave absorption by
ozone is the largest in the upper troposphere (e.g. Lacis et
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Fig. 3. Comparison of average vertical profiles for ozone as simu-
lated by CAM-Chem for the last of a 10-yr run (dashed lines) with
observations at three sites (San Cristobal, Galapagos, 1◦ S–89◦ W;
Fiji, 18◦ S–178◦ E; Naha, Japan, 26◦ N–127◦ E) of the SHADOZ
and WOUDC ozonesonde networks (solid lines). Shaded areas and
horizontal bars represent the standard deviation of modelled fields
and observations, respectively.
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Fig. 4. Time series of observed and modelled ozone at (left)
1000 hPa and (right) 300 hPa for the location of three ozonesonde
sites in the proximity of the tropics. A logarithmic vertical scale has
been used for the 1000 hPa time series to draw attention to the low
ozone events. The time frequency is of around 30–40 observations
per year and every 10 days for modelled ozone.

al., 1990; Kiehl et al., 1999; Worden et al., 2008). The halo-
gen precursor source region and rapid vertical transport of air
determine the contribution of halogen chemistry to ozone de-
pletion and the extent of ozone-poor air in the tropical upper
troposphere. Within deep convection zones, this can proceed
via efficient uplift of: (i) air that has been ozone-depleted
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Fig. 5. (Left) Surface ozone loss (in 105 molecule cm−3 s−1) resulting from including tropospheric halogen chemistry in CAM-Chem.
(Right) Annual average of diurnal ozone loss observed and simulated by CAM-Chem (without and with tropospheric halogen chemistry) at
Cape Verde.

Fig. 6. Percentage of the annually integrated chemical ozone loss
from HOx, Ox and halogen photochemistry as simulated by CAM-
Chem.

through chemical processing in the clean TMBL, and (ii)
VSL organic iodine and bromine species whose breakdown
in the upper troposphere initiates ozone depletion cycles. Our
results indicate that vertical transport and efficient photo-

0-0.1
W/m2

(a)

(b)

(c)

Dobson Units

Fig. 7. Ozone column difference resulting from including tropo-
spheric halogen chemistry in CAM-Chem for(a) 200 hPa-surface,
(b) 200–850 hPa, and(c) 850 hPa-surface. The latitudinal depen-
dence of the perturbation of the radiation flux at the tropopause as-
sociated with the tropospheric ozone column loss is shown on the
right-hand side of the upper plot.

chemical breakdown of VSL halocarbons contribute at least
to 80 % of the halogen-driven ozone loss in the upper tropo-
sphere. The combination of these processes leads to an av-
erage reduction of 2.5 Dobson Units (DU), more than 10 %
of the tropospheric ozone column, over large regions of the
tropics (Fig. 7, top). Most of the ozone loss (measured in DU)
occurs in the mid- to upper-troposphere (pressure range be-
tween 850 hPa and 200 hPa), above the TMBL (Fig. 7, mid-
dle). There is high regional variability, with the largest ozone
loss found in the upper troposphere of the western tropical
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Pacific, Indian and Atlantic Oceans, within areas with effi-
cient vertical transport.

The impact of halogen chemistry on tropical tropospheric
ozone as simulated by CAM-Chem has been compared to re-
sults from previous three-dimensional global modelling stud-
ies that only considered bromine sources. To reflect the main
sources of inorganic bromine in the tropics, von Glasow et
al. (2004) used a generic organic bromine compound (with
fixed mixing ratio of 30 pptv) that was broken down into
Br by reaction with OH, and also included a simplified pa-
rameterisation for the heterogeneous recycling of bromine
on aerosols. They computed a zonally and annually averaged
tropical tropospheric ozone loss due to bromine chemistry of
12–18 %. Yang et al. (2005) used VSL bromocarbon sources
from Warwick et al. (2006), with a global Br flux that only
deviates 15 % from that used here (Ordóñez et al., 2012), and
two different sea-salt formulations. They found an ozone re-
duction due to bromine chemistry of 4–6 % throughout most
of the tropical troposphere, with maximum losses of around
8 % for the southern tropics. The tropical tropospheric ozone
loss due to bromine and iodine chemistry in CAM-Chem is
of around 6–20 %, considerably larger than that calculated
by Yang et al. (2005). This result was expected considering
the much larger ozone depletion rate resulting from bromine
and iodine chemistry, compared with bromine alone (Gilles
et al., 1997; Saiz-Lopez et al., 2007; Read et al., 2008). The
closer resemblance between the overall ozone loss calcu-
lated by our analysis and von Glasow et al. (2004) might
be due to the different bromine loadings in the models. The
30 pptv Br from a generic organic source in von Glasow et
al. (2004), compared to∼13 pptv Br in the tropical tropo-
sphere within CAM-Chem (∼4 pptv from VSL halocarbons
and∼9 pptv from CH3Br), might compensate for the lack of
iodine sources in their study. However a direct comparison
with their results is not possible since there is no information
on the rate coefficient for the reaction of their generic source
with OH. Some deviations might also arise from the different
treatment of heterogenous recycling in the three models.

4 Radiative impact of halogen-driven ozone loss

The climate significance of halogen-mediated ozone loss in
the troposphere can be determined by the tropical annually
integrated radiative impact from the tropospheric ozone de-
pletion associated with the atmospheric processing of natu-
ral oceanic halogen sources. The radiative impact of halogen
chemistry in the troposphere is computed using the CAMRT
radiative transfer scheme (Collins et al., 2006). For that pur-
pose, we calculate the radiative fluxes (shortwave and long-
wave, all sky) at the tropopause, after stratospheric tempera-
ture adjustment (Forster et al., 2007). These fluxes are com-
puted using identical present-day environmental conditions
(temperature, humidity, clouds, aerosols and surface albedo),
except for tropospheric ozone, which is set to its distribution

Table 1.Annual average difference in the longwave and net (long-
wave plus shortwave) fluxes at the tropical tropopause (20◦ S–
20◦ N) for two CAM-Chem simulations with and without VSL
halogen sources.

Longwave flux (W m−2) Net flux (W m−2)

All-sky −0.104 −0.103
Clear-sky −0.138 −0.122

from the simulations with and without halogen chemistry.
On an annual basis, the tropical difference (halogenminus
no halogen) between those fluxes is≈−0.1 W m−2, defin-
ing the size of the contribution of the effect of tropospheric
halogen chemistry on ozone alone to the radiative balance of
the atmosphere. This estimate is quite reasonable consider-
ing that our tropical tropospheric ozone column is estimated
to decrease by about 2.5 DU, leading to a 0.1 W m−2 imbal-
ance when scaled by the 0.042 W m−2 DU−1 estimated for
all-sky conditions in Ramaswamy et al. (2001). The differ-
ence in the longwave fluxes from both simulations (−0.138
and−0.104 W m−2 under clear-sky and all-sky conditions,
respectively; see Table 1) can also be compared with recent
satellite estimates of the longwave radiative effect (LWRE)
of tropospheric ozone, i.e. the reduction in outgoing long-
wave radiation (OLR) at the top of the atmosphere (TOA)
due to tropospheric ozone. This enables us to put into a
broader context the significance of the radiative effect asso-
ciated with the destruction of tropospheric ozone by VSL
halogens over the tropics. Worden et al. (2008) estimated
the LWRE of tropospheric ozone to be 0.48 W m−2 by us-
ing clear-sky ocean observations of the TES sensor in the
upper troposphere (200–500 hPa) for 45◦ S–45◦ N during the
year 2006. Worden et al. (2011) developed a new approach to
improve the accuracy of their LWRE estimate during August
2006. Interferences with water vapour were removed, which
yields lower estimates of the OLR sensitivity to ozone, and
results were computed for all observations over the full tro-
posphere. They obtained a global average LWRE from tro-
pospheric ozone of 0.50 W m−2 under clear-sky conditions
and 0.33 W m−2 under all-sky conditions. This suggests that
the negative contribution of halogen-driven ozone loss to the
longwave radiative flux at the tropical tropopause is signifi-
cant since it is around 30 % of the positive contribution to the
TOA radiation flux associated with infrared ozone absorp-
tion. Note, however, that our results are not directly compa-
rable to the previous satellite estimates because the latter (i)
exclude the stratospheric temperature adjustment and there-
fore represent instantaneous radiative forcings and (ii) are ex-
tended to areas outside the tropics.
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5 Concluding remarks

According to the IPCC Fourth Assessment Report (AR4)
chapter 2 (Forster et al., 2007), the global estimate of the
direct RF resulting from the increase in tropospheric ozone
since 1750 (on average +0.35 W m−2) has a medium level of
scientific understanding which originates from the uncertain-
ties in the model formulations used and the inability of the
models to reproduce the low ozone concentrations indicated
by the very uncertain semi-quantitative observations during
the late 19th century (see e.g. Volz and Kley, 1988; Marenco
et al., 1994; Pavelin et al., 1999; Mickley et al., 2001; Shin-
dell et al., 2003; Lamarque et al., 2005). This study shows
that accounting for oceanic halogen sources and their chem-
istry the natural rate of chemical ozone removal in the tropi-
cal marine troposphere is up to∼30 % larger than previously
assumed in global chemistry-climate models, and that the as-
sociated contribution to the TOA radiation flux is of simi-
lar magnitude (i.e. about 30 %) as the long-wave absorption
by tropospheric ozone. The inclusion of this natural compo-
nent of the ozone budget has the potential to improve simu-
lations of preindustrial ozone baseline levels, and therefore
estimates of anthropogenically-influenced increase in tropo-
spheric ozone concentrations and its associated RF. Note that
reactive bromine and iodine not only deplete O3 through ef-
ficient catalytic cycles but are also coupled with HOx and
NOx chemistry. Even though halogens have been present
since preindustrial times, they may have altered ozone con-
centrations in a different way under changing NOx regimes.
Finally, fluxes of natural halogenated VSL species from the
ocean surface are controlled by biological, physical and pho-
tochemical mechanisms that may respond to future changes
in climate processes (WMO, 2011). Therefore, further field
and laboratory work is needed to assess how climate vari-
ability may influence ocean-atmosphere exchange of reactive
halogen precursors and its associated impact on the radiation
balance in the tropical marine troposphere.
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