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Abstract

Part-whole relations and their representation play a vital role in
perceptual organization and conceptual reasoning. It is critical
for humans to parse visual scenes into objects and parts, and
organize them into hierarchies. Few studies have examined
how well neural networks learn part-whole hierarchies from
visual inputs. In this paper, we introduce a new diagnostic
dataset, CChar, to facilitate their understanding. It contains
frame-based images of writing 6,840 Chinese characters and
annotations on hierarchical structures. The results show that
RNN and Transformer models could recognize a part of high-
level components above strokes and illustrate a certain abil-
ity in learning part-whole hierarchies. However, these models
do not have robust compositional reasoning. To identify the
role of conceptual guidance in predicting hierarchical struc-
tures, we prepare visual features extracted by self-supervised
and fine-tuned models, test them on generating hierarchical se-
quences, and observe that conceptual guidance is important to
learn part-whole hierarchies. In addition, we also explore the
relationship between the depth of hierarchies and model per-
formance. It is found that RNNs perform worse as the hier-
archies deepen, but the performance of Transformers becomes
better with increasing depth.

Keywords: part-whole hierarchy, compositionality, neural
networks, Chinese character

Introduction
Part-whole representation is a vital aspect of how humans
perceive and think about objects and their parts. The effec-
tive representation of part-whole hierarchies in artificial neu-
ral networks is still a challenge (Hinton, 2022; Culp, Sabour,
& Hinton, 2022), although there is a long history of research
on part-whole representations in visual perception and cog-
nition (Wertheimer, 1938; Palmer, 1977; Marr & Nishihara,
1978; Marr, 1982; Hinton, 1990; Riesenhuber & Dayan,
1996). Symbolic AI approach and interpretable architectural
approach are two general approaches for representing part-
whole hierarchies in a neural network (Hinton, 2022).

Capsule Networks (Sabour, Frosst, & Hinton, 2017; Hin-
ton, Sabour, & Frosst, 2018), GLOM (Hinton, 2022; Culp
et al., 2022) and Agglomerator (Garau, Bisagno, Sambugaro,
& Conci, 2022) are attempts to represent part-whole hierar-
chies with more interpretable architectures. Specifically, part-
whole hierarchies are coupled with the architecture of neural
networks and used to interpret neural networks. However, it
is not easy to verify the claim that visual representations at
different levels in these models directly correspond to differ-
ent concepts in part-whole hierarchies.

[ [ 3 2 ] [ 1 1 ] ]3 2 1 1

Figure 1: The process of deriving representations of part-
whole hierarchies in a Chinese character, “仁” (kindhearted-
ness): (1) represent the current stroke in each image with a
categorical number; (2) parse the structure and add brackets
to annotate boundaries. The current stroke in each image is
highlighted in red.

For the symbolic approach, one solution is to create a parse
graph where nodes for parts and wholes are organized in a
hierarchical structure. Scene graphs have been proposed to
describe object instances in a scene, attributes of objects, and
relationships between objects (Johnson et al., 2015). Their
vector representations could be injected or fused into a neural
network to represent part-whole hierarchies.

Interpretable architectural approach assumes that we need
additional prior designs to represent part-whole hierarchies.
Does this mean that neural networks without such additional
architectural designs cannot represent or learn part-whole hi-
erarchies? And how to measure the capacity of neural net-
works without additional architectural designs in learning
part-whole hierarchies if they could? These questions are
rarely studied and may yield insights on how to better learn
implicit or transparent part-whole hierarchies. To answer
these questions, generating symbolic representations of part-
whole hierarchies is a possible test bed. For example, the
task of scene graph generation is to parse an image and gen-
erate structured representations (H. Li et al., 2024). However,
in practice, the annotated scene graphs based on real-world
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images usually have limitations (X. Li et al., 2022): (1) The
manually created annotations are highly incomplete. Due to
the sharp increase in the number of combination, it is un-
realistic to annotate all relationships in one image. (2) The
distribution of categories of objects, parts and relationships
is extremely imbalanced. Therefore, we prefer a diagnostic
dataset with a relatively balanced distribution, enough depth
of hierarchies to compare, and interpretable symbolic repre-
sentations of part-whole hierarchies.

Chinese characters exhibit “character - component -
stroke” hierarchies (see Figure 1). The characters could be
decomposed into components, and components could be de-
composed into smaller components or strokes further. Strokes
of Chinese characters can be classified into 5 types: horizon-
tal stroke (一), vertical stroke (丨), left downward stroke (丿),
dot stroke (丶), turning stroke (乙). These types can be rep-
resented with numbers (1,2,3,4,5), and each Chinese charac-
ter can be represented as a sequence according to the writ-
ing order (Ministry of Education of the People’s Republic of
China, 2020). For example, the character “仁” could be rep-
resented as “3211”. The part-whole relations could be repre-
sented with paired brackets ([]), and be viewed as bounding
boxes in one dimension. There are two components in “仁”,
and they form a “left-right” pattern. The sequence could be
“[[32][11]]” if we add brackets to mark boundaries. There-
fore, the hierarchical structure of a Chinese character could
be represented with sequential numbers with brackets.

For the task of learning part-whole hierarchies, the input is
a sequence of images with highlighted strokes, and the output
is a sequence of stroke labels with or without brackets, like
[[32][11]] or 3211 (see Figure 1). There is evidence that com-
ponents of Chinese characters are units of perception even
when these components do not represent phonological or se-
mantic features. Chinese children are able to recognize con-
stituent structures of characters in elementary school, as they
develop the knowledge of vocabulary and reading compre-
hension (Anderson et al., 2013).

We introduce a new dataset, CChar, which encodes the
temporal process of writing Chinese characters and the “char-
acter - component - stroke” hierarchies.1 CChar dataset pro-
vides a window to observe the interaction between visual fea-
tures, strokes, and upper-level components in artificial neural
networks. Our contributions are outlined in several aspects.
(1) We propose a symbolic representation of part-whole hier-
archies in Chinese characters for the first time, and introduce
a new diagnostic dataset to measure the capacity of neural
networks in learning part-whole hierarchies. (2) We observe
that neural networks could learn a portion of part-whole hi-
erarchies. However, their relative low accuracy in recogniz-
ing primitive components suggests that these models do not
have robust compositional reasoning. (3) Fine-tuned visual
features are found to be more effective than self-supervised
features in generating hierarchical sequences, which demon-

1Data, code and appendix for this paper are available at
https://github.com/limengnlp/cchar

strates that conceptual guidance is crucial for learning part-
whole hierarchies. (4) We also find that there is a negative
linear relationship between the depth of hierarchies and the
performance of RNNs, but not for Transformers.

Data
Features of Chinese Characters
Strokes The order of handwriting is prescriptive in the of-
ficial document Stroke Orders of The Commonly Used Stan-
dard Chinese Characters (Ministry of Education of the Peo-
ple’s Republic of China, 2020). There are some general
rules for stroke orders: (1) from top to bottom (二), from
left to right (孔); (2) horizontal before vertical strokes (十),
left downward before dot strokes (人); (3) for character with
encirclement structure, first outside, then inside, and finally
closed (日); (4) for vertically symmetrical characters, first
middle components, then left and right sides (小).

Components and Constituent Structures The compo-
nents of Chinese characters are units comprising strokes and
constructing Chinese characters. (Ministry of Education of
the People’s Republic of China, 1997). Different components
are composed of a limited number of strokes in different pat-
terns. There are three basic types of spatial relationship be-
tween strokes: separation, intersection, and connection. The
relationship of separation means that the strokes in a com-
ponent are separated from each other. The relationship of
intersection means that there is a cross between the strokes
in a component. The relationship of connection means the
strokes in a component are connected to each other but do
not cross. For example, two strokes, “丿” and “丶”, can form
several components like “八人入”, and the difference is the
way the strokes are combined with each other. In “八”, there
is a space between two strokes, and the relationship is sepa-
ration. In “人” and “入”, the strokes are connected with each
other and do not cross. Components could be classified as
primitive or compound components according to their levels
in the constituent structures (Xing, 2007). A primitive com-
ponent is the minimalist component that cannot be decom-
posed, such as “田” (farmland) and “力” (work force) in “男”
(male). A compound component could be decomposed into
smaller pieces in further. For example, “挚” (sincere) could
be decomposed into “执” (hand-hold) and “手” (hand), but
“执” could also be decomposed into “扌” and “丸” in further.
Therefore, “执” is not a primitive component.

CChar Dataset
The CChar dataset contains 73,086 images recording the tem-
poral process of writing 6,840 Chinese characters. For each
character, there is a sequence of stroke labels with human-
annotated hierarchical structures. We split the dataset ran-
domly into train, validation, and test sets with the ratio of
70:15:15. The number of images in the training set, valida-
tion set and test set is 51,114, 11,018, 10,954. The number
of characters in the training set, validation set and test set is
4,788, 1,026, 1,026. We compare our dataset with previous
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datasets in Table 1. Existing part-whole datasets mostly focus
on object part segmentation, and the part-whole hierarchies
as abstract relations cannot be evaluated directly. The dis-
tinctive feature of CChar is explicit symbolic representations
of part-whole hierarchies in Chinese characters that could be
measured and interpreted directly (see more details in the Ap-
pendix at https://github.com/limengnlp/cchar).

Experiment
Experimental Design

All experiments in this study include two stages (see Figure
2). The first stage is to train a visual feature extractor and
prepare visual features. Given the sequence of visual fea-
tures from the first stage, the second stage is to generate se-
quences with or without hierarchical structures. There are
several ways to train a visual feature extractor and get visual
features in the first stage. (1) Supervised method: train the
visual feature extractor on a supervised image classification
dataset. For the task of stroke classification, the input is a sin-
gle image with a highlighted stroke, and the output is one of
the five stroke labels. (2) Self-supervised method: randomly
mask patches in each image, and train models to predict them.
When downstream tasks are image classification, we usually
only take the encoder part as the visual feature extractor. (3)
Self-supervision and supervised fine-tuning: first pre-train
the visual model in a self-supervised way, then fine-tune it
on a supervised dataset. In the second stage, we adopt a gen-
eral encoder-decoder architecture to generate the sequence of
strokes.

Experiment 1 In the first stage, we train convolutional neu-
ral networks (CNN) (LeCun et al., 1995) on the stroke clas-
sification task. The input is a single image where the current
stroke is highlighted in red, and the output is the label of 5
stroke types. Then we utilize these models to extract visual
features of each image. In the second stage, we compare the
performance of GRU (Cho et al., 2014), LSTM (Hochreiter &
Schmidhuber, 1997), and Transformer (Vaswani et al., 2017)
models in generating stroke sequences with or without hier-
archical annotations. The input is a sequence of images, and
the current stroke in each image is highlighted in red. The
output is the sequence of strokes with or without hierarchi-
cal annotations. By comparing predicted sequences and the
ground truth sequence, we can investigate the capacity of neu-
ral networks in learning part-whole hierarchies. In addition,
the target sequence is interpretable symbolic representations,
so the accuracy of primitive components and error patterns in
predicted sequences can tell us whether these models work in
a robust compositional way.

Experiment 2 In the first stage, we pre-train masked au-
toencoders (MAE) (He et al., 2022) on the train and valida-
tion set of CChar images. The input is a single image where
the current stroke is highlighted in red. Then, we fine-tune
these models on stroke classification task. The input is the
same setting as before, and the output is the label of 5 stroke

types. We use pre-trained and fine-tuned MAE models to ex-
tract two types of visual features: one is self-supervised fea-
tures, and the other is fine-tuned features. Their difference is
whether feature extraction is guided by labels of stroke types.
In experiment 2, we compare GRU, LSTM and Transformer
in generating hierarchical sequences with two types of visual
features. The input is the same as experiment 1, but the output
is the sequence of strokes with hierarchical annotations only.
By comparison, results could tell how important the concep-
tual guidance is in visual feature extraction and learning part-
whole hierarchies. Part-whole hierarchies involve not only
perception but also conceptual categorization and organiza-
tion. We are curious about the role of conceptual guidance
in visual feature extraction and the consequent effects on pre-
dicting hierarchical structures, considering part-whole hierar-
chies in Chinese characters are built on the stroke level.

Experiment 3 In the first stage, we have similar settings as
experiment 1, and get visual features from CNN-based mod-
els. In the second stage, we control the depth of hierarchies
so that data points with different hierarchies are equal in dif-
ferent subgroups, and randomly sample 20 different subsets
from CChar. We compare the performance of GRU, LSTM,
and Transformer models in generating stroke sequences with
hierarchical annotations on different subsets. The input and
output are the same as experiment 2. By statistical analysis,
we would explore if there is a negative relationship between
the depth of hierarchical structures and model performance in
experiment 3.

Models

We use CNN-based models and MAE models to extract visual
features.

VGG-tiny The visual feature extractors in experiment 1
and 3 are VGG-tiny models. We reduce the pyramid archi-
tecture of VGG net (Simonyan & Zisserman, 2014) to a tiny
version, considering our dataset is relatively small. Images
are resized to 128x128. There are only two building blocks
for feature extraction, and each block has two convolutional
layers and one max-pooling layer. In addition, there are also
two fully-connected layers for classification, and the output
dimension of the second fully-connected layer is the number
of categories. VGG-tiny models are trained on CChar dataset
in 30 epochs with supervised labels and are expected to clas-
sify the categories of strokes. During the training, the stroke
order of each character is not reserved and the order of images
is shuffled in the batch.

MAE MAE models in He et al. (2022) are trained on
ImageNet-1K. To adapt our small dataset, we modify some
hyperparameters and use a ViT-tiny backbone to prevent over-
fitting. Compared with CNN, ViT lacks inductive bias and
may perform badly when the dataset is small. The input im-
age is resized to 128x128. The patch size is 16. The em-
bedding dimension is 256. There are 4 layers in both the en-
coder and decoder. The number of attention heads is 4. In
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Dataset Dim Max hierarchy Object Real Instances
Ellipse world (Culp et al., 2022) 2D 3 multiple synthesized 505,000
Exercise (Xue, Wu, Bouman, & Freeman, 2016) 2D 3 single real 50,500
Geo (Xu et al., 2018) 2D 2 multiple synthesized 110,000
PartNet (Mo et al., 2019) 3D 7 single synthesized 26,671
PTR (Hong, Yi, Tenenbaum, Torralba, & Gan, 2021) 3D 3 multiple synthesized 70,000
CChar (ours) 2D 6 single synthesized 6,840

Table 1: Comparison between CChar and other part-whole datasets.

encoder

VGG-tiny

…

decoder

…

MAE

Training

Stage 1 Stage 2

GRU/LSTM/Transformer

[[32][11]]encoder decoder

Stage 1

Feature extraction

Figure 2: Two-stage experiments.

experiment 2, we build two types of visual feature extractors.
First, we pre-train MAE models on CChar train and valida-
tion images in 200 epochs, with different mask ratios (0.1,
0.3, 0.5, 0.7, 0.9). Then, we load the pre-trained weights and
fine-tune with supervised labels in 50 epochs. The batch size
is 64. For both pre-trained and fine-tuned models, we only
take the encoder as feature extractors, and use a ‘[CLS]’ to-
ken vector with 256 dimensions, the first token vector of the
encoder output, to represent the whole image. Thus, we get
self-supervised features and label-guided features.

We use LSTM, GRU, and Transformer in an encoder-
decoder architecture to generate sequences. In each experi-
ment, we use the Adam optimizer with β1 = 0.9,β2 = 0.999
and ε = 10−8. The learning rate is 0.0005. The batch size
is 32. The loss function is cross entropy. The random seed
is 42. Please see the appendix for other hyperparameters of
LSTM, GRU and Transformer in different experiments.

Evaluation
Visual Feature Extraction Models are evaluated by accu-
racy in the task of stroke classification.

Generating the Sequence of Strokes The model-
generated sequences are compared against standard
sequences with human annotations. It might seem that
syntactic parsing is a similar task, and metrics for evaluating

it could be transferred to our task. However, there are several
key differences between our task and syntactic parsing tasks.
First, characters will not change after text-to-text parsing,
while predicting stroke labels from sequential visual inputs
is more complex. In addition to misplacing the brackets,
models in this task may also predict the wrong labels of
images. Secondly, it is unnecessary to assign labels for larger
units at high levels (e.g. types of phrase structures) in our
task. Therefore, we use BLEU score (Lin & Och, 2004) and
normalized Levenshtein ratio (Levenshtein et al., 1966) for
automatic evaluation.

BLEU is a widely used metric in machine translation, and
is calculated based on measuring the effective overlap be-
tween a reference sentence and a predicted sentence. It is
a corpus-level metric for comparing different models. Here
we use the BLEU-4 setting for calculation.

Levenshtein ratio, a normalized edit distance, is also
adopted here. The formula is illustrated as Equation 1. The
distance of insertion, deletion and substitution are relatively
1, 1, and 2. For example, when the predicted sequence is ‘55’
and true sequence is ‘[5]’, ratio = 1–(1+2)/(2+3) = 0.4.

Ratio(a,b) = 1− Distance(a,b)
|a|+ |b|

(1)

Primitive components are the smallest components that
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cannot be decomposed, and the accuracy of primitive com-
ponents could indirectly reflect whether models work in a ro-
bust compositional way. For each character, given the pre-
dicted sequence, extract “[number]” patterns and match them
with true primitive components. The accuracy of primitive
components equals the number of correctly matching prim-
itive components divided by the total number of true primi-
tive components. For example, if the predicted sequence is
“[[252][132]]” and the true sequence is “[[23][[1][252]]]”,
the correctly matched primitive component is “[252]”, and
accuracy = 1/3 = 0.33. The accuracy of primitive compo-
nents only counts the number of primitive components that
could be matched, and does not consider the length and po-
sition of primitive components or their combinations. It is an
indicator of local compositionality from stroke level to prim-
itive component level, no matter representations are built in a
top-down or bottom-up way.

Results and Discussion
Capacity of NNs to Learn Part-whole Hierarchies
In experiment 1, the accuracy of VGG-tiny is 99.71%, and
we use it to extract visual features with 512 dimensions for
each image. We use BLEU scores, Levenshtein ratios, and the
percentage of exact match to measure the capacity of neural
networks to learn the hierarchical structures. For tasks to pre-
dict target with hierarchy, we calculate the Levenshtein ratios
and the percentage of exact match in two different settings:
one is based on target sequences with brackets, and the other
one is based on target sequences without brackets (see Ta-
ble 3). The results in the group without brackets can provide
the accuracy of predicting sequential images and serve as a
reference. By comparing the two settings, we can know the
difficulty of learning hierarchical structures and disentangle
the source of errors.

The results in Table 2 and Table 3 show that neural
networks could recognize a part of the components above
strokes, and predict at least 30% of test data with complete
accuracy. Transformers show better performance in capturing
long dependency and predicting target sequences with hierar-
chies than GRU and LSTM. Transformers’ ability to model
long dependency is supported by two aspects of evidence
(see the Appendix): (1) the visualization of attention illus-
trates how Transformers recognize the boundaries of primi-
tive and compound components; and (2) Transformers make
much fewer errors on unpaired brackets.

The results in Table 4 imply that these models do not have
robust compositional reasoning, although Transformers are
better than RNNs in predicting local components.

Model BLEU-4 (hier) BLEU-4
GRU 74.21 91.78
LSTM 79.79 93.93
Transformer 92.41 92.49

Table 2: The BLEU-4 scores of different models.

Conceptual Guidance in Visual Feature Extraction
In experiment 2, the accuracy of fine-tuned MAE models is
99.57%, 99.53%, 99.55%, 99.60%, 99.64% when mask ratio
is 0.1, 0.3, 0.5, 0.7, and 0.9 respectively.

The results in Table 5 show that there is a difference of
30 to 40 points between two types of visual features. Mod-
els with self-supervised features have limited ability to gener-
ate hierarchical sequences, while models with fine-tuned fea-
tures prove much better performance. This implies concep-
tual guidance is important for extracting visual features and
learning part-whole hierarchies.

GLOM (Hinton, 2022) and Agglomerator (Garau et al.,
2022) try to tackle this issue by introducing intricate architec-
tures to improve clustering from the pixel level. However, this
experiment shows that conceptual guidance of visual features
is also very important for learning part-whole hierarchies, be-
cause the boundary between perception and cognition is not
clear-cut. In fact, it proves unexpectedly effective that using
priors of linguistic structures to improve model performance
in various computer vision tasks (Narasimhan, Rohrbach, &
Darrell, 2021; Rao et al., 2022; El Banani, Desai, & Johnson,
2023; Deng et al., 2023; Michel et al., 2024).

Relationship between Depth of Part-whole
Hierarchies and Model Performance
In experiment 3, the accuracy of VGG-tiny is 99.74%, and
we use it to extract visual features with 256 dimensions for
each image.

We use simple linear regression to test if the depth of hier-
archical structures significantly predicts the Levenshtein ra-
tios of different models. The results show that the depth of
hierarchies could significantly predict the Levenshtein ratios
of RNNs and Transformers (see detailed regression coeffi-
cients in the Appendix). The performance of RNNs (GRU
and LSTM) decreases linearly as the hierarchical structures
deepen. However, the performance of Transformer models is
better with an increasing depth of hierarchies, which may be
explained by that attention mechanism could capture longer
dependencies (see Figure 3).

RNNs outperform Transformers for characters with shal-
low hierarchies, which may be attributed to the small size
of dataset and the inductive biases of RNNs and Transform-
ers. The dataset in experiment 3 is a collection of subsets of
CChar, and each subset only counts about 20% of CChar (see
detailed distribution of hierarchical levels in the Appendix).
Transformers lack local inductive biases and cannot show its
advantage when they are trained on very short sequences with
much fewer components. In previous studies on the induc-
tive bias of RNNs, it is found that GRUs and LSTMs have
inductive biases toward low frequent patterns (Ishii, Ueda, &
Miyao, 2023). In addition, LSTM-based seq2seq learners can
learn and generalize math operations from a single training
example (Kharitonov & Chaabouni, 2020).

It should be pointed out that the longest sequence with hi-
erarchical structures in the CChar dataset only has 56 tokens.
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Model Target with hierarchy Target

L-ratio(hier) Match(hier) L-ratio Match L-ratio Match

GRU 0.8947 29.43 0.8996 34.41 0.9777 76.80
LSTM 0.9144 41.13 0.9141 44.74 0.9849 84.41
Transformer 0.9661 64.91 0.9737 72.71 0.9748 71.73

Table 3: The Levenshtein ratios and the percentages of exact match predicted by different models. The “L-ratio (hier)” metric
calculates the average Levenshtein ratio between predicted sequences with brackets and true sequences with brackets, while
the “L-ratio” metric measures the average similarity between predicted sequences after removing brackets and true sequences
without brackets. Similarly, the “Match (hier)” metric calculates the percentage of a total match between predicted sequences
with brackets and true sequences with brackets, while the “Match” metric calculates the percentage of a total match between
predicted sequences after removing brackets and true sequences without brackets.

Model Avg accuracy
GRU 57.86
LSTM 62.25
Transformer 83.72

Table 4: The average accuracy of primitive components pre-
dicted by different models.

Model Mask ratio BLEU-4
pre-trained fine-tuned

0.1 35.64 70.49
0.3 39.62 72.41

GRU 0.5 44.33 70.70
0.7 44.85 68.74
0.9 41.45 70.71

0.1 32.83 68.32
0.3 38.12 71.52

LSTM 0.5 44.43 68.73
0.7 45.76 68.65
0.9 44.14 68.30

0.1 33.30 76.86
0.3 31.37 74.29

Transformer 0.5 51.47 64.08
0.7 52.13 77.18
0.9 51.63 73.39

Table 5: The BLEU-4 scores of different models with self-
supervised or fine-tuned visual features.

The length of sequences is very limited, and only characters
with 1 to 4 levels of hierarchies are selected in experiment 3,
which could undermine the conclusion.

Conclusion
In this paper, we introduce a diagnostic dataset to measure
the capacity of neural networks in learning part-whole hi-
erarchies. RNNs and Transformers can recognize a portion
of upper-level components and learn part-whole hierarchies.
However, this does not imply that these models have robust
compositional reasoning. We also compared two types of vi-
sual features to understand the role of stroke labels in guid-
ing visual feature extraction. Supervised features in generat-
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Figure 3: Relationship between depth of hierarchies and Lev-
enshtein ratios in different models.

ing hierarchical sequences prove to be more effective than
self-supervised features, which emphasizes the importance
of conceptual guidance in learning part-whole hierarchies.
Lastly, the depth of hierarchies affects the Levenshtein ratios
of RNNs and Transformers differently. As the hierarchical
structures deepen, the performance of RNNs decreases, but
Transformer models perform better.

This study aims to analyze how different variables af-
fect neural networks in learning part-whole hierarchies, and
heavily relies on the specific structure of Chinese characters.
There are still many challenges in expanding to more open-
ended naturalistic visual environments and building efficient
architectures to represent part-whole hierarchies. Follow-
ing insights from previous experiments, we expect there will
be neural architectures with conceptual guidance to play a
greater role in representing part-whole hierarchies. To effec-
tively integrate conceptual guidance, hybrid neuro-symbolic
architectures or cognitive-inspired multimodal learning are to
be explored in the future.
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