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Efficient discontinuous finite difference meshes for 3-D Laplace–
Fourier domain seismic wavefield modelling in acoustic media 
with embedded boundaries

H.J. AlSalem,1 P. Petrov,2 G. Newman,2 E. Um2 and J. Rector1

1Department of Civil Engineering, University of California-Berkeley, 2594 
Hearst Ave, Berkeley, CA 94709, USA. E-mail: geohussain@berkeley.edu 
2Lawrence Berkeley National Laboratory, 67 Centennial Dr, Berkeley, CA 
94705, USA

SUMMARY

Simulation of acoustic wave propagation in the Laplace–Fourier (LF) domain, 
with a spatially uniform mesh, can be computationally demanding especially 
in areas with large velocity contrasts. To improve efficiency and 
convergence, we use 3-D second- and fourth-order velocity-pressure finite 
difference (FD) discontinuous meshes (DM). Our DM algorithm can use any 
spatial discretization ratio between meshes. We evaluate direct and iterative 
parallel solvers for computational speed, memory requirements and 
convergence. Benchmarks in realistic 3-D models and topographies show 
more efficient and stable results for DM with direct solvers than uniform 
mesh results with iterative solvers.

Key words: Seismic; Finite-difference; Acoustic waves; High performance 
computing; Frequency domain.

1 INTRODUCTION

Finite-difference (FD) methods that solve the acoustic wave equation over a 
discrete set of gridpoints have the advantage of being able to handle 
realistic geological structures of arbitrary complexity (Graves 1996). 
However, their computational cost grows with the number of required grid 
nodes (Operto et al. 2007; Fichtner 2011). One of the important reasons is 
the high contrast of seismic-wave velocities found in real earth structures, 
especially in arid environments where the near-surface velocity is low. Other 
reasons include requiring more gridpoints for 3-D models (vs. 2-D), and 
applying a high-frequency point source. Most algorithms of wave propagation
either ignore the relatively thin low-velocity regions or include them using a 
uniform grid size that is determined by the lowest velocity, which has the 
shortest wavelength (Nie et al. 2017). The first simulation produces 
inaccurate results which causes the simulated data to misrepresent the true 
data. The second simulation results in oversampling the deeper regions with 
higher velocity inevitably leading to a considerable increase of computational
time and memory. For these reasons, it is preferable to use different 
discretizations in shallow and deep regions.

There are several other numerical solution methods naturally suited for 
modelling seismic fields over complex surfaces. For example, finite element 
(FE) methods solve a system of equations derived from a weak form of the 



wave equation. Using unstructured grids (e.g. tetrahedral meshes), FE 
methods can accurately and economically discretize arbitrary complex 
topography and horizons (Bao et al. 1998). Spectral element (SE) methods 
(Komatitsch & Tromp 1999) are similar to the p version of FE methods (Jin 
2015) and can also discretize a computational domain into unstructured 
meshes adapted to irregular surfaces.

However, their advantage over FD methods come with extra complications. 
For example, it is not straightforward to develop an effective regularization 
matrix for tetrahedral meshes (Zhang 2017). Generation, visualization and 
analysis of tetrahedral meshes are also cumbersome and difficult especially 
when fine scale elements for complex irregular surface and faults are mixed 
with large scale elements for regional geology (Casarotti et al. 2008). Fast 
and accurate generation and display of large multiscale tetrahedral meshes 
is currently an active research area in computational mathematics and 
engineering. In contrast, the use of the structured FD grids allows us to 
easily and rapidly construct, visualize and analyse earth models. More 
importantly, from a practical point of view, most geoscience modelling tools 
are built on rectangular meshes. Thus, the use of rectangular meshes in 
seismic modelling allows us to import and export velocity models to flow and
reservoir simulators.

Several authors have developed FD methods with variable grid spacing. 
Moczo (1989) and Pitarka (1999) developed FD methods with grid spacing 
changing gradually over a distance separating a fine and coarse mesh, which
are less efficient and less flexible to apply as compared to discontinuous 
mesh (DM) methods. To accurately and efficiently model realistic geological 
structures, other varieties of DM methods have been proposed (e.g. Aoi & 
Fujiwara 1999; Tessmer 2000; Hayashi et al. 2001; Wang et al. 2001; Kristek 
et al. 2010; Zhang et al. 2012). The time-domain FD DM implementations 
suffer inherently from stability problems after a large number of time steps 
(Nie et al. 2017).

In this paper, we introduce a DM into second- and fourth-order LF domain 
velocity-pressure staggered FD scheme with topography to simulate acoustic
wave propagation. The uniform grid acoustic implementation from Petrov & 
Newman (2012) and AlSalem et al. (2018) is now developed to be highly 
scalable using PETSc numerical libraries (Balay et al. 2018). Simulations are 
being pushed to higher frequencies with realistic 3-D heterogeneous velocity
models to meet the requirements of gas and oil exploration in arid 
environments. Here, we introduce an interface between fine and coarse 
meshes and benchmark the method for accuracy, convergence and 
efficiency. We evaluate direct and iterative parallel solvers that are included 
in PETSc for computational speed, memory requirements and convergence. 
These validation tests include a simple homogeneous model in a sloping free
surface, a low contrast layered velocity model underlying a hill free surface 
and a high contrast layered velocity model underlying realistic topography 
provided by Saudi Aramco.



2 DISCONTINUOUS MESH IMPLEMENTATION

2.1 Theory

Frequency-domain modelling of wave propagation inside the earth has been 
studied extensively (see Lysmer & Drake 1972; Marfurt 1984; Pratt & 
Worthington 1990; Zahradník & Urban 1984; Jo et al. 1996; Štekl & Pratt 
1998; Hustedt et al. 2004; Operto et al. 2007). Most of the methods that 
have been developed for wave modelling in the frequency domain are based 
on solving the acoustic wave equation by the FD method: on a uniform grid, 
the FD methods provide an excellent compromise between accuracy and 
computational efficiency.

We consider the first-order hyperbolic system in a velocity–pressure 
formulation in the LF domain, which can be derived from Petrov & Newman 
(2012). Let the 3-D isotropic acoustic medium with density ρ and 
incompressibility κ occupy the region Ω. The equations of motion inside Ω are
given by:  

where s is the complex number given by σ + iω, σ is the Laplace damping 

factor, ω is the angular frequency and . The velocities vx, vy and vz 
are the velocity wavefield components, P is the acoustic pressure, m is 
seismic moment density tensor and the symbols ∂x, ∂y and ∂z denote the 

partial differential operators  and , respectively. The LF equations of
motion (eq. 1) are obtained by transforming the time-domain system of 
equations (Virieux 1986) using the following LF transform:  

where g(t) includes the functions vx(t), vy(t), vz(t) and P(t).

For the numerical solution of eq. (1), we use FD schemes with seven point-
stencils for second-order and 19 point-stencils for fourth-order approximation
(Operto et al. 2007). This system of equations must be augmented with 
boundary conditions. In the case of infinite media, the non-reflecting 
condition for wavefield components is applied at the boundaries of region Ω. 



We used the perfectly matched layer (PML) boundary conditions (Hastings et
al. 1996; Kim & Pasciak 2010). At the free surface boundary, one needs to 
incorporate the following boundary condition:  

which is realized for any simple or complicated topographic structure using 
our embedded boundary method (Li et al. 2010; AlSalem et al. 2018).

In typical seismic models, the velocity and density tend to increase with 
depth. Hence, simulation of seismic wave propagation using a spatially 
uniform mesh can be computationally very demanding due to the 
overdiscretization of the high-velocity material. Thus, small grid sizes can be 
used at the top and larger grid sizes can be used at deeper regions of the 
model. This issue can be partly addressed by varying grid sizes (Δz) with 
depth. However, lateral grid sizes (Δx and Δy) are still constrained by the 
global minimum velocity (Pasalic & McGarry 2010). One approach is to 
discontinuously vary Δx, Δy and Δz grid sizes along the z direction to take 
advantage of variations in velocity. Fig. 1 shows the layout of the three 
velocity components and acoustic pressure, indicating that the most basic 
way to implement a DM is to use a ratio of spatial discretization H/h between
the coarse (H) and the fine (h) grids. In this example, we consider the case of
H/h = 3 to demonstrate the advantage of the DM method. Updating vx in a 
high-velocity material using the uniform second-order FD method requires 
pressure values at ±(1/2)h, while the DM method skips the nearest pressure 
values and uses ±(3/2)h instead.



Since the velocity components are partial derivatives of acoustic pressure 
(eq. 1), we focus on only illustrating the acoustic pressure values in the DM 
FD approximation. Our approach divides the model into a number of regions,
separated by horizontal planes (Fig. 2). Within each region, Δx, Δy and Δz are
uniform and equal; however, they vary from one region to another. In this 
way, discretization becomes a discontinuous function of depth.



2.2 Communication across region interfaces

In each discontinuous region, the wave propagation FD discretization can be 
performed as for the uniform mesh. However, we clearly need to have some 
communication across the regions’ interfaces (Fig. 2). To demonstrate the 
communication, we consider a fourth-order FD example with two 1-D regions
as illustrated in Fig. 3. The spacing ratio between the coarse and fine regions
is H/h = 1.5. The open nodes in the figure are approximated using fourth-
order FD while the filled nodes are approximated using interpolation and 
downsampling to update the missing fine grid and coarse grid nodes, 
respectively. To realize these approximations in one matrix, we provide the 
following steps:



i. Generate fine- and coarse-mesh 1-D fourth-order FD matrices for 
each region with grid sizes h and H, respectively:  

Here, Af and Ac are the fourth-order FD square matrices for the fine 
and coarse regions, respectively. Af includes nf fine grid nodes 
(rows) in the fine region plus three fine grid nodes (rows) in the 
coarse region. Similarly, Ac includes nc coarse grid nodes in the 
coarse region plus three coarse grid nodes in the fine region as 
shown in Fig. 3. Using this information, we split Af to four 

submatrices where the size of  is (nf × nf),  is (nf × 3),  is 

(3 × nf), and  is (3 × 3). Inversely, we split Ac into four 

submatrices where the size of  is (3 × 3),  is (3 × nc),  is

(nc × 3), and  is (nc × nc).

ii. Remove rows containing non-regional grid nodes

 in the square matrices (Af and Ac) and keep

the regional grid nodes  and their communication 

stencils . We end up with the following rectangular 
matrices:  

iii. Generate the coarse to fine grid linear interpolation (trilinear 
interpolation in 3-D) matrix depending on the positions of the 
interpolated fine grid nodes (filled squares) in Fig. 3:  



iv. Generate the fine to coarse grid linear downsampling (trilinear 
downsampling in 3-D) matrix depending on the positions of the 
downsampled coarse grid nodes (filled circles) in Fig. 3:  

v. Merge the matrices together to get the fourth-order DM FD square 
matrix for two regions:

We call  and  the forward modelling operators and  and

 the interpolation and downsampling operators, respectively. We 
pad the right side of the interpolation operator and the left side of the 
downsampling operator with zeros to ensure the matrix is square. We can 
rewrite the linearlized problem for two regions as:



where the size of each of Pf and Ff is nf, and the size of each of Pc and Fc is nc.

We observe from eq. (9) that the communication stencils  and  are 
linked to the differently spaced grid nodes using the interpolation Afc and 
downsampling Acf matrices, respectively.

For the 3-D case, this is done by simple trilinear interpolation and 
downsampling across the relevant acoustic pressure values from one region 
to another for any H/h ratio. Hence, using FD, the acoustic wave propagation 
in LF domain can be approximated by:  



where Ai is the forward modelling operator for region i, Ai, j is the interpolation
or downsampling operator from region j to region i, and Pi and Fi are the 
acoustic pressure and source function for region i, respectively.

The proposed DM FD scheme is a flexible technique that brings significant 
savings in computational effort and memory requirements. However, certain 
constraints must be observed. The most important is the number of 
communication layers across the region interfaces (Fig. 2). To ensure 
minimum reflection from the interface, the communication will occur over 
two and six layers (planes for 3-D case) in z-direction for second- and fourth-
order FD schemes, respectively. We call the communication layers 
overlapping planes because it is where differently spaced gridpoints overlap 
in 3-D.

3 ACCURACY OF DM

To verify the accuracy of our DM with embedded boundary FD method, we 
present three scenarios: a homogeneous velocity model with a sloping free 
surface, a layered velocity model with a hill free surface and a layered 
velocity model with realistic topography. For all the tests, we use a point-
source and receivers slightly below the surface. The accuracy of our first test
is compared with the analytical solution while the following tests are 
compared with the uniform fine mesh solution that has been thoroughly 
verified with respect to analytical solutions in AlSalem et al. (2018). For 
these comparisons, relative error is calculated by: 

where rΩ ∈ region Ω, s is the Laplace–Fourier complex frequency, Psim is the 
simulation result and PR is the reference solution.

3.1 Homogeneous model with a sloping free surface



The first experiment is performed on a homogeneous velocity model, with a 
velocity of 5000 m s−1 and a density of 2000 kg m−3 (Fig. 4). The excitation is 
applied 20 m below and normal to the 10° sloping free surface. Grid spacing 
discontinuously increases with depth in such a way as to ensure a minimum 
of eight points per shortest wavelenghth. A Ricker wavelet with a frequency 

of 20 Hz and damping  is used as the source waveform. Observation 
points are placed 5 m below and normal to the sloping free surface.

In the experiment, the DM with embedded boundary method is applied on a 
second-order FD scheme to calculate the pressure response at observation 
points. Here, we use two overlapping planes for communication since the FD 
scheme is second-order. In Fig. 5, we compare the absolute acoustic 
pressure values obtained by the analytical solution and DM with embedded 
boundary. Overall, the average error for the DM method is less than 5 per 
cent (Fig. 6).



3.2 Layered model with a hill as free surface

Here, we apply our DM scheme to a layered velocity model under a hill as 
the free surface. The hill topography and two depth slices, illustrating the 
layered velocity model with source and receiver locations are shown in Fig. 
7. The density is 2000 kg m3 for all the layers. The uniform simulations have 
a constant grid size of 5 m. For the DM FD simulations, we place the DM 
interface at a depth of 750 m, above which the grid size is 5 m, and below 
which we use 10 m. The overlap zone contains 2 and 6 overlapping planes 



for the second- and fourth-order DM FD simulations, respectively. The point 
source is located at (100, 500, 540) m, 40 m below the free surface (Fig. 7b). 
We apply a Ricker-wavelet source with a central frequency of 20 Hz. For both
the fine- and coarse-grid regions, we sample the minimum spatial 
wavelength by at least eight nodes.

We compare acoustic pressure solutions between the uniform and DM spatial
discretizations at two receiver lines: one is aligned along and 10 m below the
free surface and the other is aligned along the z direction and located at x = 
350 m (see Fig. 7c). The uniform and DM solutions are nearly identical to the 
naked eye in both the real and imaginary parts for second- and fourth-order 
FD solutions (see Figs 8 and 9), with an average error of less than 5 per cent 
as shown in Fig. 10.







3.3 Layered model with realistic topography

For our third accuracy test, we apply our DM scheme on a realistic 
topography surface provided by Saudi Aramco (see Fig. 11a). The provided 
model is large in size and contains a high-contrast layered velocity model. 
For the uniform simulations, we use a constant grid size of 10 m. We place 



the DM interface at a depth of 720 m, above which the grid size is 10 m, and 
below which we use 15 m. The overlap zone contains two overlapping planes 
for the second-order DM FD simulations. We apply a Ricker wavelet point-
source with a central frequency of 10 Hz that is located at (1000, 3000, 340) 
m (see Fig. 11b). Similar to our previous tests, both the uniform and DM FD 
simulations allow us to sample the minimum spatial wavelength by at least 
eight nodes. The frequency is reduced to 10 Hz to accommodate larger grid 
spacing for the spatially large realistic model.

We compare acoustic pressure solutions between the uniform and DM spatial
discretizations at two receiver lines: one is aligned along and 10 m below the
realistic free surface and the other is aligned along the z directions and 
located at x = 3000 m (see Fig. 11c). Similar to previous accuracy tests, the 



solution from the DM is satisfactorily close to the uniform solution in both the
real and imaginary parts (see Figs 12 and 13), with an average error of less 
than 5 per cent as shown in Fig. 14. In Fig. 14(a), some points show an 
inflated error that is caused by having a very small absolute acoustic 
pressure value near the free surface for the reference uniform fine mesh 
solution.





4 EFFICIENCY AND CONVERGENCE ANALYSIS OF DM



As discussed above, computational efficiency and convergence is the 
justification for using a discontinuous staggered-grid mesh instead of a 
uniform mesh. In this section, we explore solution times for both spatial 
discretizations using direct and iterative solvers provided by PETSc numerical
libraries (Balay et al. 2018). For the direct solvers, we tested MUMPS v5.1.2 
(Amestoy et al. 2001, 2006), MUMPS Block Low Rank (BLR) with drop 
tolerance 10−7 (Amestoy et al. 2015) and SuperLU_DIST v5.1.3 (Li et al. 1999;
Li & Demmel 2003; Grigori et al. 2007) and for the iterative solver, we tested
the Generalized Minimal Residual (GMRES) method (Saad & Schultz 1986), all
via PETSc. We use NERSC’s Cray XC40 supercomputer (Cori), which has 2388
Intel Xeon ‘Haswell’ processor nodes. Each node has 128 GB DDR4 2133 MHz
memory and holds two sockets where each socket is populated with a 16-
core Intel® Xeon™ Processor E5–2698 v3 (‘Haswell’) at 2.3 GHz. We will test 
efficiency and convergence when implementing DM relative to uniform 
discretization for a layered velocity model with the hill free surface, and the 
spatiallylarge high-contrast layered velocity model with realistic topography.

4.1 Layered model with a hill as free surface

In the first test, we benchmark uniform and DM second- and fourth-order FD 
simulations of the layered hill free surface model (Fig. 7). To measure the 
speed gain without bias, we will use 64 nodes for all the simulations in this 
section and cap the number of cores per node to 16 for second-order FD and 
8 for fourth-order FD to meet the direct solvers’ high memory demands. The 
second-order FD scheme, which has approximately seven non-zeros per row 
in its matrix, shows a speed gain of 1.76 times for DM relative to the uniform 
fine mesh when using the GMRES iterative solver (Table 1 and Fig. 15a). The 
fourth-order FD scheme, which has approximately 19 non-zeros per row, 
shows a speed gain of 1.35 times (Table 2 and Fig. 15b).



To measure the efficiency of direct solvers on DM simulations, we compare 
them against the GMRES iterative solver on uniform simulations for a large 



number of sources, where each source is one right-hand side (RHS) in our 
acoustic wave equation formulation. For the second-order FD test, Fig. 15(a) 
shows a speed gain of more than five times when using SuperLU_DIST and a 
speed loss when using MUMPS for more than 1000 sources. The speed loss 
can be attributed to the favourable iterative conditions, which are the low 
number of non-zeros and small condition number due to the low velocity 
contrast between layers. The fourth-order simulation, which has a relatively 
higher number of non-zeros, shows a speed gain of nine times for 
SuperLU_DIST and more than three times for both MUMPS and MUMPS BLR 
when simulating for more than 1000 sources (Fig. 15b).

4.2 Layered model with realistic topography

To examine the influence of the large condition number and high number of 
non-zeros on solvers, we benchmark uniform mesh and DM second-order FD 
simulations of the high velocity contrast realistic topography model (Fig. 11).
To keep the benchmarks fair, we use 128 nodes for all simulations and cap 
the number of cores per node to four for direct solvers.

Table 3 shows that the GMRES iterative solver diverges when using the 
uniform mesh and converges when using our DM discretization. Here, our DM
lowers both the number of non-zeros and the condition number of the 
simulation matrix. We also observed that MUMPS is more memory efficient 
than SuperLU_DIST for large simulations (Table 3). In summary, our 
benchmarks indicate that DM discretization is faster and more stable than 
uniform discretization, especially for large models with high velocity 
contrasts.

5 CONCLUSION

We implemented a DM with embedded boundary for both second- and 
fourth-order accurate staggered-grid velocity-pressure FD schemes. It 
approximates the solution of the LF acoustic wave equation with any spacing
ratio between the differently spaced regions. Our method applies trilinear 
interpolation to the coarse mesh to update pressure values at nodes needed 
by the fine mesh and it downsamples the fine mesh pressure values to 
update pressure values at nodes needed by the coarse mesh. We show that 
our DM with embedded boundary scheme is accurate when using two and six
overlapping planes for second- and fourth-order FD approximation, 
respectively. For spatially large and high velocity contrast models, our DM 
scheme lowers the condition number and the problem size allowing iterative 
solvers to converge and direct solvers to require less memory. Our DM with 
embedded boundary FD scheme has the potential to significantly improve 
the efficiency of uniform FD methods, especially for simulations with realistic 
topographies, 3-D geological settings and near-surface low velocities. 
Therefore, the algorithm can become a powerful part of a forward-modelling 
engine used for full waveform inversion. It is also an important step towards 
realizing a DM solution for the elastic LF wave equation.
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