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 High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness 

using molecular beam epitaxy (MBE). The combination of angle-resolved photoemission (ARPES), scanning 

tunneling microscopy/spectroscopy (STM/STS), and optical absorption measurements reveal the atomic and 

electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct 

bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band 

gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band 

at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding 

energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of 

conventional 3D semiconductors, yet small as compared to other 2D transition metal dichalcogennides (TMDCs) 

semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal 

surface electron doping opens a route to further control the electronic properties of TMDCs.  

mailto:yizhang@lbl.gov
mailto:skmo@lbl.gov
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Two-dimensional (2D) transition metal 

dichalcogenides (TMDCs) MX2 (M = Mo, W; X = S, Se) 

semiconductors have attracted extensive interest due to 

their remarkable fundamental properties distinct from 

those of their bulk counterparts.1-4 These include direct 

electronic bandgap in the single-layer limit,5-10 spin-

splitting of the valence band (VB),11-15 a well-pronounced 

valley degree of freedom16-20 as well as the excitonic nature 

of their optical spectra.20-24 Large efforts are currently 

devoted to tailor these properties in order to widen further 

the versatility of these materials and to achieve practical 

devices out of them.25-38 Some proposed strategies in these 

regards are the growth of films with varying thickness,14, 

39-42 their growth on other 2D materials to form hybrid 

heterostructures,28, 31, 35, 37, 43 and the use of chemical and 

electrostatic doping.13, 29, 44-46 All of them have been 

demonstrated to be very successful in modifying and 

controlling the properties of graphene, which have even led 

to the observation of novel physical phenomena.47-51 

Nonetheless, these strategies have been less explored in 

TMDC materials although promising results have recently 

been predicted.37 

Among the family of TMDC semiconductors, WSe2 

is probably the most interesting material for potential 

applications. It is expected to possess the largest spin-

splitting in the VB at the K/K’ point among all the MX2 

semiconductors,11 which makes WSe2 an ideal platform for 

studying spin and valley dependent properties as well as 

for spintronic applications.18, 44 The recent polarization 

dependent photoluminescence (PL) indicates that the 

valley coherence is preserved for longer time compared to 

other TMDCs,52 which makes WSe2 a more promising 

candidate for valleytronics. So far, detailed spectroscopic 

research on the electronic structure of monolayer WSe2 is 

rather scarce due to the difficulty in obtaining high-quality 

thin films and hybrid heterostructures with uniform 

thickness,53 which, to date, can be only obtained via 

chemical vapor deposition42 and, in a lesser extent, via 

molecular beam epitaxy (MBE).8  

Here we report the MBE growth and subsequent 

characterization of hybrid heterostructures formed by 

high-quality one-atomic-plane precision films of WSe2, 

with varying thicknesses from one to eight monolayers 

(MLs), on a bilayer graphene (BLG) substrate. Combining 

in-situ angle-resolved photoemission spectroscopy 

(ARPES), optical absorption, scanning tunneling 

microscopy/spectroscopy (STM/STS), core level 

spectroscopy, low energy electron diffraction (LEED) and 

reflection high-energy electron diffraction (RHEED) 

techniques, we study the atomic and electronic structures 

evolution and optical response of these heterostructures. 

Remarkably, we find that a bilayer of WSe2 remains a 

direct bandgap semiconductor, when is part of a BLG-

based heterostructure, thus shifting the direct-indirect 

bandgap crossover to the trilayer of WSe2. Furthermore, 

our ARPES spectra show a rather large spin-splitting of 

475 meV in the VB at the K points of the Brillouin zone of 

the 1-ML-WSe2/BLG heterostructure. We also present 

unambiguous experimental measurement of the binding 

energy for neutral excitons in this heterostructure. We 

obtain an exciton binding energy of 0.21 eV for this TMDC 

semiconductors on BLG, a value that, despite is orders of 

magnitude larger than that observed in conventional 3D 

semiconductors, is yet intriguingly smaller as compared to 

other TMDCs.22-24 Lastly, we analyze the evolution of the 

size and the character of the electronic band gap with 

chemical surface doping. Overall, our results provide a 

well-defined route to create high-quality large-scale 

WSe2/BLG heterostructures as well as new avenues to 

tailor the electronic and optoelectronic properties of 

TMDCs. 

Figures 1a-c show the crystal structure of WSe2. A 

single layer (Se-W-Se) of WSe2 consists of two planes of 

Se atoms separated by one layer of W atoms in a trigonal 

prismatic coordination. Layers of WSe2 are vertically 

stacked by van der Waals interactions in an AB 

configuration. Figure 1d shows the 2D Brillouin zone of 

the WSe2 layers. Since the bandgap of MX2 

semiconductors is along the Γ-Κ direction, we will focus 

on this direction in the following ARPES measurements. 

BLG is an ideal substrate for epitaxial growth of layered 

materials such as Bi2Se3 and MoSe2, due to its honeycomb 

atomic structure and van der Waals nature.8, 40, 54 An 
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important advantage of BLG substrate for high-quality 

growth is that the lattice constant ratio between BLG and 

WSe2 is very close to 3:4,7 which facilitates WSe2 to form 

a single-crystalline thin film. To prepare an uniform BLG 

substrate, a 6H-SiC(0001) wafer was first initially 

degassed at 650 oC in the ultra-high vacuum (UHV) 

chamber for 3 hours, followed by 80 cycles of flash-

annealing to 1300 oC.55 Figures 1e and h show the RHEED 

and LEED patterns of BLG substrate, respectively. The 

characteristic sharp diffraction patterns of graphene 

indicate the high quality of the substrate. For the growth of 

WSe2 thin film, high-purity W and Se were evaporated 

from an electron-beam evaporator and a standard Knudsen 

cell, respectively. The flux ratio of W:Se was controlled to 

be ~ 1:30. Excess amount of Se was deposited to avoid Se 

vacancy and W cluster nucleation in the film. The BLG 

substrate was kept at ~ 400 oC during the growth. This 

substrate temperature leads a stoichiometric crystallization 

of WSe2 film. After growth, we post-annealed the film at ~ 

550 oC under Se flux for 10 minutes to improve the 

crystalline quality. The film thickness was accurately 

controlled by the deposition time, with a growth rate of 17 

minutes per monolayer, monitored by the in-situ RHEED. 

Then, afterwards, its crystal orientation and quality was 

also checked by in-situ LEED. 

Figures 1f and i show the RHEED and LEED patterns 

of the WSe2 film for a coverage of 0.7 ML (0.7 ML means 

that a 70% area of the substrate surface was covered by 

monolayer WSe2), respectively. In these patterns, both the 

BLG and WSe2 diffraction spots can be observed. The 

LEED pattern shows the diffraction spots of WSe2 aligned 

with those of the BLG substrate although slightly stretched 

along the rotational direction. This reveals that the first 

layer of WSe2 has the same atomic lattice orientation as the 

BLG substrate although it also presents domains with 

Figure 1 | Growth of WSe2 thin films. (a)-(c) Crystal structure of 2D WSe2 with (a) perspective view, (b) top view, 

and (c) side view, respectively. (d) 2D Brillouin zone of WSe2 film. (e)-(g) RHEED pattern along the Γ-K direction of 

(e) BLG substrate, (f) 0.7 ML WSe2 film, and (g) monolayer WSe2 film, respectively. (h)-(j) LEED pattern of (h) BLG 

substrate, (i) 0.7 ML WSe2 film, and (j) monolayer WSe2 film, respectively. The dotted green and red hexagon indicates 

1×1 diffraction pattern of BLG substrate and epitaxial WSe2 film, respectively. (k) Core-level spectrum of epitaxial 

WSe2 film. (i) STM image of WSe2 film (Vs = - 1.3 V, It = 0.6 nA, T = 5 K). 
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small rotational misorientation (θ < ± 4°). When the 

coverage reached 1 ML, the RHEED pattern of BLG 

vanishes (Figure 1g), and only the WSe2 pattern can be 

observed. In the corresponding LEED pattern (Figure 1j), 

the pattern of BLG is barely visible and much weaker than 

that of the WSe2. 

We also performed core level spectroscopy and low 

temperature (5K) STM measurements for a thorough 

characterization of the atomic structure of the WSe2 films. 

Figure 1k shows a typical angle-integrated core level 

spectrum taken by the in-situ ARPES system. The sharp 

characteristic peaks of Se (54.7 eV of 3d5/2 orbit and 55.5 

eV of 3d3/2 orbit) and W (32.5 eV of 4f7/2 orbit, 34.6 eV 

of 4f5/2 orbit and 37.9 eV of 5p3/2 orbit) indicate the 2:1 

stoichiometry and demonstrate the purity of the WSe2 

films. The atomically resolved STM image of monolayer 

WSe2 on BLG (Figure 1l) shows simultaneously an atomic 

periodicity of 3.29 Å and a moiré pattern formed between 

the graphene and the WSe2 atomic lattices. Similar to the 

epitaxial MoSe2 on BLG/SiC(0001), the moiré pattern in 

1-ML-WSe2/BLG is a (3×3) structure with respect to WSe2 

with a periodicity between 9.9 Å to 9.3 Å,23 which 

confirms the aligned orientation of the WSe2/BLG 

heterostructure deduced from LEED patterns (Figures 1i 

and j). 

For a systematic characterization of the electronic 

properties of variable-thickness WSe2/BLG 

heterostructures, we first explored their band structure by 

performing in-situ ARPES measurements. Figures 2a-d 

present the ARPES spectra of the epitaxial WSe2 thin films 

along the Γ-Κ direction, with varying film thicknesses of 1 

ML, 2 ML, 3 ML and 8 ML. Figure 2e-h are the 

corresponding second-derivatives of the original spectra in 

Figures 2a-d for enhanced visibility of the band structures. 

The contribution from BLG is out of this momentum 

window (Supporting Information A). The top of the VBs, 

depicted by red dashed lines in Figures 2a-d, show 

different number of the branches at the Γ point following 

the number of layers: for monolayer WSe2 the Г point 

shows only one branch at the top of the VB. It splits into 

two branches for 2 ML, and then into three branches in the 

3 ML film. For the 8 ML WSe2 film, theory suggests 8 

branches to appear,7 but we can only observe broadened 

multiple bands due to the limited resolution and narrower 

spacing of branches in energy. Since the number of 

branches in the VB near the Γ point corresponds to the 

number of layers, this can be used as unique identifier of 

the thickness of the ultra-thin WSe2 films. 

To gain further information of the VB evolution with 

varying film thickness, we present zoom-in ARPES spectra 

focusing only on the top of the VB in Figures 2i-l. The 

most important feature in the evolution of the band 

structure of MX2 semiconductors is the indirect to direct 

bandgap transition. This bandgap transition is concomitant 

with the change of the valence band maximum (VBM) 

from the Γ point to the Κ point in the monolayer limit as 

predicted in theoretical calculations7 and observed in 

previous ARPES measurements for MoSe2 and MoS2.8, 9 

Our ARPES spectra on monolayer WSe2 show that the 

VBM is located at the K point and 0.56 ± 0.01 eV higher 

than the top of the VB at the Γ point. The precise energy 

positions of each band were assigned from a fitting using 

multiple Gaussian peaks for the energy distribution curves 

(EDCs) at the Γ and Κ points (Supporting Information B). 

The energy difference between the K and Γ point in the VB 

(EK-EΓ = 0.56 eV) for monolayer WSe2 is significantly 

larger than that of monolayer MoSe2 (0.38 eV)8
 and MoS2 

(0.31 eV)14. The larger difference (EK-EΓ) implies the 

strongest tendency of monolayer WSe2 to maintain a direct 

bandgap among all the MX2 (M = Mo, W and X = S, Se) 

semiconductors.7 The transition to an indirect bandgap has 

clearly been observed in 2 ML MoSe2 and MoS2.8, 9 In 

contrast, our ARPES spectra show that the top of VB at the 

K point is still 0.08 eV higher than that at the Γ point for 2 

ML WSe2 on BLG, thus enabling the possibility that the 2 

ML WSe2 in the heterostructure may be a direct bandgap 

semiconductor. For 3 ML and 8 ML WSe2, the top of the 

VB at the Γ point is slightly higher than that at the K point 

and becomes the VBM, which suggests that the direct to 

indirect bandgap transition may occur between 2 ML and 

3 ML in WSe2.  

Another key property of MX2 semiconductors is the 
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spin-split band structure due to strong spin-orbit coupling 

and inversion symmetry breaking.11 Monolayer WSe2 has 

been theoretically predicted to have the largest splitting 

size among all the MX2 semiconductors.11 As shown in the 

ARPES spectra of Figure 2i, the VB at the K point splits 

into two branches separated by 475 ± 5 meV, which is 

much larger than that measured for monolayer MoSe2 

(~180 meV, ref. 8) and MoS2 (~150 meV, ref. 14). This is 

due to the largely enhanced spin-orbit coupling in W as 

compared to that in Mo and makes WSe2 particularly 

promising among all the TMDC compounds for spintronic 

applications. 

To evaluate the bandgap character – direct or indirect 

- of the WSe2 films on BLG, we study the conduction band 

minimum (CBM) location in energy and momentum by 

controlled surface doping of the WSe2 with alkali metal 

(Na and K) at 60K (Supporting Information C). This 

procedure allows us to shift the Fermi level (EF) upwards 

to make the CBM accessible for ARPES.56 Although we 

have used both Na and K adatoms to this purpose, only K 

doping enabled us to shift the CBM below EF. ARPES 

spectra of K-doped monolayer WSe2 on BLG (Figure 3a) 

reveals that the CBM becomes visible at the K point, as 

expected for a single layer of a MX2 semiconductors, and 

the VB shifts downwards 0.56 eV and 0.47 eV at the Γ and 

K point, respectively. Therefore, the monolayer K-doped 

WSe2 shows a direct electronic bandgap of 1.40 ± 0.02 eV. 

In the ARPES spectrum for K-doped 2 ML-WSe2
 (Figure 

3b), while the CBM remains at the K point, the VBM now 

Figure 2 | ARPES data of epitaxial WSe2 thin films. (a)-(d) ARPES spectra of (a) 1 ML, (b) 2 ML, (c) 3 ML and 

(d) 8 ML WSe2 films along the Γ-K direction. The red dotted curves depict the top VBs. (e)-(h) Second-derivative 

ARPES spectra of (e) 1 ML, (f) 2 ML, (g) 3 ML and (h) 8 ML WSe2 films along the Γ-K direction. (i)-(j) Zoom-in 

ARPES spectra of (i) 1 ML, (j) 2 ML, (k) 3 ML and (l) 8 ML WSe2 films along the Γ-K direction. The red and green 

dotted lines indicate the energy positions of top of VB at the Γ and K point, respectively. All the labeled numbers have 

unit of eV. 
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shifts to the Γ point, which leads to an indirect bandgap of 

1.26 eV. Similar energetics have been observed for the K-

doped 8 ML WSe2 (Figure 3c), which shows an indirect 

bandgap of 1.01 eV. These gap values are much smaller 

than that expected for single- and few-layer MX2 

semiconductors and even for MX2/BLG heterostructures 

(ref. 23 and 57). This is caused by a doping-induced 

enhancement of charge screening  at the semiconductor, 

which leads to the band structure renormalization.45 

In contrast with our experimental results, previous 

calculations have shown that the CBM of isolated WSe2 

from 2 ML to bulk is located at the mid-point between the 

Γ and K point (Q point).7, 10 This discrepancy can be 

attributed to the strain effect induced by the BLG substrate 

due to the lattice mismatch between the film and the 

substrate.58 This affects the momentum location of CBM, 

the energy difference between the K and Γ point in the VB 

(EK-EΓ), as well as the splitting at the K point.26, 32, 33 

Furthermore, the difference in energy of the VB between 

the K and Γ points (EK-EΓ = 0.56 eV) and the energy 

splitting at the K point (475 meV) in monolayer WSe2 are 

both smaller than those found for the exfoliated WSe2 (0.89 

eV and 513 meV),53 which is also suggestive of strain 

induced in WSe2 by the BLG in the heterostructure. 

Our ARPES measurements on K-doped WSe2/BLG 

reveal that the CBM remains at the K point from 1 ML up 

to 8 ML of WSe2. Combining this observation with our 

ARPES spectra on VBs of pristine WSe2 films, we suggest 

that the direct-indirect bandgap transition occurs from 2 

ML to 3 ML for undoped WSe2 epitaxial films on BLG. 

Since the energy difference between the VBs at Γ and K 

points is small (EΓ-EK ~0.01 eV) for 2 ML and 3 ML WSe2, 

and the in-plane strain could also renormalize the VB of 

MX2 semiconductors, the crossover thickness of the direct-

indirect bandgap transition could be engineered by strain. 

For the surface doping effect, the momentum position 

inversion in VBM for K-surface-doped 2 ML WSe2 

implies a new method to control the direct-indirect 

bandgap transition via surface chemical doping. These 

observations paint a clear picture of the effect of chemical 

doping and strain on the electronic structure of thin films 

of MX2 semiconductors integrated in hybrid 

heterostructures. 

Due to the changes introduced in the band structure in 

surface-doped thin films, ARPES is not an accurate tool to 

measure the quasiparticle bandgap of pristine TMDCs. In 

order to investigate the fundamental optical and electronic 

bandgaps of pristine WSe2, we performed both optical 

absorbance and high-resolution STS on our epitaxial 

monolayer WSe2 thin films. This combined experimental 

approach also allows us to obtain an accurate and 

unambiguous value for the exciton binding energy, a 

critical parameter for understanding how light interacts 

with TMDC materials, in particular regarding processes 

such as its optical absorption and photovoltaic response. 

Figure 4a shows the optical absorbance spectrum of 

the monolayer WSe2 film taken at 77 K. The A exciton 

peak is broad, likely due to charge transfer and energy 

transfer between the WSe2 and the graphene, but clearly 

resolved with the center at 1.74 ± 0.01 eV (713 nm). This 

is consistent with previous reports on exfoliated WSe2 

monolayers.59 The absorption signal around the B exciton 

peak is even broader and centered around 2.17 eV (~ 570 

nm). The energy difference between the two absorption 

peaks (~ 0.43 eV) agrees with the band splitting energy 

Figure 3 | Surface doping effect of WSe2 films. (a)-

(c) ARPES spectra of (a) 1 ML, (b) 2 ML and (c) 8 ML 

WSe2 films with K surface doping. The red and green 

dotted lines indicate the energy positions of top of VB 

at the Γ and K point, respectively. Cyan arrows and 

numbers show the band movements at the Γ and K 

point after surface doping comparing to undoped films. 

Insets in (a), (b) and (c) are the zoom-in spectra with 

10 times enhanced intensity to make the CBM visible. 

All the labeled numbers have unit of eV. 
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observed in the ARPES spectra in Figure 2i. The 

absorption spectrum at room temperature is also provided 

in Supporting Information D. Measurement of the 

electronic bandgap (Eg) of undoped single-layer WSe2 was 

performed by STS at T = 5 K. Typical STS dI/dV spectrum 

acquired on monolayer WSe2 exhibits large electronic 

bandgap (Eg) around EF, as shown in Figure 4b. The 

locations of the VBM and the CBM and, therefore, the 

value of Eg were obtained by means of statistical analysis 

using a sample of N = 30 dI/dV curves and following the 

fitting procedure detailed in Ref. 23. VBM in monolayer 

WSe2 is found to be located at -1.10 ± 0.02 V, which nicely 

agrees with our ARPES result, and the CBM at +0.85 ± 

0.03 V. The asymmetry of the VBM and CBM respect to 

EF reveals a slight n-type doping of our WSe2 films, albeit 

with a negligible carrier concentration. The nearly intrinsic 

character of our epitaxial WSe2 films suggests a high 

crystal quality, in accordance with the low concentration of 

point defects found from our STM images (Supporting 

Information E), which are known to be a source of doping 

in TMDC materials.30 Our statistical analysis of the STS 

spectra yields a value for the single-particle electronic 

bandgap of Eg = ECBM – EVBM = 1.95 ± 0.04 eV. For a direct 

bandgap semiconductor such as monolayer WSe2, the 

difference between the electronic bandgap and the optical 

bandgap represents the exciton binding energy (Eb), which 

in the present case we have found to be Eb = Eg-Eopt = 0.21 

± 0.04 eV.  

This large exciton binding energy is explained by 

enhanced Coulomb interactions in low dimensional 

systems.20-23 The large dielectric constant in bulk 

semiconductors gives rise to reduced strength of the 

Coulomb interaction and, therefore, limits the binding 

energies of these excitations within few meV. In 2D 

systems, reduced screening leads to enhanced Coulomb 

interactions, which significantly increase the binding 

energy of electron-hole excitations.22 We have recently 

demonstrated these effects for 2D TMDC and reported an 

exciton binding energy of 0.55 eV for single layer of 

epitaxial MoSe2 film on BLG.23 Using this method, we 

have been able to extract a large exciton binding energy of 

0.21 eV for epitaxially grown monolayer WSe2 on BLG, 

that is, however, significantly smaller than that of 

monolayer MoSe2 film.23 This value also results smaller 

than the exciton binding energy of single-layer WSe2 on 

insulating environments such as SiO2 estimated by optical 

methods, which ranges from 0.37 eV59 up to 0.6 eV60, 

likely due to the increased screening substrate (BLG) 

environment. 

This exciton binding energy is several times larger 

than those extracted for bulk TMDCs22, and, therefore, 

demonstrates the enhanced coulomb interactions in the 

monolayer limit for WSe2. However, this value is 62% 

smaller than that measured for monolayer MoSe2 on the 

same substrate.23 The smaller exciton binding energy is 

caused by both a larger electronic gap and smaller optical 

bandgap than those found in MoSe2. This difference is, 

therefore, not caused by the dielectric environment but has 

its origin in the distinct metal atom between the two 

compounds. It is worth noting that a similar binding energy 

has been reported on WSe2 on SiO2 substrate59. This drastic 

difference in the exciton binding energy among the 

different TMDCs is very intriguing itself and calls for 

further theoretical attention. 

Interestingly, the electronic bandgap measured in 

ARPES (1.40 ± 0.02 eV) is significantly smaller than that 

measured by STS (1.95 ± 0.04 eV). The different values of 

the bandgap measured by ARPES and STS are due to the 

surface doping. While the STS bandgap was measured on 

un-doped thin films, the bandgap measurement by ARPES 

Figure 4 | Optical and electronic bandgap of 

epitaxial monolayer WSe2. (a) Optical absorption 

spectrum taken on monolayer WSe2 film. The two 

main absorption peaks A and B are indicated. (b) STS 

spectrum taken on monolayer WSe2 film (f = 871 Hz, 

It = 50 nA, Vrms = 1.5 mV, T = 5 K).  
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was performed on the K-doped films. We suggest the K 

surface doping induces a bandgap renormalization due to 

extra free carriers on the film, which effectively increases 

charge screening in the material. This naturally reduces 

both the quasiparticle bandgap and the exciton binding 

energy. As it has been previously shown in Na-doped MoS2, 

alkali metal surface doping on MX2 reduces the bandgap 

by mainly affecting the CB rather than the VB.45  

In conclusion, we successfully synthesized ultra-thin 

WSe2 film on epitaxial BLG substrate with controllable 

thickness at the atomic level. In-situ ARPES 

measurements directly demonstrate the layer-by-layer 

electronic structure evolution of the epitaxial WSe2 film, 

suggesting a direct bandgap in monolayer and 2 ML WSe2, 

and indirect bandgap for 3 or more ML WSe2 on BLG 

substrate. In monolayer WSe2 film, we also observed a 

giant VB splitting (475 ± 5 meV) at the K point, which is 

larger than any other monolayer of MX2. The further 

surface doping experiments show that the electronic 

structure undergoes a significant change, allowing us a 

further control of band structure of WSe2, such as the size 

of the gap and direct-indirect bandgap transition. The 

exciton binding energy observed in monolayer WSe2 

highlights the importance of many-body effects in 

atomically-thin 2D layers and has a profound impact on 

future technologies involving single-layer semiconducting 

TMDCs, such as solar cells and valleytronic devices, either 

in stand-alone devices or within integrated heterostructures. 

Our MBE growth of WSe2 and studies on the VB evolution, 

VB splitting at K point, surface doping effect, bandgap and 

excitonic effect not only help understanding of TMDC 

materials, but also enrich the family of epitaxial 2D 

materials towards a fully MBE grown epitaxial 

heterostructures for light emission and photon-voltage 

devices.4, 37  

 

Experimental Section 

The growth of WSe2 thin film and in situ ARPES 

measurements were performed at the HERS endstation of 

beamline 10.0.1, Advanced Light Source, Lawrence 

Berkeley National Laboratory. The base pressures for the 

MBE system and ARPES system were ~2 × 10-10 Torr and 

~4 × 10-11 Torr, respectively. ARPES data were taken with 

a Scienta R4000 electron analyzer, at a temperature of 60 

K. The photon energy was set at 70 eV, with an energy and 

an angular resolution of 15 meV and 0.1°, respectively. The 

photon polarization direction was set to be 78° out of the 

incidence plane for an evenly distributed even and odd 

state signal. The size of the beam spot on the sample was 

~150 μm × 200 μm. To protect the WSe2 films from 

contamination of air during its transfer to the UHV-STM 

system, an ~ 100 Å amorphous Se capping layer was 

deposited on the sample before moving it out of the UHV-

MBE chamber. Further annealing at ~ 300 oC for one hour 

in the UHV-STM system was enough to remove the Se 

capping layer and uncover the pristine WSe2 surface. 

Optical absorbance measurements were taken with a 

reflection configuration of a confocal microscope setup, 

using super-continuum white laser as the light source 

(focus spot ~ 2 μm). 

 

Supporting Information 

Contribution of BLG band from the WSe2 film in ARPES 

spectra, multiple Gaussian peaks fitting of the EDCs in 

ARPES spectra, the detailed surface doping effect in MX2 

films, optical absorption spectrum at different temperature, 

density of defects in WSe2 films. This material is available 

free of charge via the Internet at http://pubs.acs.org. 
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A: Contribution of BLG band from the WSe2 films in ARPES spectra 

In the angle-resolved photoemission spectroscopic (ARPES) measurement, we observed the Dirac 

cone from bilayer graphene (BLG) outside the Brillouin zone (BZ) of WSe2. Figure S1a shows the BZ of 

BLG and WSe2. The K point of WSe2 is located at 1.27 Å-1 away from the Γ point, whereas the K point 

of BLG (KG) is 1.70 Å-1
 away from the T point, being located outside of the WSe2 BZ. Figure S1b is the 

ARPES spectra of 1 ML WSe2 film. The linear-dispersion bands of the two Dirac cones in BLG were 

clearly observed. This band structure of BLG is the same to the previous ARPES report of epitaxial BLG 

on SiC(0001) surface.1 In the ARPES spectra of the 2 ML WSe2 film, we found that the Dirac cones of 

BLG are completely absent (Figure S1c). This disappearance of the BLG signal means that the very short 

escape length of the photoelectrons minimizes the ARPES signal from the BLG substrate for 2ML or 

mailto:zhangyi@nju.edu.cn
mailto:SKMo@lbl.gov


thicker WSe2 films. A similar phenomena was also reported in the epitaxial MoSe2 on BLG.2 Since the 

BLG bands are located outside of and far away from the WSe2 BZ in the same momentum direction 

(Figure S1b), it will not affect our observation and study of the WSe2 valence band in the low energy scale 

along the Γ-K direction inside of the WSe2 BZ. 

 

B: Multiple Gaussian peaks fitting of the EDCs in ARPES spectra 

In order to precisely decide the energy position of the top valence band, multiple Gaussian peaks plus 

linear background was used to fit the energy distribution curves (EDCs) for each ARPES spectra of WSe2 

films. The colored dotted curves in Figure S2 show the fitting results of the EDCs at the Γ and K point. 

The fitting curves (cyan dotted curves) are in good agreement with the original EDCs (black curves). Each 

single Gaussian peak is plotted in different color (red, green and blue dotted curves), and the corresponding 

energy position of each peak is labeled by the same colored text. For the top valence band at the Γ point, 

Fig. S1 BLG band in ARPES spectra. (a) Surface BZ of BLG (green hexagon) and WSe2 (red hexagon). The K 

point of BLG BZ (KG) is outside of the WSe2 BZ. (b) & (c) ARPES spectra of (b) 1 ML WSe2 and (c) 2 ML WSe2 

films. The red and yellow dotted lines indicate the K point of WSe2 and KG point of BLG, respectively. 



the 1 ML WSe2 has one peak at -1.629 eV (Figure S2a), the 2 ML WSe2 has two peaks (Figure S2b), and 

the 3ML WSe2 has three peaks (Figure S2c). For the 8 ML WSe2, it is difficult to fit the Γ point EDC by 

using 8 Gaussian peaks curve. So we roughly determined the top of the valence band by cutting the half 

maximum of the EDC edge (red line in Figure S2d). In the K point EDC of 1 ML WSe2, the two-Gaussian-

peaks fitting curve is in good agreement with the EDC, indicating a well-defined ~475 meV spin-splitting 

of the top valence band at the K point (Figure S2e). 

 

C: The detailed surface doping effect in MX2 films 

We have introduced Na and K on the surface of WSe2 films using a SAES Getters alkali metal 

dispenser. The amount of Na and K was controlled by the current applied to the dispenser (Id) and the 

Fig. S2 Multiple Gaussian peaks fitting for the EDCs. (a)-(d) EDCs at the Γ point of the (a) 1 ML, (b) 2 ML, (c) 

3 ML and (d) 8 ML WSe2 films. (e)-(h) EDCs at the K point of the (e) 1 ML, (f) 2 ML, (g) 3 ML and (h) 8 ML 

WSe2 films. The cyan dotted curves are the multiple Gaussian peaks fitting of the EDC peaks. The red, green and 

blue dotted curves are each single Gaussian peaks from the fitting curves. The energy position of each peak is 

labeled by the corresponding colored number. All the labeled numbers have unit of eV. 



deposition time (td). During the surface doping, sample was keep at ~60 K.  

Figure S3a is the ARPES spectra of monolayer WSe2 with Na-doping (Id = 6.4 A, td = 10 minutes). 

After the Na-doping, we found that the Fermi level moves upwards, i.e., the bands move downwards 

relative to the Fermi level. However, we noticed that the amount of valence band movement is different 

at the Γ and at the K point. At the Γ point, the top of the valence band moves 0.43 eV downwards after 

Fig. S3 Surface doping effect of WSe2 films. (a)-(c) ARPES spectra of monolayer WSe2 films with (a) Na surface 

doping (Id = 6.4 A, td = 10 minutes), (b) K surface doping (Id = 6.0 A, td = 10 minutes), and (c) 3 times K surface 

doping (Id = 6.0 A, td = 30 minutes). Inset in (b) is the zoom-in spectra with 10 times enhanced intensity to make the 

CBM visible. The red and green dotted lines indicate the energy positions of the top valence band at the Γ and K 

point, respectively. Cyan arrows and numbers show the band movements at the Γ and K point after surface doping 

comparing to undoped films. (d) Zoom-in ARPES spectra of spectra (c) with 10 times enhanced intensity. The blue 

dotted line indicates the QWSs from monolayer K, and the white dotted line indicates the flat band from K cluster. 

(e) & (f) EDCs at the Γ point (e) and the K point (f) of Na surface doping (Id = 6.4 A, td = 10 minutes) WSe2 film, 

respectively. (g) & (h) EDCs at the Γ point (g) and the K point (h) of K surface doping (Id = 6.0 A, td = 10 minutes) 

WSe2 film, respectively. The cyan dotted curves are the multiple Gaussian peaks fitting of the EDC peaks. The red, 

green and blue dotted curves are each single Gaussian peaks from the fitting curves. The energy position of each peak 

is labeled by the corresponding colored number. All the labeled numbers have unit of eV. 



doping, while at the K point it only moves 0.39 eV. This enlarges the energy position difference between 

the Γ and K point (EK-EΓ = 0.60 eV), and also indicates that the valence band is distorted after surface 

doping. A similar band distortion was also observed in the surface doping of the MoS2
3 and MoSe2 films 

(Figure S4). Such a momentum dependent band structure change could be due to a combination of the 

electronic potential originated from the surface change, the resulting band bending, and the varying 

responses against the potential from the bands with different orbital characters as well as different degrees 

of localization.4 Despite the significant change in energy relative to the Fermi level, the movement due to 

the Na doping is still not large enough to make the CBM become visible, even with an increased amount 

of the doping.  

To make the CBM become visible, surface doping of Potassium was found to be more effective. 

Figure S3b is the ARPES spectra of K-doped (Id = 6.0 A, td = 10 minutes) monolayer WSe2 film, pushing 

the top of the valence band 0.56 eV downwards at the Γ point, and 0.47 eV downwards at the K point. The 

heavier doping effect of K also brought larger changes in the electronic structure than Na-doped and 

undoped films. Figure S3c is the ARPES spectra of monolayer WSe2 with 3 times more K surface doping 

(Id = 6.0 A, td = 30 minutes). We found that the valence band at the Γ point moves back upwards in energy. 

When enhancing the intensity by 10 times in Figure S3d, we found additional bands in the WSe2 band 

gap. One band indicated by blue dotted line is suggested to be the quantum well states (QWSs) due to the 

formation of a monolayer K film on the WSe2 surface. Similar QWSs were also previously observed in K 

surface doping MoS2 films.5 Another band indicated by white dotted line is flat without momentum 

dispersion, suggested to be the impurity band as a result of the K clusters formation on the surface. The 

growth of a monolayer K film and K clusters weakens the electronic doping effect, and thus makes less 



bands movements, leaving the CBM still invisible in Figure S3c. 

We used the same multiple Gaussian peaks fitting method on the EDCs of surface doping WSe2 films 

to determine the energy positions of top valence bands and the energy movements after surface doping. 

Figures S3e-S3h show the EDCs and the fitting results of the Na surface doping (Id = 6.4 A, td = 10 minutes) 

and K surface doping (Id = 6.0 A, td = 10 minutes) monolayer WSe2 films. In Figure S3h, by increasing 

the intensity by 10 times near the Fermi level, the peak of conduction band minimum (CBM) becomes 

visible at -0.141 eV at the K point. Thus we observed a direct band gap of 1.404 eV for K doped 

monolayer-WSe2/BLG. Besides that, we also found that the valence band splitting at the K point has one 

more broaden shoulder in the EDC of K doping monolayer WSe2, and the three-Gaussian-peaks fitting 

result is also in good agreement with the EDC line in Figure S3h. This suggests one more branch owing 

to the electric field induced Zeeman splitting from the K surface doping.6  

Figure S4 Band distortion of K doped MoSe2 films (a) & (b) Second-derivative spectra of (a) undoped and (b) K 

surface doped monolayer MoSe2, respectively. (c) & (d) Second-derivative spectra of (c) undoped and (d) K surface 

doped 8 ML MoSe2. The green dashed lines indicate the band shift at the Γ point after surface doping. The red dashed 

lines indicate the band shift at the K point after surface doping. 



 In our previous work, we also did K surface doping on MoSe2.
2 This surface doping also causes the 

band distortion like it does on WSe2. But the amount of distortion is smaller than that on WSe2 films. 

Figure S4 shows the band shift of MoSe2 after K surface doping. Figures S4a and b are the ARPES spectra 

of monolayer MoSe2 before and after doping, respectively. The valence band at the Γ point shifts downwards 

about 0.13 eV, but at the K point the amount of shifts is about 0.08 eV. Figures S4c and d are the ARPES 

spectra of 8 ML MoSe2 before and after doping, respectively. The valence band shifts 0.46 eV at the Γ 

point but 0.38 eV at the K point. The different valence band shifts amount between the Γ point and K point 

indicates a similar band distortion caused by K surface doping in MoSe2. Comparing to the surface doping 

on WSe2, the K doped MoSe2 films show smaller band distortion amount. Since the overall band shift in 

K-doped MoSe2 films is also smaller than that in surface doped WSe2, we believe that the dosing of 

dopants in MoSe2 is less than that in WSe2, and thus causes smaller distortion effect. 

 

D: Optical absorption spectrum at different temperature 

In Figure S5 we show the absorption spectrum taken on the 1 ML MoSe2 on BLG/SiC. The spectrum 

at 77 K (blue trace) clearly shows the resonances at 1.74 ± 0.01 eV and 2.17 eV ± 0.01 eV, which 

correspond to A and B exciton peaks. The room temperature spectrum (red trace) shows a shifted A 

exciton peak at 1.67 ± 0.01 eV. The absorption peak of B exciton is significantly broadened at room 

temperature and is hard to determine the peak position accurately. This red shift of exciton resonance 

energy at higher temperature has been observed previously and is likely due to temperature induced strain 



change in the film. 

E: Density of defects in WSe2 films 

In order to quantify the quality of our MBE grown WSe2 films, we have estimated the density of 

point defects at the WSe2 surface by analyzing our atomically resolved STM images. For this study we 

have used 31 STM images (T = 5 K) acquired at different bias voltages and set point currents. We have 

considered as point defect any protuberance or dip in the STM images as those shown in Figure S6a, 

regardless of their atomic nature. Figure S6b shows the number of point defects found in each of the 31 

STM images as a function of the scanned surface area. A linear regression fit (red line) of the scattered 

values yields an estimation of the density of point defects (ρ) in our samples, which is found to be ρ = (2.8 

± 0.3)•1012 cm-2. This density of defects estimated in our WSe2 monolayers is almost three orders of 

magnitude smaller than the atomic surface density (1.1•1015 cm-2), which proves the high quality of the 

Fig. S5 Optical absorption spectrum of monolayer WSe2. The blue trace is the spectrum taken at 77K, and the red 

trace is the spectrum taken at room temperature 



presented MBE growth method. This estimation should be an upper bound value because the counting 

includes extrinsic surface defects such as adsorbates. 
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