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Abstract

The ENIGMA-DTI (diffusion tensor imaging) workgroup supports analyses that exam-

ine the effects of psychiatric, neurological, and developmental disorders on the white

matter pathways of the human brain, as well as the effects of normal variation and its

genetic associations. The seven ENIGMA disorder-oriented working groups used the

ENIGMA-DTI workflow to derive patterns of deficits using coherent and coordinated

analyses that model the disease effects across cohorts worldwide. This yielded the

largest studies detailing patterns of white matter deficits in schizophrenia spectrum

disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive–

compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain

injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of

the underlying neurobiology and reproducible in independent cohorts. We reviewed

these findings, demonstrated their reproducibility in independent cohorts, and com-

pared the deficit patterns across illnesses. We discussed translating ENIGMA-defined

deficit patterns on the level of individual subjects using a metric called the regional

vulnerability index (RVI), a correlation of an individual's brain metrics with the

expected pattern for a disorder. We discussed the similarity in white matter deficit

patterns among SSD, BD, MDD, and OCD and provided a rationale for using this

index in cross-diagnostic neuropsychiatric research. We also discussed the difference

in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome,

which is used as a developmental and genetic model of schizophrenia. Together,

these findings highlight the importance of collaborative large-scale research to pro-

vide robust and reproducible effects that offer insights into individual vulnerability

and cross-diagnosis features.

K E YWORD S

big data, cross-disorder, DTI, ENIGMA, RVI, white matter deficit patterns
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1 | INTRODUCTION

The Enhancing Neuro Imaging Genetics through Meta-Analysis

(ENIGMA) Consortium was conceived in 2009 with the goal of per-

forming large-scale neuroimaging genetic studies and has since grown

into a collaboration of more than 1,400 scientists worldwide

(Thompson et al., 2013). The ENIGMA diffusion imaging working

group was organized in 2009 to develop analytic workflows that ana-

lyze the effects of genes, environment, and neuropsychiatric disorders

on white matter microarchitecture. The initial focus was on the multi-

site analysis of fractional anisotropy (FA) images, as this is the most

commonly studied scalar parameter extracted from diffusion tensor

imaging (DTI) (Basser, Mattiello, & LeBihan, 1994; Pierpaoli &

Basser, 1996). The absolute FA values are sensitive to fiber coherence

and organization, myelination levels, and axonal integrity and have

been widely used as an index of white matter health (Thomason &

Thompson, 2011). FA has emerged as a sensitive index of normal

white matter maturation and aging (Penke, Munoz Maniega, Houlihan,

et al., 2010; Penke, Munoz Maniega, Murray, et al., 2010). Prior to the

ENIGMA studies, microstructural abnormalities were reported in

many neuropsychiatric illnesses and brain disorders including schizo-

phrenia spectrum disorder (SSD) (Alba-Ferrara & de Erausquin, 2013;

Friedman et al., 2008; Mandl et al., 2013; Nazeri et al., 2013), bipolar

disorder (BD) (Barysheva, Jahanshad, Foland-Ross, Altshuler, &

Thompson, 2013; Sprooten et al., 2011), major depressive disorder

(MDD) (Carballedo et al., 2012) and others. To date, the ENIGMA-DTI

protocols have been used in the largest studies ranking effect sizes

for case–control differences in six common neuropsychiatric disorders

and a genetic microdeletion syndrome (Table 1). We review the

workflow used to derive these findings, and how their high reproduc-

ibility provides a basis for individual-level measurements of micro-

structural signatures, thereby enabling neuropsychiatric research

across diagnostic boundaries (Jahanshad et al., 2013).

2 | ENIGMA-DTI WORKFLOW

The ENIGMA-DTI workflow provided a generalizable analysis

approach to extract phenotypes from DTI data collected by imag-

ing groups around the world (Jahanshad et al., 2013). This

workflow is based on tract-based spatial statistics (TBSS) (Smith

et al., 2006), that uses a skeleton of major white matter tracts as

the basis for determining statistical differences in regional FA

values. The ENIGMA-DTI protocol adapts the TBSS approach for

performing ROI-based multisite research by providing a custom

protocol that includes QA/QC steps, a custom ENIGMA-DTI mini-

mal deformation warping target along with the skeleton of major

white matter tracts, and steps to extract tract-average FA values

(Jahanshad et al., 2013). Diffusion measures extracted using the

ENIGMA-DTI workflow showed excellent reproducibility in both

test–retest (McGuire et al., 2017) and longitudinal data (Acheson

et al., 2017).

The inaugural aim of the workflow was to perform multisite heri-

tability analyses of these quantitative DTI-based phenotypes. We

demonstrated that tractwise diffusion measures extracted using this

workflow were consistently heritable (h2 = 0.42–0.75)—regardless of

the data collection protocol and study designs that included twins and

siblings, extended families and pedigree-based cohorts (Jahanshad

et al., 2013; Kochunov, Fu, et al., 2016). The regional heritability pat-

terns in data collected using different DTI protocols were likewise

strongly correlated with each other (r ~ 0.6–0.9) (Kochunov, Fu,

et al., 2016; Kochunov et al., 2015; Kochunov, Jahanshad, et al., 2014;

Kochunov, Patel, et al., 2019). The high reproducibility and consistent

heritability of ENIGMA-DTI measures across diverse study designs

and data collection protocols provided a strong rationale for disorder-

oriented ENIGMA working groups to use this workflow to map deficit

patterns in studies of several major neuropsychiatric illnesses

(Table 1).

TABLE 1 The number of subjects and cohorts that were used to derive disorder specific patterns for patient control differences

Disorder N-subjects (patients/controls) N-cohorts Citation

SSD N = 4,322 (1963/2359) 29 (Kelly et al., 2018)

BD N = 3,033 (1,482/1551) 26 (Favre et al., 2019)

MDD N = 2,907 (1,305/1602) 20 (van Velzen et al., 2019)

22q11DS N = 594 (334 /260) 10 (Villalón-Reina et al., 2019)

PTSD N = 3,049 (1,446/1,603) 28 (Dennis et al., 2019)

OCD N = 1,345 (700/645) 19 (Piras et al., 2019)

TBI N = 705 (437/268) 5 (Dennis et al., 2018)

Abbreviations: BD, bipolar disorder; ENIGMA, Enhancing Neuro Imaging Genetics through Meta-Analysis; MDD, major depressive disorder; OCD,

obsessive–compulsive disorder; SSD, schizophrenia spectrum disorder; PTSD, posttraumatic stress disorder; TBI, traumatic brain injury.
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3 | ENIGMA-DTI FINDINGS IN
NEUROPSYCHIATRIC DISORDERS

To date, the ENIGMA-DTI workflow was used to elucidate regional

patient-control differences in brain microstructure in SSD (Kelly

et al., 2018), MDD (van Velzen et al., 2019), BD (Favre et al., 2019),

obsessive compulsive disorder (OCD) (Piras et al., 2019), traumatic

brain injury (TBI) (Dennis et al., 2018), posttraumatic stress disorder

(PTSD) (Dennis et al., 2019), and 22q11 deletion syndrome (Villalón-

Reina et al., 2019) (Table 1). The results are reported as Cohen's d-

value effect sizes for the average FA values and for 24 regional tract-

wise measurements. The average FA was calculated for the entire

white matter skeleton and their effect sizes are informative of the

whole-brain effect sizes. The average FA values include the values for

regional measurements that constitute about 20% of the total skele-

tons. The effect sizes were derived using the largest samples of the

respective disorders available to date and consisted of hundreds to

thousands of patients and controls. The use of the ENIGMA-DTI

workflow across sites and disorders led to harmonized analyses of

data and the reporting of effect sizes (Table 2). The triad of the most

debilitating major psychiatric illnesses: SSD, BD, and MDD were char-

acterized by highly significant reductions in the average FA values in

patients compared with controls (Table 2). The largest effect size for

the average FA values was observed for SSD (Cohen's d = −0.42,

p = 4�10−24). The patients with BD and MDD showed significant and

similar negative effect sizes on the average FA values (Cohen's

d = −0.26, p ≤ 10−3) (Table 2). Patients with SSD, BD, and MDD also

showed a pattern of significant regional reductions in FA values. The

comparison of regional effect sizes across the disorders provided a

unique opportunity to summarize the impact of these illnesses across

diagnostic categories (discussed in Section 4.2). Other illnesses did

not show significant patient–control differences for the average FA

values. Patients with OCD showed a modest number of regions,

including the sagittal stratum (SS) and posterior thalamic radiation

(PTR), where cases on average, had lower FA than controls (Table 2).

Subjects with PTSD showed no difference in either average (Cohen's

d = −0.02, p = .7) or regional FA values (Table 2). Subjects with the

22q11 deletion syndrome showed no significant difference in average

FA values from controls (Cohen's d = 0.09, p = .3), yet there were large

regional effect sizes in both directions. On average, cases had higher

FA values compared to controls in the callosal and cortico-thalamic

tracts and lower FA in the fornix-stria terminalis (FX-ST), superior lon-

gitudinal fasciculus (SLF), and the external/extreme capsules (EC).

22q11 deletion syndrome is a chromosomal microdeletion syndrome

that greatly elevates risk for psychosis and schizophrenia. A finding of

higher FA values in frontal areas in 22q11 deletion subjects stands in

contrast with generally negative effects on FA observed in the three

major neuropsychiatric disorders. However, it is consistent with post-

mortem histological examinations that showed higher cumulative cel-

lular membrane circumference of cerebral white matter axons in

22q11 deletion patients (Villalón-Reina et al., 2019). Subjects with TBI

(primarily mild TBI) likewise showed nonsignificant effects in the aver-

age FA (Cohen's d = 0.12, p = .20) and chiefly positive but

nonsignificant regional effect sizes (higher FA values) when compared

with controls (Table 2). This finding was interpreted as a possible

marker of recovery by the original study (Dennis et al., 2018).

Together, these findings provide the first opportunity to evaluate the

cross-disorder similarity, especially if these findings are reproducible

in the independent samples.

4 | REPRODUCIBILITY OF ENIGMA
FINDINGS IN NEUROPSYCHIATRIC
DISORDERS

Research findings in neuropsychiatric illnesses have historically suf-

fered from a substantial variability and heterogeneity both within and

across disorders including genetics, environmental risk factors, mean

age of onset, symptom presentations, treatment response, and long-

term prognosis. The sources of heterogeneity have long remained elu-

sive to clinicians and scientists and have contributed to a surprisingly

poor reproducibility of neuroanatomical, functional, and genetic find-

ings in neuropsychiatric illnesses. Meta-analysis has always offered a

principled approach to screen studies for false positive findings by

overcoming the “chasing of significance” observed in some discovery

studies (Ioannidis, 2014). The big data analyses performed by

ENIGMA differ from the traditional meta-analytic studies that derive

the mean effect from group-level comparisons based on previously

published effect sizes and often fall prey to the heterogeneity of the

underlying methods used in the original studies. Instead, ENIGMA

analyses are more akin to the “multisite-study analytic” approaches

that directly coordinate the analysis of many data sets, by a group of

collaborating scientists using the methods vetted for multisite

research. However, ENIGMA does not enforce an a priori selection of

image acquisition protocols and behavioral or diagnostic assessments.

Instead, ENIGMA pays considerable attention at each participating

site to ensure the quality, integrity, and homogeneity of the underly-

ing data, validity of the outcomes, and reproducibility of the deficit

patterns.

A study by the ENIGMA-schizophrenia workgroup on subcortical

deficits was the first validation of large-scale cooperative analyses of

neuroimaging data in a severe mental illness. It used standardized

methods to assess a sample of 2,028 patients and 2,540 controls from

15 centers worldwide (van Erp et al., 2015). This was the first study to

show that the effect size for the smaller hippocampus in SSD patients

was greater than that for the well-known enlargement of the lateral

ventricles, refocusing attention on the neurological basis of this disor-

der. It also provided the first opportunity to test the premise that Big

Data neuroimaging approaches could improve the reproducibility of

findings in a disorder known for its heterogeneity. In a recent editorial,

we observed that the effect sizes for patient–control group differ-

ences for volumes of subcortical structures reported by the ENIGMA-

schizophrenia group were in remarkable correlation (r2 > 0.9) with

two studies performed since then in largely independent cohorts

(Alnaes et al., 2019; Kochunov, Thompson, & Hong, 2019; Okada

et al., 2016).
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The ENIGMA-schizophrenia group followed up with the study of

white matter alterations based on a sample of 1,963 patients and

2,359 healthy controls from 29 independent international cohorts

(Kelly et al., 2018, Holleran et al., 2020). This study was the first to

report a regional localization of deficits in this illness as the regional

pattern of effect sizes. The associative white matter tracts that con-

nect the frontal, parietal, temporal, and limbic areas such as the ante-

rior corona radiata (ACR) and the body and genu of the corpus

callosum (GCC), showed significantly lower FA values in individuals

with schizophrenia compared with controls. In contrast, cerebral path-

ways that carry sensorimotor fibers, such as the corticospinal tract

and posterior limb of the internal capsule, showed no detectable

patient–control group differences (Table 2). Importantly, patients

diagnosed with schizophrenia also had significantly lower integrity of

the fornix (FX)—the primary tract connecting the hippocampus with

the frontal brain regions, consistent with the anatomical specificity

observed for the subcortical volumetric deficits.

The regional pattern of white matter deficits reported by the

ENIGMA illness-focused working groups has since been replicated by

several independent studies, including a recent meta-analysis study

from the Japanese Cognitive Genetics Collaborative Research Organi-

zation (COCORO) consortium. The Social Processes Initiative in the

Neurobiology of Schizophrenia (SPINS) study showed that regression

of site-specific sources of methodological variance—such as day-to-

day variations in scanner magnetic field gradients, RF coils, and elec-

tronics performance measured using a diffusion phantom—

significantly improved the agreement between white matter deficit

patterns in the SPINS sample and the ENIGMA-schizophrenia pattern;

correlations increased from 0.55 to 0.81 (Kochunov, Dickie Erin,

et al., 2018). Kochunov and colleagues showed that the ENIGMA-

schizophrenia pattern was very highly correlated (r = 0.92) with the

measured deficit pattern in another cohort and partly explained the

two chief cognitive deficits in SSD: processing speed and working

memory (Kochunov et al., 2017). A report on findings from the Beijing

Connectome Project (BCP) found a high correlation (r = 0.86) between

regional effect sizes observed in a sample of Han Chinese and the

ENIGMA-schizophrenia pattern. A COCORO study used the

ENIGMA-DTI workflow and an independent cohort collected across

12 sites in Japan to calculate regional effect sizes for SSD (N = 696

patients), BD (N = 211 patients), and MDD (N = 398 patients) using

N = 1,506 healthy controls (Koshiyama et al., 2019). We report a very

high correlation in regional effect sizes by ENIGMA and COCORO for

SSD (r = 0.94), high correlation for effect sizes of BD (r = 0.79) and

moderate correlation for MDD (r = 0.47) (Figure 1). The magnitudes of

regional effect sizes reported by ENIGMA and COCORO showed no

significant differences (paired t-test) for SSD (p = .9). ENIGMA

regional effect sizes were significantly higher for both BD (average

Cohen's d = −0.21 ± 0.03 vs. −0.08 ± 0.03, for ENIGMA and

COCORO, respectively, p = 2�10−6) and MDD (average Cohen's

d = −0.18 ± 0.01 vs. 0.00 ± 0.02, for ENIGMA and COCORO, respec-

tively, p = 2�10−9). In summary, big data neuroimaging studies can

derive patterns of neuroanatomical deficits in neuropsychiatric ill-

nesses. The deficit patterns for SSD and BD were significant and

showed excellent-to-good consistency and reproducibility across geo-

graphically and ethnically diverse cohorts. The deficit patterns for

MDD showed a moderate consistency, likely due to more modest

effect sizes; however, this may improve once more independent stud-

ies are conducted.

4.1 | Translating ENIGMA findings to the
individual level

The excellent agreement observed between the ENIGMA regional

deficit patterns provides a novel perspective on big data neuroimaging

findings. The inclusive worldwide nature of these studies has likely

removed site-specific variances in diagnosis, medication, and environ-

ment, yielding deficit patterns that remain even after treatment with

existing therapies and are shared by patients worldwide. The remark-

able agreement across cohorts within each SSD meta-analysis, and

F IGURE 1 Scatter plot of regional effect sizes (Cohen's d coefficients) calculated for SSD (left), BD (center) and MDD (right) by COCORO
consortium (y-axis) versus ENIGMA workgroup reports (x-axis). The effect sizes calculated in nonoverlapping cohorts showed very strong
correlation for SSD (r = 0.94), strong correlation for BD (r = 0.79) and moderate correlation for MDD (r = 0.47). BD, bipolar disorder; ENIGMA,
Enhancing Neuro Imaging Genetics through Meta-Analysis; MDD, major depressive disorder; SSD, schizophrenia spectrum disorder
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their subsequent independent replication studies, indicates that the

profile of these regional effect sizes may be a signature, or a vector,

that is related to the signature of the common physiopathological pro-

cesses in schizophrenia or currently unmet treatment targets including

cognitive deficits, treatment resistance, symptoms, and others. We

first utilized the ENIGMA-schizophrenia DTI pattern as a predictor in

the structural equation modeling of two major cognitive deficits,

processing speed and working memory, that are affected in SSD

patients. We found that the individual similarity with the ENIGMA-

schizophrenia deficit pattern mediated the association between white

matter abnormalities in individual patients and the severity of cogni-

tive deficits (Kochunov et al., 2017). The same pattern of structure–

function association was also observed in controls. This suggested

that the regional pattern of the schizophrenia-related white matter

deficits predicted the association between white matter and cognition

even in the controls, indicating that the cognitive effects in schizo-

phrenia are likely driven by reduced white matter integrity that are

not secondary effects of antipsychotic medications (Kochunov

et al., 2017).

The next step is to translate the findings from ENIGMA studies

to enable predictions of vulnerability at the individual level. Can we

use the characteristic patterns of regional deficits as predictors to

link individual brain scans to vulnerability for a disorder and to its

genetic risks, cognitive deficits and clinical features? Population

genetic studies have developed polygenic risk scores (PRS) (Choi,

Heng Mak, & O'Reilly, 2018), and SSD, BD, MDD, and OCD are

highly heritable polygenic disorders with a complex pattern of gene

by environment risk interactions. The genetic risks are conferred by

many alleles detectable by genome-wide association studies. PRS is

calculated as a weighted linear combination of the alleles determined

to either confer risk or act as protective factors for the illness, where

the weights are assigned based on allele effect sizes and population

frequencies (Choi et al., 2018). PRS was shown to be a better predic-

tor of risk than any single candidate risk allele (Colodro-Conde

et al., 2018).

The regional vulnerability index (RVI) was developed as a simple

correlational approach to quantify the agreement between an individ-

ual's brain and the expected pattern for the disorder. In contrast to

PRS, the RVI approach is based on effect sizes derived from ethnically

diverse samples and therefore RVI values are translatable across eth-

nicities (Kochunov, Huang, et al., 2019). RVI is a correlation coefficient

between the normalized regional measures in an individual, such as

tractwise FA or cortical gray matter thickness values, and the pattern

of regional effect sizes reported by ENIGMA. A normalization process

is used before computing the index, which includes a linear regression

to remove effects of covariates, such as age and sex, from the individ-

ual's data, followed by z-transforming the residuals using the average

and SD calculated from the healthy controls. For each subject, this

produces a vector of regional measurements that captures the devia-

tion from the normative values for each brain region and therefore

mimics the contrast captured by the Cohen's d-values reported by

ENIGMA. Higher RVI values (with a maximum of 1.0) indicate a better

correlation with the expected disorder pattern. We hypothesized that

higher similarity to the expected pattern is indicative of individual vul-

nerability to a disorder (Kochunov, Huang, et al., 2019).

We evaluated the RVI calculated for white matter DTI as a marker

of treatment resistance in SSD (Kochunov, Huang, et al., 2019). The

link between treatment resistance and cerebral white matter in SSD

was suggested by previous white matter volume reduction findings

(Molina et al., 2005) and reduced FA values (Holleran et al., 2014;

Vanes, Mouchlianitis, Wood, & Shergill, 2018). In our study, we

observed that RVI in treatment resistant patients was significantly

higher than in patients who responded to treatment. Yet, no individual

white matter region could consistently separate the treatment-

resistant and treatment-responsive patients. This suggested that

ENIGMA-schizophrenia pattern in white matter may capture the defi-

cits in this illness that do not improve with treatment. In Kochunov

and colleagues' manuscript (published in this issue, Kochunov et al.,

2020) we present the findings of white matter, cortical, and subcorti-

cal RVI in SSD. We show that the “agreement” with the respective

SSD patterns can be used as a novel biomarker that is independent of

the absolute differences in regional traits. Domain-specific RVI values

were significantly correlated with cognition and negative symptoms,

even in the absence of significant correlation in the individual traits

from that neuroimaging domain. It is not immediately clear why RVI

captures individual variance in cognitive deficits and symptoms sever-

ity, but individual regional measures do not. Higher RVI-SSD values

likely reflect the contrast between the high vulnerability of associative

and the lower vulnerability of motor and sensory brain regions to SSD

(Kochunov, Ganjgahi, et al., 2016; Weinberger, 1996; Weinberger &

Lipska, 1995). We hypothesize that by considering findings across the

whole brain, RVI accentuates the regional effects specific to SSD.

Therefore, higher RVI values are identified in the individuals with

more severe patterns of neurodevelopmental damage, who, in turn,

are more vulnerable to developing cognitive deficits and negative

symptoms.

In Kochunov et al. (2020), presented in this issue, we show that

RVI can be calculated as a multimodal index by considering cortical

thickness, subcortical gray matter volumes, and white matter micro-

structure measurements. Combining phenotypes across diverse neu-

roimaging modalities to derive a meaningful index of vulnerability is

challenging, but the ENIGMA-schizophrenia findings provided a com-

mon denominator to combine these data. We first showed that RVI

derived from cortical gray matter thickness, subcortical gray matter

volume, and white matter integrity can inform patient–control differ-

ences and provide insight into the timeline for establishing these defi-

cits in SSD. Elevated cortical RVI was readily detectable in the early

diagnosis group (≤5 years since diagnosis) and remained stable with ill-

ness duration. This suggests that cortical deficits may develop before

the onset of illness and do not change with illness duration. In con-

trast, white matter RVI was significantly elevated between early and

chronic patients, suggesting ongoing illness progression. However, the

multimodal RVI showed both the highest effect sizes among all mea-

surements for all groups and was higher in chronic patients. While

these findings are preliminary and are based on cross-sectional ana-

lyses, they demonstrate the potential for translating ENIGMA patterns

200 KOCHUNOV ET AL.



to the individual level. We expect that novel analytic approaches,

including machine learning, will take advantage of the ENIGMA

datasets to derive more comprehensive measures that translate statis-

tics from a large group to make predictions about an individual.

4.2 | ENIGMA-DTI: Facilitating cross-diagnostic
analyses

The patterns of patient–control deficits derived using the ENIGMA-

DTI workflow by neuropsychiatric disorder-oriented workgroups pro-

vide a “bottom-up” approach to evaluate the “integrative” versus

“diagnostic silos” heuristics in neuropsychiatric research (Bzdok &

Meyer-Lindenberg, 2017; McEwen, 2017). The integrative heuristic

argues that risk factors, including genetics, stress, and others, are

shared across major neuropsychiatric illnesses, while the diagnostic

silos heuristic argues for separation of etiopathological factors while

accepting potential co-morbidity of these illnesses. Big data psychiat-

ric genetics research provides evidence for the integrative nature of

mental illness by showing strong genetic correlation (ρG = 0.5–0.7)

among the risk loci for a range of common neuropsychiatric disorders

and a significant overlap in PRS across SSD, BD, MDD, and OCD

(Brainstorm et al., 2018; Cross-Disorder Group of the Psychiatric

Genomics, 2013; Docherty, Moscati, & Fanous, 2016). The combined

efforts of the ENIGMA working groups provide us with the opportu-

nity to examine the overlap in deficit patterns across disorders and to

compare them to deficit patterns in chiefly genetic disorders (22q11

deletion syndrome) and/or with chiefly acquired (TBI) conditions.

The patterns of the effect sizes of the patient-control differences

showed strong correlations in regional effects sizes between SSD and

BD (r = 0.72), SSD and MDD (r = 0.68), and SSD and OCD (r = 0.66)

(Figure 2). The regional effect sizes were also strongly correlated

between BD and OCD (r = 0.64) but not between BD and MDD

(r = 0.28); nor MDD and OCD (r = 0.29) (Figures 2 and 3). The SSD,

BD, and MDD had a striking similarity in the negative effects these ill-

nesses have on the association and commissural tracts: both anterior

(ACR, BCC, and GCC) and posterior (sagittal stratum [SS] and posterior

corona radiata [PCR]) tracts. A notable difference was the integrity of

the FX and FX/ST tracts that showed significant deficits in SSD and

BD but not in MDD (Figure 3, Table 2). This suggests some anatomical

specificity and partially replicates the findings of shared genetic risk

factors among SSD, BD, and MDD (Brainstorm et al., 2018; Docherty

et al., 2016). Strong correlations in regional effect sizes between SSD

and BD (r = 0.75) and SSD and MDD (r = 0.82) were later replicated in

COCORO data, however, the MDD and BD patients also showed a

strong correlation in that cohort (r = 0.73) (Koshiyama et al., 2019).

The deficit pattern of PTSD showed moderate correlation with the

deficit pattern of BD (r = 0.43), OCD (r = 0.43), and SSD (r = 0.39) and

a very weak correlation with MDD (r = 0.22). This further supports

anatomical specificity of the white matter deficits and partially

F IGURE 2 The correlation in regional deficit patterns among
common neuropsychiatric disorders. **Indicates strong correlation
coefficients. *Indicates moderate correlation coefficients

F IGURE 3 The scatter plot of regional effect sizes for (a) BD versus SSD; (b) MDD versus SSD, and (c) MDD versus BD. BD, bipolar disorder;
MDD, major depressive disorder; SSD, schizophrenia spectrum disorder
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replicates genetic correlation patterns among these illnesses

(Brainstorm et al., 2018). We observed no significant correlation

between disorders with a strong genetic component (SSD, BD, MDD,

PTSD, OCD, and 22q11) and TBI—which is presumed to have mainly

causes of acquired injury and environment, though individual genetics

likely affects the recovery and preexisting psychiatric disorders are

associated with a worse outcome after TBI (Gerring et al., 1998).

However, we observed a moderate negative correlation between TBI

and OCD (r = 0.40) but this finding is difficult to interpret.

We observed no correlation (r = 0.04) between the 22q11 deletion

pattern of regional effect sizes and that of SSD (Figure 4). 22q11 dele-

tion is used as a developmental and genetic animal model for SSD

(Mancini et al., 2019; Sumitomo et al., 2018) because people born with

this deletion are 20–30 times more likely to develop psychosis. In strik-

ing similarity with SSD, the onset of psychosis is preceded by develop-

ment of cognitive deficits, chiefly in the verbal learning and working

memory domains (Vorstman et al., 2015). While subjects with the

22q11 deletion showed higher FA values in frontal areas, both SSD and

22q11 showed significantly lower integrity of the FX and FX/ST tracts

(Figure 4), which is supported by findings of lower hippocampal vol-

umes in both conditions compared to controls. This difference in

regional deficits is also mirrored by the pattern of cognitive deficits

between the two conditions. The deficits in processing speed are per-

vasive in SSD and are linked to lower integrity of associative white mat-

ter tracts (Kochunov et al., 2010; Kochunov et al., 2017), but these

deficits are minored in 22q11 deletion syndrome. Conversely, both dis-

orders showed significant deficits in verbal learning and working mem-

ory domains (Chawner et al., 2017; Vorstman et al., 2015).

To summarize the regional deficit data, we performed a hierarchical

clustering analysis and measured the Euclidean distance among clusters

(Figure 5, Table 3). Ward's minimum variance method was used to clus-

ter the illness-specific patterns based on the half-square Euclidean dis-

tance among the deficit vectors. The disorder patterns were separated

into three clusters based on their proximity. MDD, SSD, and BD were

clustered together with the average distance between them of 0.56

± 0.07. PTSD and OCD likewise were clustered together with TBI with

an average distance between them equal to 0.73 ± 0.28. The pattern

for 22q11 deletion syndrome was given its own cluster based on large

distances from the MDD, SSD, and BD (distance = 2.9 ± 0.09) and

PTSD, OCT, and TBI (distance = 2.36 ± 0.14).

4.3 | Limitations

This summary of ENIGMA cross-disorder analyses demonstrates sig-

nificant limitations of the biological interpretations that can be derived

from DTI data within and across disorders. We observed that patient-

control differences can be both negative and positive indicating that

neuropsychiatric conditions are associated with both lower and higher

FA values in affected individuals. This signifies the general limitation

of the DTI approach to quantify diffusion behavior of water (Basser &

Pierpaoli, 1996). FA is a convenient statistical parameter produced by

fitting a tensor that assumes a nonanisotropic Gaussian diffusion pro-

cess and does not carry explicit biological information. While FA is

often interpreted as an index sensitive to the degree of axonal mye-

lination (Song et al., 2003; Song et al., 2005), it is neither a direct nor a

specific measurement (Beaulieu, 2002). There are physical limitations

to the assumptions of a multivariate Gaussian model used by DTI to

F IGURE 4 The scatter plot of regional effect sizes for 22q11DS
versus SSD. Notable is high negative effect size in the Fornix
(FX) 22q11DS that overlaps with negative effects of this tract in SSD.
SSD, schizophrenia spectrum disorder

F IGURE 5 Hierarchical clustering of white matter deficit patterns
across neuropsychiatric illnesses ascertained by ENIGMA. ENIGMA,
Enhancing Neuro Imaging Genetics through Meta-Analysis
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approximate the diffusion in complex biological tissues. Chief among

them is that this assumption is only successful at modest diffusion

weighting (b-values up to ~1000 s/mm2). At higher diffusion

weighting, the diffusion decay cannot be approximated by a mono-

exponential fit that suggests a complex, multicompartmental nature of

this signal (Assaf & Cohen, 1998; Clark, Hedehus, & Moseley, 2002;

Kochunov, Chiappelli, & Hong, 2013; Kochunov, Chiappelli,

et al., 2014; Wu, Field, Duncan, et al., 2011; Wu, Field, Whalen, &

Alexander, 2011). These non-Gaussian diffusion components

(Novikov Dmitry, Kiselev Valerij, & Jespersen Sune, 2017; Novikov,

Fieremans, Jensen, & Helpern, 2011) may both carry important infor-

mation relevant to a disorder (Kochunov, Rowland, et al., 2016) as

well as affect the fit of DTI model due to incomplete quantification of

the diffusion process (Kochunov, Chiappelli, et al., 2014).

5 | CONCLUSION

The ENIGMA-DTI workflow was developed for imaging genetic analy-

sis and validated by demonstrating uniform and reproducible heritabil-

ity patterns across regional phenotypes. It was used across multiple

brain disorders by ENIGMA workgroups and other studies for its abil-

ity to run the same analysis protocol worldwide, thus allowing multiple

regional phenotypes to be aggregated and to deduce salient, consis-

tent, and robust deficit patterns across illnesses. The regional deficits

patterns published by ENIGMA in SSD and BD were already repli-

cated in independent cohorts across the world, with the MDD pattern

showing partial replication. ENIGMA deficit patterns can also be used

to measure the agreement between an individual's brain scans and

the aggregated patterns for each illness, offering a similarity metric to

the canonical signatures observed in each disorder. Data across neu-

roimaging modalities can be combined into a multimodal index of indi-

vidual vulnerability to various disorders. Such metrics may represent

potential biomarkers for pharmacological studies of agents that aim to

shift an individual away from the established pattern that is character-

istic of a given disease. ENIGMA is equipped to run standardized anal-

ysis pipelines across disorders. Therefore, the similarity in deficit

patterns across the major neuropsychiatric conditions can be readily

assessed. The overlap and uniqueness in disorder-specific white mat-

ter deficit patterns were consistent with the genetic correlation of risk

loci for common neuropsychiatric disorders.
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