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Abstract: Cutaneous non-disseminated, non-tuberculous mycobacterial infections have been reported in both im-
munocompetent and immunocompromised subjects. Systemic Mycobacterium avium intracellulaire (MAI) have 
been reported in non-HIV patients with Idiopathic CD4 lymphocytopenia. We report a comprehensive immuno-
logical analysis in syndrome of selective IgM deficiency and T lymphocytopenia (both CD4+ and CD8+) with dis-
seminated cutaneous MAI infection. Naïve (TN) and Central memory (TCM) subsets of both CD4+ and CD8+ T cells 
were decreased, whereas terminally differentiated effector memory (TEMRA) subset of CD4+ and CD8+ T cells were 
markedly increased. IFN-γ producing T cells were markedly decreased. Although CD14highCD16- proinflammatory 
monocytes were modestly increased, IFN-γR+ monocytes were markedly decreased. The expression of TLR3, TLR5, 
TLR7, and TLR9 on monocytes was decreased. Germinal center B cells (CD19+IgD-CD38+CD27lo) and B1 cells 
(CD20+CD27+CD43+CD70-) were markedly decreased. A role of immune alterations, including B cells and antibod-
ies in disseminated cutaneous MAI infection is discussed.
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Introduction

Non-tuberculous mycobacteria (NTM) were 
considered saprophytes until acquired immu-
nodeficiency disease was discovered when 
Mycobacterium avium complex (MAC) species 
emerged as a major opportunistic infection in 
patients with HIV infection. The first case of 
Mycobacterium avium intracellular (MAI) infec-
tion of the lung in a non-HIV patient with CD4 
lymphocytopenia was described in 1992 [1]. 
Later in the year, the Center for Disease Control 
and Disease Prevention coined the termed 
Idiopathic CD4+ lymphocytopenia (ICL) and 
defined as CD4+ depletion of < 300/ul or < 
20% of the total lymphocytes on two separate 
times with a minimum of six weeks of time with-
out any secondary causes of immunodeficiency 
or immunosuppression [2]. Since then, several 
reviews on ICL have been published [3-7]. We 
described a syndrome of T cell lymphocytope-
nia (shared by both CD4+ and CD8+ T cells) 
and selective IgM deficiency associated with 

systemic MAI infection [8]. This syndrome is dif-
ferent from ICL and selective IgM deficiency; ICL 
is not associated with selective IgM deficiency, 
and selective IgM deficiency is not associated 
with T cell lymphocytopenia or T cell defect 
functional defect [9, 10]. Cutaneous NTM infec-
tions have been reported in both immunocom-
petent and immunocompromized hosts [11-15]. 
Although systemic MAI infections have been 
reported in patients with ICL, and in the syn-
drome of T cell lymphocytopenia and selective 
IgM deficiency, disseminated cutaneous MAI 
infection has not been reported in either condi-
tions. The host immune responses to M. tuber-
culosis have been studied in detail; however, 
host immune responses to NTM are not com-
pletely understood. A role of macrophages and 
T cells in immune response to mycobacteria 
has recently been evaluated [16-18]. Here we 
present a comprehensive analysis of host 
immune responses in a patient with a syndrome 
of T cell lymphocytopenia and selective IgM 
deficiency with disseminated cutaneous MAI 
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Table 1. Immunological analysis of the Patient
Test Patient Control (ranges)
Lymphocyte counts (/3mm)
    Percentage 13 14-44
    Absolute counts 468 900-3000
Serum Immunoglobulins (mg/dl)
    IgG 1,100 694-1,618
    IgA 175 68-378
    IgM 26 65-263
    IgE (IU/ml) 7 10-150
Lymphocyte subsets % (#)**
    CD3+ 9 (42) 62-84 (619-1847)
    CD3+CD4+ 2 (9) 31-61 (338-1194)
    CD3+CD8+ 4 (19) 10-38 (85-729)
    CD4/CD8 ratio 0.47 0.9-3.7
    CD19+ 51 (239) 5-26 (51-473)
    CD3-CD56+CD16+ 38 (178) 1-7 (12-349)
Delayed Type skin Hypersensitivity
    Mumps Negative Positive
    Tetanus Negative Positive
    PPD Negative Positive*
Lymphocyte proliferation (counts per min)
    PHA 4,509 153,754-279,243
    ConA 1,128 122,130-382,789
    PWM 14,660 147,894-230,054
NK cytotoxicity
    Lytic unit 4 8-40
    TB Quantiferon (IU/ml) 0.01 > 0.35
*In subjects exposed to Mycobacterium or BCG vaccinated; **Lymphocyte sub-
sets were performed at least on 4 separate occasions over 2 years period and 
were similar.

infection. This is the first report of comprehen-
sive B cell subset analysis in mycobacterial 
infection. A possible role of B cell subsets and 
antibodies in mycobacterial defense is 
discussed. 

Material and methods

Patient

In October 2012, the patient, a 53 year old man 
was involved in a motor vehicle accident where 
he fractured his collarbone. At that time he 
appreciated a small nodule on his right upper 
arm that began to grow. As time progressed, 
more lesions appeared on the medial aspect of 
upper right arm. A biopsy performed by a der-
matologist was nonspecific. He then was 
referred to us for a second opinion. An immuno-
logical analysis and two biopsies were per-
formed. His lesions at that time were two 

× 2.0 cm in size. He was resumed on same anti-
mycobacterial regimen. However, his lesions 
continue to increase in size. Another biopsy 
was performed with culture positive for MAI. 
Moxifloxacin was added to his regimen. Lesions 
continued to increase in size. At the National 
Institutes of Health, he was started on IV ami-
kacin as well as Interferon Gamma dosed at 50 
mcg/m2 (1 million international units/m2) sub-
cutaneously three times weekly. Within three 
months, his two forearm lesions completely 
resolved and his two proximal lesions markedly 
reduced in size. Later Amikacin was discontin-
ued because of side effects. Patient continued 
to receive gamma interferon.

Antibodies and reagents 

T cell subsets: CD4 PerCP and CD8 PerCP, 
CD45RA APC, CCR7 FITC, CD14 FITC, CD16 PE. 
IFN-γ R-PE all antibodies were from BD Phar- 

lesions that were 1 cm × 1 cm. 
He had no lymphadenopathy. 
The results of his immunologi-
cal analysis are shown in  
Table 1, which revealed severe 
T cell lymphopenia that is 
shared by CD4+ and CD8+ T 
cells, selective IgM deficiency, 
and low NK cell functions. 
Similar phenotype has been 
reported in three patients with 
systemic MAI infection [8]. He 
was negative for HIV-1 and HIV-
2, and delayed type hypersensi-
tivity skin tests to Candida, tet-
anus toxoid, and PPD were neg-
ative. Biopsies were consistent 
with non-caseating granulomas 
with culture positive for My- 
cobacterium avium intracellu-
laire that was sensitive to  
ciprofloxacin, rifampin, etham-
butol, streptomycin, amikacin, 
rifabutin, and clarithromycin. 
He was started on treatment in 
February 2013 with azithromy-
cin 500 mg 3 times weekly, eth-
ambutol 1500 mg/day and 
rifampin 600 mg 3 times week-
ly. Initially, his lesions respond-
ed to therapy, which was dis-
continued after 15 months. 
However, his lesions began to 
increase in size and now all four 
lesions were approximately 1.0 
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mingen (San Jose, CA), and IL-12R PE from R&D 
Systems (Minneapolis, MN).

TLR Expression: Antibodies to TLR2 Alexa647, 
TLR4 biotin + Streptidine PE (BD Pharmingen, 
San Jose, California), TLR5 Alexa488 and TLR7 
FITC (R&D systems, Minneapolis, MN), TLR3 PE 
(e-biosciences San Diego, CA) TLR6 PE 
(Biolegand, San Diego, CA) were used.

B cell subsets: The following anti-human anti-
bodies were uses: CD19 PerCP, CD20 PerCP 
anti-IgM APC, CD27 FITC, CD38 FITC, anti-IgD 
PE, CD21 PE, CD70 PE, CD27 APC, CD38 PE, all 
from BD Pharmingen (San Jose, CA), and CD43 
APC from Biolegand (San Diego, CA). 

Peripheral blood mononuclear cells (PBMNCs) 
were isolated from blood of patient and healthy 
subjects by Ficoll-hypaque density gradient. 
Protocol was approved by Human Subject 
Committee of the Institution Review Board of 
the University of California, Irvine.

Immunophenotyping

Whole blood was diluted with phosphate buffer 
saline (PBS), washed × 2, and then centrifuged. 
Cell pellet was diluted with 1 ml of PBS and 
stained with a panel of antibodies for various 
subsets of B cells and subsets of CD4+ and 
CD8+ T cell subsets (see below). After staining, 
RBC was lysed with 1 × lysing solution (BD 
Pharmingen, San Jose), washed with PBS, and 
analyzed. Flow cytometry was performed using 
FACSCalibur (Becton-Dickenson, San Jose, CA) 
equipped with argon ion laser emitting at 488 
nm (for FITC, PE and PerCP excitation) and a 
spatially separate diode laser emitting at 631 
nm (for APC excitation). Forward and side scat-
ters were used to gate and exclude cellular 
debris. Ten thousand cells were acquired and 
analyzed using Flowjo software (Treestar, 
Ashland, OR). B cell subsets included naïve 
(CD19+IgM+IgD+CD27-), transitional (CD19+ 
CD38+IgM+), mature (CD19+CD21+), marginal 
zone (CD19+CD27+IgD+), IgM memory (CD19+ 
IgM+CD27+), class switched memory (CD19+ 
CD27+IgD-), germinal center ((CD19+CD38+ 
CD27lowIgD-), B1 cells (CD20+CD27+CD43+ 
CD70-), and plasmablasts (CD19+CD38+IgM-). 
Subsets of CD4+ and CD8+ T cells included 
naïve (CD45RA+CCR7+), central memory (CD- 
45RA-CCR7+), effector memory (CD45RA-

CCR7-), and terminally differentiated effector 
memory/exhausted (CD45RA+CCR7-).

Antibody panel for 4-color B cell subsets phe-
notype

Panel FITC PE PerCP APC
1 CD27 anti-IgD CD19 anti-IgM
2 CD38 CD21 CD19 anti-IgM
3 CD27 CD70 CD20 CD43 
4 CD38 IgD CD19 CD27

Antibody panel for subsets of CD4+ and CD8+ 
T cell phenotype

Panel FITC PerCP APC
1 CCR7 CD4 CD45RA
2 CCR7 CD8 CD45RA

Detection of intracellular cytokines

2 × 106/ml peripheral blood mononuclear cells 
(PBMC) cells in RPMI-1640 medium were acti-
vated with 10 ng/ml Phorbol 12-myristate 
13-acetate (PMA) + ionomycin 1 g/ml and 10 
µg/ml Brefeldin A (BFA) (Sigma, St. Louis, MO) , 
and Incubate for 4 hours at 37°C in a 5% CO2 
atmosphere. Cells were surface stained with 
CD4 PerCP for 30 min, fixed with 250 ul BD 
Cytofix/Cytoperm™ Buffer. Cells were washed 
by BD Perm/Wash™ Buffer, a permeabilization 
and wash buffer that maintain cellular perme-
ability and facilitate intracellular staining. 
Activated and unactivated cells stained for 
Intracellular IFN, TNF and corresponding iso-
type controls. Ten thousand cells were acquired 
and analyzed with FACSCalibur. 

Detection of TLRs

PBMCs were surface stained either CD14 FITC 
or PE and surface stained with antibodies toTLR 
2, 4, 5 and 6 for 30 min, washed with PBS and 
acquire by FACSCalibur, TLR4 tube washed 
stained with additional streptidine PE for 30 
min wash and acquired. TLR3, TLR7, and TLR9 
tubes after CD14 surface staining were fixed 
and permeablized with BD Cytofix/Cytoperm™ 
Fixation/Permeablization Kit as per manufac-
turer instructions, and stained with antibodies 
to TLR3, TLR7, and TLR9, washed, and acquire 
by FACSCalibur. Corresponding isotypes were 
used as background. Data were analyzed by 
Flowjo software (Treestar, Ashland, OR).
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Statistical analysis

Statistical analysis was performed using Graph 
Pad Prism. Differences between control and 
Patient sample were tested using one tail-
paired t-tests. Values of P < 0.05 were consid-
ered significant.

Results

Naïve, central memory, and effector memory 
subsets of CD4+ and CD8+ T cells

CD4+ and CD8+ T cells have been classified 
into TN, TCM, TEM, and TEMRA. These subsets are 

phenotypically and functionally distinct [19-22]. 
Therefore, we examined these subsets with 
various monoclonal antibodies, using multicol-
or FACSCalibur. Figure 1 shows a marked 
increase in TEMRA CD4+ and CD8+ T cells; almost 
all CD8+ T cells are TEMRA, whereas TN and TCM 
subsets of both CD4+ and CD8+ T cells are 
decreased. 

Th1 cells are decreased

Th1 (IFN-γ) cells play an important role in 
defense against M. tuberculosis and M. leprae. 
More recently, it has been reported that IFN-γ 

Figure 1. Naïve and memory subsets of CD4+ and CD8+ T cells. TN (CD54RA+CCR7+), TCM (CD45RA-CCR7+), TEM 
(CD45RA-CCR7-), and TEMRA (CD45RA+CCR7-) subsets of CD4 and CD8 T cell subsets were examined with FACSCali-
bur and analyzed with Flowjo. TN, and TCM, cells are markedly decreased as compared to controls. TEMRA of CD4 is 
increased, whereas majority of CD8+ T cells were TEMRA (95.9%).

Figure 2. IFN-γ and TNF-α containing CD4+ (Th1) cells. Mononuclear cells were stimulated with PMA and Ionomycin 
and secretion of cytokine was blocked by brefelidine.  Cells were stained for surface CD4, fixed and then stained 
for Intracellular IFN-γ and TNF-α with respective antibodies and isotype controls. Cells were gated on CD4+ T cells 
and then analyzed for IFN-γ+ and TNF-α+ cells by multicolor flow cytometry. IFN-γ+ cells were markedly decreased 
(21.7%) as compared to control (85.6%). TNF-α+ cells were comparable. Blue lines are for isotype control and red 
lines for specific antibodies.
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and TNF-α are also important in defense 
against NTM [23, 24]. Therefore, we examined 
CD4+ T cells with intracellular IFN-γ and TNF-α. 
A significant reduction in IFN-γ+ T cells was 
observed in the patient as compared to con-
trols (Figure 2). In addition, serum quantiferon 
levels were undetectable (Table 1).

Monocytes and TLR expression

When PBMNCs were isolated from whole blood 
CD14+ monocytes in the patient were markedly 
increased (26%) as compared to control (6%) 
Figure 3. Analysis of monocyte subsets using 
CD14 and CD16 antigens revealed a modest 
increase in “proinflammatory” CD14highCD16- 
monocytes (73.6%) as compared to control 
(62.8%); CD14+CD16+ “resident monocytes” 
were comparable. The innate immune system 
(monocytes and dendritic cells) utilizes pattern 
recognition receptors (PRR), including Toll-like 
receptors (TLR) for defense against mycobacte-
rial infection [17]. Therefore, we examined the 
expression of TLR’s on CD14+ monocytes in 
the patient and control. The expression of TLR4 
on monocytes was increased, whereas expres-
sion of TLR5, TLR7, and TLR9 on monocytes 
was decreased (Figure 4).

their stage of maturation and differentiation 
[27]. Although a role of antibodies in defense 
against mycobacteria has not been fully 
explored, IgM has been shown to display speci-
ficity against PGL-A1 of M. leprae [28, 29]. IgG 
antibodies against glycopeptidolipid (GPL) core 
antigen of MAC were present in a majority of 
patients with pulmonary MAC [30]. Therefore, 
we analyzed various subsets of B cells with  
a group of antibodies using multicolor flow  
cytometry. Transitional B cells (CD19+IgD+ 
CD27+) were increased (Figure 6), whereas  
germinal center B cells (CD19+CD38+ 
CD27lowIgD-) and B1 cells (CD20+CD27+ 
CD43+CD70-) were decreased (Figure 7).

Discussion

The incidence of NTM infection is increasing 
worldwide. In a very large study Hoefslooot and 
colleagues reported 91 different species of 
NTM in over 20,000 patients from 30 countries 
[31]. Systemic NTM infections in humans mani-
fest as hypersensitivity pneumonitis, cavitary 
disease, and nodular bronchiectasis. Cuta- 
neous NTM infections are uncommon. A soli-
tary cutaneous MAI infection was reported in a 
young man who underwent allogeneic bone 
marrow transplantation [14]. Disseminated 

Figure 3. Monocytes and monocyte subsets. In mononuclear cells, isolated 
from peripheral blood, percentage of monocytes is increased in the patients 
(25.1%) as compared to control (6.83%). Monocyte subsets were analyzed 
using CD14 and CD16 antibodies. CD14++CD16- “proinflammatory” mono-
cytes are marginally increased. CD14+CD16+ “resident” monocytes are 
comparable.

IL-12-IFN-γ axis

IL-12 plays an important and 
critical role in Th1 polarization 
and depletion of IL-12 reduc-
es resistance to Mycoba- 
cterium avium infection [25, 
26]. Therefore, we examined 
the expression of IL-12R and 
IFN-γR on monocytes and 
lymphocytes with receptor-
specific antibodies and iso-
type controls using multicolor 
flow cytometry. IFN-γR+ mo- 
nocytes were decreased; 
however, IL-12R+ monocytes 
were comparable to control 
(Figure 5). IL-12R+ and IFN-
γR+ lymphocytes were also 
comparable between patient 
and control.

B cell subsets

B cells have been divided into 
several subsets based upon 
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Mycobacterium chelonae infections, with or 
without cutaneous and osseous manifestation, 
have been reported [32, 33]. Cutaneous MAI 
infections are rare and disseminated cutane-
ous MAI infection has not been reported. 
Detailed immunological analyses were not per-
formed in any of these cases. Our case also 
highlights a possible role of B cells and antibod-
ies, albeit minor, in defense against mycobacte-
rial species. Initially, our patient responded to 
antimycobacterial therapy; however, later 
became resistant. Since our patient has mark-
edly reduced IFN-γ producing CD4+ T cells and 
no quantiferon, IFN-γ was added to therapy, to 
which he responded. Patients with ICL and MAC 
infection have been successfully treated with 
IFN-γ and IL-2 therapy [34].

Host immune responses to M. tuberculosis and 
M. leprae have been studied in detail [35, 36]. 
The host immune responses to NTM are similar 
to M. tuberculosis with some differences [18]. 
The major protective responses to mycobacte-
ria are Th1 CD4 response and macrophages 
(Th1 CD4+ T cells produce TNF-α and IFN-γ); 
IFN-γ activates macrophages resulting in intra-
cellular killing of mycobacteria [35]. IFN-γ defi-
ciency has been considered as a major factor in 
the pathogenesis of MAC infection [35, 36]. 
IL-12 plays an important role in defense against 
mycobacterial infection by polarizing Th0 cells 
to Th1 cells to produce IFN-γ, which then binds 
to macrophages via IFN-γR, and activating 
them to eliminate mycobacteria [37-39]. Our 
patient has a deficiency of interferon produc-

Figure 4. TLR expression on monocytes. TLR-2, -4, -5, and -6 are membrane bound, whereas TRL-3, -7, and -9 are 
intracellular and were analyzed following fixation with respective antibodies and isotype controls. Numbers in the 
parenthesis are mean fluorescence channel numbers (MFC#) as an indicator of density of molecules. TLR-4 expres-
sion is increased, whereas the expression of TLR-5, -7, and -9 is decreased.
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tion (quantiferon), IFN-γ producing Th1 cells, 
and expression of IFN-γR on macrophages. A 
role of TNF-α in defense against M. tuberculo-
sis has been demonstrated in both mice and 
humans [40, 41], which is further supported by 
increased susceptibility to M. tuberculosis 
infection in patients receiving anti-TNF therapy. 
In our patient, TNF-α containing cells were com-
parable to control. It is possible that TNF-α 
plays a minor role if any, against NTM.

Toll-like receptors (TLRs) are a family of pattern 
recognition receptors that are capable of recog-
nizing conserved pathogen-associated molecu-
lar patterns (PAMPs), including components of 
bacterial cell walls such as lipoproteins and 
lipoglycans present in mycobacteria species, 
and microbial nucleic acids [18, 42-44]. M. 
tuberculosis has lipoprotein that interacts with 
TLR-2 to activate NF-κB and secrete IL-12 [43]. 
It also results in killing of intracellular M. tuber-
culosis. Other PAMPs of M. tuberculosis include 
mannose-capped lipoarabinomannan, which 
does not activate TLR2 or TLR4 and may acti-
vate other TLRs [45], and mannosylated phos-
phatidylinositol (PIM), a component of soluble 
tuberculosis factor (STF) that appears to acti-
vate TLR-2 and TLR-6. In our patient, TLR2 and 
TLR6 expression on monocytes was compara-
ble to control. TLR-7 ligands induce autophagy 

in mycobacterial-infected macrophages [46]. 
Bakhru et al. [47] have demonstrated that BCG 
vaccine-mediated reduction in the expression 
of MHC II antigen on macrophages and dendrit-
ic cells is reversed by activation of TLR7 and 
TLR9. In our patient, expression of TLR7, and 
TLR9 was markedly decreased, and might con-
tribute to MAI pathology.

Naïve T cells upon exposure to an antigen 
undergo a clonal expansion of effector cells, 
which after clearing the antigen undergo a 
phase of contraction when antigen-specific T 
cells undergo apoptosis, and then a small num-
ber of antigen-specific T cells stabilizes and 
retained as memory T cells [19-22]. These 
memory T cells differentially express adhesion 
molecules and chemokine receptors, which 
allow them to home in peripheral blood lym-
phoid tissues. Based upon the expression or 
lack of them, memory CD4+ and CD8+ T cells 
migrate to lymph nodes and spleen (central 
memory, TCM) or to extralymphoid tissue like 
lung and liver (effector memory; TEM). A small 
subpopulation of TEM cells re-acquires CD45RA, 
and is termed as TEMRA or terminally differenti-
ated memory or exhausted T effector cells. TEM 
and TEMRA T cells T cells display poor prolifera-
tion, decreased telomere length, and are resis-
tance to apoptosis [20], whereas TN and TCM 

Figure 5. Expression of IL-12R and IFN-γR on lymphocytes and monocytes. Mononuclear cells were stained with 
monoclonal antibodies against IL-12R or IFN-γR and isotype controls. Cells were gated for lymphocytes and mono-
cytes, and data were analyzed by Flowjo. Numbers represent MFC#. IFN-γR on monocytes is decreased. IL-12R on 
lymphocytes and monocytes, and IFN-γR on lymphocytes are comparable between patient and control. 
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cells proliferate and are antigen-dependent. 
Therefore, a deficiency of TN, and TCM cells and 
an expansion of TEMRA cells in our patient may 
be responsible for T cell functional defects con-
tributing to increased susceptibility to dissemi-
nated cutaneous MAI infection. A deficiency of 
TN and TCM cells and expansion of TEMRA cells is 
also observed in aged human, which contrib-
utes to T cell immunosenescence [19]. 

Although a role of cell-mediated immunity is 
well established, a role of B cells and antibod-
ies in defense against mycobacterial infection 
has not been investigated in detail. However, 
emerging evidence supports a role of B cells 
and antibodies in host defense against intracel-
lular pathogens including M. tuberculosis [48, 
49]. Evidence suggests that [A] B cells can reg-
ulate both CD4+ and CD8+ T cell memory 
responses [50-52], [B] B cells by virtue of pro-
ducing antibodies and cytokines can modulate 
the maturation of antigen-presenting cells; 
thereby regulating the adaptive immune 
response [53]. Natural antibodies bind to and 
alter the activity of co-stimulatory molecules 
B7 and CD40, thereby affecting antigen pre-
sentation [54]. Cytokines produce by B cells 
can polarize T cells [51, 55]. [C] B cells can reg-
ulate the differentiation of macrophages into 
subsets. B1 cells promote polarization of mac-
rophages into M2 subset [56]; macrophages 
are important in anti-mycobacterial defense. 
B1 cells spontaneously secrete natural IgM 

antibodies in the absence of exogenous anti-
genic stimulation and B1 and B2 cell-derived 
IgM antibodies play a protective role in intracel-
lular microbe influenza virus infection [57-59]. 
One of the characteristics of B1 cells is the 
enrichment of their repertoire for poly- and self-
reactive specificity [60]. In our patient, in addi-
tion to selective IgM deficiency, the numbers of 
B1 cells were markedly decreased. [D] 
Accumulating evidence suggest significant role 
of antibodies against intracellular pathogens 
including M. tuberculosis. Monoclonal antibod-
ies specific for a number of mycobacterial com-
ponents including arabinomannan, lipoarabino-
mannan, heparin-binding hemagglutinin, and 
16kD-crystalin have been shown to protect 
against M. tuberculosis [61-65], and passive 
transfer of serum with polyclonal antibodies 
against M. tuberculosis is protective in relapse 
of tuberculosis in SCID mice [66]. Furthermore, 
IVIG in a mouse model of tuberculosis has been 
reported to be protective [67]. A role of antibod-
ies in defense against mycobacterial defense is 
also supported by M. tuberculosis infections in 
patients with X-linked agammaglobulinemia 
[68, 69], and M. tuberculosis and severe NTM 
infection in patients treated with Rituximab 
that deplete B cells [70]. [E] Finally, a role of 
antibodies in mycobacterial defense is support-
ed by the presence of IgG antibodies against 
glycopeptidolipid (GPL) core antigen of MAC in 
77% of patients with pulmonary MAC and none 
in pulmonary tuberculosis [29]. 

Figure 6. B cell subsets. Total B cells, mature B cells, naïve B cells, IgM memory B cells, class-switched B cells, 
CD21lo B cells, marginal zone (MZ) B cells, and plasmablasts were analyzed using a variety of markers (see meth-
ods). A. Flow cytograph shows increased transitional B cells. B. Data of patient is compared with 20 healthy controls.

Figure 7. B1 and Germinal Center (GC) B cells. Both germinal center (CD19+CD38+CD27lowIgD-) and B1 cells 
(CD20+CD27+CD43+CD70-) are markedly decreased as compared to 20 healthy subjects.
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The granuloma in M. tuberculosis has aggre-
gates of B cells, which has cellular markers of 
typical germinal centers [71]. Therefore, a defi-
ciency of GC B cells may result in abnormal 
granulomatous reaction with exacerbated 
pathology. In our patient germinal center B cells 
were markedly decreased. 

In summary, a deficiency of IFN-γ secretion, Th1 
cells, and IFN-γ-R expression on monocytes, as 
well a deficiency of TN and TCM and accumula-
tion of TEMRA T cell subsets likely play an impor-
tant role in severe T cell deficiency and dissemi-
nated cutaneous MAI infection in the present 
patient. A deficiency of TLR7 and TLR9 via their 
effect on autophagy and MHC class II expres-
sion may also play a role in CD4+ T cell func-
tions. A role of B cells and immunoglobulins in 
defense against M. tuberculosis is emerging. 
Selective IgM deficiency and B cell alterations 
in our patient suggest their possible role in 
defense against MAI and other NMT, and should 
be explored. 
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