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Short-Term Deterministic Forecasting of Individual
Household Electricity Consumption Using the

Hungarian Algorithm
Graham McClone, Lola Botman, Adil Khurram, Bart De Moor, and Jan Kleissl

Abstract—This work proposes a new approach for improv-
ing one day ahead point forecasting of stochastic individual
household electricity consumption. The focus is tackling the
double peak penalty effect and improving peak predictions. Each
prediction is generated by comparing a household’s energy usage
of the seven days leading up to the target day with all seven
day periods from all households in the dataset. The households
with the closest consumption patterns are then used to create
the forecast. The proposed method selects nearest neighbors in
a similar manner as in the kNN algorithm. However, it utilizes
the Hungarian algorithm to extend this approach to allow for
comparisons between consumption values that occur at different
times. A case study using an open dataset composed of electric
consumption data from 100 Irish households demonstrates that
this method improves performance of RMSE over kNN by up to
4.5% and 10.6% for persistence forecasting.

Index Terms—Hungarian Algorithm, Point Forecasting, Elec-
tricity Consumption, kNN

I. INTRODUCTION

Short-term forecasting of individual household electricity
consumption is an exceedingly challenging task that is relevant
for a variety of applications including grid congestion manage-
ment and infrastructure investments [1]. Due to the stochastic
behavior of individual households and burst-like patterns in
high resolution data, point forecasting of household electricity
consumption profiles is challenging. A critical challenge is the
double peak penalty effect [2] that arises when the magnitude
of a peak is correctly forecasted but the time when the peak
occurs is shifted by a few time steps. Using regular error
metrics, in this case, results in large forecast errors as the
magnitude of the peak is counted twice, once at the forecasted
time and then again at the time of actual occurrence. Because
of this, most methods will tend to under-predict peaks or avoid
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predicting peaks at all. However, in congestion forecasting, a
peak prediction of the correct magnitude but with a small delay
is more useful than no peak being predicted.

This work proposes the novel use of the Hungarian algo-
rithm [3] to improve forecasting of household energy con-
sumption. The proposed method uses the minimum linear
assignment of a cost matrix which is constructed using the
squared difference between the latest observed data and data
from the historical database, at multiple time steps. The
assignment provides a metric that is used to select the most
similar households to perform a day ahead prediction.

A. Prior Work

Load forecasting has been studied for many years and
can be classified based on forecast horizon, i.e., how far in
the future the prediction spans, and spatial granularity, i.e.,
the aggregation level of the load, ranging from individual
households to countrywide aggregated loads. Individual house-
hold energy consumption forecasting has been receiving more
attention recently given accessibility to smart meter data. With
increasing levels of penetration of renewable energy resources,
short-term energy consumption forecasting is becoming an
essential part of future grid planning and operation [4].

The authors of [5] perform large-scale aggregated short-
term load forecasting using multiple linear regression for big
data. In [6], the authors perform an aggregated short-term load
forecast for heterogeneous buildings. However, the aggregated
forecasts do not provide information about individual behavior
which is critical in congestion planning.

In [7], the authors discuss the need for more research into
individual household consumption, and compare a variety of
methods. The existing methods that forecast individual house-
hold electricity consumption are data intensive approaches
that often require additional exogenous data such as weather
[8] or household attributes, e.g., square footage, number of
rooms, or heating types. The authors of [9] performed short-
term nodal load forecasting with the hybrid use of three
machine learning methods that require exogenous data inputs.
In [10], the authors developed an energy consumption forecast
of multi-family residential buildings using support vector re-
gression. Multi-family residential buildings tend to have larger
consumption profiles with reduced stochasticity compared to
individual households, as multi-family dwellings average out
human behavior more than individual households.



The authors of [11] perform short-term residential load
forecasting using a nonlinear auto regressive method with
an exponential weight decay function. The data requirements
for many of these methods limit their scalability and broad
applicability. Additionally, the models proposed are local, i.e.,
one model is trained per household, this also limits scalability
and prevents forecasting for household where no or few
historical data is available [12].

The Hungarian algorithm is well known and regularly used
for various applications, for example, comparing forecasted
individual electric vehicle profiles [13]. Haben et al. [2]
utilized the algorithm to create a new error metric that is more
robust than standard metrics to address the double penalty
effect. The new metric allows peaks to shift within a given
time window, to find the best match in magnitude between
the forecast and the true data.

However, in [2], the Hungarian algorithm shifts electricity
consumption peak values to evaluate forecasts only. The
authors of [14] implement a graph-based algorithm that uses a
similar approach to compare consumption profiles as in [2], but
use the Hungarian algorithm only to compare daily profiles.
The algorithm proposed in [14] is designed to reduce running
time of the Hungarian algorithm but is only demonstrated with
daily comparisons.

B. Present Work and Novelty

This work proposes a novel utilization of the Hungarian
algorithm for short-term deterministic predictions of individual
household electricity consumption based on historical con-
sumption. The Hungarian algorithm compares arrays in a
manner similar to the k-Nearest Neighbors (kNN) algorithm,
but allows for shifted time comparisons. For example, given
two time series, the kNN algorithm only compares data at
1300h whereas the Hungarian algorithm allows comparison
between data at 1300h and 1330h as well. This time shifted
comparison avoids the double penalty effect and can match
peak magnitudes more accurately. The proposed approach is
referred to as the Shifted Peaks (SP) method, in which (i)
household consumption patterns are compared via the Hun-
garian algorithm, and then, (ii) the most similar consumption
patterns are selected to build predictions [15].

SP uses only household electricity consumption data and
does not require additional data such as weather or household
attributes and reduces forecast error metrics over kNN by
4.5%-9.3%. SP is a global technique which utilizes data from
all households to make predictions.

The novelty in this work is the utilization of the Hungarian
algorithm for day ahead deterministic electricity consumption
forecasting.

The rest of this paper is organized as follows. Section II
describes each of the forecasting techniques in this study.
Section III describes the data and parameters. Section IV
presents the results of a case study implementation. Section V
is the conclusion.

II. METHODS

The proposed SP forecasting method is compared against
two benchmarks: (i) The baseline approach called persistence
forecasting as described in Section II-A, and (ii) a kNN based
forecasting model, detailed in Section II-B. The proposed
SP approach is described in Section II-C. In all methods,
the forecast is updated daily with the horizon of 24h, time
resolution of 0.5h, and 0h lead time. Finally, the error metrics
used for the results analysis are included in Section II-D.

A. Persistence Forecasting

The persistence model uses a household’s prior day’s elec-
tricity consumption as a prediction for the current day’s
electricity consumption behavior. The persistence forecasting
relationship is depicted in Equation (1):

ŷd = yd−1, (1)

where ŷd represents predicted electricity consumption of day
d and yd−1 is the electricity consumption of the previous day,
d− 1.

B. kNN Forecasting

The kNN forecasting approach consists of two steps. First,
kNN is used to identify similar time series by making element-
wise comparisons between two time series (e.g., comparing
the value at 1300h with the other time series’ value at 1300h)
based on a chosen similarity measure. Second, the most similar
time series, i.e., households, are used to make predictions.

There are two inputs to the kNN forecasting approach. The
first input, Z, is the vector of the consumption values of the
target household spanning seven days prior to the day to be
predicted and is defined as,

Z =
[
z1 z2 . . . zM

]⊤ ∈ RM , (2)

where M is total the number of time steps in a seven day
period. The second input, X , is called historical data and can
be considered as the training dataset of size M ×N :

X =
[
x1 x2 · · · xN

]
∈ RM×N . (3)

The matrix X is constructed using a rolling window technique
with a contiguous seven-day window such that each xj is
defined as,

xj =
[
x1,j x2,j . . . xM,j

]⊤ ∈ RM , (4)

where j ∈ {1, ..., N}. Each xj is obtained by shifting the win-
dow one day at a time across the entirety of the households’
consumption data. The training dataset X includes data from
all households. The kNN algorithm then compares the input,
Z, of the target household with each column xj of X .

The distance (dji,l) is used to compare entries zi in Z with
xi,j in X ,

dji,l = (zi − xl,j)
2. (5)
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Fig. 1: Comparison of two arrays using (a) kNN with a Eu-
clidean distance of 4.63 kWh, and (b) the Hungarian algorithm
with 2 time shifts with a Euclidean distance of 4.50 kWh.
Dashed lines connect values that are compared. The Hungarian
algorithm minimizes the distance between the arrays by using
temporal shifts.

In kNN, the distance dji,l is computed for each zi and xl,j ,
for all, i = 1, . . . ,M and l = i since time shifts are not
considered, resulting in the following cost matrix,

kNNj =


dj1,1 0 · · · 0

0 dj2,2 · · · 0
...

...
. . .

...
0 0 · · · djM,M

 . (6)

The scalar cost CkNN,j =
√∑M

i=1 d
j
i,l is used to obtain the k

nearest neighbors to Z from X. The forecast is then obtained
by taking the element wise average of the selected nearest
neighbors. Figure 1(a) illustrates the one-to-one element-wise
comparison between two vectors of 10 time steps with kNN.

This kNN forecasting method has three parameters that can
be tuned: (i) the number of time steps used for the array
comparison, i.e., M ; (ii) the distance metric used to determine
the similarity between two arrays, i.e., the Euclidean distance;
and (iii) the number of nearest neighbors.

C. Shifted Peaks Forecasting

Shifted Peaks uses the same inputs as kNN but includes
time shifted comparisons in the cost matrix. Specifically, the
cost matrix (SPj) includes off-diagonal entries given by,

SPj =


dj1,1 dj1,2 · · · dj1,M
dj2,1 dj2,2 · · · dj2,M

...
...

. . .
...

djM,1 djM,2 · · · djM,M

 . (7)

In Equation (7), the i-th row represents the comparison be-
tween zi of Z and the time shifted entries of xl,j of xj , with
l = 1, . . . ,M .

The Hungarian algorithm [3] solves a linear assignment
problem that minimizes over the sums of the distances in
SPj , such that each element of Z is paired to a unique
element of xj . The scalar cost CSP,j is the sum of those

distances. In kNN, the cost is computed by using only the
diagonal of the matrix. Selecting elements off the diagonal
to minimize the cost means allowing shifts between the two
arrays. The off-diagonal values in Equation (7) represent the
shifted comparisons illustrated with two time step shifts in
Figure 1(b).

In the proposed method, the SPj matrix is not fully pop-
ulated, as this implies the capability to minimize the cost by
shifting a consumption value an unreasonable number of time
steps. For example, a Tuesday at 1100h would be able to shift
to a Thursday at 1300h. We introduce a new parameter in
order to limit the shifting time frame to between 0.5-2 hours
such that the general timing of a peak and its magnitude are
accounted for, keeping its usefulness for congestion forecast-
ing. The number of sub and super diagonals that are in the
matrix is equal to the number of time steps the algorithm is
allowed to shift on each side of the current time step.

Next, as in the kNN approach, the nearest neighbors with the
lowest cost are used to make predictions. The day following
each selected set of seven days xj is averaged, element-wise
to make predictions of the target day.

SP has four parameters that can be tuned: (i) the number of
time steps used for the comparison, i.e., M ; (ii) the distance
metric used to determine the similarity between households;
(iii) the number of nearest neighbors; and (iv) the size of the
time frame in which peak shifting is allowed, we quantify this
time frame in terms of time steps, i.e., 1, 2, 3 or 4 time steps
corresponding to a time frame of 0.5 h, 1 h, 1.5 h and 2 h
respectively.

D. Error metrics

Conventional error metrics are used to evaluate the fore-
casts. RMSE and mean absolute error (MAE), as defined
in [16], are computed between the true consumption and
the predicted consumption, for each method discussed in
Sections II-A through II-C. RMSE and MAE are evaluated
for varying values of k between 0 and 50 for both kNN and
SP and for the SP method allowing for time frame parameter
shifts of 1 to 4 time steps.

III. CASE STUDY

A. Data

The data used in this work is provided by the Commission
for Energy Regulation (CER) of Ireland. It is available via
the Irish Social Science Data Archive (ISSDA) [17]. This
dataset consists of the electrical consumption values of over
5, 000 businesses and households in Ireland between July,
2009 and December, 2010 recorded at half-hourly intervals.
There are thus 48 data points in one day of recording. The non-
residential profiles and profiles with incomplete data records
have been removed from the dataset consistent with [1] and
[18]. A GitHub repository for processing this data is available
at [19]. A total of 100 randomly selected households are used
for forecasting in this work.



TABLE I: RMSE and MAE results for each forecasting
method described in Section II. SP and kNN are evaluated
for a varying number of nearest neighbors. SP is evaluated for
a varying number of allowed time shifts, e.g., SP 1 indicates
that a shift of one time step is allowed. The best performing
method per number of nearest neighbors emboldened. The best
performing method overall is highlighted in gray.

(a) RMSE

Persistence kNN SP 1 SP 2 SP 3 SP 4
1 NN 0.743 0.888 0.886 0.832 0.807 0.805
5 NN 0.750 0.734 0.718 0.723 0.709
10 NN 0.736 0.721 0.693 0.701 0.697
20 NN 0.713 0.716 0.681 0.679 0.677
50 NN 0.695 0.703 0.674 0.668 0.664

(b) MAE

Persistence kNN SP 1 SP 2 SP 3 SP 4
1 NN 0.373 0.429 0.429 0.405 0.392 0.392
5 NN 0.507 0.492 0.477 0.476 0.467
10 NN 0.526 0.507 0.483 0.485 0.482
20 NN 0.526 0.521 0.486 0.483 0.480
50 NN 0.526 0.528 0.494 0.484 0.479

The case study individually forecasts 14 sequential days of
30 households, training on historical data from 100 house-
holds. The training data for the initial forecasted day is
composed of the first 39 days of the dataset for all households.
The training data then increases by one day when forecasting
the next day, (e.g., from 39 days to 40 days when forecasting
the second day). The testing data is composed of the individual
forecasted days between 40 to 53 for the 30 forecasted
households. The case study uses a small subset of the data
available. An increase in the amount of data used should
increase SP and kNN accuracy. Implementing SP with a larger
subset of the data available is an area of future research.

Each weekly consumption profile is scaled between [0, 1]
using MinMax normalization as to allow comparison across
the entire recording period and across all households regard-
less of the magnitude of the consumption, which might be
dependent on household sizes or weather data.

B. Method parameters

SP was implemented with time shifts of 1, 2, 3, and 4 time
steps, i.e., a time frame of half an hour up to 2 hours, in
order to determine the number of shifts that produces the most
accurate forecast.

IV. RESULTS AND DISCUSSION

Table I(a) and (b) respectively depict the RMSE and MAE
results averaged over the test set. We let two parameters
vary: k the number of nearest neighbors for both the kNN
forecasting and SP model, and the number of time shifts
allowed. The RMSE for kNN and SP models decreases as
the number of nearest neighbors increases, while the MAE
increases. SP 4 with 50 nearest neighbors reduces RMSE by
10.6% from persistence forecasting and a 4.5% reduction is
achieved compared to kNN with 50 nearest neighbors for all
households in the study. Figure 2 illustrates these trends and

shows that SP 3 and SP 4 significantly improve forecast error
over kNN for all nearest neighbor cases.
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Fig. 2: (a) RMSE and (b) MAE for kNN and SP methods
as a function of number of nearest neighbors ranging from
k = 1 : 50.
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k =1, 5, 10 and 20 versus real data. (b) Persistence, kNN and
SP with 4 time step shifting and k =1 versus real data.

Figure 3(a) compares SP 4 with k = 1, 5, 10, 20 nearest
neighbors for one of the days in the test set. It can be seen from
figure 3(a) that peak values decrease in magnitude with an
increase in the number of nearest neighbors, due to averaging.
Figure 3(b) compares persistence, kNN and SP 4 forecasts
with k = 1 for the same day in the test set. Finally, figure 3(b)
illustrates that SP 4 predicts electrical consumption behavior
more accurately than kNN or persistence methods.

Figure 4 illustrates how SP 4 performs best for RMSE
and persistence performs best for MAE. In figure 4, the
RMSE and MAE are plotted for each individual household
with the persistence model on x-axis and SP 4 on y-axis.
Households represented by points above the green line suggest
higher error for SP than persistence, while below the line
suggests the opposite. Points that are further away from the
green line represent households in which one method strongly
out-performed the other. The SP and kNN forecasts can be
improved by applying weights to the nearest neighbors prior
to averaging and by including additional household profile



data which will allow these methods to identify more similar
behavior. Weighting of nearest neighbors and utilizing more
data will be explored in future work.
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Fig. 4: Scatter plot of the (a) RMSE and (b) MAE of the 30
individual household forecast performance metrics comparing
SP with 4 shifting time steps and nearest neighbor values of
k = 1, 5, 20, 50 vs forecasts with the persistence model.

V. CONCLUSION

This work proposes the novel use of the Hungarian algo-
rithm to forecast one day ahead household electricity con-
sumption. The proposed SP method is novel in that no prior
works have implemented the Hungarian algorithm to forecast
electricity consumption. In a case study forecasting electricity
consumption behavior for 14 individual days across 30 house-
holds, SP with 4 allowable time step shifts (2 hour) and 50
nearest neighbors reduced RMSE from persistence forecasting
by 10.6% and 4.5% from forecasting with kNN.

SP has lower data requirements than existing approaches in
the literature as it does not require exogenous data such as
weather or household attributes. It also has the major advan-
tage of being global, allowing it to leverage the information
in the consumption patterns of other households. Future work
will expand upon [1] and [15] by implementing the SP method
for probabilistic forecasting.
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