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ABSTRACT OF THE THESIS

A Global Analysis of Tropical Dry Forest Extent 

and Cover Based on Climatic Definitions

by

Jonathan Pando Ocón

Master of Arts in Geography

University of California, Los Angeles, 2020

Professor Thomas Welch Gillespie, Chair

Tropical dry forests have been estimated to comprise 42% of all tropical forested biomes and are 

believed to be one of the world’s most endangered ecosystems. There is a growing interest in 

identifying forest extent and forest change in tropical dry forest regions, especially to identify 

dry forest that deserve a high conservation priority at a global spatial scale. There is currently a 

debate concerning the classification and extent of tropical dry forest at the global scale. We 

identify the extent of tropical dry forest regions based on commonly used climatic definitions 

and datasets to improve global estimates of tropical dry forest extent. We compare climatic 

definitions of tropical dry forest (Murphy and Lugo, FAO, Dryflor, Aridity Index) using 

Worldclim, CHELSA, and Global Aridity and PET climatic datasets (1 km) and compare results 

to the World Wildlife Fund’s Terrestrial Ecoregions (Tropical and Subtropical Dry Broadleaf 
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Forest), as well as 579 field plots identified as tropical dry forest. Understanding the best method

to estimate global tropical dry forest extent gives both researchers and policy makers a vital tool 

to begin protecting this critically endangered and valuable resource. We identify methods that 

most accurately predicted tropical dry forest extent.  The global extents of tropical dry forest 

regions varied significantly with the Aridity Index predicting the largest extent, Murphy and 

Lugo and FAO predicting similar extents, and DryFlor predicting the smallest extent regardless 

of climatic dataset used. Globally, there was low agreement between climatic definitions and 

WWF Ecoregions. FAO and the Aridity Index climate definitions had the highest agreement with

WWF Tropical and Subtropical Dry Broadleaf Forest Ecoregions (57%) while FAO (76%) and 

Murphy and Lugo (69%) definitions had the highest agreement with field plots. However, 

extents and accuracy varied significantly by regions, biodiversity hotspots, and island 

archipelagos. Tropical dry forest region extent varies significantly based on climatic definition 

but not climatic datasets at a global spatial scale. Nearly half of all tropical dry forests will be 

missed when only analyzing WWF Ecoregion boundaries and climatic definitions will be needed

to estimate dry forest cover and change. There was high heterogeneity among climatic 

definitions at a regional and local spatial scale suggesting that climate definition can only 

provide a first order hypothesis about the distribution of dry forests and data on phenology, forest

structure, and composition are still needed to compare local tropical dry forest extent.
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1 INTRODUCTION

Tropical dry forests have been estimated to comprise 42% of all tropical forested biomes and are 

believed to be one of the world’s most endangered ecosystems (Murphy and Lugo, 1986; Janzen,

1988).  There is a growing interest in identifying forest extent and forest change in tropical dry 

forest regions, especially to identify dry forest that deserve a high conservation priority at a 

global spatial scale (Miles et al., 2006; Schmitt et al., 2009; Sunderland et al., 2015; Banda et al.,

2016).  Most analyses of tropical dry forests at a global spatial scale use the World Wildlife Fund

(WWF) Terrestrial Ecoregion boundaries to establish the geospatial extent of the intended study 

area (Miles et al., 2006; Schmitt et al., 2009; Gillespie et al., 2012; Crowther et al., 2015; 

Newbold et al., 2016).  WWF ecoregions are defined as relatively large units of land containing a

distinct assemblage of natural communities sharing a large majority of species, dynamics, and 

environmental conditions (Olson et al., 2001).  Currently, the WWF has identified 53 Tropical 

and Subtropical Dry Broadleaf Forests (TSDBF) Ecoregions.  However, global analyses of forest

cover have included other WWF Ecoregions (e.g. Tropical and Subtropical Grasslands, Savannas

and Shrublands) (Miles et al., 2001) and ecoregion data may contain several misclassifications or

cartographic errors especially on islands (Daniel et al., 2014; Gillespie et al., 2014).  Thus, there 

is a need to identify the extent of tropical dry forest in order to estimate forest cover and change 

and better understand threats (fire, climate change) and the conservation status of tropical dry 

forests at a global spatial scale. 

Currently, there are a number of definitions of tropical dry forest based on climatic 

parameters that can be used to define the global extent of tropical dry forest separate from WWF 

Ecoregion data.  The seminal definition of tropical dry forest comes from Murphy and Lugo 

(1986) which define tropical dry forest as occurring in frost-free areas where the mean annual 
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temperature is higher than 17˚C with annual precipitation between 250-2000 mm, and dry 

season(s) of 4 to 7 months (Holdridge, 1967, Murphy and Lugo, 1986).  The Food and 

Agriculture Organization of the United Nations (FAO) defines tropical dry forests as tropical 

climate, with a dry period of 5 to 8 months, and annual precipitation between 500 to 1500 mm 

(Sunderland et al., 2015).  However, both the Murphy and Lugo and FAO definitions fail to 

provide a threshold for monthly precipitation during the dry season.  Tropical dry forests in the 

Neotropics have recently been defined as occurring in areas with less than 1800 mm per year and

a dry period of 3 to 6 months with less than 100 mm per month (Banda et al., 2016).  It is 

unknown if this Neotropical definition could apply to tropical dry forest regions at a global 

spatial scale.  Recently, drylands and associated tropical dry forest have been defined using a 

simple aridity index (AI), or the ratio of potential evapotranspiration to annual precipitation in 

which drylands and associated dry forest cover in areas with an aridity index of less than 0.65 

(Bastin et al., 2017).  Regions are then subdivided into four categories: “hyperarid” zone (AI < 

0.05), “arid” zone (AI = 0.05 to 0.2), “semi-arid” zone (AI = 0.2 to 0.5), and the “dry subhumid” 

zone (AI = 0.5 to 0.65).  However, widespread consensus on the relationship between AI and 

tropical dry forest extent has not been established (Griffith et al., 2017).  To date there have been 

no studies that compare the potential global or regional extent of tropical dry forest based on 

these climatic definitions. 

There have been a number of advances in global climate and environmental data sets that 

should improve our understanding of the distribution of tropical dry forests.  Worldclim is the 

most widely used global climatic data set in biogeography.  Worldclim data offers 1 km 

resolution gridded climate data interpolated from a network of weather stations over a 31-year 

period and quantifies annual and monthly temperature and precipitation (Fick and Hijmans, 
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2017).  The CHELSA (Climatologies at High-resolution for the Earth's Land Surface Areas) data 

set also offer 1 km resolution climate data on monthly temperature and precipitation climatology 

for the years 1979–2013 based on a quasi-mechanistically statistical downscaling of global 

circulation models (Krager et al., 2017).  These updated data sets contain monthly estimate of 

minimum precipitation per month (e.g. 100 mm) that can be used to estimate seasonality.  New 

data sets also have been created that estimate PET and can be used to map aridity index at a 1 km

resolution (Trabucco and Zomer, 2019).  These climate and environmental data sets could be 

used to delineate potential tropical dry forest extent at a global scale based on current climatic 

definitions (Murphy and Lugo, 1986; Sunderland et al. 2015; DryFlor, 2016; Bastin et al., 2017). 

There have also been significant advances in the spaceborne remote sensing of forest cover and 

dynamics that may be applied to tropical forests and used for conservation assessments (Miles et 

al., 2006; Fraser et al. 2009; Gillespie et al. 2014a; Secades et al. 2014).  Forest cover can be 

mapped globally using forest cover change data sets that contain forest cover, gain and loss, and 

percent forest cover at a 30 m pixel resolution from Landsat imagery for 2000 to 2018 (Hansen 

et al., 2013).  Tropical dry forests have been hypothesized to be one of the world’s most 

endangered biomes and forest types, thus there is a growing interest in identifying tropical forest 

extent in regions that have a high conservation priority at a global spatial scale and monitoring 

forest cover and change (Janzen, 1988; Miles et al., 2006; Schmitt et al., 2009; Sunderland et al., 

2015; DryFlor, 2016).  However, all such analyses are based on accurately defining tropical dry 

forest extent. 

Achieving a consensus would allow for comprehensive conservation assessments of the 

most critically endangered tropical forest types.  Tropical dry forests provide the ecosystem 

services needed to support millions of subsistence farmers in some of the world’s poorest areas, 
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and higher population densities are driving the demand for energy and land leading to quicker 

deforestation of tropical dry forest over humid forest (Blackie et al. 2014).  Additionally, tropical 

dry forests are considered to be among some of the most diverse communities and their 

deforestation contributes to the steady erosion of earth’s biodiversity (Cabin et al. 2000).  

Understanding the best method to estimate global tropical dry forest extent gives both 

researchers and policy makers a vital tool to begin protecting this critically endangered and 

valuable resource.

This research has three primary research objectives related to the global extent of tropical

dry forest.  First, we estimate the extent of tropical dry forest across scales based on four current 

climatic definitions of tropical dry forest.  We would expect similar area estimates and high 

agreement between climatic definitions at a global spatial scale.  Second, we assess how well 

climatic definitions of tropical dry forests overlap with WWF Tropical and Subtropical Dry 

Broadleaf Forest Ecoregions and field plots defined as tropical dry forest.  We would expect 

significant overlap between climatic definitions, WWF ecoregions, and field plots.  Third, we 

identify the climatic definition in closest agreement with field plots to calculate tropical dry 

forest cover and change from 2000 to 2018.  We would expect that there has been a global 

decrease in tropical dry forest cover over the last 19 years. 

2 MATERIALS AND METHODS

2.1 Study Area

Our study area spans the pantropics, between 30˚N and 30˚S. 
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2.2 Data Sets

We collected data from three climatic data sets (Worldclim, CHELSA, Global Aridity and PET), 

biome defining shapefiles (WWF Ecoregions), a compilation of 579 tropical dry forest field 

plots, as well as the latest forest cover data to estimate the extent for tropical dry forest regions 

from 2000 to 2018 (Global Forest Change) (Table 1). 

Climate data sets

The second version of the Worldclim climate data released in 2016 includes monthly temperature

and precipitation measurements from 9,000 and 60,000 weather stations respectively spanning 

1970 to 2000.  These data were interpolated using thin‐plate splines with covariates including 

elevation, distance to the coast and three satellite‐derived covariates: maximum and minimum 

land surface temperature as well as cloud cover, obtained with the MODIS satellite platform 

(Fick and Hijmans, 2017).  The data sets include the monthly temperature and precipitation 

averages, as well as nineteen bioclimatic variables often used in species distribution modeling.  

The spatial resolution of the data are 30 arc seconds or ~1 km resolution at the equator.

The second climate data set we use is the Climatologies at High resolution for the Earth's 

Land Surface Area (CHELSA) currently hosted by the Swiss Federal Institute for Forest, Snow 

and Landscape Research.  CHELSA includes monthly mean temperature and precipitation 

patterns from 1979 to 2013 and is based on a quasi-mechanistically statistical downscaling of the

ERA interim global circulation model with a GPCC bias correction (Krager et al., 2017).  The 

data spatial resolutions are also 30 arc seconds or ~1 km resolution at the equator. 

We collected the Global Precipitation Measurement Integrated Multi-satellitE Retrievals 

for Global Precipitations Measurement (IMERG) Level 3 monthly precipitation data (mm/hour) 
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at 0.1˚ spatial resolution (or approximately 11 km at the equator) (Huffman, 2017).  However, the

4.25-year time series did not appear long enough to include in the analyses and contained a 

number of extremely high and low precipitation values.

To find aridity index, or the ratio of potential evapotranspiration to annual precipitation, 

we collected data from the Global Aridity and PET database, an addition of the Worldclim data 

set (Trabucco and Zomer, 2019).  To obtain the aridity index for CHELSA data, we used the 

ENVIronmental Rasters for Ecological Modeling (ENVIREM) R-package (Title and Bemmels, 

2018) to produce a global annual potential evapotranspiration raster file, which was then used to 

calculate aridity using the equation: annual precipitation / potential evapotranspiration (Bastin et 

al., 2017; Trabucco and Zomer, 2019).  Drylands and associated dry forest extent has been tested 

at an aridity index of less than 0.65 (Bastin et al., 2017).  We compare the climatic definitions of 

tropical dry forest against this aridity threshold.

WWF Ecoregions

The ecoregions polygon shapefile includes 867 land units classified into 14 different biomes such

as forests, grasslands, or deserts (Olson et al., 2001; WWF, 2019).  Each polygon also represents 

areas of land with an assemblage of species, dynamics, and environmental conditions (WWF, 

2019).  WWF has identified 53 ecoregions that fall within the Tropical and Subtropical Dry 

Broadleaf Forest category (Appendix 1).  We test the validity of these 53 WWF Ecoregions, but 

acknowledge that previous studies have established the presence of tropical dry forest in other 

WWF Ecoregion biomes such as Tropical and Subtropical Grasslands, Savannas and Shrublands 

(Miles et al. 2006).
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Field data sets

We tested predicted extents of tropical dry forest based on climatic definitions against 579 

verified locations of tropical dry forest compiled from three primary sources.  First, we gathered 

field plot locations from four separate studies on tropical dry forest ecology and distribution 

(Fayolle et al., 2014; Dexter et al., 2015; Ibanez et al., 2018; Franklin et al., 2018).  Ibanez et al. 

(2018) presents 438 known forest plots > 0.1 ha from published forest inventory data on Dryad 

Digital Repository including 79 tropical dry forest plots.  Franklin et al. (2018) provides 572 

sampled locations of tropical dry forest across 11 sub-regions in the Caribbean, of which 159 we 

verified as having accurately defined coordinates within 1 km.  Dexter et al. (2015) present 41 

plots of which we classify India Dry Evergreen Forest and Cambodia Deciduous Forest as 

tropical dry forests.  Fayolle et al. (2014) presents 53 plots of which we classify West African 

Dry Forests and Coastal East African Forests as tropical dry forest.

Second, we searched Web of Science [v.5.32] (WoS), Scopus, and Google Scholar 

databases for peer-reviewed articles published between January 1990 and September 2019.  We 

queried titles, abstracts, and keywords for the following terms: tropical*dry* forest* plots*.  We 

selected the peer-reviewed articles based on four criteria: 1) Plots classified as dry forest 

following author’s classifications, 2) Plots had to contain “forest” and not woodlands or 

savannahs, 3) Articles needed to include published latitude and longitude of plot location that 

was accurate to within 1 km, and 4) Forest had to be composed of tree species native to the 

region with riparian or flooded forests excluded.  We used Google Earth to verify the coordinates

were in closed canopy forest and to establish seasonality using built-in, time-lapse imagery 

collected since 1984 across varying seasons.  This method yielded eight peer-reviewed articles 

(Dattaraja et al., 2018; Mani and Parthasarathy, 2006; Ramanujam and Kadamban, 2001; 
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Chaturvedi et al., 2011; Chave et al., 2005; Choat et al., 2005; Tanaka et al., 2008; Almulqu et 

al., 2018) offering nineteen additional tropical dry forest plots over four regions (South Asia, 

South East Asia, Australia and Latin America).

Third, we searched four global forest data repositories for sites classified as tropical dry 

forest.  Our search into the Global Biodiversity Information Facility (GBIF), as well as 

ForestPlots.net, yielded much of the same plot data we had collected from our list of peer-

reviewed studies.  The Dryad data repository, however, did yield 40 additional dry forest plots 

from three peer-reviewed articles studying dry forest across Latin America (Prado-Junior et al., 

2016; Salas-Morales et al., 2020; Suazo-Ortuno et al., 2018).  Additionally, 189 sites were 

collected from the United States Geological Survey’s Forest Inventory and Analysis program 

covering tropical dry forest from the United States and territories (Hawai'i, Florida, Puerto Rico 

and US Virgin Islands).  The final plot locations validate whether any of the tropical dry forest 

climatic definitions accurately capture existing definition of dry forest presence (Appendix 2). 

Global forest cover and change

Originally launched to provide high-resolution global maps of forest cover change from 2000 – 

2012 using Landsat 7 imagery, the Global Forest Change data set has grown to include time 

series analysis of Landsat 5, 7 and Landsat 8 imagery now covering 2000 – 2018 (Hansen et al., 

2013).  Each pixel has a spatial resolution of 1 arc second, or roughly 30 m, and unsigned 8-bit 

values (0-255).  We identify areas with > 10% cover (encompasses mosaic of savannas and 

woodlands) and > 40% cover or forest for the year 2000 and 2018 (Bastin et al., 2017).  We 

utilize this as our primary data set to calculate tropical dry forest cover and loss.
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2.3 Data Analyses

Spatial scale

We calculate “global” results within 30˚N and 30˚S.  We divided global results into six macro-

scale regions (Africa, North and Central America, South America, South Asia, and South East 

Asia and Asia Pacific).  We further sub-divided regions using Biodiversity Hotspots (Myers et 

al., 2000; Hoffman et al., 2016) and countries (Natural Earth, 2019) for a meso-scale analyses 

(Appendix 3 and 4).  Tropical dry forests on islands are generally combined in global analyses 

(Miles et al., 2006; Schmitt et al., 2009), however, these islands contain the smallest extents and 

fragments of tropical dry forest, which emphasizes the need to report the extent of the tropical 

dry forest on islands to assess global conservation priorities (Sunderland et al., 2015).  Thus, we 

select tropical four island archipelagos (Fiji, Galapagos, Hawai'i, Puerto Rico) as an example of 

micro-scale archipelago analyses.  Tropical dry forest biome and forest types are well known in 

Puerto Rico and Hawai'i, while Fiji is on the wetter end of the spectrum and the Galapagos is on 

the drier end. 

Climatic definitions

We identify the global and regional extent of tropical dry forest based on four common 

definitions of tropical dry forest (Murphy and Lugo, FAO, DryFlor, aridity index) (Table 2).  For 

all definitions, we use frost-free regions (> 0‐C) in the tropics that also experience a mean 

annual temperature > 17‐C (Murphy and Lugo, 1986).  Tropical dry forest extent from Murphy 

and Lugo were calculated by subsetting areas with 250 to 2000 mm of annual precipitation with 

a dry season(s) of 4 to 7 months with less than 100 mm of precipitation a month (Holdridge, 

1967; Murphy and Lugo, 1986).  Tropical dry forest extent from the Food and Agriculture 
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Organization of the United Nations (FAO) were created by subsetting areas with 500 to 1500 mm

of annual precipitation with a dry period of 5 to 8 months with less than 100 mm of precipitation 

a month (Sunderland et al., 2015).  Tropical dry forest extent from DryFlor were calculated as 

annual precipitation less than 1800 mm with a dry season of 3 to 6 months receiving less than 

100 mm per month (Banda et al., 2016).  A definition using aridity index was calculated for 

regions with an index of less than 0.65 (Bastin et al., 2017) for both Worldclim and CHELSA 

data (Fick and Hijmans, 2017; Karger et al., 2017).

Programming

A combination of geospatial modules were used across three programming languages and 

software to manage, analyze, and compile spatial data sets for our analysis.  Free and open-

source Python software (Python Software Foundation, 2019) was used to manipulate raw data to 

compile binary raster maps representing the fundamental layers (e.g. temperature, precipitation, 

seasonality) that were then overlaid on top of one another to produce a second and final binary 

raster for the respective climatic definition.  The Python modules used most were GDAL and 

Rasterio.

Additionally, we used the cloud-based geospatial analysis platform Google Earth Engine 

(Gorelick et al. 2017) to analyze and calculate global tropical dry forest cover (Hansen et al., 

2013).  The advantage to using Earth Engine is the computing power needed to process large 

amounts of forest cover data (over 1 Tb).  

We also lacked one raw data set (AI for CHELSA), and used the ENVIronmental Rasters 

for Ecological Modeling (ENVIREM) R-package (Title and Bemmels, 2018) to compile a 

GeoTiff raster file of a global aridity index with CHELSA data.  Additional R packages used in 
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this study include the Tidyverse, which helped create all data tables, as well as Tmap, which was 

used in the design and compilation of all figures.  All figures were compiled in a WGS84 

projection.  The code used in our analysis is available in Appendix 6, and all compiled data is 

provided in the supplementary material.

Geographic extents

Global, regions, Biodiversity Hotspots, countries, and islands level data on area of tropical dry 

forest extent based on climatic definitions and data sets were examined for a normal distribution 

using one-sample Shapiro-Wilk normality test for small samples (< 30) and Kolmogorov-

Smirnov tests (> 30).  Parametric (T-tests) and non-parametric (Wilcoxon rank sum test) tests 

were used to identify significant differences among climatic definitions and between Worldclim 

and CHELSA data sets at a global, regional (regions, Biodiversity Hotspots, countries), and local

(island archipelagos) spatial scales. 

Comparisons with WWF Ecoregions and field plots

WWF has identified 53 ecoregions that contain Tropical and Subtropical Dry Broadleaf Forests.  

We calculated the area of each WWF Ecoregion (Appendix 1) and compare results with four 

climatic definitions.  We identified the proportion of overlap between WWF Ecoregions and four

climatic definitions, which identifies areas where there are overlap with WWF Ecoregions, as 

well as potential tropical dry forest extent outside of the 53 WWF ecoregions.  We identified 

agreement between field plots and WWF ecoregion and four climatic definitions across spatial 

scales.  The accuracy of the field plot locations was within 1 km and represented in decimal 

degrees (Appendix 2).  
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Tropical dry forest cover and change

We select the methods that had the highest agreement with field plots at a global spatial scale and

calculate forest cover in 2000 and gross loss from 2001-2018 based on the Global Forest Change 

data set using a forest cover threshold of > 10% to define open forests and > 40% to define 

closed canopy forest (Hansen et al., 2013).  We also calculate similar results for all tropical 

forests from Global Forest Cover (30˚N and 30˚S), WWF Tropical and Subtropical Dry 

Broadleaf Forest, consensus maps of three climatic definitions (Murphy and Lugo, FAO, and 

DryFlor) using Worldclim and CHELSEA data sets.  Finally, we calculate a broad definition of 

tropical dry forest biome as forests that occur in frost free areas with 2000 mm or less of annual 

precipitation and a dry season of four or more months with less than 100 mm of precipitation, 

which encompasses all four climatic definitions (Table 6).

3 RESULTS

Comparisons of climatic definition of tropical dry forest extent

Estimates of tropical dry forest potential extent based on climatic definitions varied globally and 

by regions (Table 3, Appendix 5: Figure S1).  The aridity index (AI < 0.65) estimated the largest 

extent of dry forest that was two to three times larger than the other three climatic definitions 

(Table 3).  This was largely due to the inclusion of deserts at a global spatial scale (Figure 2).  

The global area estimates from Murphy and Lugo and FAO definitions were relatively similar, 

generally around 15,000,000 km2 while DryFlor covered the smallest area estimated around 

10,000,000 km2 at a global spatial scale.  FAO and aridity index definitions using the Worldclim 

data set (Table 3, Figures 2a and 3b) estimated larger extents while Murphy and Lugo and aridity
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index definitions using CHELSA climate data set estimated larger extents (Table 3, Figures 2b 

and 3a).  Worldclim generally showed more continuous or homogenous climatic gradients while 

CHELSA displayed a more heterogeneous or pixelated patterns near boundaries.  However, there

was no significant difference between climatic data sets used and extent for the four climatic 

definitions at a global scale (Wilcoxon rank sum test p > 0.05)(Appendix 5: Figure ST4). 

The aridity index covered the largest extent in Africa, North and Central America, South 

Asia, and the South East Asia/Pacific regions, while the Murphy and Lugo definition covered the

largest extent in South America (Table 3).  There was no significant difference between climatic 

data sets by regions (Wilcoxon rank sum tests p > 0.05)(Appendix 5: Figure ST4).  Within 

Biodiversity Hotspots, Murphy and Lugo’s definition generally estimated the largest tropical dry 

forest extent (Table 3, Appendix 3, Appendix 5: Figure S1).  There was no significant difference 

between climatic data sets used in Biodiversity Hotspots for Murphy and Lugo, DryFlor, and 

aridity index definitions (Paired T-Test: Murphy and Lugo p = 0.208, DryFlor p = 0.449, Aridity 

p = 0.462) but a significant difference between climatic data sets used for FAO (Paired T-Test: 

FAO p = 0.050).  At the country level, there was a significant difference in climatic data set used 

for all four definitions (Paired T-Test: Murphy and Lugo p = 0.004, FAO p = 0.012, DryFlor p = 

0.018, Aridity p = 0.005) (Appendix 5: Figure ST10).  There was a great deal of heterogeneity in 

extent estimates at the scale of island archipelagos (Table 3, Appendix 5: Figures S11 and S12).  

Only Murphy and Lugo and DryFlor definitions identified tropical dry forest in Fiji while three 

climatic definitions identified tropical dry forest on the Galapagos, and all four identified tropical

dry forest on Hawai'i and Puerto Rico. This suggests that climatic definitions and data sets results

in significantly different occurrences and extents at smaller spatial scales (e.g. countries and 

islands). 
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Comparisons to WWF Ecoregions

The 53 WWF Ecoregions defined as Tropical and Subtropical Dry Broadleaf Forest extend over 

an area of 2,918,256 km2 with South Asia having the largest extent and Africa the smallest 

extent (Figure 1, Table 4).  Globally, the aridity index and FAO definitions using Worldclim had 

the highest overlap with WWF Ecoregions (57%) followed by FAO using CHELSA (56%), and 

Murphy and Lugo definition and CHELSA (44%) and Worldclim (43%).  DryFlor had the lowest

overlap when using both Worldclim (22%) and CHELSA (22%).  There was high variation 

among regions.  The aridity index, Murphy and Lugo and FAO definitions using Worldclim had 

the highest overlaps within most WWF Ecoregions.  The aridity index using Worldclim had the 

highest overlap in South Asia (82%).  The highest overlap of WWF ecoregion within 

Biodiversity Hotspots were Murphy and Lugo and FAO definitions.  For islands, the highest 

overlap was for Puerto Rico followed by Hawai'i and Fiji and no Tropical and Subtropical Dry 

Broadleaf Forest identified by the WWF in the Galapagos. 

Comparisons of climatic definitions to field plots 

We collected 579 tropical dry forest plots with 61% represented in North and Central America of 

which 50% were located in the Caribbean.  Only 43% of the field plots fell within the WWF 

Tropical and Subtropical Broadleaf Forest ecoregions and ranged from 0% overlap in Africa to 

76% in South East Asia/Pacific (Table 5).  At a global scale, FAO definition using CHELSA had 

the highest agreement (76%) with field plots followed by Murphy and Lugo (69%).  FAO (68%),

Murphy and Lugo (64%), and the aridity index (61%) using Worldclim accounts for the next 

three highest overlaps with field plots.  DryFlor had the lowest overlap (32-33%).  Regionally, 
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Murphy and Lugo and FAO definitions have the highest proportional overlap with field plots.  

Among the Biodiversity Hotspots and islands, there was wide variation in the number of field 

plots.  FAO (CHELSA) performed best in the Caribbean (89%) based on 287 plots.  Murphy and 

Lugo definition using Worldclim has the highest overlap with field plots in Fiji (44%) and 

Hawai’i (27%), and using CHELSA in Puerto Rico (87%). Aridity index was the only definition 

to overlap with field plots on the Galapagos (67%), which makes sense as the archipelago skews 

much drier.

Estimates of tropical dry forest cover and change

We selected FAO definition using CHELSA and Murphy and Lugo’s definition using Worldclim 

to estimate the open and closed forest cover and change for 2000 (Table 6, Figure 5).  We also 

calculated gross forest loss from 2001 to 2018 to estimate 2018 forest cover.  Based on FAO’s 

definition, we estimate 4,440,046 km2 of closed canopy tropical dry forest in 2000 and 

3,948,678 km2 of closed canopy tropical dry forest in 2018 or gross forest loss of 491,368 km2 

(11%) between 2000 and 2018.  Based on Murphy and Lugo’s definition, we estimate 6,894,394 

km2 of closed canopy tropical dry forest in 2000 and 6,081,931 km2 of tropical dry forest in 

2018 and gross forest loss of 812,462 km2 or (12%) between 2000 and 2018.  FAO estimates 

account for 24% of all closed canopy forest cover in the tropics in 2000 and a deforestation rate 

of 11% between 2000 and 2018 while Murphy and Lugo estimates account for 38% of all closed 

canopy forest cover in the tropics and a deforestation rate of 12% between 2000 and 2018.  Both 

estimates of closed canopy tropical dry forest are larger than WWF Tropical and Subtropical Dry

Broadleaf Forest ecoregion estimates (600,000 km2 or 4% of all tropical forests) and consensus 

maps based on Murphy and Lugo, FAO, and DryFlor definitions either climatic data sets 
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(approximately 2 millions km2 or 12% to 13% of all tropical forest).  Simple climate definitions 

(no freeze, mean annual precipitation < 2000 mm, four or more months < 100 mm precipitation) 

resulted in the greatest open and closed forests areas with closed canopy tropical dry forest 

accounting for 47% to 54% of all tropical forests.

4 DISCUSSION 

Climatic definitions of tropical dry forest at a global scale

Climatic definitions appear useful for estimating tropical dry forest biome extent and cover at a 

global, biodiversity hotspot, country, and island scale.  In theory, climatic definitions identify the 

potential extent of biome types (e.g. boreal forest, tropical rainforest) and possibly what 

vegetation types might have been in a 1 km2 area without the influence of humans.  It should be 

made clear that climatic definitions do not account for different vegetation types such as 

savannas, shrublands, woodlands, and deciduous to evergreen forests that all overlap within 

tropical dry forest climatic definitions (Staver et al., 2011; Dexter et al., 2018).  Indeed, all these 

vegetation types can be found within a 1 km2 pixel area.  Thus climatic definitions identify the 

potential extent and provide a starting point for identifying the closed canopy tropical dry forests 

which is a distinct vegetation type within the biome. 

 There were significant differences in tropical dry forest extent based on commonly used 

climatic definitions.  FAO and Murphy and Lugo appear to be the best at identifying the potential

extent of tropical dry forests with FAO definitions identifying drier regions with more seasonal 

forests and Murphy and Lugo definition identifying wetter regions with less seasonal forests.  

The DryFlor definitions worked well in the Neotropics but does not perform well at a global and 

regional spatial scale.  The aridity index estimated the greatest extent because it included desert 
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areas especially deserts in Mexico, South America, Africa, Asia, and Australia (Figure 2).  This 

method does not account for mean annual precipitation or precipitation seasonality and appears 

to include the drier extremes of what would be considered tropical dry forest.  Indeed, although 

forests that occur within area with AI > 0.65 can be considered “tropical dry forests” because 

they occur in the tropics and clearly occur in dry conditions, the absence of precipitation and 

seasonality clearly misses a number of well-known tropical dry forest sites such as tropical dry 

forests of Costa Rica and Panama (Janzen, 1988; Appendix 4).  The aridity index is useful 

because it does identify the dry extremes of forest and this has important implications because it 

identifies dry forests and forest that may have been “invisible” in the past (Bastin et al., 2017). 

Climatic definitions and consensus maps clearly provide first order hypotheses about the 

potential existence of tropical dry forest in regions, biodiversity hotspots, countries and 

individual islands.  For instance, there is a consensus from all four tropical dry forest climate 

definitions regardless of climate data set used that tropical dry forest occurs in twenty-three of 

the thirty-three Biodiversity Hotspots (Appendix 3) and 75 of the 127 countries and associated 

territories in the pantropics (Appendix 4). For the four island archipelagos selected, all climate 

definitions clearly identify the presence of tropical dry forest on Puerto Rico and Hawai'i which 

is the case and strongly suggest the presence of tropical dry forest in Fiji and the Galapagos 

(Figures 10 and 11).  Thus there are a number of reasons why climatic definitions are useful for 

assessing tropical dry forest from a global to local scale.

Comparison of climatic data sets

Globally, comparison of Worldclim and CHELSA data sets did not significantly change area 

estimates based on all four climatic definitions but did identify different extents especially across
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scales (Figures 2, 3, 4).  CHELSA (a downscaled Global Circulation Model) generally had 

higher mean annual precipitation estimates than Worldclim (based on interpolations of climatic 

measurements) but there was little difference in temperature estimates (e.g. < 1‐C).  As analyses

proceed to smaller spatial scales from regions to island archipelagos, the climatic data set used 

becomes more important and results in significantly different estimates of extent.  The CHELSA 

data on tropical dry forest extent best matched personal observations of the authors (Figures 10 

and 12c) and offer some advantages over interpolated Worldclim data when assessing the future 

impacts of climate change.  Since CHELSA is a downscaled GCM, it can easily be used to 

estimate the future climatic variables a 10 km and over last 40 million years at 10 km resolution 

(Gamisch, 2019). 

Comparison to WWF Ecoregions

There was low overlap between climatic definitions of tropical dry forest and WWF Ecoregions 

defined as Tropical and Subtropical Dry Broadleaf Forest.  The climatic condition for tropical 

dry forest also occurred in other Ecoregions such as Tropical and Subtropical Grassland, Savanna

and Shrubland, and Desert and Xeric Shrubland.  The WWF Ecoregions are widely used 

standard for delineating global biomes and estimating forest cover, canopy height, biomass, and 

stand density (Miles et al., 2006; Schmitt et al., 2009; Crowther et al., 2015; Newbold et al., 

2016) and still provides the most standard and repeatable way to assess for forest cover change in

the tropics (Appendix 2).  Indeed, although there were miss-classifications such as climatic 

definitions (e.g. Yap is a moist not dry forest), the use of climatic definition does not significantly

improve dry forest biome extent enough to warrant their wide use.  WWF Ecoregions are 

appropriate for future global or macro-scale analyses of tropical forests biomes.  However, it 
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should be remembered that caution should be used when applying WWF boundaries for regional,

country, or island scale analyses.  At these scales, higher resolution vegetation maps that identify 

forests, woodlands, shrublands and grasslands should be used.  Furthermore, WWF Ecoregions 

boundaries may not be appropriate for analyzing the impacts of climate change on tropical dry 

forests and climatic definitions and data sets should be used instead.  

 

Comparisons to field plots

Globally it is clear that there is a great deal of spatial bias in the number, extent, and density of 

tropical dry forest field plots.  We collected 579 tropical dry forest plots with 61% represented in 

North and Central America of which 50% were located in the Caribbean.  Based on a global 

assessment of tropical dry forest field plots, it is clear that the Caribbean was over represented in 

our study and North and Central America and South America have the most tropical dry forest 

plots (Banda et al., 2016; Miranda et al., 2018).  Regions such as North, Central, and South 

America are well represented along with a number of islands in the Pacific (Gillespie et al., 

2014; Ibanez et al., 2019).  However, there are relatively few tropical dry forest plots from 

Madagascar (1 plot), eastern India, Indonesia, and Australia and these areas deserve a high 

priority for establishing standardize plots in the future (e.g. 1 ha, 0.1 ha). 

There was surprisingly high misclassification (57%) between field plots and WWF 

Ecoregions with only a 43% agreement at a global scale.  This is due to a number of dry forests 

that naturally occurred in other ecoregions such as Subtropical Grassland, Savanna and 

Shrubland and Deserts.  It is common for tropical dry forest to occur as fragments in both these 

arid environments and among savannas and shrublands.  The exception to this is in Hawai’i and 

Puerto Rico where 85% and 80%, respectively, of field plots overlap with WWF Ecoregions 
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(Table 5).  The majority of the 150 field plots (52 in Hawai’i, 98 in Puerto Rico) come from the 

US FIA database, which may indicate a sampling bias among field plots in US territories to 

match WWF Ecoregion boundaries.

Tropical Dry Forest Cover and Changes

The FAO definition using CHELSA and Murphy and Lugo definition using Worldclim estimate 4

to 6 million km2 of closed canopy tropical dry forest in 2000.  Miles et al. (2016) estimated 

1,048,700 km2 of tropical dry forest (> 40% closed canopy) using MODIS imagery (500 m), 

while Bastin et al. (2017) estimated 3,200,000 km2 of closed canopy dry forest and 2,030,00 

million km2 of open forest.  Miles et al. (2016) estimate thus appears very conservative and more

in line with our estimates in WWF Ecoregions but still well below estimates of closed canopy 

cover based on consensus climatic definitions (2 million km2).  Bastin et al. (2017) estimates of 

closed forest cover are more in line with our consensus estimates of tropical dry forest.  Direct 

comparison at a global spatial scale are difficult, however, it is clear from all analyses that open 

forest (canopy > 10%) account for about half of all forest within dry regions regardless of 

climatic definition and data set used.  Furthermore, it is clear that both open and closed tropical 

dry forest are experiencing a decline.  Estimates based on all definition of tropical dry forest are 

between 7% and 14% from 2000 to 2018 with closed canopy tropical dry forests experiencing 

high rates of deforestation and gross forest cover loss (11%, + 2%).  

Limitations

There are a number of limitations that should be noted in our analyses.  Almost all global climate

data sets contain errors especially on islands with few weather stations and high heterogeneity in 
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the landscape (Ibanez et al., 2019).  Miranda et al. (2018) found that Worldclim data resulted in 

the misclassification of 15 to 20% of tropical dry forests in lowland South America while the 

addition of soil data improved classification by 3%.  Deliminating tropical dry forest biome and 

vegetation type are also complex due to the fact that tropical forest historically occurred across 

environmental and disturbance gradients, do not have solid boundaries as depicted in GIS, and 

were a continuum from drier to wetter areas.  On the dry end of the spectrum dry forests grade 

into savannas, shrublands, woodlands within the same climatic condition.  The actual extent of 

vegetation within this region is highly impacted by soil type, soil moisture, and fire (Miranda et 

al., 2018).  On the wetter end of the spectrum, tropical dry forest transition into moister forests, a

zonal riparian forests, or swamps with increased canopy heights and an increasing number of tree

species that are less susceptible to seasonal drought or dry soil conditions.  These gradients 

clearly existed in the past but have been significantly impacted by humans certainly over the last 

2000 and 100 years.  It should be remembered that we are currently examining a disturbed 

landscape.  Many dry forest regions are deforested and degraded and it is difficult to precisely 

identify and delineate their distribution at a local spatial scale. 

Thus, climate definitions of tropical dry forest provide only a first order hypothesis and 

standard and repeatable method for identifying and estimating the spatial extent of tropical dry 

forest regions.  Analyses of vegetation types based on structure such as forests (> 3 m), 

woodlands (< 40% canopy cover), shrublands (< 3 m), and savannas can be undertaken at a 

higher resolution such as 30 m from Landsat (Hansen et al., 2013) or very high resolutions < 1 m

in Google Earth (Bastin et al., 2017).  Indeed, with a 1 km2 area, it is possible to have all four 

vegetation types. 
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Future research and applications

Comparative analyses of biogeography, threats, and conservation can be undertaken using FAO 

(CHELSA) or Murphy and Lugo (Worldclim) boundaries as a baseline.  It is well-established 

that biodiversity is greatly threatened by human activity (Myers et al., 2000; Gaston, 2005) and 

land cover changes such as those linked to human-induced forest loss, fragmentation, and 

degradation represent the largest current threat to biodiversity (Chapin et al., 2000; Menon et al., 

2001; Gaston, 2005).  Miles et al. (2006) identified and included five global threat metrics for 

tropical dry forest including climate change (300 km), forest fragmentation (500 m), fire (10 

km), agrosuitability (10 km), and population (10 km).  Since this seminal work, there has been a 

significant increase in the temporal and spatial resolution of GIS and remote sensing data for 

these threat metrics, such as predicted future climate change (10 km), forest fragmentation (< 30 

m), fire (375 m), agrosuitability and grazing (1 km), and population (1 km) and vegetation type 

(Small et al., 2005; Giglio et al., 2006; Laurance et al., 2012, Bastin et al. 2017).  Thus, there are 

currently a number of threat metrics that can be analyzed with FAO and CHELSA that might 

significantly improve our understanding of the health of tropical dry forests.

Twenty-three of the thirty-three Biodiversity Hotspots appear to contain tropical dry 

forests based on all four climatic definitions of dry forests (Appendix 3), possibly highlighting 

the importance of this biome and vegetation type.  Analyses of protected areas, old growth forest,

and threatened and endangered species are also needed within tropical dry forest biome and 

vegetation type.  There has been a rapid increase in the number of protected areas and clearly 

there is a need to identify how well different regions are protected (Miles et al., 2006).  Using 

time series Landsat and fire data sets since 2000, it should be possible to identify stable closed 

canopy tropical dry forests that have not experienced fire or forest loss since 2000 (Dexter et al., 
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2018).  These forest areas may be some of the best preserved or relictual forests and contain an 

increasing rare combination of dry forest species.  This may be especially true for regions like 

Africa, Asia, and Australia where fires are common and closed canopy dry forests are isolated in 

natural refugia. 

5 CONCLUSIONS

Tropical dry forest is clearly a globally important biome occurring in twenty-three of the world’s 

thirty-three biodiversity hotspots.  Direct comparison at a global spatial scale are difficult, 

however, it is clear from all analyses that open canopy forest account for about half of all forest 

within dry regions regardless of climatic definition and data set used.  Furthermore, FAO with 

CHELSA can identify potential dry forest extent and provide a starting point for identifying 

closed canopy forests, of which closed canopy tropical dry forest currently occurs in a majority 

of pantropical countries and has been experiencing high rates of disturbance (11%, ±2%) 

between 200 and 2018.  Identifying these extents are important for future research and 

understanding the status of the world’s tropical dry forest for conservation purposes.  As many 

studies rely on the WWF Ecoregion boundaries to establish dry forest regions, we demonstrate 

that nearly half of all tropical dry forest will be missed using this method.  Instead, we 

recommend that climatic definitions are needed to estimate dry forest cover and change moving 

forward.  At local scales, climatic definitions show high heterogeneity in estimating dry forest 

extent, and vegetation data on forest structure and composition are still needed.  However, 

climatic definitions can serve as a first order hypothesis about tropical dry forest distribution, and

we found the FAO definition using CHELSA data provides a standard and repeatable way to 

asses tropical dry forest cover and change at the global and regional scales. 
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6 TABLES

Table 1: Overview of data sets.

Data Set Source Variables Resolution Format

Worldclim
(1970-2000)

Fick and Hijmans 2017 Precipitation (mm), Temperature (C) 1 km GeoTiff

Global Aridity and PET
(1970-2000)

Trabucco and Zomer 2019
Annual PET (mm), aridity index 
(ratio); Derived from Worldclim

1 km GeoTiff

Integrated Multi-satellitE 
Retrievals for Global 
precipitation measurement 
(IMERG) 
(March 2014 – Present)

Huffman 2017

Interpolation of Global Precipitation 
Measurement (GPM) satellite 
microwave precipitation estimates, 
microwave-calibrated infrared 
estimates, and precipitation gauges 
(mm/hour)

11 km HDF5

Global Forest Change Hansen et al. 2013 Canopy cover (%) 30 m GeoTiff

WWF Tropical Dry Forest 
Ecoregions

Olson et al. 2001
867 units of land representing 
assemblages of species and 
environmental conditions

N/A
Polygon 
shapefile

Tropical Dry Forest Plots See text for references. 579 verified dry forest locations N/A
Point 
shapefile

Table 2: Overview of climatic definitions of tropical dry forest.

Climatic Definition Source Annual Precipitation, Dry Season

Murphy and Lugo Murphy and Lugo 1986 250-2000 mm, 4-7 months <100 mm

FAO Sunderland et al. 2015 500-1500 mm, 5-8 months <100 mm

Dryflor Banda et al. 2016 <1800 mm, 3-6 months <100 mm

aridity index Bastin et al. 2017 N/A
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Table 3. Estimate of tropical dry forest extent (km2) per three climatic definitions and aridity
index using Worldclim (Fick and Hijmans, 2017) and CHELSA (Karger et al., 2017) climate data
sets. Areas (km2) for Worldclim data presented atop CHELSA results. Largest extents are in bold.

Regions Murphy & Lugo FAO Dryflor Aridity

Global
 15,300,143  15,514,946  10,370,038  31,669,174 

 16,123,939  15,177,193  10,820,627  28,718,601 

Africa
6,825,248 7,480,815 5,005,193 19,942,762

7,237,338 7,700,711 5,243,736 17,910,375

North and Central America
590,609 689,325 284,154 1,208,399

652,516 811,289 326,525 1,231,216

South America
5,736,592 3,134,372 3,958,243 2,374,338

6,042,593 3,774,250 4,023,236 2,459,142

South Asia
437,803 1,261,394 112,170 2,421,884

481,186 1,230,178 153,111 1,935,105

South East Asia/Pacific
1,709,888 1,687,644 1,010,275 5,721,788

1,710,303 1,660,763 1,074,017 5,182,761

Biodiversity Hotspots

Caribbean
162,833 138,720 144,585 58,301

170,746 148,366 147,604 4,297

East Melanesia
25 0 2 0

984 51 745 0

Madagascar and Indian Ocean
278,131 257,610 24,819 218,423

248,325 177,914 25,066 136,381

New Caledonia
8,774 3,474 7,523 29

9,911 6,988 8,077 0

Polynesia and Micronesia
4,548 3,074 3,362 3,334

7,722 3,801 5,744 248

Sundaland and Nicobar of India
41,193 5,016 28,093 103

31,078 1,433 23,439 0

Tumbes Choco Magdalena
43,168 30,883 27,211 60,951

58,017 43,467 36,398 49,217

Wallacea
83,276 46,315 61,228 10,695

84,470 53,245 68,884 0

Archipelagos

Fiji
814 0 216 0

3,606 0 1,778 0

Hawai'i
3,041 2,666 2,268 3,221

3,255 3,433 2,712 244

Galapagos
0 0 0 7,348

14 1,321 0 0

Puerto Rico
2,780 1,446 2,551 1,110

4,599 2,619 5,107 0
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Table 4. Extent of World Wildlife Fund's Tropical and Subtropical Dry Broadleaf Forest 
ecoregions (km2) and overlap (%) with climatic definitions and aridity based on Worldclim (Fick 
and Hijmans, 2017) and CHELSA (Karger et al., 2017) climate data sets. Overlap (%) for 
Worldclim data presented atop CHELSA results.  Highest agreement are in bold. 

Regions
Ecoregions

Area
Murphy &

Lugo
FAO Dryflor Aridity

Global          2,918,256
43% 57% 22% 57%

44% 56% 22% 35%

Africa              185,624
70% 69% 3% 48%

60% 56% 1% 13%

North and Central America              511,057 
45% 63% 23% 67%

46% 64% 24% 41%

South America              642,243 
58% 47% 31% 43%

60% 51% 28% 32%

South Asia              983,944 
9% 60% 2% 82%

11% 61% 2% 56%

South East Asia/Pacific              593,608 
75% 53% 49% 24%

76% 49% 51% 4%

Biodiversity Hotspots

Caribbean                82,472 
88% 88% 74% 38%

89% 85% 75% 3%

East Melanesia                          0
0% 0% 0% 0%

0% 0% 0% 0%

Madagascar and Indian Ocean              146,130 
68% 63% 3% 37%

53% 47% 1% 7%

New Caledonia                  3,934
81% 50% 57% 1%

54% 79% 34% 0%

Polynesia and Micronesia                12,970 
17% 11% 11% 13%

34% 13% 21% 1%

Sundaland and Nicobar of India                          0
0% 0% 0% 0%

0% 0% 0% 0%

Tumbes Choco Magdalena                61,434 
5% 19% 0% 78%

4% 27% 0% 75%

Wallacea                78,786 
79% 54% 56% 13%

76% 61% 52% 0%

Archipelagos

Fiji                  6,496 
10% 0% 2% 0%

43% 0% 24% 0%

Galapagos                          0
0% 0% 0% 0%

0% 0% 0% 0%

Hawai'i                  6,370 
23% 22% 19% 26%

25% 27% 19% 2%

Puerto Rico                  1,183 
61% 75% 28% 81%

84% 89% 39% 0%

26



Table 5. Plots defined as tropical dry forest in this study and agreement (%) with World Wildlife
Fund's ecoregions (Tropical and Subtropical Broadleaf Forest) and climatic definitions based on
Worldclim (top) and CHELSA (bottom) climate data sets.  Highest agreement with plots in bold. 

Regions # TDF Plots
Ecoregions
Agreement

Murphy &
Lugo

FAO Dryflor Aridity

Global 579 43%
64% 68% 32% 61%

69% 76% 33% 5%

Africa 54 0%
76% 83% 52% 41%

81% 76% 44% 11%

North and Central America 350 42%
63% 74% 26% 78%

73% 86% 30% 4%

South America 48 33%
79% 62% 58% 42%

79% 77% 58% 8%

South Asia 35 57%
91% 91% 34% 77%

89% 94% 31% 14%

South East Asia/Pacific 86 76%
38% 26% 30% 9%

31% 24% 23% 1%

Biodiversity Hotspots

Caribbean 287 40%
60% 71% 23% 82%

79% 89% 29% 1%

East Melanesia 0 0%
0% 0% 0% 0%

0% 0% 0% 0%

Madagascar and Indian Ocean 1 0%
0% 0% 0% 100%

0% 0% 0% 100%

New Caledonia 6 83%
83% 50% 67% 0%

83% 100% 67% 0%

Polynesia and Micronesia 69 67%
28% 19% 20% 7%

17% 16% 12% 0%

Sundaland and Nicobar of 
India

0 0%
0% 0% 0% 0%

0% 0% 0% 0%

Tumbes Choco Magdalena 7 71%
0% 0% 0% 29%

0% 0% 0% 0%

Wallacea 3 100%
67% 100% 33% 33%

100% 67% 33% 0%

Archipelagos

Fiji 9 22%
44% 0% 33% 0%

44% 0% 11% 0%

Galapagos 3 0%
0% 0% 0% 67%

0% 0% 0% 0%

Hawai'i 52 85%
27% 25% 17% 10%

15% 21% 10% 0%

Puerto Rico 98 80%
51% 64% 23% 76%

87% 78% 39% 0%
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Table 6. Comparisons of best methods for estimating tropical dry forest extent and forest cover in
2000 and 2018 with open (>10% open canopy)  and closed (>40% closed canopy) canopies
between 30˚N and 30˚S. 

Definition Source Canopy type
Forest Cover 
2000 (km2)

Estimated 
Forest Cover 
2018 (km2)*

Gross Forest 
Cover Loss 
2001-18 (km2)

Pantropics GFC
Open
Closed

25,266,262
18,208,694

23,180,676
16,352,729

2,085,587
1,855,965

FAO CHELSEA
Open
Closed

8,981,537
4,440,046

8,337,834
3,948,678

643,703
491,368

Murphy & Lugo Worldclim
Open
Closed

10,674,741
6,894,394

9,723,467
6,081,932

951,274
812,462

WWF TSDBF WWF
Open
Closed

943,298
684,608

837,028
586,806

106,269
97,801

Consensus maps (3 No AI) CHELSA
Open
Closed

4,098,172
2,425,711

3,798,012
2,189,051

300,160
236,660

Consensus maps (3 No AI) Worldclim
Open
Closed

3,661,147
2,114,311

3,401,829
1,914,954

259,318
199,357

Simple Climate Definition CHELSA
Open
Closed

16,418,675
9,799,834

15,115,605
8,706,535

1,303,070
1,093,299

Simple Climate Definition Worldclim
Open
Closed

14,933,368
8,523,651

13,736,791
7,529,630

1,196,578
994,021

* Denotes estimated forest cover in 2018 using gross forest cover loss. Forest gain data available from 2001-2012 with no equivalent 
for 2013-2018 (Hansen et al., 2013).

Table 7: Comparison of estimated global tropical dry forest cover.

Base Layer Source Methodology Extent (km2) 

WWF Ecoregions Miles et al. 2006
Ecoregion biomes thought to contain TDF*
>40% closed canopy MODIS

1,048,700

aridity index Bastin et al. 2017
<0.65 aridity index (1) >10% open canopy; (2) 
>40% closed canopy

(1) 13,260,000
(2) 7,770,000

*Sub/tropical dry broadleaf forest; Sub/tropical grassland, savanna and shrubland; Mediterranean forest, woodland and scrub; Desert 
and xeric shrubland.
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7 FIGURES

Figure 1. Global distribution of 579 tropical dry forest plots based on primary sources from four 
separate studies on tropical dry forest ecology and distribution; queried studies from WoS, 
Google Scholar, and Scopus; and data sets from three repositories (DRYAD, ForestPlots.net, 
GBIF).
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Figure 2. Global distribution of potential tropical dry forest extent based on Aridity Index (< 0.65
) derived for (a) Worldclim, (b) CHELSA and (c) overlap of Aridity Indices. 
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Figure 3. Global distribution of tropical dry forest regions based on: (a) Murphy and Lugo, (b) 
FAO, (c) DryFlor and (d) overlap of all three climatic definitions using Worldclim. 
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Figure 4. Global distribution of tropical dry forest regions based on: (a) Murphy and Lugo, (b) 
FAO, (c) DryFlor and (d) overlap of all three climatic definitions using CHELSA. 
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Figure 5. Forest cover change for (a) FAO using CHELSA at > 10% canopy cover, (b) FAO 
using CHELSA T > 40% canopy cover, (c) Murphy and Lugo using Worldclim at > 10% canopy 
cover, and (d) Murphy and Lugo using Worldclim at > 40% canopy cover.

a. 

b. 

c. 

d. 
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Figure 6. Estimate of tropical dry forest extent (km2) across subcontinents per climatic 
definitions (a-e) using CHELSA.
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Figure 7. Estimate of tropical dry forest extent (km2) across subcontinents per climatic 
definitions (a-e) using Worldclim.
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Figure 8. Estimate of tropical dry forest extent (km2) across biodiversity hotspots per climatic 
definitions (a-g) using CHELSA.
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Figure 9. Estimate of tropical dry forest extent (km2) across biodiversity hotspots per climatic 
definitions (a-g) using Worldclim.
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Figure 10. Estimate of tropical dry forest extent (km2) across archipelagos per climatic 
definitions (a-d) using CHELSA.
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Figure 11. Estimate of tropical dry forest extent (km2) across archipelagos per climatic 
definitions (a-d) using Worldclim.
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Figure 12. Comparison of tropical dry forest extent across Hawai’i with (a) consensus of climatic
definitions; (b) forest cover; and (c & d) overlay of climatic definitions, forest cover and plots.

a. 

b. 

c. 

d. 
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