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SUMMARY 

We consider probabilistic and graphical rules for detecting situations in which a dependence of 

one variable on another is altered by adjusting for a third variable (i.e., noncollapsibility), 

whether that dependence is causal or purely predictive. We focus on distinguishing situations in 

which adjustment will reduce, increase, or leave unchanged the degree of bias in an association 

of two variables when that association is taken to represent a causal effect of one variable on the 

other. We then consider situations in which adjustment may partially remove or introduce a 

potential source of bias in estimating causal effects, and some additional special cases useful for 

case-control studies, cohort studies with loss, and trials with noncompliance (nonadherence). 
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INTRODUCTION 

A common analysis question is whether adjustment for a variable C will reduce, increase, or 

leave unchanged the degree of association between two other variables, say X and Y. The 

question comes into focus at two stages of the analysis. First, the investigator may have a simple 

qualitative model of the data-generating process and may wish to test whether predictions of that 

model match the observed changes in associations that are induced by various adjustments.  

Second, when the association of interest is taken to represent the causal effect of X on Y, the 

investigator may wish to minimize bias by adjusting for the proper set of variables. In both 

stages, predicting the effect of an adjustment on a given association becomes a question of 

central concern. 

We will focus on graphical (and hence qualitative) tools for recognizing situations in 

which an adjustment for C can or cannot alter a measure of the dependence of Y on X. These 

tools apply whether that dependence is causal (i.e., a comparison of Y distributions under 

different interventions on X) or purely predictive (i.e., a comparison of Y distributions in 

subpopulations defined by X). When an adjustment alters the measure, we will say the measure 

is noncollapsible over C, although strictly speaking the measure is noncollapsible with respect to 

the adjustment for C. Thus our paper is about recognizing graphically causal or predictive 

structures in which we expect adjustment to alter our estimate, and whether the adjustment 

moves us toward or away from the target parameter. 

Schistermann et al. (2009) and VanderWeele (2009) considered aspects of this problem 

in the context of overadjustment (adjustment that introduces bias) and unnecessary adjustment 

(adjustment with no impact on bias). We develop a more general framework to also consider 

when adjustment may only partially remove or introduce a source of bias, including selection 
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bias; to contrast conditions for odds ratios versus other measures such as risk differences and 

mean differences; and to show how adjustment may be used to discriminate among competing 

models. We also consider some additional special cases useful for estimating causal effects from 

case-control studies with differential selection, cohort studies with differential loss to follow-up, 

and trials with noncompliance (nonadherence). 

The paper begins by reviewing necessary concepts and results from probability and graph 

theory in the form we will need. We then explain, in a series of examples, how these concepts 

can be used to determine the impact of various adjustments on bias in estimating causal effects. 

Following Greenland et al. (1999a), we will reserve the word “control” for those situations in 

which conditioning has a precise correspondence to experimental control (manipulation or 

intervention); this excludes most situations in observational studies. Unless stated otherwise, all 

subpopulations and distributions we discuss will be within the source population of the study, by 

which we mean the population serving as the source of study subjects (not person-time).  

CONDITIONING, SUMMARIZATION, AND STANDARDIZATION 

By conditioning on a variable (or set of variables) C we will mean examining relations 

within levels of C (i.e., within strata defined by single values of C). By summarization over C we 

will summarization of conditional (C-specific) dependencies across C. This definition includes 

pure conditioning, in which the summary is the list (vector) of C-conditional dependence 

measures, such as C-specific risk differences, risk ratios, log odds ratios, and so on; it also 

includes averaging these measures over C.  

In practice, summarization is usually done using a regression coefficient under a highly 

fictional model in which the coefficient relating X to Y is assumed constant across C (known as 

homogeneity, uniformity, parallelism, “no interaction,” or “no effect modification”). Any 
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average coefficient must then equal this constant, so the method of averaging does not matter. 

We will however focus on the general case, free of homogeneity assumptions, in which the 

averaging method can be important.  

By adjustment for C we will then mean one of the many ways in which the dependence 

of Y on X might account for the relations of C to Y and X. This definition includes averaging of 

C-specific measures, but also includes standardization (comparisons of average outcomes), 

which can diverge from averaging of C-specific measures.  

We will say a measure is collapsible or invariant with respect to an adjustment for C 

when the adjustment does not change the measure. We will draw primarily on results on 

collapsibility of risk, rate, and odds-based measures in contingency tables and binary regression 

(e.g., Whittemore, 1978; Samuels, 1981; Ducharme and LePage, 1986; Gail, 1986; Wermuth, 

1987; Greenland and Mickey, 1988; Geng, 1992; Frydenberg, 1990; Clogg et al., 1995; 

Greenland, 1996; Geng and Li, 2002; Janes et al., 2010). Nonetheless, our discussion applies to 

continuous variables as well, due to the nonparametric nature of the formulas and graphical 

results we employ.  

Of special focus will be comparisons across X of the distribution of Y given X and C, 

p(y|x,c), when this distribution is averaged over a specific distribution  p*(c) for C. We will 

denote these averages by  

p{y|x;p*(c)} � �c p(y|x,c)p*(c)    (1) 

(the sum is over all values of C). We will assume that p*(c) = 0 whenever p(x,c) = 0 so that the 

average remains defined. Such averages are commonly known as the probability of Y=y given 

X=x, standardized to (averaged over) p*(c).  

Important special cases of (1) include total-population averages over p(c), 
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p{y|x;p(c)} � �c p(y|x,c)p(c)     (2) 

and averages over p*(c) = p(c|xr) where xr is a specific reference value of X, 

p{y|x;p(c|xr)} � �c p(y|x,c)p(c|xr) . (3) 

Note when (3) is evaluated at X = xr, C disappears from the expression:  

p{y|xr;p(c|xr)} = �c p(y|xr,c)p(c|xr) = p(y|xr). 

        One may examine how averages such as (1), (2), or (3) vary with X. The resulting 

comparisons across X are called C-standardized measures of the dependence of Y on X. The C 

distribution p*(c) is held constant across these comparisons, thus removing this distribution as a 

factor contributing to variation in the Y distribution across X. When the standard (weighting) 

distribution p*(c) and the Y dependence p(y|x,c) are derived from the same population, as in (2) 

and (3), the resulting average is said to be population standardized. Examples include the 

standardized morbidity ratio (SMR), which divides (3) evaluated at X=xr by (3) evaluated at 

another value of X; it simplifies to p(y|xr)/p{y|x;p(c|xr)}. 

Standardized distributions are equivalent to the distribution of Y given X obtained after 

inverse-probability reweighting of the joint distribution using the distribution of X given C 

(Robins et al., 2000; Sato and Matsuyama, 2002). For example, p(y|x,c)p(c) = p(y,x,c)/p(x|c) and 

so p{y|x;p(c)} = �c p(y,x,c)/p(x|c), which is the joint distribution of Y,X, and C averaged over 

1/p(x|c). 

MEASURE AVERAGING AND COLLAPSIBILITY 

The following basic collapsibility results have been noted in various forms at least since Yule 

(1934):  

a) Any standardized probability (1) will simplify to p(y|x) if C is independent of Y given X, 

i.e., if p(y|x,c) = p(y|x) then p{y|x;p*(c)} = p(y|x).  
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b) Population-standardized probabilities (2) and (3) will simplify to p(y|x) if C and X are 

marginally (unconditionally) independent, i.e., if p(c,x) = p(c)p(x) then  

p{y|x;p(c|xr)} = p{y|x;p(c)} = p(y|x). 

Result (a) follows from the fact that if p(y|x,c) = p(y|x) then p(y|x) factorizes out of the 

summation over c and the latter summation becomes 1. Result (b) follows by noting that if p(c,x) 

= p(c)p(x) then expression (2) becomes  

�c p(y,x,c)p(c)/p(x)p(c) = �c p(y,x,c)/p(x) = p(y,x)/p(x) = p(y|x), 

 and since p(c|xr) = p(c), expressions (2) and (3) are equal. It follows from these results that 

population-standardized measures (such as differences and ratios of population-standardized  

probabilities) are collapsible over C if either (a) C is independent of Y given X, or (b) C and X 

are marginally independent.  

Standardized measures are constructed by taking averages over C before comparisons 

(e.g., ratios or differences) across X. Many other familiar adjusted measures are instead derivable 

by taking averages of comparisons within levels of C; that is, they average over conditional 

measures of association, after comparison across X. Examples include inverse-variance 

(information)-weighted averages. Recalling Jensen’s inequality (an average of a nonlinear 

function does not equal the function applied to the averages), it should not be surprising to find 

divergences between collapsibility conditions depending on the step at which averaging is done 

(Samuels, 1981, sec. 3).  

Standardized difference and ratio measures can be rewritten as averages of conditional 

measures. For example, in comparing two levels x1 and x0 of X using formula (2), the difference 

is  

�c p(y|x1,c)p(c) � �c p(y|x0,c)p(c) = �c {p(y|x1,c) � p(y|x0,c)}p(c) 



12�November�2010�� � 7�
�

which weights the C-specific differences by p(c). The standardized ratio is  

�c p(y|x1,c)p(c)/�c p(y|x0,c)p(c) = �c {p(y|x1,c)/p(y|x0,c)}p(y|x0,c)p(c)/�c p(y|x0,c)p(c) 

which weights the C-specific ratios by p(y|x0,c)p(c). This ratio must fall within the range of the 

C-specific ratios. The same is true of other averages such as Mantel-Haenszel risk ratios 

(Rothman et al., 2008, Ch. 15) and geometric mean ratios (such as those based on information 

weighting of log risk ratios).  

If an unadjusted (unconditional) measure is outside the range of the C-conditional 

measures, then the measure cannot be collapsible with respect to any average of C-conditional 

measures (such as a standardized risk difference or risk ratio). Nonetheless, it may still be 

collapsible with respect to other adjustments. For example, standardized odds ratios constructed 

from (1)-(3) usually do not reduce to weighted averages of C-specific odds ratios. Thus an odds 

ratio may be collapsible with respect to a particular standardization, yet may be noncollapsible 

with respect to any average over the C-specific odds ratios. This conflict complicates their 

interpretation and has led to much confusion in the literature. For example, noncollapsibility over 

C with respect to averaging over odds ratios (or their logs) is sometimes called a “bias,” but if C 

is sufficient for confounding control (see below), it does not correspond to a bias in estimating 

causal effects (Greenland et al., 1999b). We will return to this point later. 

A measure is simply collapsible or strictly collapsible over C if the C-specific measures 

are constant and equal to the unconditional measure (Geng, 1992). Odds ratios are simply 

collapsible if X is independent of C given Y, as can be seen from the familiar XY “inversion” 

(symmetry) property of odds ratios: The C-specific odds ratios are 

p(y1|x1,c)p(y0|x0,c)/p(y1|x0,c)p(y0|x1,c) = p(x1|y1,c)p(x0|y0,c)/p(x1|y0,c)p(x0|y1,c). 

If C is independent of X given Y the latter term becomes   
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p(x1|y1)p(x0|y0)/p(x1|y0)p(x0|y1) = p(y1|x1)p(y0|x0)/p(y1|x0)p(y0|x1), 

thus demonstrating simple collapsibility over C.  

Now suppose instead that conditioning on C does not alter the dependence of Y on X, 

i.e., p(y|x,c) = p(y|x) for all c and x (conditional independence of Y and C given X). Then 

conditioning on C cannot change any measure of dependence of Y on X, and any reasonable 

adjustment for C (whether standardization of probabilities or averaging of measures across levels 

of C) must produce a measure equal to the unconditional (unadjusted, marginal) measure. In 

other words, independence of C and Y given X implies simple collapsibility for all dependence 

measures. We will call this condition complete collapsibility over C: neither standardization  nor 

conditioning nor averaging measures over C will change the dependence of Y on X. Complete 

collapsibility thus corresponds to a situation in which adjustments for C have no impact on bias. 

All the above definitions and concepts can be applied if C represents a set of covariates, 

and all can be applied conditional on a set S of further covariates. For example, independence of 

Y and C given X and S implies complete collapsibility given S (after conditioning on S, further 

conditioning or adjustment for C does not change the dependence of Y on X given S). Similarly, 

an adjusted measure adjusted for C and S is collapsible over C given S if it equals its counterpart 

from adjusting for S only.  

CONNECTIVITY AND ASSOCIATIONS IN DAGS 

There are now many introductory reviews of causal analysis using directed acyclic graphs 

(DAGs) (e.g., Greenland et al., 1999a; Glymour and Greenland, 2008; Greenland and Pearl, 

2010; Pearl, 2010a), as well as much more in-depth treatments (e.g., Pearl, 1995, 2009; Spirtes et 

al., 2001). Figure 1 gives three basic cases. We summarize the graphical concepts we will use to 

analyze them. Throughout, we will assume the graph represents relations in a specific population 
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under study. The results we will use apply even if the graph represents only conditional 

independencies rather than causal relations (as in Pearl, 1988 or Spiegelhalter et al., 1988), 

although their interest here derives from their causal interpretation. 

Two arrows in a DAG are adjacent if each touches the same variable (whether by head or 

tail). A path between X and Y is a sequence of adjacent arrows going through the DAG from X 

to Y. A variable on a path between X and Y is an interceptor on the path. An interceptor C where 

two arrowheads meet (two arrows collide, as in the path from X to Y in Fig. 1c) is a collider on 

the path, and the path is said to be blocked at C. If instead C is where an arrowhead meets a tail 

(as in the path from X to Y in Fig. 1b) it is a mediator on the path. Finally, if C is where two 

arrowtails meet (as in the path from X to Y in Fig. 1a) it is a fork on the path. Note that all three 

of these conditions are only relative to a path; for example, in Fig. 1a, C is a fork on the path 

X�C�Y, a mediator on the path A�C�Y, and a collider on the path A�C�X; thus it is not 

meaningful to speak of a variable as a mediator or collider without reference to the path on 

which it is so. 

A path is said to be unconditionally closed or blocked at every collider and 

unconditionally open at every mediator or fork. Thus, a path is unconditionally open if it 

contains no collider; conversely, if the path contains a collider it is unconditionally closed or 

blocked. Two variables in a DAG are said to be d-connected if there is an open path between 

them, and are d-separated (Pearl, 1988, 1995, 2009) if there is no such path. The “d-” in these 

definitions stands for “directionally” and distinguishes these conditions from other concepts of 

separation. Nonetheless, because the popular DAG literature uses only directional concepts, in 

what follows we will shorten “d-connected” to “connected” and “d-separated” to “separated” (as 
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in Greenland et al., 1999a). We may then say that two variables are connected by all the open 

paths between them. 

A path is open given a set of variables S if (i) S contains no mediator or fork on the path 

and (ii) any collider on the path is either in S or has a descendant in S; otherwise it is closed

given S or blocked by S. Two variables in a DAG are connected given S if there is a path 

between them that is open given S; otherwise they are separated given S. Two variables are 

adjacent if they have an arrow between them. The variable at the tail is called the parent of the 

variable at the head, which is called the child of the tail variable. The set of parents of a variable 

X in a given DAG is denoted pa(X). If X has no parent in the DAG, as in Fig. 1b, pa(X) is empty 

and X is said to be exogenous in the DAG; otherwise X is endogenous, as in Fig. 1a where pa(X) 

= {C}. 

A path is directed if it contains only mediators (so that one moves from arrowhead to 

arrowtail at each variable in the path). If there is a directed path from one variable to another, the 

tail-end variable (the start) is called an ancestor of the variable at the ending arrowhead; and the 

variable at the final arrowhead (the end) is called a descendant of the starting variable. In a 

DAG, no variable is its own ancestor (i.e., there are no feedback loops). If the DAG is taken as a 

causal model, a variable is said to causally affect its descendants and causally affected by its 

ancestors. 

A distribution p and a DAG over a set of variables are said to be compatible if p 

factorizes into � p(x|pa(X)), where the product is over all the variables (this product is called the 

Markov factorization implied by the DAG). It can be shown (Pearl, 1988, 2009; Spirtes et al., 

2001) that for any compatible p, two variables X and Y in a DAG will be independent given 

another set of variables S in the DAG if X and Y are separated by S. The converse is not true in 
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general, but exceptions in which connected variables are nonetheless independent in p 

correspond to very special cases involving perfect cancelations among associations (and hence 

are sometimes referred to as “unstable” or “unfaithful” properties of the distribution; Pearl, 2009; 

Spirtes et al., 2001).  

The remainder of this paper is concerned primarily with describing properties of 

distributions compatible with a given graph. As simple examples, adjacent variables will always 

be connected and hence cannot be assumed independent, no matter what information we obtain 

about the remaining variables in the DAG. In other words, adjacent variables may remain 

dependent at any level of conditioning on the remaining variables in the DAG. Conversely, two 

nonadjacent variables X and Y in a DAG are separated and hence will be unconditionally 

independent if neither is a descendant of the other; if instead Y is a descendant of X, then X and 

Y will be separated by pa(Y) and hence independent given pa(Y). 

Considering the DAG as a probabilistic influence network or Bayes net (Lauritzen and 

Spiegelhalter, 1988; Pearl, 1986, 1988), information can flow from one point to another along 

open paths.  In particular, if two variables are connected, then information can flow between 

them. This means we should not assume that connected variables are independent; in particular, 

new information obtained about a variable C may (upon conditioning on that information) alter 

our probabilities regarding any variable connected to it. Furthermore, if a variable C is connected 

to both X and Y, we should not be surprised if obtaining and conditioning on information about 

C alters the connection between X and Y. 

SEPARATION AND COLLAPSIBILITY 

 Because separation implies independence in compatible distributions, we obtain the 

following two criteria for detecting collapsibility in a distribution given a compatible graph (i.e., 
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for recognizing graphically when conditioning and standardization will not change a 

dependency):  

a) If C is separated from Y given X, then the dependence of Y on X will be completely 

collapsible over C (i.e., unaltered by adjustment for C). 

b) If C is separated from X unconditionally, then population-standardized measures of 

dependence of Y on X will be collapsible over C. 

Both these criteria also apply conditional on a set S of covariates, and with C replaced by a set of 

covariates.  

When comparing two levels x1 and x0 of X, criterion (a) applies to standardized 

differences and ratios of probabilities, such as p{y|x1;p(c)} � p{y|x0;p(c)} and 

p{y|x1;p(c)}/p{y|x0;p(c)} derived from expression (2). Under criterion (b) (unconditional 

separation of C and X), both these measures equal the analogous unconditional (unadjusted) 

measures p(y|x1) – p(y|x0) and p(y|x1)/p(y|x0) obtained by dropping p(c) from the expressions. 

(These measures usually take Y to be a binary disease indicator with y denoting disease; our 

results apply to any Y and y.) Both criteria also apply when comparing two levels y1 and y0 of 

the outcome Y via standardized odds such as p{y1|x;p(c)}/p{y0|x;p(c)}, as well as to differences 

and ratios of these odds: Under either criterion, the resulting measures will be unchanged by 

standardization.  

Each of criteria (a) and (b) is sufficient alone, but neither is necessary and so the converse 

of each is not quite correct. Nonetheless, if C is connected to Y conditional on X, then without 

more restrictions we will not have complete collapsibility for the dependence of Y on X; in 

particular, we would expect that at least one of the risk differences and one of the risk ratios 

conditional on C and their summaries will differ from the corresponding unconditional risk 
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differences and risk ratios. Furthermore, if C is also connected to X unconditionally, we would 

expect noncollapsibility for averages across C of the risk differences and risk ratios. We say 

“expect” because if C is not binary, there are special cases in which conditioning on C has no 

impact on certain summaries of these measures (due to cancellations that occur upon averaging); 

again, these correspond to unstable (unfaithful) properties of the distribution.  

Whether the changes upon conditioning on C or adjustment for C represent increased or 

decreased bias depends upon further details, especially on the effect targeted for estimation 

(Glymour and Greenland, 2008; VanderWeele, 2009). Intuitively, we might expect conditioning 

on C to remove bias for estimating any effect of X on Y in Fig. 1a and direct effects in Fig. 1b, 

whereas we might expect it to create bias for estimating net effects in Fig. 1b and any effect in 

Fig. 1c. As discussed below, these intuitions are correct when targeting total-population effects. 

When we consider odds p(y1|x,c)/p(y0|x,c) and their comparisons conditional on C, 

instead of those computed from standardized probabilities, criterion (b) is no longer relevant. In 

its place we have  

c) If C is separated from X conditional on Y, then the odds ratio will be simply collapsible 

over C. 

As a partial converse, if C is connected to X conditional on Y and is connected to Y conditional 

on X, then we expect noncollapsibility over C-conditional odds ratios. Again, we say “expect” 

because of special exceptions when C is not binary (Whittemore, 1978) and caution that, even in 

Fig. 1a, odds-ratio noncollapsibility partly represents a mathematical peculiarity of odds ratios 

rather than pure confounding (Greenland et al., 1999b). Parallel remarks apply to differences and 

ratios of rates (hazards) (Greenland, 1996), with Y now understood to contain both time at risk 

and the outcome indicator. 
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SEPARATION AND COLLAPSIBILITY TESTING 

A causal model can only be tested through its statistical implications, which are the 

conditional independencies implied by separation criteria. Consequently, the bulk of causal 

assumptions embedded in such a model will remain untested (Pearl, 2009; Greenland, 2010). 

Nonetheless, Pearl (2009, p.345-48) suggests how separation and collapsibility tests can be 

combined with substantive knowledge to screen candidate graphical models. 

To test a separation criterion, higher statistical power can be attained by testing the 

independency implied by the criterion rather than by testing the implied collapsibility. On the 

other hand, collapsibility is often more relevant to causal inference (as may be seen from the 

examples below). Thus, Pearl and Paz (2010) suggest using collapsibility tests and related 

procedures as diagnostics for graphical models, analogous to collapsibility-based tests of 

regression models (e.g., Clogg et al., 1995). This is because collapsibility holds under either or 

both of two conditional independencies (as well as under other conditions); therefore, if a test 

rejects collapsibility, it rejects all graphical models having an independency that implies 

collapsibility.  

When C and S are vectors of covariates, such tests can be performed using familiar 

modeling strategies. Suppose a graph predicts that a measure of the dependence of the outcome 

Y on the exposure X is collapsible over C given S. One approach starts with a model for 

p(y|x,c,s), such as a logistic regression model, and then tests whether the X coefficient is equal to 

that obtained when C is dropped to produce a model for p(y|x,s), which is collapsibility of the X 

coefficient over C (Clogg et al., 1995).  

Asymptotic tests can however falter with very high-dimensional S, especially when S 

strongly predicts X and Y. An alternative for these cases replaces the pair of vectors (C,S) and 
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the vector S with fitted values from models for the exposure-propensity scores p(x|c,s) and 

p(x|s), respectively; that is, (C,S) and S are replaced by their fitted X-propensity scores.  We may 

then test equality of the adjusted measures derived from the two scores, which is equivalent to 

testing collapsibility of the measures over C (Pearl, 2009, p. 349). The two approaches can be 

combined by using the propensity scores to fit the Y (outcome) model, as in doubly robust 

estimation (Kang and Shafer, 2007). Again, rejection of equality (collapsibility) of a measure 

after deleting C from both the Y and X models implies rejection of all graphical models that 

entail collapsibility of the X coefficient over C. 

RELATIONS TO CAUSAL EFFECTS 

The collapsibility results we have described do not assume the quantities at issue are 

related to causal effects. To make that connection, define p(y|do[x]) as the distribution Y would 

have upon setting X to the value x for everyone in the population, when that is possible. This 

do[x] formalism is closely related to the potential-outcome (counterfactual) model of causation, 

in which each individual is presumed to have a well-defined potential-outcome variable Yx when 

administered level x of X, whether or not x is the level actually administered; in that case 

p(y|do[x]) = p(yx) (see Pearl, 2009, Ch. 7 for further details of the relation). In either formalism, 

care is needed in choice of X in order for the setting of X to a level x represented by do[X=x] or 

Yx to make sense (Greenland, 2005; Hernán, 2005). This would be so if X were a treatment such 

as a vaccination indicator, but not if X were a defining property of an individual such as a gender 

indicator (but see Pearl 2009, p. 361 for a more liberal view of do[X=x]). 

When do[X=x] is well defined, we say a set of covariates S is sufficient or admissible for 

estimating total-population effects of X on Y if p{y|x;p(s)} = p(y|do[x]); that is, S is sufficient 

precisely in the case that standardization by p(s) yields the effect of setting X=x. S is minimal
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sufficient if it is sufficient but no subset of S is. If S is sufficient for the total-population effects 

and we assume no contagion, standardization by p(s|xr) is sufficient for estimating effects in the 

subpopulation with X=xr; that is, p{y|x;p(s|xr)} equals the effect of having set this subpopulation 

to X=x instead of its actual setting of X=xr (Shpitser and Pearl, 2009). The converse is not 

correct: A set may be sufficient for some choices for xr (some subpopulations) but insufficient 

for other choices of xr; more generally, a set may be sufficient for some subpopulation effects but 

insufficient for others or for total-population effects (Joffe et al., 2010). Contagion further 

complicates analysis of subgroups because then the distribution in one subgroup may depend on 

the distribution and hence alteration of other subgroups (Halloran and Struchiner, 1995).  

Turning to graphical criteria for recognizing sufficiency, a path from X to Y is said to be 

back-door (relative to X) if it starts with an arrow into X. A set S then satisfies the back-door

criterion for estimating the effect of X on Y if it (i) contains no descendant of X and (ii) blocks 

every back-door path from X to Y. Such a set is sufficient for effect estimation (Pearl, 1995, 

2009; Greenland et al., 1999ab). It is often said that measures of relations of X to Y conditioned 

on a sufficient set S are “unconfounded,” because the exposure X will be connected to outcome 

Y given S only via directed paths from X to Y, which in a causal graph represent the effects of X 

on Y. 

EFFECTS OF CONDITIONING ON AN INTERCEPTOR 

In each graph in Fig. 1, C is connected to X unconditionally and conditional on Y, and to 

Y conditional on X. Thus we expect noncollapsibility (change) over C for all measures; that is, 

we expect conditioning on C will change one or more of the risk differences, risk ratios, and 

odds ratios relating X to Y. Nonetheless, the meaning of this change is quite different across the 

graphs. 
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In Fig. 1a, the path between X and Y via C (X�C�Y) has a fork at C, and so is an open 

path; hence X and Y may be associated via this path. The association transmitted along this path 

is a source of bias for estimating the effect of X on Y, sometimes called “classical confounding” 

because the path contains a shared cause of X and Y (Greenland, 2003). Note that the key source 

of this confounding is that C is uncontrolled, not that it is unmeasured. For example, C may have 

been measured but left uncontrolled because it failed to have a “statistically significant” 

association with X or with Y. Conversely, C may have been controlled without being measured 

by virtue of design features (e.g., for practical purposes, a population-based study in Finland will 

have controlled for conventional American “race” categories of white, black, etc.). 

Conditioning on C will block (close) the confounding path in Fig. 1a; hence if X has no 

effect on Y, then X and Y will be independent given C (independent within every stratum or 

level of C), reflecting correctly this absence of effect. Put more generally, C alone satisfies the 

back-door criterion and thus is sufficient for estimating effects; furthermore, it is minimal 

sufficient. Hence, to estimate an effect of X on Y, we should condition on C. If we modified Fig. 

1a by inserting a mediator M or fork F between C and X or between C and Y, C would remain 

sufficient (as would M alone, F alone, or any combination of C, M or F) and the value of 

expressions (1) and (2) would not change.  

In Fig. 1b, the path between X and Y via C (X�C�Y) is direct through C, and so is an 

open path; hence X and Y may be associated via this path. In both Fig. 1a and 1b, the open path 

will be blocked by conditioning fully on C; hence if X had no direct effect on Y, X and Y would 

be separated given C, reflecting correctly this absence of effect. Thus, to estimate a net effect of 

X on Y, we should not condition on C because C is a mediator (intermediate) between X and Y, 
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carrying part of the net effect; but if we want to estimate a C-specific direct effect of X on Y, we 

would condition fully on C. 

Behavior opposite of the confounding case in Fig. 1a arises in Fig. 1c, where the path the 

path between X and Y via C (X�C�Y) is blocked at C, and hence X and Y cannot be 

associated via this path. This closed path will however be unblocked (opened) by conditioning 

on C; this means that X and Y may be dependent given C (dependent within at least one level of 

C) even if there is no effect of X on Y. This would continue to be so if we inserted a mediator M 

or fork F between X and C or between Y and C. Thus, to estimate an effect of X on Y, we should 

not condition on C, the opposite situation from Fig. 1a. Fig. 1c arises when C is an indicator of 

selection in case-control studies or a censoring indicator in cohort studies and trials with losses.  

IMPACTS OF CONDITIONING ON A DESCENDANT OF AN INTERCEPTOR 

Considering first a child Z of C, suppose that the connection C�Z is not perfect, so that 

at most conditioning on Z corresponds to only partial adjustment for C. The situations in Fig. 1 

would arise if (for example) C was unmeasured and Z was an imperfect but nondifferential 

measurement of C or proxy for C (i.e., Z is independent of X and Y given C). Again, if we do not 

condition, in Fig. 1a and 1b, X and Y remain connected through C, which is a source of bias for 

estimating any effect of X on Y in Fig. 1a or a direct effect in Fig. 1b; in Fig. 1c, X and Y remain 

separated and there is no bias for estimating any effect of X on Y.  

What if we condition on Z only? For each case in Figure 1 we see that Z is connected to 

X both unconditionally and conditional on Y, and is connected to Y given X. Thus we expect 

noncollapsibility over Z for all measures. In Fig. 1a and 1b, one way to interpret the changes in 

risk differences and risk ratios is that conditioning on Z partially closed the open path connecting 

X and Y through C. In Fig. 1c, however, these changes correspond to a partial opening of the 
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unconditionally closed path X�C�Y. Another interpretation, based on virtual colliders, is 

given in Pearl (2009, p.338). 

Conditioning on Z can be viewed as adjustment for C using a nondifferentially  

misclassified proxy. In Fig. 1a with binary C and Z, this has long been known to induce partial 

control of confounding (Greenland, 1980), and so conditioning on Z moves us part way from the 

confounded unconditional  (unadjusted) association of X and Y toward the total effect of X on Y. 

(For nonbinary covariates this reasoning is only correct in an average sense, as some but not all 

strata of Z may end up more confounded than the original unadjusted association; see Brenner, 

1993.) Analogously, in Figure 1b we are partially adjusting for the effect of X on Y mediated 

through C; for risk differences and risk ratios, we expect this to move us partway from the net 

effect of X on Y toward a direct effect of X and Y. Again, Fig. 1c brings an opposite 

phenomenon from Fig. 1a: Conditioning on Z produces an open noncausal path from X to Y, 

which may introduce bias. In each figure, however, Z is separated from Y by C and X, implying 

that we will have complete collapsibility over Z given C. 

The results just described extend to any descendant Z of C that does include X or Y 

among its ancestors or descendants. 

IMPACTS OF CONDITIONING ON AN ANCESTOR OF AN INTERCEPTOR 

Turning now to a parent A of C, suppose that the connection A�C is not perfect, so that 

at best conditioning on A corresponds to only partial control of C. We may now say “control” 

rather than adjustment because A actually does control C in a causal sense. Hence, under the 

diagrams we present, the consequences of conditioning on A parallel the consequences that 

would follow if A were an intervention to set the level of C. Because of this parallel, we will see 

some telling divergences from what happens when conditioning on the child Z of C: This is 
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because, unlike with A or C, intervention to change the level of Z could have no effect on any 

other variable. 

What if we condition on A only? In Fig. 1a we see that A (like Z) is connected to X both 

unconditionally and conditional on Y, and is connected to Y conditional on X, so we expect 

noncollapsibility for all measures. For risk differences and risk ratios we can interpret these 

changes as reflecting partial closure of the open path connecting X and Y through C. Thus we 

expect partial control of confounding if we condition on A in place of C, moving us from the 

confounded unconditional (unadjusted) association of X and Y toward the total effect of X on Y 

(again, for nonbinary covariates this reasoning is only correct in an average sense). As before, 

the interpretation for average odds ratios is more complex.  

In Figure 1b however A is separated from X unconditionally. Thus, from (b), population-

standardized measures will be collapsible over A. Nonetheless, A is connected to Y conditional 

on X, so we expect some some A-specific measures to differ from their corresponding 

unconditional measure, which we might interpret as partial control of the effect of X on Y 

mediated through C. Furthermore, A is connected to X conditional on Y, so we expect average 

odds ratios to differ from unconditional odds ratios. It might be tempting to think that these odds-

ratio changes represent partial control of the effect of X on Y mediated through C, but again the 

reality is more complex.  

In Fig. 1c, A is not connected to Y conditional on X, and so, unlike with C or Z, we have 

complete collapsibility over A. In graphical terms, conditioning on A does not even partially 

open the path from X to Y through C, and thus induces no bias; this is so even if A determines C 

completely (C=A), for in that case X and Y will no longer affect C.  Nonetheless, A is connected 

to X given C, to X given Y and C, and to Y given X and C. Thus, unlike with Z, we expect 
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noncollapsibility over A given C for all measures. If C represents selection, this means that A 

will appear to be a confounder among the selected, even though it is not. In contrast, in Fig. 1a 

and 1b, A is separated from Y by C given X, so there will be complete collapsibility over A 

given C. 

The results just described extend to any ancestor A of C that does include X or Y among 

its ancestors or descendants. 

SOME SPECIAL CASES 

Figure 2 displays some special cases of Figure 1 that are often discussed. Fig. 2a and 2b 

drop the arrows between C and Y in Fig. 1a and 1b. Furthermore, all are separated from Y given 

X and so we have complete collapsibility over them (whether considering them singly, in pairs, 

or all together).  

In Fig. 2c, A, C, and Z are all unconditionally separated from X; hence population-

standardized measures of dependence of Y on X are collapsible over C, A, or Z, since 

p{y|x;p(c)} = p{y|x;p(a)} = p{y|x;p(z)} = p(y|x). Moreover, those measures will be 

unconfounded, since p(y|x) = p(y|do[x]). Nonetheless, C, A, and Z are all connected to X given 

Y and to Y given X; hence we should expect noncollapsibility over conditional odds ratios.  

In Fig. 2d, C and Z are connected to X unconditionally and to Y given X; hence we 

expect population-standardized measures of dependence of Y on X to be noncollapsible over C 

and Z, and this remains so if we condition on A as well. On the other hand, A, C and Z are 

separated from X given Y, implying that conditional odds ratios will be collapsible over all of 

them. Furthermore, if we do not condition on C or Z, A will be separated from Y conditional on 

X and so we have complete collapsibility over A.  
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Fig. 2d can be taken as representing a case-control study with exposure X, disease Y, C 

indicating selection, and Z indicating consent. In such a study, Y by definition affects selection C 

very strongly, resulting in severe noncollapsibility over C of all measures except odd ratios. 

Because the unconditional measures are not confounded, this noncollapsibility over C represents 

a strong bias from conditioning on C. This bias afflicts all familiar measures that depend on 

absolute frequencies of Y values in some fashion, such as risk differences, odds differences, and 

risk ratios (See Pearl 2009, p. 338 for graphical explanation). Risk ratios, for example, cannot 

exceed 2 if the absolute frequency of Y=1 is never below ½. In contrast, odds ratios relating X to 

Y depend only on relative frequencies of Y values and hence are collapsible; this collapsibility 

can be viewed as a graphical generalization of the famous result by Cornfield (1951), and 

justifies use of the odds ratios from participants (C=Z=1) to estimate the unconditional odds 

ratios.  

Nonetheless, an effect of X (or an ancestor of X) on selection or consent will connect X 

to Y via C or both, and thus introduce bias in the odds ratio; this bias is the familiar Berksonian 

form of selection bias (Greenland et al., 1999a; Glymour and Greenland, 2008; Pearl, 2009). 

Similar concerns arise in cohort studies in which C represents loss to follow-up or other forms of 

censoring, and in trials in which C is a compliance indicator and the analysis discards 

noncompliers (“per-protocol” analysis). 

EXTENSIONS 

There are many ways to extend the previous graphical results. We present some examples 

to illustrate how the rules we have described may guide us in selecting adjustment variables that 

are not confounders in the classical sense seen in Fig. 1a. In each example in Fig. 3a-3d, C 
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exhibits some form of noncollapsibility, but in the first example this noncollapsibility amplifies a 

bias, in the second and third it reduces a bias, and in the fourth it does both.  

Bias Amplification. Fig. 3a adds an uncontrolled confounder U to Fig. 2a. A, C, and Z 

satisfy graphical conditions for instrumentality, i.e., unconditional connection to X and 

connection to Y only through X as a mediator (Pearl, 2009); they are also connected to X given 

Y. Unlike Fig. 2a, A, C, and Z are connected to Y conditional on X via the path C�X�U�Y 

because X is a collider on that path. Thus we expect noncollapsibility over A, C, and Z for all 

measures. If we condition on U, however, we are back in a completely collapsible situation like 

that in Fig. 2a.  

Considering cases in which effects can be given a sign (positive or negative), 

Bhattacharya and Vogt (2007) and Pearl (2010b) show how the unconditional noncollapsibility 

over A, C, Z in Fig. 3a corresponds to increased bias from the confounding back-door path 

X�U�Y.  To see this, suppose effects represented by the arrows in X U Y have the same 

sign. Then the XY association transmitted along the X U Y path will be positive, and hence 

the bias from failing to condition on U (the confounding by U) will be upward (VanderWeele 

and Robins, 2010); the change in the XY association from adjusting for A, C, or Z will also be 

upward, resulting in more bias after the adjustment than before (i.e., the biases will not cancel). 

Parallel reasoning shows that if the arrows in X U Y have opposite signs, the XY association 

transmitted through this path will be negative, so the bias from failing to condition on U will be 

downward (VanderWeele and Robins, 2010); and the change from adjusting for A, C, or Z will 

also be downward, resulting in more bias.  

In either case, adjusting for A, C, or Z can only result in more bias in the same direction 

as the confounding by U (hence is bias amplifying). Intuitively, when we consider the 
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unconditional (crude) association between X and Y, systematic variation in X is partly explained 

by variation in C and partly by variation in U. The U component is transmitted to Y via the 

confounding path X U Y and so counts toward bias. If we condition on C, however, the C 

component vanishes; hence all systematic variation in X comes from variation in U and is 

transmitted to Y via the confounding path, with larger bias as a result. 

The bias-amplification problem does not arise in traditional instrumental-variable 

adjustment methods (e.g., Sommer and Zeger, 1991; Hernán and Robins, 2006) because the 

instruments are used to correct the unconditional association, instead of being conditioned on as 

in outcome-regression and propensity-score adjustment. Nonetheless, some authors recommend 

selecting all variables that influence exposure X for the latter adjustments, without regard to their 

relation to the outcome Y (e.g., Hirano and Imbens, 2001; Rubin, 2002, 2009). Unfortunately 

adjusting for variables related only to exposure may not only amplify bias, but may also 

unnecessarily inflate variances (e.g., see Brookhart et al., 2006; Austin et al. 2007).  

Conditioning on apparent instrumental variables can also amplify certain types of 

selection bias (Pearl, 2010b). Consider Fig. 3b, which modifies Fig. 3a by replacing U�Y with 

U�S�Y. Before conditioning on S, the association of X and Y will be collapsible over A, C, or 

Z because X separates those variables from Y. Nonetheless, conditioning on S opens a path from 

X to Y via U and S, introducing selection bias. Furthermore, X no longer separates A, C, or Z 

from Y, so we should expect the association of X and Y to be noncollapsible over A, C, or Z. 

This noncollapsibility again reflects bias amplification.  

On the other hand, if the selection bias is transmitted only through an effect of X, 

conditioning on A, C, or Z will not amplify that bias. This is because A, C, and Z will remain 

separated from Y by X after selection, and thus remain independent of Y given X. As an 



12�November�2010�� � 25�
�

example, consider Fig. 3c, which modifies Fig. 3a by replacing U�X with U�S�X. Again, 

conditioning on S produces bias because it opens a path from X to Y via U and S, but the 

association remains unchanged and hence is not further biased by conditioning on A, C, or Z. 

This example illustrates bias equivalence (bias from conditioning on S is equivalent to bias from 

conditioning on S and any combination from A,C, or Z), which is discussed further below.  

Bias Removal. Fig. 3b modifies Fig. 1c by replacing X�C�Y with X�C�S�Y, as 

could arise when S is an indicator of analysis inclusion and C is an adherence indicator. The 

unconditional XY association unbiased for the effect of X on Y. S is connected to X both 

unconditionally and given Y, and is connected to Y given X, so we expect conditioning on S 

alone to change and thus introduce bias in estimating that effect.  

As in Fig. 1c, in Fig. 3d both C and Z are connected to X unconditionally and given Y, 

while A is not connected to X. Nonetheless, A, C and Z are independent of Y given X, so we 

have complete collapsibility over them all. But A, C, and Z are connected to Y given X and S, 

and are connected to X given S and given Y and S. Thus we expect noncollapsibility over A, C, 

and Z given S.  

In Fig. 3d, S is separated from X given C and Y, so we have collapsibility of the XY odds 

ratio over S given C as well as over C; hence this odds ratio is collapsible over the compound 

variable {C,S} even though we cannot assume that it is collapsible over S or over C given S. Put 

another way, conditioning on C removes the selection bias in the odds ratio produced by 

conditioning on S, making C a “bias-breaking” variable for the odds ratio (Geneletti et al., 2009). 

The same situation holds if the X�C relation is reversed to C�X so that C is a fork rather than 

a mediator between X and S, or if C is mediator or fork between Y and S (Geneletti et al., 2009).  
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Note however that in these cases, removal of bias by conditioning on C is limited to the 

odds ratio; that is, we expect only odds-ratio collapsibility over {C,S}. Because {C,S} is 

unconditionally connected to X as well as connected to Y given X,  population-standardized 

measures are not collapsible over {C,S}. This noncollapsibility corresponds to the well-known 

fact that conditioning on a variable affected by the outcome variable Y (as in case-control 

sampling) will alter the observed proportions with a specific outcome (such as disease) and so 

alter risk differences, risk ratios, and odds differences. 

In Fig. 3d, we expect noncollapsibility of the XY odds ratio over A and over Z given S, 

but (in contrast to {C,S}) we also expect noncollapsibility over {A,S}, {Z,S}, and {A,Z,S}. This 

means that, after conditioning on S, we might ordinarily expect bias reduction from the change 

induced by conditioning on A, Z, or both, but we would not expect complete bias removal. 

Bias Equivalence. Fig. 3e adds an uncontrolled unconditional confounder U of XY to Fig. 

3d. Now the unconditional XY odds ratio is biased, being a mix of the study effect X�Y and the 

association over the confounding back-door path X�U�Y. Because this confounding path has 

no overlap with the selection-bias path X�C�S�Y, the previous observations about the latter 

path continue to apply: We have noncollapsibility over S but collapsibility over both C and 

{C,S} relative to the U-confounded (unconditional) XY odds ratio. This collapsibility is a basic 

example of bias equivalence (Pearl and Paz, 2010): We are left with the same degree of 

confounding (from U) whether we condition on nothing, on C, or on both C and S.  

Conditional on U we also have noncollapsibility over S but collapsibility over both C and 

{C,S} relative to the unconfounded (U-conditional) XY odds ratio, so we also have bias 

equivalence given U (which in this case is no bias whether in addition to U we condition on 

nothing, on C, or on both C and S). If instead we condition on A, Z or both after conditioning on 
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S, we no longer have such equivalencies, since we have unconditional collapsibility over A, Z, or 

both, but we expect noncollapsibility over {A,S}, {Z,S}, and {A,Z,S}. Thus as in Fig. 3d, we 

would not expect conditioning on A or Z to be sufficient for removal of the bias from 

conditioning on S, even for odds ratios. 

Overlapping Bias Paths. Fig. 3f adds an uncontrolled variable U to Fig. 3d, one which 

does not unconditionally confound the XY relation but does confound other relations. Hence 

there is no bias unconditionally. Nonetheless, conditioning on C, S, or Z now opens a new path 

from X to Y, X�C�U�Y. As a consequence, we no longer have collapsibility over C or Z, 

and conditioning on S opens two paths from X to Y (the new path, as well as X�C�S�Y).   

As in Fig. 3e, we still have odds-ratio collapsibility over S given C, so C and {C,S} 

remain bias equivalent for odds ratios, as do {C,U} and {U,C,S}; and, once we condition on S 

(as we are forced to do when S is selection), we would have to condition on U as well as C to 

remove all odds-ratio bias. Unlike Fig. 3e, however, in Fig. 3f U could be ignored for odds-ratio 

estimation if there were no conditioning on C, S or Z. Furthermore, we would ordinarily expect 

the bias from the X�C�U�Y path to be larger if C were conditioned than if only S were 

conditioned. In this sense, after conditioning on S, we would expect further conditioning on C to 

amplify the bias from the X�C�U�Y path even though it would remove the bias from the 

X�C�S�Y path; the net impact of conditioning on C given S is thus hard to predict.  

If instead of C we condition on A, Z or both after conditioning on S, we no longer have 

bias equivalencies. We have unconditional collapsibility over A, but after conditioning on S we 

expect noncollapsibility over any combination from A, U, or Z. Thus, as in Figs. 3d and 3e, we 

would not expect conditioning on A or Z to be sufficient for complete removal of the bias from 

conditioning on S, even after conditioning on U. 
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DRAWBACKS AND ADVANTAGES OF ODDS AND HAZARD MEASURES 

Even if C and X are marginally independent, not all averages of C-specific measures will 

be collapsible. Suppose however, the C-specific measures are constant across C. If the 

unconditional measure equals this constant value, it is said to be strictly collapsible or simply 

collapsible over C (Whittemore, 1978; Ducharme and LePage, 1986; Geng, 1992). Since all 

averages of the C-specific measures must equal this constant, simple collapsibility implies 

collapsibility of these averages. Because standardized risk differences and risk ratios are 

averages of C-specific values, simple collapsibility of risk differences and risk ratios implies 

collapsibility of standardized risk differences and risk ratios. Simple collapsibility of odds ratios 

and differences does not however imply collapsibility of the standardized odds ratios and 

differences. Instead, rather paradoxically, if C and Y are dependent given X but C is marginally 

independent of X, all population-standardized odds ratios will be collapsible but simple 

collapsibility cannot hold (Miettinen and Cook, 1981; Greenland et al., 1999b). Again, parallel 

results hold for odds differences, as well as for hazard ratios when Y comprises time at risk and 

the outcome indicator.   

On the other hand, as illustrated above with Fig. 3e and 3f, odds ratios have the potential 

to remain unbiased when conditioning on variables affected by the outcome Y, provided that 

conditioning does not open a path from X to Y. The application of these results extends from 

odds-ratio to rate-ratio analysis when sampling or conditioning is done in a manner that forces 

sample odds ratios to estimate hazard (rate) ratios, as is typical in case-control studies with risk-

set (density) sampling and in survival analysis (Rothman et al., 2008, p. 113-114 and 294-295). 

DISCUSSION 
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We have reviewed algebraic results and introduced graphical criteria to answer questions 

about when adjustment for particular variables will increase or reduce bias from a particular 

source in a given graphical model. There is considerably more that could be researched and 

discussed regarding implications of adjustment for statistical efficiency and mean-squared error 

(or more generally, net loss), and quantification of the bias added or removed by a given 

adjustment. Basic results on these topics are available, especially for ratio measures (e.g., 

Yanagawa, 1984; Flanders and Khoury, 1990; Greenland, 1991, 2003; De Stavola and Cox, 

2008; Janes et al., 2010), but many details and extensions remain to be worked out (which is 

unsurprising given the many parameters that must be modeled to quantify efficiency and bias). 

We also caution that the use of preliminary tests for model and covariate selection (whether 

independence or collapsibility testing) can distort the final P-values and confidence intervals for 

the effect of interest (Leamer, 1978); see Greenland (2008) for a review and suggested 

alternatives to preliminary testing.   

One semi-quantitative guideline that has been noted before is that associations and hence 

noncollapsibilities tend to attenuate when they arise from more extended paths (Greenland, 

2003). This attenuation arises when adjacencies are of similar magnitude or when comparing 

paths to their subpaths. For example, in all panels of Fig. 1 and in ordinary settings in health and 

social sciences, we would expect the strength of associations of Z with X and Y to be less than 

the strength of associations of C with X and Y. That is because each path connecting Z to X or Z 

to Y properly contains the corresponding path connecting C to X or C to Y. As a result, we 

expect a smaller degree of XY noncollapsibility over Z than over C, which means that adjusting 

for Z will move us less from the unconditional association than will adjusting for C. In Fig. 1a, 

this means Z-adjustment does not remove as much bias as C-adjustment; in Fig. 1c, it means that 
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Z adjustment will not produce as much bias as C-adjustment; and in Fig. 1b the bias implication 

depends on whether we are interesting in a direct or total effect.  

Another avenue for extending qualitative results is in terms of direction of bias, which as 

mentioned above can be derived by adding signs to path arrows (VanderWeele et al., 2008;�

VanderWeele and Robins, 2010). Quantitative considerations will have to enter when one 

considers multiple bias sources, as occur in Figs. 3e and 3f after conditioning on S. We expect 

that the net bias in most such situations will be not be simple in form and will be heavily 

dependent on contextual details; thus general results that can simplify context-specific analyses 

would be valuable. We hope that the results provided here provide a reasonable starting or 

reference point for further extensions. 
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Figure 1. Graphs with C connected to X and Y under all conditions. 
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Figure 2. Graphs with C separated from X or Y under some condition. 
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Figure 3. Graphs with an additional ancestor U or descendant S of X or Y. 
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