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Abstract

Objective: To investigate the effect of cholecalciferol (vitamin D3) supplemen-

tation on peripheral immune cell frequency and N-glycan branching in patients

with relapsing-remitting multiple sclerosis (RRMS). Methods: Exploratory anal-

ysis of high-dose (20 400 IU) and low-dose (400 IU) vitamin D3 supplementa-

tion taken every other day of an 18-month randomized controlled clinical trial

including 38 RRMS patients on stable immunomodulatory therapy

(NCT01440062). We investigated cholecalciferol treatment effects on N-glycan

branching using L-PHA stain (phaseolus vulgaris leukoagglutinin) at 6 months

and frequencies of T-, B-, and NK-cell subpopulations at 12 months with flow

cytometry. Results: High-dose supplementation did not change CD3+ T cell

subsets, CD19+ B cells subsets, and NK cells frequencies, except for CD8+ T

regulatory cells, which were reduced in the low-dose arm compared to the

high-dose arm at 12 months. High-dose supplementation decreased N-glycan

branching on T and NK cells, measured as L-PHA mean fluorescence intensity

(MFI). A reduction of N-glycan branching in B cells was not significant. In

contrast, low-dose supplementation did not affect N-glycan branching. Changes

in N-glycan branching did not correlate with cell frequencies. Interpretation:

Immunomodulatory effect of vitamin D may involve regulation of N-glycan

branching in vivo. Vitamin D3 supplementation did at large not affect the fre-

quencies of peripheral immune cells.

Introduction

Multiple sclerosis (MS) is considered a T-cell-mediated dis-

ease, but other immune cells have been implicated in its

pathology, most notably B and NK cells.1-3 Characteristics

are a disruption of T, B, and NK regulatory cells4-6 with

reduced levels of T regulatory cells (Tregs),7 and impaired

B regulatory cells (Bregs) function.8 Genetic and environ-

mental factors contribute to risk, age at onset, and

progression of MS.9-11 Among the latter are sunlight expo-

sure and 25-hydroxyvitamin D (25(OH)D).9,10,12-17 Epi-

demiological, retrospective, and a few interventional

studies have investigated vitamin D in MS. But larger

interventional studies are scarce18,19 and are increasingly

difficult to conduct as patients self-supplement vitamin D.

Exact mechanisms by which vitamin D influences MS

and its clinical efficacy when supplemented remain to be

elucidated. Animal studies and in vitro assays proposed an
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immunomodulatory role of 25(OH)D.20-22 In vitro, the

active metabolite, 1,25(OH)2D3 downregulates CD4+ T

cell interleukin-17 (IL-17) while upregulating interleukin-

10 (IL-10)23 production. Furthermore, 1,25 (OH)2D3 inhi-

bits antibody production by plasma cells22 and promotes

differentiation of CD4+ T cells into immunomodulatory T

helper 2 (Th2) cells.21 Human in vivo studies investigating

25(OH)D in MS have produced varying results regarding

its effect on proinflammatory and anti-inflammatory fac-

tors.24,25 A recent randomized controlled trial in 40 RRMS

patients showed a dose-dependent reduction in the pro-

portion of IL-17+ CD4+ T cells.19

One known effect how vitamin D regulates immune

cells is through effects on cell-surface protein glycosyla-

tion, that is, by regulation of enzymes of the glycosylation

pathway.11,26 Cell-surface proteins are co and posttransla-

tionally modified by N-glycosylation, a process that adds

sugars to proteins on asparagine (N) residues through N-

glycosidic bonds (N-glycans).27-29 Complex N-glycans are

branched via the addition of N-acetyl-D-glucosamine

(GlcNAc) by N-acetylglucosaminyltransferases (Mgat)

enzymes in the Golgi apparatus.29,30 Four branching

enzymes act sequentially with declining efficiency to gen-

erate N-glycans with up to four GlcNAc branches, namely

Mgat 1, 2, 4, and 5.31 Upregulation or downregulation of

Mgat 1 activity reduces N-glycan branching by limiting

the substrate, uridine diphosphate N-acetylglucosamine,

UDP-GlcNAc.11 Interestingly, vitamin D seems to upregu-

late N-glycan branching, as exposure of activated mouse

or human T cells to 1,25(OH)2D3 raises N-glycan

branching by increasing Mgat1 mRNA, whereas it lowers

N-glycan branching in deficient mice.11 Hence, 1,25(OH)

D2D3 and UDP-GlcNAc availability determine N-glycan

synthesis by Mgat enzymes.11,32

Reduced N-glycan branching lowers T-cell activation

threshold, drives proinflammatory Th1 and Th17 differ-

entiation, and inhibits anti-inflammatory Treg

responses.29,33,34 Conversely, T-cell activation increases N-

glycan branching in T cells blasts, which serve as negative

feedback to terminate T-cell responses.33,35 On the other

hand, genetic variations in IL-2R and IL-7R signaling

increases the risk of MS by reducing branching on T-cell

blasts.11,32 In mouse models, reducing N-glycan branching

promotes spontaneous autoimmunity including inflam-

matory demyelination,28,29,36 whereas raising branching

attenuates immune responses.37,38

Thus, activated or partially activated T cells could hypo-

thetically be suppressed by vitamin D supplementation in

MS via increase in N-glycan branching. But human inter-

ventional studies investigating the effect of vitamin D sup-

plementation on N-glycan branching have not been

performed to date, leaving it unclear if this mechanism is

of actual physiological relevance in vivo in humans.

In the ‘Efficacy of Vitamin D supplementation In Multi-

ple Sclerosis’ (EVIDIMS) trial, (NCT01440062) patients

with RRMS received either high-dose (20 400 IU) or low-

dose (400 IU) cholecalciferol every other day over 18

month.39 Patients were monitored clinically and with brain

magnetic resonance imaging (MRI).39,40 The primary end-

point of cumulative new T2w hyperintense lesions was

missed with no serious adverse event.40 A high prevalence of

25(OH)D deficiency was recorded at baseline and this was

associated with increased disease activity prior to supple-

mentation.41 In this exploratory substudy, we investigated

the immunomodulatory properties of vitamin D3 on (a) fre-

quencies of immune cells associated with MS pathology and

(b) N-glycan branching on immune cells.

Materials and Methods

Subjects

Detailed inclusion/exclusion criteria have been published

elsewhere.39,40 In brief, patients with RRMS according to the

2005 McDonald criteria,42 30 days of no relapse before study

entry, age of 18-65 years, EDSS score between 0.0 and 6.0

were included. Patients were on stable IFNb-1b treatment at

least 3 months before study entry. Exclusion criteria were the

presence of other autoimmune diseases or immunomodula-

tory therapy besides IFNb-1b.
Patients were recruited from a single region in north-east-

ern Germany and were randomized in 1:1 to either high or

low-dose arm stratified according to gender and serum 25

(OH)D levels (< or ≥20 ng/mL (50 nM)) at screening.40

Patients were examined at baseline, 3, 6, 12, and 18 months,

and at each visit blood samples were collected for serum and

peripheral bloodmononuclear cells (PBMCs).

In this substudy, we included 38 patients (Table 1).

Patients were excluded if they violated the study protocol:

lost to follow-up, change in MS medication, personal rea-

sons, MRI no longer performable, psychological problems,

or if their serum 25(OH)D levels were below 29 the

baseline mean compared to the reference level at

6 months for the high-dose arm and vice versa for the

low-dose arm. Two patients from the high-dose arm were

excluded because serum 25(OH)D levels indicated nonre-

sponse or noncompliance according to this rule.40 The

trial successfully raised 25(OH)D serum levels with a sig-

nificant increase in the high-dose arm compared to the

low-dose arm (p < 0.001) (Fig. S1), supporting the valid-

ity of this exploratory analysis.

Ethics approval

This study is an ancillary study of the EVIDIMS trial

(NCT01440062), a German multicenter, stratified,
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randomized, controlled, and double-blind clinical phase II

pilot study. The study was approved by the German Fed-

eral Institute for Drugs and Medical Devices and the

Ethics Committee of the State of Berlin at the Office for

Health and Social Affairs. All patients gave written

informed consent.

Serum 25(OH)D measurement

Serum 25(OH)D levels were measured by Bioscientia

Institute for Medical Diagnostics, GmbH Berlin, Ger-

many, using the LIAISON� Fa. DiaSorin chemilumines-

cence analyzer (DiaSorin, Dietzenbach, Germany).

Isolation of PBMCs

PBMCs were isolated using 10 mL of Biocoll separating

solution (Biochrom GmbH, Darmstadt, Germany) and

10 mL blood by gradient centrifugation. Aliquots of 10

million cells were frozen in liquid nitrogen with cryopro-

tection until immunological assays were performed.

Investigators were blinded to the different treatment

arms during the conduction of the experiments and anal-

ysis until after the first preliminary data analyses.

Immunophenotyping for frequencies of
effector and regulatory immune cells

We followed the protocol and antibody panel as previ-

ously published by the Sys4MS (Systems medicine

approach For MS) study.43 The Sys4MS study is a Euro-

pean consortium, which aims to personalize healthcare in

MS using a systems medicine approach.

Briefly, three customized single-batch lyotubes (BD,

USA) with antibody cocktails were used for identifying, T

effector cells (Teff), Treg, B, and NK effector/regulatory

(B/NK) cells.

The B/NK lyotubes contained antibodies for staining

CD19, CD3, CD24, CD16, CD38, CD14, CD56, the Treg

lyotubes contained antibodies for staining CD3, CD4,

CD8, CD28, CD25, CD45RA, CD127, and the Teff lyo-

tubes for staining, CD3, CD4, CD8, CD161, CXCR3,

CCRA, and CCR6.

Frozen PBMCs were thawed in a water bath at 37°C and

suspended in 2 mL Ca2+- and Mg2+-free PBS. Cells were

washed and resuspended in 5 mL cold FACS buffer

(PBS + 1% Fetal calf serum, FCS) and counted. The pellets

were resuspended in FACS buffer to 1 million cells /100 µL.
Lyotubes were rehydrated using 100 µL of Brilliant

stain buffer (BD, Cat. #563794) for 5 minutes at 4°C and

1 million PBMCs added to each lyotube.

PBMCs and antibodies were incubated for 30 minutes

at 4°C and washed. Dead cells were identified using

500 µL of Fixable viable stain, FVS 520 (2.5 µL in 50 mL

PBS) (BD, Cat. #564407) for 10 minutes at 4°C and

washed. Cells were acquired same day without fixation

using the FACSCanto II with Diva 6.1.3.8 (BD Pharmin-

gen, Franklin Lakes, NJ, USA).

Storage events were set to the immune cell population

of interest, 15,000 events were recorded for the Treg tubes

and Teff tubes and 5000 for the B/NK tubes.

Flow cytometric analysis for b1,6 N-glycan
expression on immune cells

A cocktail of antibodies for L-PHA-FITC (2 µg/mL of

staining volume) (Vector Laboratories, Cat. #FL-1111),

CD45 PerCP (1:100, BioLegend, Cat. #368506), CD3 APC

(0.5:100, BioLegend, Cat. #317318), CD4 APC-Cy7

(0.5:100, BioLegend, Cat. #317418), CD8a PB (0.5:100,

Table 1. Baseline Demographics and univariate analysis of clinical parameters at 6 and 12 months.

Variable

Experiment 1 (n = 29) Experiment 2 (n = 38)

Baseline 12 months Baseline 6 months

High

dose

Low

dose P value

High

dose

Low

dose P value

High

dose

Low

dose P value

High

dose

Low

dose P value

Male n (%) 6(54.5) 5 (45.4) 0.9991 6 (46.2) 7 (53.8)

Female n (%) 15 (60.0) 10 (40.0) 0.5021

Age in years 41.2 (12.1) 43.1 (9.6) 0.5272

mean (SD)

Serum 25(OH) 20 (11) 17 (7) 0.6782 76 (18) 23 (5) <0.0012 18.7(9.7) 16.5 (8.1) 0.4282 73.9

(18.4)

23.3

(4.81)

<0.0012

mean (SD) ng/mL

EDSS, median

[interquartile

range]

2 [1.2] 2.5 [2.0] 0.1122 2 [1.0] 2.5

[2.4]

0.2612 2.3 [0.6] 2.0 [2.0] 0.6342 2.5 [1.1] 2.3 [2.1] 0.7112

1Exact v2-test.
2Exact Mann–Whitney-test.
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BioLegend, Cat. #301033), CD19 BV510 (1:100, BioLe-

gend, Cat. #302242), CD16 APC/Cy7 (0.5:100, BioLegend,

Cat. #302018), CD56 PB (0.5:100, BioLegend, Cat.

#362520) was prepared in PBS (- Ca+ and - Mg+).
PBMCs (1 9 106 cells) were incubated for 30 minutes

at 4°C with the antibody cocktail after Fc blockade

(0.25 mg BD, Cat: #564220). Cells were resuspended in

500 µL FACS buffer and proceeded to acquisition imme-

diately. Cells were stained in duplicates and a total of

20,000 events recorded for each tube. For duplicate acqui-

sitions, the average of the two recorded events was used

in the data analysis.

Statistics

Data distribution was checked using the Shapiro–Wilk test.

Results for continuous variables are presented as median

[interquartile range] and as mean (SD) for non-normally

and normally distributed data, respectively. For categorical

variables, we present data as absolute numbers and relative

frequency (%). Immunology data are presented as percent-

age fold change. Serum 25(OH)D levels over the entire

study period were analyzed using a nonparametric multi-

variate covariance analysis for longitudinal data with base-

line as a covariate in a two-factorial design (1st factor:

groups, 2nd factor: time). To compare the changes from

baseline to successive visits in the immune cell data, we

used a nonparametric analysis of covariance (ANCOVA)

for longitudinal data with baseline as a covariate. Univari-

ate comparisons between high- and low-dose arms for par-

ticular visits were performed using the nonparametric

exact Mann–Whitney test. For experiments with duplicates,

the average of the duplicates was used in the analysis. Cor-

relation analyses were performed using Spearman’s Rho.

Statistical significance was set as P < 0.05. All tests should

be understood as constituting exploratory data analysis,

such that no adjustments for multiple testing have been

made. Data were analyzed in R 3.6.0 (2019-04-26) and SAS

9.4 [TS1M3] (SAS Institute Inc., Cary, NC, USA).

Results

Vitamin D3 supplementation and immune
cell frequency (Experiment 1)

To investigate the effect of vitamin D3 supplementation

on the frequencies of broad, effector/ regulatory T, B, and

NK cells, we compared the percentage fold change at

12 months without L-PHA stain. The experimental design

is illustrated in (Fig. 1).

In group-wise analyses, high- and low-dose arms did

not differ in terms of the frequencies of total CD19+ B

cells, B-mature (CD19+CD24lowCD38low), B- memory

(CD19+CD24highCD38low), Breg (CD19+CD24highCD38-
high), B-memory atypical (CD19+CD24highCD38-), and B-

plasma (CD19+CD24-CD38high), cells at 12 months

(Fig. 2B–G). High-dose vitamin D3 did not affect the frequen-

cies of CD56dim cells (CD16+CD56low) and CD56bright cells
(CD16+ CD56high) at 12 months (Fig. 2H,I).

Likewise, frequencies of CD3+ T cells, CD3+CD4+ T

cells, CD3+CD8+ T cells and na€ıve Tregs

(CD45RA + CD25low) did not differ between high- and

low-dose arms at 12 months (Fig. 3B–E). In the low-dose

arm, the frequency of CD8+ Tregs (CD8+ CD28-CD127-)

was reduced compared to the high-dose arm at

12 months (P = 0.030), whereas that of CD4 + Treg

(CD4+CD25+CD127-) cells did not differ between arms

at 12 months (Fig. 3F–G). The proportions of Teffs; Th17

cells (CD3+CD4+CCR6+CD161+CXCR3-CCR4+), Th1

classic (CD3+CD4+CCR6-CD161-CXCR3+) and Th1

nonclassic (CD3+CD4+CCR6-CD161+CXCR3+) cells

were not affected by high- or low-dose supplementation

at 12 months (Fig. 4B–D).
In analyses combining both arms, we found no correla-

tions between immune cell frequencies and serum 25

(OH)D levels at 6, 12, or 18 months (data not shown).

An association between CD8+CD28-CD127- and serum

25(OH)D concentration was not confirmed in the corre-

lation analysis (P = 0.166).

Vitamin D3 supplementation and N-
glycosylation (Experiment 2)

We investigated the effect of vitamin D3 supplementation

on the intensity of b1,6 N-glycan expression on broad T,

B, and NK cells measured by MFI of L-PHA, at baseline,

6, 12, and 18 months. L-PHA binds to b1,6 branched N-

glycans produced by Mgat5 and serves as an overall mea-

sure of N-glycan branching.29 The gating strategy is

shown in Figure S2.

First, we tested for correlations between MFI of L-PHA

on immune cells and serum 25(OH)D levels at baseline,

6, 12, and 18 months. The time point that showed strong

negative correlations of MFI of L-PHA with serum 25

(OH)D levels was 6 months (Fig. S3A-D). No strong cor-

relations were found at baseline, 12 or 18 months

(Fig. S3A-D). As a result, we focused our analyses at the

6 months’ time point.

In group-wise analyses, comparing high-dose vs. low-

dose arms, high-dose vitamin D3 supplementation led to

a decrease in the MFI of L-PHA at 6 months on CD3+
(P = 0.007), CD4+ (P = 0.005), CD8+ (P = 0.026) T cells

(Fig 5A–C). This decrease lasted up to 18 months com-

pared to the low-dose arm, which did not change signifi-

cantly over time. MFI of L-PHA on CD19+ B cells also

showed a reduction although not significant (P = 0.178)
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(Fig. 5D). In NK cells, CD56dim cells showed reduced

branching at 6 months in the high-dose arm (P = 0.028)

and continuously decreased until 18 months, whereas the

low-dose arm remained stable over time. In CD56bright

cells, branching was reduced in the high-dose arm at

6 months (P = 0.020) and decreased steadily until

18 months. The low-dose arm, on the other hand, contin-

uously increased up to 18 months (Fig. 5E,F).

In correlation analyses combining both arms, we found

negative correlations between L-PHA MFI and serum 25

(OH)D levels in CD3+, CD4+, CD8+ T cells, CD19+ B

cells, CD16 + CD56low (CD56dim) and CD16+CD56high
(CD56bright) NK cells. This further confirmed reduced

N-glycan branching intensity observed in the group-wise

analyses (Fig. 6A–F).

N-glycan branching and immune cell
frequency

To investigate if the observed effect of vitamin D3 on N-

glycan branching was due to differences in immune cell

frequency, we tested correlations between cell frequencies

Experiment 1: flow 
cytometric analysis for the 
frequencies of effector and 

regulatory immune cell 
N = 29

High-dose = 15, low-dose = 
14

without L-PHA 

Time point; baseline 
and 12 months

Experiment 2: flow 
cytometric analysis for N-

glycan expression on 
immune cells

N = 38

High-dose = 21, low-dose = 
17

with L-PHA

Timepoint;baseline, 
6 months up to 18 

months

Figure 1. Experimental design flowchart.
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and their corresponding L-PHA MFI. There was no asso-

ciation between cell frequencies and the expression of

GlcNAc on CD3+ T cells, CD4+ T cells, CD8+ T cells,

CD19+ B cells, CD56dim, and CD56bright NK cells at

6 months (Fig. 7A–F), as well as 12 months or

18 months (data not shown).

Discussion

Vitamin D3 supplementation did not affect the propor-

tions of Th/Teff cells, Beff/Breg cells, and NK cells sub-

populations. Specifically, the proportions of Th1 and

Th17, which are known to be disturbed in MS remained

stable. We observed a reduction in CD8+ Treg propor-

tions in the low-dose arm, which remained unchanged in

the high-dose arm. CD8+ Treg is a type of natural Tregs,

which lack FoxP3 expression.44,45 Similar to CD4+CD25+
Tregs, they induce and maintain peripheral tolerance by

regulating harmful and autoreactive T cells.46,47 This indi-

cates that high-dose supplementation may support main-

taining CD8+ Treg levels. Although this is an interesting

finding, this was not correlated with serum 25(OH)D

levels nor with effector T cells raising the likelihood that

this exploratory result is false positive.

Vitamin D3 supplementation did not affect na€ıve Treg

proportions (CD45RA+CD25low). This is not surprising

as na€ıve T cells do not express the vitamin D receptor

(VDR) and hence respond weakly to the stimulation of

the T-cell receptor by vitamin D.48 In vitro studies have

shown that activated na€ıve CD4+ T cells cannot convert

25(OH)D to 1,25(OH)D3 when cultured in serum or

with vitamin D-binding protein (DBP).49 In contrast, in

DBP-null mice, although 1,25(OH)D3 blood levels were

significantly reduced, levels in target tissue were signifi-

cantly higher compared to wildtype.50 This suggests that

DBP may have limited impact on distribution, uptake,

and biological activity in target tissues.50 In comparison,

in our study cells were not cultured or prestimulated,

hence the effects of DBP or serum on the action of 25

(OH)D cannot be directly applied to our results. More-

over, studies that have shown significant effects of vitamin

D supplementation in MS, prestimulated immune cells
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before immunostaining.19,51 VDR expression on immune

cells is upregulated upon activation,52-54 and this may

explain why studies that prestimulated immune cells

before vitamin D treatment show varying results com-

pared to those without prestimulation.

A randomized controlled trial with cholecalciferol sup-

plementation showed no difference in the degree of

change from baseline in CD4+CD161+ cells, which are

markers for Th17 cells in both high- and low-dose arms.

However, a significant decrease was observed in

CD4+ IL-17+ cells proportions in the high-dose arm.19

We did not observe a reduction in the CD161+CD4+ T

cells fraction with high-dose supplementation as reported

by Sotirchos et al.,19 potentially due to the differences in

methodology, time of analysis and supplementation plan.

In their, study, patients received additionally 1 000 mg

calcium and multivitamins.19 Calcium is known to

enhance both vitamin D absorption and half-life of 25

(OH)D.55 While we investigated the effect of vitamin D

after 12 months of supplementation, Sotirchos et al.,

investigated vitamin D effects after 6 months. In a previ-

ous trial, supplementation with 2000 to 8000 IU
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cholecalciferol daily for 12 weeks reduced frequencies of

CD4 + IL-17 + cells in prestimulated peripheral T cells.51

However, no response was observed on B and T cells in a

linear-dose-dependent manner.51

Other studies also could not detect any association or

effect between vitamin D and frequencies of Th17, na€ıve

T cells, or Bregs in MS patients.24,56,57 The SOLAR study

recently reported on a lack of effect of vitamin D on the

proportions of Breg and Tregs or on IL-17 cytokines

production between high-dose and placebo arms.57 Simi-

larly, in two randomized placebo-controlled trials with

high-dose vitamin D supplementation as add-on to

IFNb, the levels of IL-17 cytokines were not different

between groups.58,59 We recently investigated the impact

of treatment on immunophenotypes in different subtypes

of 227 MS patients under different disease-modifying

therapies (DMT). In this study, we found no changes in

frequencies of Th17, Th1, CD4+ Tregs nor Breg/Beff cells

in RRMS patients compared to healthy controls. The

only DMT that showed differences in lymphocyte

populations was Fingolimod, whereas patients on IFN

showed no differences in the frequencies of immunophe-

notypes.43

The vitamin D response index; the efficiency with

which one responds to vitamin D at the molecular level

could also explain the different outcomes on the frequen-

cies of immune cells.60 Molecular-based (gene expression

and chromatin accessibility) analyses revealed three types

of responders; high, mid, and low responders, implying

that individuals may need different amounts of vitamin D

to show biologically relevant response.60-63

Our study is the first to investigate N-glycan branching

in the context of vitamin D supplementation trial.

Ex-vivo cells and animal studies have shown that pres-

timulated human CD4+ T cells treated with 40 ng/ml

(100 nM) 1,25(OH)2D3 enhanced Mgat1 mRNA levels

with a concurrent increase in N-glycan branching.11 In

EAE mice, reduced dietary supplementation decreased N-

glycan branching, whereas injection of 1,25(OH)2D3

inhibited autoimmunity.11,32
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On the basis of these data, we expected higher N-gly-

can branching with high-dose supplementation, however,

we found the opposite effect. In ex vivo human PBMCs,

high-dose oral cholecalciferol intake reduced branching in

T cells and NK cells. This effect was not dependent on

immune cell frequencies, indicating that vitamin D3

downregulated branching via Mgat enzymes.

Resting T cells minimally express the VDR compared to

activated T cells,52 therefore, activated T cells will primar-

ily respond to vitamin D in vivo. Indeed, previous studies
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showed that 1,25(OH)2D3 increased N-glycan branching

in preactivated, but not resting human/mouse T cells.33,35

As most of the patients at enrolment in our study were 25

(OH)D deficient; this might have induced a high activa-

tion state within the immune system, which might have

already increased branching shortly (days to weeks) after

supplementation. Thus, vitamin D3 supplementation over

time would be expected to lower branching in the acti-

vated cells as they revert to a quiescent resting state, with

a net effect of decreased branching observed in our study

in the high-dose arm. The effects of vitamin D on N-gly-

can branching in activated T cells occur over days

in vitro,11 however, we evaluated changes in branching at

6 months after supplementation. Evaluation at earlier time

points would be needed to confirm this hypothesis.

Thus, the effect of vitamin D on N-glycan branching

depends on VDR expression, the activation state of cells,

Mgat 1 enzymes, substrate availability, and genetic fac-

tors.11,33,37,52

Vitamin D3 supplementation in low- and high-dose

arms raised serum 25(OH)D levels from deficient to suffi-

cient levels (>20 ng/mL (50 nM)).64-67 This affirms that

patients included in this study were able to successfully

supplement and metabolize vitamin D. Nonetheless, our

study lacks the power to perform further subgroup analy-

ses, that is, regarding high, mid, and low responders. The

EVIDIMS study was aborted after the availability of oral

drugs and the increasing trend to self-medicate with vita-

min D made continuation unfeasible. Another limitation

is the restriction of analysis to certain time points due to

limited source material. For the same reason, we could

not address differential glycosylation effects on effector/

regulatory subpopulations.

In our study, both treatment arms involved patients

who were on stable IFNb-1b before study entry, thus

eliminating confounding effects due to interactions of

IFNb-1b with vitamin D. IFNb is generally known to

increase anti-inflammatory factors while reducing proin-

flammatory cytokines.68 Vitamin D and IFNb are consid-

ered to have synergistic effects in modulating MS.69-72

Combining IFNb with an analogue of 1,25(OH)2D3 pre-

vented autoimmune encephalitis in animal models of

MS.73 Additionally, IFNb enhanced the synthesis of 25

(OH)D from sun exposure which was associated with

reduced relapse risk.69

Conclusion

We show in an interventional human study that vitamin D

affects N-glycan branching. This is consistent with ex vivo

and animal studies suggesting that the immunomodulatory

effects of vitamin D are associated with regulating N-glycan

branching. We did not observe consistent effects of vitamin

D supplementation on immune cell frequencies, which is in

support of some but not all previous studies.
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Figure S1. Serum 25-hydroxyvitamin D, 25(OH)D levels

in the treatment arms over time. Boxplot of serum 25

(OH)D levels at each visit in the high-dose (blue) and

low-dose (gray) arms. Significant differences between both

arms for group differences, time change, and interactions

were tested using multivariate nonparametric analyses of

longitudinal data **P < 0.001. Abbreviations: BL (base-

line), V6 (6 months), V12 (12 months), V18

(18 months), (n = 38).

Figure S2. Gating strategy for T, B, and NK cells with L-

PHA staining.

Figure S3. Heat map correlation matrixes of the MFI of

L-PHA on immune cells with serum 25(OH)D. The figure

illustrates the heat map correlation matrixes of the depen-

dence of MFI L-PHA of immune cells on serum 25(OH)

D levels. (A) Baseline, (B) 6 months, (C) 12 and (D)

18 months after supplementation. Each box shows the

correlation coefficient between the MFI L-PHA of

immune cells and serum 25(OH)D. The correlations are

indicated by the color intensities from blue and from

brown to red. Very strong positive correlations are given

as 1, whereas strong negative correlations as �1.

(n = 38).
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