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Merging high-resolution satellite-based precipitation fields
and point-scale rain gauge measurements—A case study
in Chile
Zhongwen Yang1,2,3,4 , Kuolin Hsu4, Soroosh Sorooshian4 , Xinyi Xu3, Dan Braithwaite4 ,
Yuan Zhang1,2, and Koen M. J. Verbist5,6

1State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental
Sciences, Beijing, China, 2Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of
Environmental Sciences, Beijing, China, 3College of Water Sciences, Key Laboratory of Water and Sediment Sciences of
Ministry of Education, Beijing Normal University, Beijing, China, 4Department of Civil and Environmental Engineering,
University of California, Irvine, California, USA, 5Hydrological Systems and Water Scarcity Section, UNESCO-IHP, Santiago,
Chile, 6International Centre for Eremology, Department of Soil Management, Ghent University, Ghent, Belgium

Abstract With high spatial-temporal resolution, Satellite-based Precipitation Estimates (SPE) are
becoming valuable alternative rainfall data for hydrologic and climatic studies but are subject to
considerable uncertainty. Effective merging of SPE and ground-based gauge measurements may help to
improve precipitation estimation in both better resolution and accuracy. In this study, a framework for
merging satellite and gauge precipitation data is developed based on three steps, including SPE bias
adjustment, gauge observation gridding, and data merging, with the objective to produce high-quality
precipitation estimates. An inverse-root-mean-square-error weighting approach is proposed to combine the
satellite and gauge estimates that are in advance adjusted and gridded, respectively. The model is applied
and tested with the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks-Cloud Classification System (PERSIANN-CCS) estimates (daily, 0.04° × 0.04°) over Chile, for the 6 year
period of 2009–2014. Daily observations from about 90% of collected gauges over the study area are used
for model calibration; the rest of the gauged data are regarded as ground “truth” for validation. Evaluation
results indicate high effectiveness of the model in producing high-resolution-precision precipitation data.
Compared to reference data, the merged data (daily) show correlation coefficients, probabilities of detection,
root-mean-square errors, and absolute mean biases that were consistently improved from the original
PERSIANN-CCS estimates. The cross-validation evidences that the framework is effective in providing
high-quality estimates even over nongauged satellite pixels. The samemethod can be applied globally and is
expected to produce precipitation products in near real time by integrating gauge observations with
satellite estimates.

1. Introduction

Precipitation is a key process in the hydrological cycle. The quality of precipitation data is of high importance
to hydrologists, as precipitation uncertainty is the most influential cause of uncertainty in hydrological simu-
lation [Moradkhani and Sorooshian, 2008]. As such, it is significant to accurately quantify the precipitation rate
for reliable hydrological applications.

Rain gauge measurements and satellite-based estimations are two precipitation data sources with different
features. A rain gauge network directly measuring precipitation is capable of providing reliable observations
with high accuracy. But the uncertainty of precipitation increases when the point-wise measurements are
extended to areas where gauges are nonexistent [Huff, 1970]. This situation becomes even worse over moun-
tainous or arid/semiarid regions with sparsely distributed gauges [Chubb et al., 2016; King et al., 2013; Miao
et al., 2015; Tozer et al., 2012]. Therefore, Satellite-based Precipitation Estimates (SPE) are becoming a popular
alternative for measuring precipitation, particularly over those gauge-sparse areas. It can provide high-
resolution and global coverage SPE products based on remotely sensed information from geostationary
Earth-orbiting (GEO) or/and low Earth-orbiting satellites [Hong et al., 2004; Hsu et al., 1997, 1999; Huffman
et al., 2010, 2007, 2014; Joyce et al., 2004; Kubota et al., 2007; Mitchell et al., 2004; Sorooshian et al., 2000].
Nevertheless, these SPE products are subject to considerable biases [AghaKouchak et al., 2011; Li et al., 2013;
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Melo et al., 2015;Miao et al., 2016b; Satge et al., 2016; Yang et al., 2016]. This limitation leads to relatively high
uncertainties in hydrologic modeling [Behrangi et al., 2014; Bitew and Gebremichael, 2011; Gebregiorgis et al.,
2012; Thiemig et al., 2013; Yang et al., 2017]. This has further motivated the use of uncertainty analysis models
to investigate the bias characteristics of SPE [Liu et al., 2015; Sarachi et al., 2015; Tian et al., 2009]. Based on
these studies, it was recommended that merging SPE and gauged data might improve the resolution,
accuracy, and coverage of precipitation estimations.

Since the late 1990s, researchers started to put efforts into combining satellite-gauge precipitation data. The
early successful work was the Global Precipitation Climatology Project (GPCP), which constructed a relatively
coarse-resolution (monthly, 2.5° × 2.5°) global precipitation data set [Adler et al., 2003; Huffman et al., 1997]. In
the GPCP, a mean bias correction method and an inverse-error-variance weighting approach were employed
to produce a merged analysis that benefited from both the spatial coverage of satellite estimates and the
accuracy of ground observations. Ashouri et al. [2015] further incorporated the GPCP rainfall data into the
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) rain-
fall estimates, providing a useful data record for climatic studies (termed the PERSIANN-CDR) with higher
resolution (daily, 0.25° × 0.25°) [Ashouri et al., 2015].

Recent studies merging satellite and gauge data have focused on some high-resolution SPE products. Vila
et al. [2009] combined the Real-time TRMM Multisatellite Precipitation Analysis (TMPA) daily estimates with
gauge measurements using a bias correction scheme. Li and Shao [2010] employed a nonparametric kernel
smoothing model to estimate the error field of TMPA estimates, resulting in bias-reduced satellite-gauge
merged precipitation data. Notably, some studies tried to indirectly merge satellite and gauge estimations
by considering an advance step for adjusting the systematic biases in satellite data. Xie and Xiong [2011] con-
ducted a conceptual merging framework that included a SPE bias correction step and a satellite-gauge data
combination step. In the SPE bias correction step, systematic biases of satellite precipitation retrievals were
effectively reduced. Systematic bias correction was also recommended by De and Terra [2012] in satellite-
gauge data merging.

In our previous work [Yang et al., 2016], a probability-based bias adjustment approach for SPE (termed the
quantile mapping technique-Gaussian weighting scheme (QM-GW)) was developed and tested over Chile,
using the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-
Cloud Classification System (PERSIANN-CCS) [Hong et al., 2004]. This approach was shown to have high effec-
tiveness in adjusting systematic biases of SPE even into the future, but it was not effective in addressing ran-
dom errors. A recent study has compared the QM-GW-adjusted PERSIANN-CCS data with multiple satellite
precipitation products over Chile [Zambrano-Bigiarini et al., 2017]. This study shows that our bias-adjusted
PERSIANN-CCS (Adj-CCS) estimates are worse in representing observed rainfall than those products, includ-
ing the PGFv3 [Chaney et al., 2014; Peng et al., 2016], CHIRPSv2 [Funk et al., 2015], TMPA 3B42v7 [Huffman
et al., 2010], and MSWEPv1.1 [Beck et al., 2016]. It is worth mentioning that the Adj-CCS product was gener-
ated based on 5 year historical data trained probability matching (QM-GW approach) with no additional
gauge data included. However, all of the other four data sets are merged products including both satellite
and gauge observations over the same time period (e.g., for each specific month). That means while the
QM-GW approach is advanced in adjusting SPE into the future compared to those data merging algorithms,
it neglected the contribution of simultaneous gauge observations to adjusted precipitation results, which is
the main reason for the poorer performance of Adj-CCS estimates over Chile. Building on those results, in
order to gain better precipitation products, we expect to construct a robust framework that merges the
QM-GW-adjusted satellite estimates with gauge observations at the end of each day when real-time daily
data are made available.

In this study, a framework for merging high-resolution satellite precipitation estimation and point-wise gauge
observation is developed to provide high-quality precipitation data supporting hydrological and climatic
applications. The model blends satellite and gauge data in three procedures: (1) SPE bias adjustment, (2)
gauge measurement gridding, and (3) data merging. To test the model, a case study is demonstrated in
Chile using daily retrievals from the PERSIANN-CCS [Hong et al., 2004] and collocated gauge data for the per-
iod of 2009–2014. The methodology and case study being presented in this work are intended to generalize
the mechanism for merging gauge and remote-sensing precipitation data in other regions of the world, if the
minimum amount of in situ data is available. The rest of this paper is organized as follows: section 2 presents
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the methodology, section 3 describes
the case study, section 4 presents the
evaluation results, and the conclu-
sions and future prospect are given in
section 5.

2. Methodology

From Figure 1, three steps for the
satellite-gauge data merging frame-
work are presented. In the first step
the systematic biases in satellite
precipitation retrievals are removed
using the QM-GW approach devel-

oped by Yang et al. [2016]. In the second step, observations from gauge stations are gridded over satellite
pixels (at the same resolution of satellite data) based on a Gaussian weighting scheme. Finally, an inverse-
root-mean-square-error (IRMSE) weighting approach is employed to blend the bias-adjusted and gridded
data sets. Details of the methods for the three steps are described in the following sections.

2.1. SPE Bias Adjustment

In the bias adjustment procedure, the QM-GW approach was constructed based on a quantile mapping (QM)
technique and a Gaussian weighting interpolation scheme [Yang et al., 2016]. The QM is a probability-based
technique that corrects the systematic biases in satellite estimations based on a cumulative distribution func-
tion (CDF) transformation using CDFs calculated with historical precipitation data from gauge stations and
collocated satellite pixels [De and Terra, 2012; Miao et al., 2016a; Themessl et al., 2012]. Specifically, the QM-
GW approach calculates seasonal nonparametric CDF pairs (from satellite and gauge data) at each 1° × 1° grid
box area divided in advance [Yang et al., 2016]. In doing so, we assume that the gauges or satellite pixels
within each 1° × 1° grid box share the same CDF for precipitation, which is reasonable because the probability
distributions for multiple years of precipitation events generally exhibit spatial homogeneity in a local area.
Thus, the CDF pairs over a specific grid box are calculated using mixed precipitation estimates from the
included gauges and collocated satellite pixels. For those 1° × 1° grid boxes with no gauge stations, the con-
current gauge and satellite estimates from nearby 1° × 1° grid boxes are collected to estimate the CDFs for
that grid box. Based on those CDFs, a satellite precipitation estimation over a given pixel is primarily corrected
using the CDF pairs from four neighboring 1° × 1° grid boxes, resulting in four bias-corrected estimations. In
addition, the Gaussian weighting interpolation scheme is utilized to estimate the final adjusted precipitation
rate by interpolating those bias-corrected estimations using distance-based weighting with a Gaussian func-
tion. Details of the QM-GW approach can be found in Yang et al. [2016].

2.2. Gauge Observation Gridding

In previous studies, point-wise gauge observations were directly merged with satellite data [Li and Shao,
2010; Vila et al., 2009; Xie and Xiong, 2011]. However, in this study, a separate step is used to grid the gauge
data in the same spatial resolution as satellite retrievals. The gridded gauge observation (Gri-GO) at satellite
pixel i is estimated based on a Gaussian weighting function to the neighboring gauges that are included
within four nearby gauged 1° × 1° grid boxes (see equations (1)–(3)). The four nearby grid boxes are chosen
using the shortest distances (top four) from pixel i to the centers of those gauged 1° × 1° grid boxes. By doing
so, generating a localized interpolation is aided by ignoring unnecessary gauges that are far away from pixel i
which reduces the computation load, considering that a large number of rain gauges may exist over a given
study area.

RgriGi ¼
Xn

j¼1
wijrGj (1)

wij ¼ exp � dij=C
� �2� �

=
Xn

j¼1
exp � dij=C

� �2� �
(2)

dij ¼ dij=D (3)

where RgriGi is gridded gauge measurement for pixel i; rGj is gauge observation at station j; n is the number of

Figure 1. Framework for merging satellite and gauge precipitation
estimates.
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gauge stations included in the four neighboring gauged grid boxes (divided in the SPE bias adjustment step)
of pixel i;wij is the weight assigned for gauge j; dij anddij are the actual and normalized straight-line distances,
respectively, between pixel i and gauge j; D is a constant that equals the maximum straight-line distance
within the four neighboring grid box area; and C is a shape parameter for the Gaussian function.

It is worth mentioning that this gauge data gridding approach leads to additional uncertainties in gridded
observations when point-scale data are interpolated over high spatial resolution fields. Generally, gridded
gauge precipitation data tend to underestimate extreme wet events and overestimate the frequency and
amount of very low rainfall events, implying that gridded estimates might not accurately represent “real”
spatial and temporal variabilities of precipitation [King et al., 2013; Tozer et al., 2012]. In this case, it is of impor-

tance to quantify the uncertainty of the gridded gauge measurements (RgriGi ) as they are used for satellite-
gauge data merging.

2.3. Data Set Merging

According to Yang et al. [2016] and the gauge data gridding approach presented above, biases remain in
both the bias-adjusted SPE (using QM-GW approach) and the Gri-GO (in satellite resolution). In this context,
the IRMSE weighting approach is developed to merge the bias-adjusted and gridded precipitation data sets
based principally on the root-mean-square errors (RMSEs) quantifying uncertainties of the data sets, as
detailed below.

When the bias-adjusted satellite estimates and gridded gauge observations are ready, merged satellite-
gauge precipitation (Mer-SG) is calculated using equations (4)–(6):

Rmer
i ¼ WSiR

adj
Si þWGiR

gri
Gi (4)

WSi ¼ 1
RMSESi

� �
=

1
RMSESi

þ 1
RMSEGi

� �
(5)

WGi ¼ 1
RMSEGi

� �
=

1
RMSESi

þ 1
RMSEGi

� �
(6)

where Rmer
i is the merged precipitation rate for pixel i; RadjSi is the bias-adjusted SPE for pixel i;WSi andWGi are

weights calculated seasonally for the bias-adjusted satellite and gridded gauge estimates, respectively;
RMSESi and RMSEGi are RMSEs estimated for the two data sets over pixel i, respectively, by equations (7)
and (8):

RMSESi ¼ 1
N

XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm

k¼1
RadjSjk � rGjk

� �2
r

(7)

RMSEGi ¼ f DMINið Þ (8)

where RadjSjk is the k th bias-adjusted satellite precipitation rate over the pixel that includes gauge j; , rGjk is
gauge observation from gauge j; , N is the total number of gauge stations andm represents the total number
of precipitation rates from gauge j; , and f(DMINi) is the outcome from an increasing function that depicts the
RMSEGi increase when the distance between pixel i and its nearest gauge station (DMINi) grows.

According to equation (7), the error term RMSESi is assumed to be constant over the entire study area and
estimated directly using the observations and adjusted estimates from rain gauges and collocated satel-
lite pixels, respectively. The error function f(DMIN) in equation (8) can be fitted to the calculated samples
of RMSE for gridded observation at every gauge (RMSEgri) and corresponding minimal distance from each
gauge to the others (Dmin). In this case, a cross-validation strategy is applied to obtain the RMSEgri

samples:

RMSEgrij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm

k¼1
RgriG�jk � rGjk

� �2
r

(9)

where RMSEgrij represents the RMSEgri at gauge station j; and RgriG�jk is gridded gauge observation over gauge
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station j by discarding self-point observed data, which uses the same Gaussian weighting scheme as step 2
(Figure 1) with fixed parameters.

3. Case Study

This section describes a case study in Chile (study area description can be found in Yang et al. [2016]) for
testing the data merging framework. Data sources, model calibration, and evaluation strategies of the case
study are described as follows.

3.1. Data Sources

This study is conducted based on the same precipitation data series (daily) collected by Yang et al.
[2016]. These data include the original PERSIANN-CCS precipitation retrievals (Ori-CCS, 0.04° × 0.04°)
and gauge observations over Chile for the 6 year period of 2009–2014. Detailed information about
the two data sources was presented in Yang et al. [2016]. It is worth mentioning that the study area
is limited to the latitude extent from 17°S to 46°S (Figure 2). This is due to insufficient samples from
GEO sensors over the remaining part of Chile (46°S–56°S) for PERSIANN-CCS precipitation estimation
[Yang et al., 2016]. In this case, a total of 456 gauges were collected over the study area, the same as
in Yang et al. [2016].

Notably, as shown in Yang et al. [2016] the Adj-CCS (for 2009–2014) over Chile had been already generated
using the QM-GW approach based on the same data sources. As such, we take these Adj-CCS estimates as the
outcomes from the SPE bias adjustment step in this study (see Figure 3).

3.2. Model Calibration

The flowchart for calibrating and validating the model is shown in Figure 3. As the QM-GW bias adjustment
approach has already been validated by Yang et al. [2016], this case study focuses on steps 2 and 3 in order to
identify if the extended framework can further improve precipitation estimation via satellite-gauge data mer-
ging. Therefore, for model calibration purposes, daily precipitation measurements from 414 gauges (about
90% of the gauge data; see Figure 4a) are gridded in satellite pixels (0.04° × 0.04°) and then merged with
the Adj-CCS estimates for 2009–2014 (Figure 3). Forty-two rain gauges covering the extent of the study area
were not included in the calibration process and were used to validate the effectiveness of the proposed
merging procedure (Figure 4b). These validation gauges were selected randomly from the north, middle,
and south of the study area within a minimum distance (< 40 km) of at least one calibration gauge. The
parameterization procedures for gauge data gridding (step 2) and data set merging (step 3) are described
as follows.
3.2.1. Parameterization for Gauge Data Gridding
As presented in Figure 2, the study area (extending from 17°S to 46°S) is initially divided into 98 grid
boxes (1° × 1°). For a given satellite pixel, the gridded precipitation estimate is calculated using the obser-
vations from the four nearby gauged 1° × 1° boxes (according to equations (1)–(3)). In doing so, the value
of the shape parameter C needs to be determined in advance. In this study, the estimation for C is based
on a correlation coefficient (CORR) analysis strategy described as follows:

First, a large number of CORRs are calculated for the observed precipitation time series from any two calibra-
tion gauges that are included in any four neighboring 1° × 1° boxes. Correspondingly, the normalized
distance (ND) between each pair of calibration gauges is estimated by dividing the geographical distance
with the same constant D used in the gauge data gridding step (see equation (3)). A CORR-ND relationship
has been fitted to these samples of CORR and ND (Figure 5). It can be inferred from the fitted function curve
that precipitation for a given pixel is less related to the obervations from farther located gauge stations, show-
ing lower CORRs (ranging from 0 to 1). In this case, any gauge station with a CORR to a gridded pixel of less
than a critical value, say a, ought to have limited contribution to the final gridded precipitation rate due to
long distance. The limited contribution is represented by a small Gaussian function value according to the
gridding approach (see equations (1)–(3)). Based on these inferences, two inequations can be constructed
shown as equations (10) and (11):
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1
NDþ 1

� �1:4155

< a (10)

f NDð Þ ¼ exp �ND2

C2

� �
< b (11)

where b is a critically small Gaussian
function value.

In this case study, we determined the
values of [a, b] as [0.5, 0.1]. This deter-
mination helps to effectively avoid
interferences from those gauges with
relatively low precipitation correla-
tionships to specific gridded pixel
estimation in the gauge data gridd-
ing procedure. This is because any
gauge station that has a less than
0.5 CORR to gridded pixel will be
assigned as a Gaussian function value
of less than 0.1, presenting limited
influence on gridding results. Based
on the assignments, the resolutions
of the equations (10) and (11) are
ND> 0.6318 , C< 0.4164. Therefore,
we finally determine the shape para-
meter, C= 0.4, for gridding the gauge
observations during 2009–2014.
3.2.2. Fitting Seasonal Weighting
Functions for Data Merging
According to the data merging
approach, mean RMSE of the
Adj-CCS data is estimated directly
and separately for the four seasons
with equation (7). The seasonal error
function f(DMIN) has been fitted to
the RMSEgri�Dmin samples calcu-
lated based on equation (9). The
results are shown in Figure 6.

Based on the fitted weighting func-
tions shown in Figure 6, the Gri-GO
and Adj-CCS precipitation estimates
can be blended together using equa-
tions (4)–(8). It can be inferred that
the Gri-GO estimates for a pixel i that
has a distance of less than about
40 km to its closest gauge will be
given a higher weight than the collo-

cated Adj-CCS data, when the two data sets are combined. However, the contribution of Adj-CCS to the
Mer-SG estimation will increase as the distance between pixel i and its closest gauge increases.

3.3. Evaluation Strategy

The precipitation estimates (Ori-CCS, Adj-CCS, and Mer-SG) from model calibration are compared to show
how the data merging framework improves precipitation estimation step by step, especially when the
gridded gauge data are incorporated. The gridded gauge observations (Gri-GO, at 0.04° × 0.04° resolution)

Figure 2. Grid boxes (1° × 1° red boxes) and 414 included calibration gauges
over the study area.
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are used as reference for the comparison. The Gri-GO is closer to the real precipitation field exhibiting much
lower RMSEs than the Adj-CCS. This is as expected considering the high gauge density over the study area
with an average distance between gauges calculated to be 15.76 km (Figure 4a). In the comparison
process, the precipitation estimation is assessed with respect to its spatial pattern and temporal
distribution, similar to the procedure applied in Yang et al. [2016]. The spatial pattern evaluation examines
the spatial improvement of precipitation data, taking the study area as a whole. For the temporal scale
assessment, three evaluation zones (see Figure 4a), with a 2° latitude extent representing low-, medium-,
and high-precipitation regions, are selected, which follows Yang et al. [2016]. These zones are used to
present the time series evaluations (both monthly and daily) for areal mean precipitation.

For validating the developed framework, the precipitation estimates are examined over those pixels where
included gauges are not involved in the model calibration. Specifically, we use measurements from the vali-
dation gauges (Figure 4b) as precipitation “truth” to evaluate the performance of the precipitation estimation
after applying the merging procedure. These validation gauges are classified into three groups, representing
low-, middle-, and high-latitude regions, and the rainfall averages for each of the groups are evaluated.

The performances of the Ori-CCS, Adj-CCS, and Mer-SG estimates are indicated by three statistics: the CORR,
the RMSE, and the mean bias (BIAS). The calculation of the statistics were done as described in Yang et al.
[2016], with higher CORR and lower RMSE and absolute BIAS representing better performance of precipita-
tion estimation. Furthermore, the probability of detection (POD), false alarm ratio (FAR), and Heidke skill score
(HSS) are estimated for daily precipitation time series to view the hits and misses. The calculation of the three
indicators follow Hyvarinen [2014] and Su et al. [2011].

4. Evaluation
4.1. Calibration Results
4.1.1. Climatological Pattern Comparison
Figure 7 compares the annual averages of Ori-CCS, Adj-CCS, and Mer-SG precipitation estimates for the per-
iod of 2009–2014. Compared to Gri-GO, Ori-CCS overestimated precipitation over northern Chile and under-
estimated in the south, and the Adj-CCS shows greatly improved spatial patterns of precipitation versus
Ori-CCS due to systematic bias adjustment. After merging Gri-GO and Adj-CCS, the Mer-SG exhibits further
improved spatial consistency with Gri-GO. The scatterplot comparisons over gauged pixels evidence these

Figure 3. Flowchart for model calibration and validation using daily satellite and gauge precipitation retrievals over Chile.
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changes as well (Figure 7), showing
that the Mer-SG outperforms
Ori-CCS and Adj-CCS, with the red
dots distributed tightly around the
1:1 line. This is indicated by the very
high CORR (~1.0), as well as the
lowest RMSE (10.27mm/yr) and abso-
lute BIAS (1.52 mm/yr) values for the
Mer-SG precipitation estimates.

Furthermore, the monthly spatial
patterns of the different precipitation
estimations are compared for
January, April, July, and October.
From Figure 8, the monthly precipita-
tion averages for the four months
during 2009–2014 exhibit similar
results to those for the annual
averages. Ori-CCS shows overesti-
mated monthly average precipitation
in northern Chile and underesti-
mated in the south, resulting in low
CORRs and high RMSEs as compared
to the observations over collocated
gauges. After systematic bias adjust-
ment and data merging, these spatial
disagreements have been signifi-
cantly reduced (Figure 8). Both the
Adj-CCS and Mer-SG show well-
corrected spatial patterns for monthly
precipitation averages compared to
Gri-GO. In particular, Mer-SG exhibits
the best performance. Due to blend-
ing satellite and gauge estimates,
the RMSEs and absolute BIASs for
Mer-SG monthly averages in gauged
pixels decreased to around 1.0 and
less than 0.4 mm/month, respec-
tively. As expected, the CORRs for
Mer-SG reached values as high as 1.0.

Figure 5. Fitted function curve (black line) for the CORR-ND relationship (corresponding formulation is shown on the top).

Figure 4. (a) Calibration gauges and locations of evaluation zones. (b) Validation
gauges and three gauge groups classified.
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4.1.2. Time Series Comparison
4.1.2.1. Monthly
The monthly precipitation series are presented with plots of Gri-GO, Ori-CCS, Adj-CCS, and Mer-SG over zone
nos. 1, 2, and 3 for 2009–2014, as presented in Figure 9. Compared to Gri-GO, consistent overestimations of
monthly precipitation from Ori-CCS are seen over zone no. 1 and underestimations for zone nos. 2 and 3.
These disagreements result in high RMSEs (over 52.74 mm/month) and absolute BIASs (exceeding
33.86 mm/month). After systematic bias adjustment, the Adj-CCS presents consistent improvement in
monthly precipitation series, indicated by the largely reduced RMSEs and absolute BIASs by 51% and 92%
on average, respectively (Figure 9). However, the Adj-CCS does not well capture precipitation for some spe-
cific months (e.g., August 2012), especially over the high precipitation zone nos. 2 and 3, resulting in relatively
high RMSEs (over 50 mm/month) and no distinct improvement of the CORRs. Similar changes were found in
Yang et al. [2016] as well.

Figure 6. Seasonal RMSE-minimum distance relationships for the Gri-GO (black line) and Adj-CCS (blue line) estimates. The
black lines are fitted to the samples (grey points) for four seasons, and corresponding formulations are presented on the
top, respectively.

Figure 7. (left) Annual average precipitation of Gri-GO, Ori-CCS, Adj-CCS, and Mer-SG during 2009–2014 and the (right) cor-
responding comparison of Ori-CCS (black dots), Adj-CCS (blue dots), and Mer-SG (red dots) over gauged pixels.
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Figure 8. As in Figure 7 but for monthly average results for January, April, July, and October (from top to bottom),
respectively.
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Themergedmonthly precipitation series exhibit high data quality after blending the Gri-GO and Adj-CCS esti-
mates. As shown in Figure 9, the monthly estimates of Mer-SG present further improved consistency with the
reference data over all zones compared to that of Adj-CCS. In particular, the random errors observed in
Adj-CCS estimations have been significantly reduced after data merging for those specific months (e.g.,
August 2012). As a result, the CORRs for Mer-SG increase to a value close to 1.0, while the RMSEs are reduced
to a range between 3.47 and 16.45 mm/month and the absolute BIASs show low values between �1.21 and
0.42 mm/month. These improvements are due to incorporating simultaneous gauge observations into the
systematic bias-adjusted satellite precipitation estimates.
4.1.2.2. Daily
The daily areal mean precipitation series from calibration are shown in scatterplots for the period of
2009–2014 (Figure 10). Corresponding PODs, FARs, and HSSs for the Ori-CC, Adj-CCS, and Mer-SG daily
estimates are calculated and presented in Table 1. According to Figure 10, the daily precipitation was over-
estimated by Ori-CCS over zone no. 1 and underestimated over zone nos. 2 and 3. For Adj-CCS, systematic
biases in the daily precipitation series are removed effectively, as indicated by the great decreases in the
absolute BIAS (to less than 0.1 mm/d). However, the other indicators for Adj-CCS including CORR, RMSE,
POD, FAR, and HSS do not exhibit significant improvements for zone nos. 2 and 3. Similar results were also
found in Yang et al. [2016].

After data merging, great improvement has been observed for the daily estimates, as shown by the high
consistency of Mer-SG with Gri-GO estimates for all zones, with the values clustering around the 1:1 lines in
Figure 10. In consequence, the RMSEs for Mer-SG over all zones are greatly decreased to 0.27–2.69 mm/d and
the CORRs reach to over 0.95; all the PODs and HSSs are improved to 1.00 and over 0.65, respectively, with
decreased FARs (Table 1).

Figure 9. Monthly areal mean precipitation series of Gri-GO, Ori-CCS, Adj-CCS, and Mer-SG over the evaluation zones during 2009–2014.
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4.2. Validation Results
4.2.1. Monthly Estimates
The monthly average precipitation time series for the gauge observation, Ori-CCS, Adj-CCS, and Mer-SG are
presented for the validation gauge groups (Figure 4b) during 2009–2014 (Figure 11). From Figure 11, the Ori-
CCS shows overestimated monthly precipitation over group nos. 1 and 2 and exhibits large underestimations
over group no. 3, resulting in high RMSEs and BIASs. After systematic bias adjustment, the monthly estimates
for Adj-CCS are improved with great decreases in absolute BIAS and RMSE by on average 90% and 53%,
respectively. Nonetheless, some high random errors still remain in the Adj-CCS monthly estimates leading
to RMSEs of up to 47.36 mm/month and almost unchanged CORRs, showing a similar pattern to the monthly
results from the calibration phase.

After incorporating simultaneous ground observations, the data merging framework has provided a good
quality monthly precipitation time series over the validation groups (Figure 11). As shown in Figure 11, the
Mer-SG monthly estimates have been effectively shifted toward the reference observations, especially for
those high precipitation months with large random errors observed in Adj-CCS (e.g., August 2012). These
changes cause the CORRs for Mer-SG to exceed 0.98 and bring the RMSEs down to 2.61 ~ 12.41 mm/month,
with insignificant BIAS values remaining after data merging.
4.2.2. Daily Estimates
As shown in Figure 12, the daily average precipitation series for Ori-CCS (green “plus sign”), Adj-CCS (blue
“plus sign”), and Mer-SG (red “plus sign”) are assessed over the validation groups as well. Figure 13 and
Table 2 present the corresponding CDFs, PODs, FARs, and HSSs calculated for these precipitation estimates.
From Figure 12, the Ori-CCS tends to overestimate daily precipitation over group nos. 1 and 2 and to under-
estimate over group no. 3, leading to relatively low CORRs and high RMSEs and absolute BIASs. For Adj-CCS,
improvements have been spotted for the daily estimates over the validation groups, exhibiting great reduc-
tions of absolute BIASs to less than 0.1 mm/d after removing the systematic biases in the Ori-CCS precipita-
tion estimates. The systematic bias reductions are evidenced by the consistently improved CDFs of Adj-CCS

Figure 10. Scatterplots of daily areal mean precipitation series for Ori-CCS, Adj-CCS, and Mer-SG against Gri-GO estimates over the evaluation zones during
2009–2014.

Table 1. PODs, FARs, and HSSs of Daily Precipitation Estimates From Calibration

Evaluation Zone Statistic Ori-CCS Adj-CCS Mer-SG

Zone no. 1 POD 0.88 0.81 1.00
FAR 0.45 0.37 0.33
HSS 0.39 0.49 0.65

Zone no. 2 POD 0.66 0.65 1.00
FAR 0.10 0.10 0.06
HSS 0.16 0.16 0.76

Zone no. 3 POD 0.75 0.75 1.00
FAR 0.03 0.03 0.02
HSS 0.32 0.32 0.67
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compared to Ori-CCS over all groups, as evaluated using the corresponding CDFs of gauge observed data
(see Figure 13). However, no significant improvements in the CORRs, RMSEs, PODs, FARs, and HSSs for
Adj-CCS are shown, especially for group nos. 2 and 3 (Figure 12 and Table 2).

These precipitation errors in the validation groups are brought down via the merging of gauge and satellite
estimates. As presented in Figure 12, the Mer-SG daily estimates show high consistency with the gauge
measurements, with values clustering around the 1:1 lines for all groups. The CORRs for Mer-SG in conse-
quence increase to 0.94 and the RMSEs decrease to 1.04 mm/d, on average. In addition, the CDFs for
Mer-SG estimates fit well with those for gauge observations across the validation groups (Figure 13). These
results indicate good performance of the merged precipitation data over the 42 evaluated pixels/gauges,
suggesting effectiveness of the framework in producing accurate precipitation data even over ungauged
spatial coverage areas. However, the Mer-SG daily estimates show common increases in FARs and decreases
in HSSs over the groups, while the PODs are improved to 0.93–1.00, when compared to those for the Adj-CCS
series (Table 2). These FAR increases are coincident with the underestimated CDF values for Mer-SG estimates
over those nonrainy days (see Figure 13).

To evaluate the differences between the statistics for these SPE products, the number of rainy days (NRD),
RMSE, and BIAS for each Ori-CCS, Adj-CCS, and Mer-SG daily series are examined with respect to different
rainfall amount ranges over the validation gauge groups. As shown in Figure 14, Ori-CCS presents the highest
NRDs for those nonrainy days (indicating false alarms) over group nos. 1 and 2, located in the dry areas of
north and central Chile. Group no. 3 (located in the wet south) shows high disagreement between the
NRDs for Ori-CCS and ground-based observations especially for rainy days with a precipitation amount of
less-than 10 mm/d. After systematic bias correction, the NRDs for Adj-CCS are commonly reduced over group
nos. 1 and 2, particularly for the nonrainy days, and group no. 3 exhibits relatively stable NRDs across all

Figure 11. Monthly average precipitation series of gauge observation, Ori-CCS, Adj-CCS, and Mer-SG over the validation gauge groups during 2009–2014.
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rainfall amount ranges. These changes can account for the FAR and POD decreases and slight HSS increases
for Adj-CCS over group nos. 1 and 2, as well as the minor changes in FAR, POD, and HSS over group no. 3 (see
Table 2). In contrast, Mer-SG shows greatly improved NRDs for rainy days (rainfall amount > 0 mm/d)
compared to observations, due to incorporating the gridded gauge data that helps to fix the misses from
the SPE. This improvement has caused the increased PODs for Mer-SG as shown in Table 2. On the other
hand, a higher NRD is observed in the case of the Mer-SG for the nonrainy days (Figure 14), which can be
interpreted from the CDFs for Mer-SG (see Figure 13). It helps to explain the FAR increases for Mer-SG and
the consequently deteriorated HSSs over the validation groups (Table 2). The main reason for the
aggravated NRDs and FARs for Mer-SG might be the incorporation of FARs from Gri-GO estimates
generated from the gauge observation gridding procedure that could be too coarse for zero-
rainfall detection.

In addition, the RMSE and BIAS for Ori-CCS (green lines) generally increase as observed rainfall amount rises
(Figure 14). Due to systematic bias adjustment, the Adj-CCS (blue lines) presents consistent reductions of

Figure 12. Scatterplots of daily average precipitation series of Ori-CCS, Adj-CCS, and Mer-SG against gauge observations
over the validation gauge groups during 2009–2014.

Figure 13. Comparison of CDFs calculated for gauge observation (grey solid line), Ori-CCS (green dash line), Adj-CCS (blue dash line), and Mer-SG (red dash line) over
the validation groups.
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RMSE and BIAS over group no. 1 (throughout the rainfall rate ranges) and group no. 3 (mainly for heavy
precipitation), with the statistics for group no. 2 remaining almost unchanged. The merged precipitation
estimates (red lines) show further decreased RMSEs and BIASs, especially for validation group nos. 2 and 3
(Figure 14). It indicates greatly improved precision of the Mer-SG precipitation estimates over the areas with-
out gauge observations. Furthermore, the false alarms fromMer-SG (observed rainfall amount = 0mm/d; see
Figure 14) have resulted in limited RMSEs and BIASs because the overestimated rainfall rates are low, as can
be seen from the CDFs of Mer-SG and gauge observation (Figure 13). This implies that false alarm-induced
uncertainties in the merged precipitation data can be neglected, especially when these data are used for
hydrologic applications.

Table 2. PODs, FARs, and HSSs of Daily Precipitation Estimates From Validation

Evaluation Group Statistic Ori-CCS Adj-CCS Mer-SG

Group no. 1 POD 0.83 0.58 0.93
FAR 0.56 0.32 0.51
HSS 0.39 0.52 0.48

Group no. 2 POD 0.69 0.45 0.98
FAR 0.62 0.56 0.63
HSS 0.26 0.27 0.29

Group no. 3 POD 0.82 0.81 1.00
FAR 0.09 0.08 0.12
HSS 0.31 0.31 0.17

Figure 14. The (top) NRDs, (middle) RMSEs, and (bottom) BIASs of Ori-CCS, Adj-CCS, and Mer-SG daily precipitation averages over the validation gauge groups for
different observed rainfall amount ranges during 2009–2014.
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5. Conclusions and Future Prospects

This study provided a framework for merging satellite-based precipitation field estimation and point-scale
gauge observation with three separate steps. A case study over Chile was conducted to verify the effective-
ness of the model using PERSIANN-CCS daily precipitation estimates and corresponding gauge data during
2009–2014. According to the findings, the following conclusions can be drawn: (1) The framework is effective
in producing satellite-gauge merged precipitation data with high resolution and precision. The bias adjust-
ment step helps to remove systematic biases in satellite data, and the data merging step further improves
the precipitation estimation accuracy, indicated by very high CORRs and significantly reduced RMSEs and
absolute BIASs from evaluation. (2) The model validation confirms that the framework is able to greatly
improve the POD and accuracy of generated precipitation estimates even over those areas where gauge data
are absent.

Therefore, this study serves as a valuable pilot case for precipitation data merging in view of its further appli-
cation over different areas worldwide. Two recommendations are made for its future applications. First, care
should be taken in model calibration. The gauge data gridding parameter (C) and weighting functions
(f(DMIN)) of the model can directly impact the spatial pattern and accuracy of merged precipitation
estimates, as they need to be determined and fitted in advance. Especially when the model is applied to a
large-scale territory, RMSE functions for suitable regional coverage should be considered in the data merging
process. Therefore, attention should be paid to the parameter sensitivities and advanced parameterization
approaches for spatially variable uncertainty quantification in future applications. Second, while in this study
historical data sets are used covering the period of 2009–2014 for calibrating the model for satellite-gauge
data merging, a next step would be to apply the framework to generate near real-time precipitation products.
In this study, the satellite-gauge data merging is conducted under an assumption that biases of each data set
are “systematic” or stationary across 2009–2014. How the calibrated model performs outside the 2009–2014
period needs further investigation in future near-real-time data merging. By providingmerged near-real-time
SPE, additional gains can be made to provide relevant databases for hydrologic and climatic applications for
decision making, especially over the areas where gauged hydroclimatic records are limited in both spatial
and temporal coverage [Kidd et al., 2017; Kiem et al., 2016; Liu et al., 2017].
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