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Abstract

This work exploits machine learning (ML) techniques in a linear realm to select the best set of

explanatory variables from a potentially large set. We dedicated particular attention to LASSO to

explore how this technique improves a model’s prediction accuracy. We also used an extension,

Islasso, a method that allows hypothesis testing with parameters estimated with a penalized function.

We explored the techniques using readily-available datasets and a novel dataset composed of 4,091

observations of UC Davis transfer students with 126 variables. We aimed at understanding UC Davis

transfer students’ performance, measured by time to degree. To highlight predictive differences,

we divided the variables into two subsets: academic and personal. We concluded that academic

variables are far more important for predicting students’ time to degree. LASSO conducted on

the academic subset resulted in the fewer misclassification errors and the lowest AIC, improving

from an unpenalized model. Moreover, Islasso also showed that academic variables are the most

important in predicting late graduation by transfer students. Lasso helped us understand which

variables belonged in the model and reinforced many initial presumptions on which variables should

have entered. Moreover, we showed that Islasso could be an excellent compromise to close the gap

between inference and selection as it allows us to perform variable selection and to obtain reliable

confidence intervals for a model’s coefficients simultaneously.
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1 Introduction

As described by Varian (2014), econometrics and data analysis is composed of 4 main categories:

• prediction;

• summarizing;

• estimation;

• hypothesis testing;

Machine learning, ML, is considered to be a sub-field of artificial intelligence (AI), and is focused

on developing algorithms aimed at fitting possibly complex functions to provide a prediction of some

variable as a function of a set of explanatory variables, at classifying data, and at clustering or grouping

tasks (Varian 2014, Mullainathan and Spiess, 2017, Athey and Imbens, 2019).

We will not apply ML to look for the best fitting functional form for our data in this work. Instead,

we will exploit ML in a linear realm to select the best set of explanatory variables from a potentially

large set. The key behind ML is to follow an algorithm for model selection that improves upon other

methods, for selecting purposes, such as stepwise regression or less systematic forms of data mining.

The choice to limit consideration to models that are linear in the variables precludes a vast set of

alternative functional forms, notably the ones with interactions between model variables. We will

return to this point later.

In recent years, the prevalence of large datasets came at the cost of dealing with potentially more

complex models and has exposed practitioners to new threats, such as higher risk of overfitting.

Overfitting describes a scenario where the use of models with a large number of variables violates

parsimony: “that is, that include more terms than necessary or use more complicated approaches than

are necessary” (Hawkins, 2004). With many X variables to choose from, there is a strong possibility

that researchers will include too many variables that fit well “in-sample”, but that will not predict as

well “out-of-sample”. It is tempting to think that the best-fitting model in a given dataset will continue

to perform best with new observations following the same data-generating process, but surprisingly,

this is not necessarily the case. We will demonstrate this result in the applications that follow. While

our results pertain directly to decisions about the variables to include in a model, we anticipate that

similar conclusions apply to the selection of alternative functional forms.

Again, in this work, we will focus only on scenarios where overfitting occurs because variables

deemed relevant using conventional measures, such as t-ratios, may turn out to be less helpful, if

not completely irrelevant, when predicting out-of-sample, rather than working on functional forms.

Overfitting results in models with a low bias in estimated coefficients but high variance: such models

will perform well on a training dataset—a subset of the data used to train a model—but not as well on
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the testing dataset—a subset of observations reserved to test the trained model. We shall remember

that the results are highly sensitive to the random splitting of the sample into training and testing

datasets: in case of overfitting the results will vary greatly for each training set, and therefore they

will be poorly generalizable.

The relatively poorer performance of many models out-of-sample means that the model that fits

the training sample best might not predict out-of-sample. For instance, a more parsimonious model

estimated with the training dataset might produce better out-of-sample predictions if the bias that

such a model introduces does less harm to a measure, such as MSE, than the reduction in variance

that it brings.

We believe expanding traditional econometrics with ML methods could be a solution to face these

new threats efficiently, enabling the practitioner to “sort out the mass of information and pare it down

to its bare essentials” (Hastie et al; 2019). ML, therefore, helps the practitioner enforce the principle

of parsimony, offering a solution via “regularization procedures,” allowing the practitioner to obtain

simpler models with good predictive power. Indeed, if there are many regressors p, the likelihood

of overfitting increases making it advantageous to go one step further from least squares regression.

We will relate the notion of “simple model” to the sparsity assumption; a sparse model is one where

only a few predictors play an essential role (Hastie et al; 2019). As Hastie et al. (2019) explain, when

p ≥ N, there is an infinite set of solutions that make the objective function equal to zero, and “these

solutions almost surely overfit the data as well” (Hastie et al; 2019). That is an extreme case, of course,

nonetheless, when p is large, even if p ≤ N, the risk of overfitting and obtaining poor out-of-sample

predictions is still present. Therefore, we will apply linear shrinkage methods: Ridge, Lasso, and its

extensions, to obtain sparse models.

First, we will theoretically introduce the linear shrinkage methods. Then, as mentioned above,

we will dedicate particular attention to the extensions of traditional Lasso. Next, we will dedicate

three sections to explore the shrinkage methods using two well-known and readily available datasets.

As we will make extensive use of R and Stata in the first section, we will first try to match the two

programs with the Mtcars dataset. Next, we will explore evaluating a model’s quality of fit using

the results from EAWE dataset. The following section will be dedicated to comparing two different

cross-validation techniques to see which suits our purposes better.

Finally, the last chapter will apply linear shrinkage methods to a novel dataset composed of 4,091

observations of UC Davis transfer students. We aim to understand UC Davis transfer students’

performance, measured by time to degree. As the dataset is made up of 126 variables, we believe

that the use of shrinkage estimators might be beneficial to improve the model’s prediction accuracy.

Specifically, we will make use of Lasso regression to reach our purpose. Besides embracing the
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problem from a prediction standpoint, we will explore the feasibility of a method to conduct inference

on the parameters estimated with Lasso.

2 Shrinkage methods

Linear shrinkage methods constrain, or regularize, the coefficients in an estimated model, shrinking

them towards zero or, in some cases, precisely to zero. The result is simpler models that are easier to

generalize and interpret, aiming to balance “expressiveness against overfitting” (Athey, 2018).

When applying shrinkage methods, we need to keep in mind the bias-variance trade-off. Shrink-

age methods impose more parsimony on the models, but this comes at a price, which is more bias in

the estimator. Even though a simple model with few parameters might have more bias, parameter

estimates may exhibit more efficiency, using for instance to lower squared error loss, thereby repre-

senting increased model prediction accuracy. Therefore, we must balance the cost of overfitting (high

variance) against the cost of underfitting( high bias).

Consider a regression

y = f (x) + u with E(u) = 0 and u ⊥ x

The mean squared error of β̂ols is:

MSE(β̂) = E[(β̂ − β)(β̂ − β)′] = E[(X′X)−1X′u · u′X(X′X−1)]

= (X′X)−1X′ · E(uu′) · X(X′X)−1 = σ2(X′X)−1

i.e. it is unbiased, therefore MSE(β̂) = cov(β̂) + 0.

For a biased estimator β̃:

MSE(β̃) = E[(β̃ − β)(β̃ − (β)′] = E[(β̃ − E(β̃) + E(β̃) − β) · (β̃ − E(β̃) + E(β̃) − β)′]

= Cov(β̃) + Bias(β̃)Bias(β̃)′

Therefore

MSE(a′β̂) = a′ · σ2(X′X)−1a ∀ a

MSE(a′β̃) = a′ ·MSE(β̃)a ∀ a

For instance, for a = X0, these are the MSEs for predictions at X′0β̂ and X′0β̃, respectively. It is possible

for the reduction in the variance term MSE (β̃) to be great enough to offset the introduction of bias

from using β̃. In any case, there is not a one-to-one correspondence between reducing the bias in the
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parameter estimates and improving out-of-sample predictions of y. Shrinkage estimators minimize

a criterion such as the RSS augmented by a penalty function. They enforce sparsity by adjusting

estimated coefficients to take the penalty into account in the optimization function. Introducing this

penalty term (often referred to as tuning parameter) in the objective function (i.e., regularization)

generates a biased model with lower variance than a non-regularized model. For a given penalty

function, the penalty term can be chosen by cross-validation, to minimize the MSE of prediction errors,

or an alternative penalty may be used, such as AIC. In this work, we will estimate the penalty factor

coefficient via cross-validation.

We dedicate the following sections to a brief analysis of each shrinkage method we exploit in our

applications. We aim to highlight similarities and differences between estimators to clarify our choices

when empirically applying them.

2.1 Ridge Regression

The first method we will discuss is Ridge regression, introduced by Hoerl and Kennard (1970), which

may be preferable to OLS when there is multicollinearity among regressors and when estimators

have large variances as a result. Multicollinearity occurs when two or more predictors are highly

linearly correlated, and the correlation matrix for the estimated coefficients will be nearly singular. As

Dougherty (2011) reports, “the higher the correlation between predictors, the larger the population

variances of the distribution of their coefficients, the greater the risk of obtaining erratic estimates of the

coefficients”. As long as the other OLS assumptions are satisfied, for OLS, the estimated coefficients are

still unbiased and consistent in the presence of multicollinearity, but their standard errors are larger;

thus, the results might be less informative. The lack of precision in estimated coefficients means that

it is difficult to distinguish between competing hypotheses about the parameter vector and out-of-

sample estimates might be less reliable. Ridge regression is similar to least squares regression, other

than the penalty term added to the objective function:

RSS =

n∑
i=1

(yi − β0 −

p∑
j=1

β jxi j)2 + λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j

Thus, the criterion to minimize is the usual RSS plus the penalty function λ
∑p

j=1β
2
j . This is known in

the ML literature as L2 regularization. It shrinks the coefficients towards zero, but doesn’t make them

exactly equal to zero. λ is a tuning parameter which must be chosen or estimated separately. λ serves

to balance the impact of RSS and the penalty term on the regression coefficient estimates. A different

set of coefficients results from each λ. The shrinking penalty is applied from β1 to βp, and the intercept

is not included.
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The tuning parameter λ is always a positive value and can range from 0 to positive infinity, but

typically is chosen to be between 0 and 10. As λ increases , the impact of the penalty grows and the

elements of β̃, other than the intercept, will move closer to zero. When λ = 0, the penalty term has no

effect, and βλ = (β̃ols) The larger is λ, the more these estimates differ, the smaller the covariance matrix

for β̃, and the larger the bias in the Ridge estimator (Judge, 1988).

It is worth noting that Ridge parameters are not scale-invariant because if we re-scale the predictors,

we obtain different coefficient estimates and predictions as the payoff from shrinking each individual

coefficient is affected by unit of measurement in the X variables. In contrast, predictions from OLS are

scale-invariant because if we re-scale the predictors, we still obtain the same predictions.

The estimated β̃ will depend on the units of the X variables, and a larger β̃ would contribute more

to the penalty function.Thus, it is better to apply Ridge regression after standardizing the predictors

(James et al; 2013).

How does this estimator solve the multicollinearity problem? Starting from

β̂ = (XTX)−1(XTY)

with the covariance matrix as follows:

Varβ̂ = σ2(XTX)−1,

suppose there is multicollinearity and (XTX) is close to being singular. In that case, this means that

even while it might still be invertible (as it is not exactly singular), the variance of the estimated

coefficients will surely be large. As explained, Ridge minimizes RSS adding the penalty term λ > 0,

thereby solving the “close to singularity issue.” Adding a positive value of λ > 0 reduces the linearity

effects between the columns, allowing us to estimate the model. As a result, along with a suitable

choice of λ, the Ridge regression might outperform OLS in terms of MSE.

The ridge regression solution, denoted as β̃ is as follows:

β̃ = (XTX + λI)−1XTY

Both simulations and empirical studies have evaluated Ridge Regression MSE. By simulation,

Hoerl et al. (1975) showed that the mean squared error for Ridge regression coefficients is lower than

OLS. Lawless and Wang (1976) and Dempster et al. (1977) also showed that Ridge regression has

superior performance relative to OLS, a result which is dependent on picking a suitable λ.

On the other hand, by Monte Carlo simulation, McDonald and Galarneau (1975) proved that Ridge
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does not always perform better than OLS in terms of MSE reduction. The authors highlight a specific

issue that we will discuss later in our work. According to them, there is no constant value of λ which

is guaranteed to yield an estimator better than least-squares in all cases. Moreover, they note that as

there is no rule to choose λ > 0, it cannot be ensured that Ridge will always outperform OLS for any

particular value of λ. In other words, there is no constant λ which improves Ridge upon OLS, but

there is always some λ that improves Ridge upon OLS.

Shifting the focus to empirical applications, Ridge Regression has been applied to diverse research

fields where practitioners exploited the tool to solve multicollinearity issues. For instance, Brown

and Beattie (1975) showed the potential application of Ridge regression in economics. According to

the authors, Ridge can be well suited for estimating the Cobb-Douglas production function. They

provided an empirical example estimating the marginal productivity of irrigation water, where they

show Ridge to be a better estimator than OLS, based on MSE comparison.

The authors concluded that in economics, we should specify a model entirely and ”utilize available

data and various prior information approaches for parameter estimation, rather than using unbiased

estimation and mechanically deleting variables to reduce multicollinearity” For this approach, Ridge

regression can be considered a “promising tool.” Although Ridge history emphasizes multicollinearity

over ML, it is very similar to techniques that are more directly the result of ML approaches. For this

reason, we decided to include its description in this work: even if it doesn’t perform variable selection,

it is still shrinking coefficients aiming at reducing variance at the cost of increased bias, leading to

potentially improved predictions.

2.2 Lasso Regression

An alternative to Ridge Regression is Lasso regression, which serves the same function of reducing

model complexity, seeking to reduce the risk of overfitting. However, compared to Ridge, Lasso has

an additional characteristic. As shown, Ridge shrinks the coefficients towards zero, but all p predictors

will still be included in the final model. Instead, Lasso shrinks some of the parameters all the way

to zero. As explained by Tibshirani (1996), Lasso is a regularization technique for simultaneous

estimation and variable selection.

Let’s think about the concept of sparsity, which we used as a proxy for simplicity; we understand

why we need to take Ridge—the “great uncle of Lasso” (Efron and Hastie; 2016)—one step further.

Lasso achieves this purpose by adding a different penalty to the loss function:

RSS =

n∑
i=1

(yi − β0 −

p∑
j=1

β jxi j)2 + λ

p∑
j=1

∣∣∣β j

∣∣∣ = RSS + λ

p∑
j=1

∣∣∣β j

∣∣∣
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Therefore, the criterion to minimize is the usual RSS plus a penalty function λ
∑p

j=1|β j|. This is

known as L1 regularization, which, differently than Ridge, tends to shrink some of the coefficients

precisely to zero. As a result, contrarily to Ridge, Lasso is likely to result in a model with only a subset

of original regressors (James et al; 2013).

As for Ridge, λ selection is again of great importance. When λ = 0, we obtain the least-squares fit.

When λ becomes sufficiently large, all the coefficients are set equal to zero. For values in between the

extremes, some coefficients are restricted and others are not.

Following James et al. (2013), we will re-express the Ridge (1) and Lasso (2) equations in terms

of a budget constraint, which will help understanding the difference embedded in the two shrinkage

methods.

min
β

=
{ n∑

i=1

(yi − β0 −

p∑
j=1

−β jxi j)2
}

s.t.
p∑

j=1

β j
2
≤ s(λ) (1)

min
β

=
{ n∑

i=1

(yi − β0 −

p∑
j=1

−β jxi j)2
}

s.t.
p∑

j=1

∣∣∣β j

∣∣∣ ≤ s(λ) (2)

In other words, as equation (2) shows, when performing Lasso, we are minimizing RSS, subject to

the constraint that there is a budget s for how large
∑p

j=1|β j| can be. The larger the s, the less restrictive

the condition. If s is large enough, the solution obtained would be equal to the least squares solution.

The same reasoning applies to the Ridge, with the difference that RSS is minimized subject to the

restriction that
∑p

j=1β
2
j doesn’t exceed s.

Exploiting the well known James et al. (2013) Lasso and Ridge 2-dimensional graphical represen-

tation (p = 2) (Figure 1), we observe that the Lasso constraint
∣∣∣β1

∣∣∣ +
∣∣∣β2

∣∣∣ ≤ s has a diamond shape,

whereas the Ridge constraint is a circle β1
2 +β2

2
≤ s. The ellipsis centered around β̂ represents constant

values of RSS, meaning that all the points on a given ellipsis represent the same RSS. The constraint

implied by Ridge regression is a circle. It will not generally have any corner solutions at the axes, so

interior solutions will almost always occur. In contrast, the Lasso diamond-shaped constraint seems

more likely to result in corner solutions, as shown in Figure 1, where β1 = 0, so the resulting model

will only include β2 = 0.

Figure 1
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Under this Lagrangian formulation, the similarities between Lasso, Ridge, and another classical

method for selection and estimation in a linear model, best-subset selection (Beale et al; 1967, Hocking

and Leslie, 1967) become evident. Best-subset selection aims at finding a small subset of predictors to

minimize RSS. The best selection approach is appropriate when the number of all possible predictors

is small because it is otherwise too computationally expensive. The algorithm considers all of the 2p

combinations of the available regressors, including the null model, as possible for selection. James et

al. (2013) expressed the best selection as follows:

min
β

=
{ n∑

i=1

(yi − β0 −

p∑
j=1

−β jxi j)2
}

s.t.
p∑

j=1

I(β j , 0) ≤ s(λ) (3)

where I(β j , 0) is an indicator variable, taking on value of 1 if (β j , 0), and equals zero otherwise. In

this case, RSS is minimized subject to the constraint that no more than s coefficients can be nonzero.

It becomes clear that when p is large, it can be computationally unfeasible or hard, at the very least,

to use the best selection approach. Best selection considers all the possible
(p

s
)

models containing s

predictors. Therefore Lasso and Ridge can be considered computationally feasible alternatives to best

selection with easier constraints to solve.

2.3 Extensions of Lasso

As discussed in the previous section, Lasso will enforce an L1 penalty, which brings a sparsity payoff

but also some drawbacks. The shrinkage makes the objective function non-smooth, resulting in

parameter estimates that are biased towards zero and complexities for the standard error computation

(Ciluffo et al; 2020).

The literature has discussed different extensions to Lasso to remedy these drawbacks. Specifically,

in this work we will focus on Adaptive Lasso (Zou, 2006), Relaxed Lasso (Meinshausen,2007), and

induced smoothed Lasso (Ciluffo et al; 2020).

2.3.1 Adaptive Lasso

Zou (2006) introduced adaptive Lasso, a two-stage approach which extends traditional Lasso where

“adaptive weights are used for penalizing different coefficients in the L1 penalty ”. The Lasso criterion

is modified by introducing a vector of weights ŵ in the penalty function:

RSS =

n∑
i=1

(yi − β0 −

p∑
j=1

β jxi j)2 + λ

p∑
j=1

ŵj

∣∣∣β j

∣∣∣ = RSS + λ

p∑
j=1

ŵj

∣∣∣β j

∣∣∣
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where ŵ is the weight vector ŵj = 1
|β̂ j

γ
|
. Estimates from OLS or Ridge can be used to calculate the

weights.

The author points out that traditional Lasso doesn’t have “oracle properties”, meaning that it is not

consistent for parameter estimation and variable selection. Instead, he points out that if the weight

vector is “data-dependent and cleverly chosen” (Zou, 2006), Lasso can be consistent for selection and

estimation. To compute the weights, we need to calculate some initial estimates, preferably consistent

and unbiased.

For this reason, Zou suggests the application of OLS, but other consistent estimators can also be

used. Furthermore, as the author specifies, if collinearity is a concern, Ridge regression can also be

used to estimate the weights, even though it produces estimates that are biased and inconsistent. In

that case, it is not guaranteed that the Oracle property will hold.

After selecting the β̂ values to use for weights, we would need to find an optimal pair of γ and λ.

To do so, we can either use two-dimensional cross-validation or exclusively search for the optimal λ,

as the value of γ can also be heuristically chosen from values such 0.1, 0.5, 1, 2 as Chen et al. (2019)

showed. Once we find the optimal γ and λ pair, we would use the previously estimated coefficients

to define the weights. If the estimated coefficients are large then they correspond to a smaller weight,

and thereby less effect on the penalty function in the penalized Lasso estimation.

Finally, we perform Lasso with the modified penalty factor specification, which leads, according

to Zou, to consistency in both selection and estimates.

Zou shows by simulation that adaptive Lasso performs better when compared to other “sparse

modeling techniques”. Huang et al. (2006) studied adaptive LASSO in high-dimensional settings.

The authors showed that even when the performance of adaptive Lasso and traditional Lasso are

similar, the number of variables selected by the former method is lower than the one chosen by the

latter, and the prediction MSE of adaptive Lasso is smaller in this sense, it is guaranteed to improve

upon traditional Lasso.

In our opinion, the adaptive Lasso strategy is pretty arbitrary. Zou affirms that we can use either

OLS or Ridge estimates as adaptive weights but that if we choose Ridge, there is no guarantee that

the Oracle property will hold. As to our knowledge, the adaptive Lasso strategy isn’t fully clear; we

decided to use other extensions to Lasso in the following empirical applications.

2.3.2 Induced Smoothed Lasso

Ciluffo et al. (2020) propose an extension to traditional Lasso that aims to get reliable p-values and thus

permit hypothesis testing. As the authors explain, the L1 regularization makes the objective function

non-smooth. Therefore there might be “limitations” in the computation of standard errors (Ciluffo et
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al; 2020).

Following Brown and Wang (2005), Ciluffo et al. (2020) apply the induced smoothing approach to

the Lasso objective function. The Brown and Wang (2005) induced smoothing method approximates

discontinuous but monotone estimating functions using continuously differentiable functions.

The Islasso idea is to consider the new estimating equation obtained by averaging the non-smooth

score over scaled normal perturbations of the parameters. Smoothing the traditional Lasso loss

function implies that the estimates from Islasso will never be precisely zero, although the values

obtained can be very small.

The smoothing process allows obtaining Wald statistics. In the usual setting for inference, a single

hypothesis H0 : β = 0 versus H1 : β , 0 can be tested using the Wald statistics:

W =
β̂

SE(β̂)

For simpler cases, such as OLS, the Wald test follows a standard normal distribution; unfortu-

nately, the distribution is unknown for traditional Lasso. Islasso solves this issue because its sampling

distribution has “no probability mass but a smoothed peak around zero”, closer to a Normal distri-

bution.

To practically implement Islasso Ciluffo et al. (2020) developed the islasso package in R, which

follows the heuristic framework previously explained, thereby returning reliable standard errors and

p-values, which we can use to perform inference on the coefficients.

2.3.3 Relaxed Lasso

Meinshausen (2007) developed a two-stage procedure defined as Relaxed Lasso to overcome the slow

convergence of traditional Lasso when there are many variables in a dataset. He points out that it

may not be optimal to control shrinkage estimation and model selection with a single λ parameter.

To solve this concern, Meinshausen introduced a second parameter φ, which acts as a multiplicative

factor of λ controlling for the shrinkage applied to the subset of variables included in the model for a

specific λ value. If φ = 1, then Lasso and Relaxed Lasso coincide, whereas if φ = 0 the solution is OLS

for the subset of variables selected with λ.

The relaxed Lasso is defined for λ ∈ [0,∞) and φ ∈ (0, 1]. Following Meinshausen:

β̂λ,φ = argmin n−1
n∑

i=1

(Yi − XT
i {β · 1Mλ })

2 + φλ
∥∥∥β∥∥∥

1

In general, the Relaxed Lasso produces sparser results compared to Lasso. To find the relaxed

Lasso solutions the first step is to find the Lasso solutions for all λ, and then for each λ, refit the
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variables in the active set without any penalization (Hastie et al; 2021).

As Meinshausen (2007) shows, Lasso and Relaxed Lasso produce similar results, but when the

number of relevant predictor variables is large, there is a relative improvement in using Relaxed Lasso.

Moreover, the Relaxed Lasso solutions have no extra computation cost but lead to sparser models and

more accurate predictions (Meinshausen, 2007).

3 Tuning parameter selection

Due to its critical importance, we decided to dedicate a section to explain how we approached the

problem of selecting the tuning parameter λ. As described above, the tuning parameter has the aim

to determine the shrinkage strength. As λ increases, the impact of the shrinkage penalty grows. We

decided to apply cross-validation (CV) to select λ. To fully understand how CV works, it might be

helpful to take a step back to the more traditional validation approach.

To perform the validation approach, we split the original sample of size n into two parts: a training

set and a validation set. First, we estimate the model using the training set, and the fitted model is

used to predict the responses for the observations in the validation set. Then the out-of-sample mean

squared error for the test data is computed as follows.

ntest∑
i=1

(yi − ŷi)2/ntest

This approach lets us compare the out-of-sample predictive power of various competing models.

Model selection can then be based on the model that performs best at predicting the predicting the

observations in the validation set. A key point is that the best-fitting model “in sample” (i.e. fit using

the training set) may not perform best out-of-sample. The validation approach has drawbacks. First,

as the chosen sample split is arbitrary, the calculation of the test error rate is variable because it depends

on which observations are included in the training and the validation sets: different researchers will,

in general, obtain different results. Secondly, only the observations in the training set (in general half

of the original set) are used to fit the model and since models tend to perform worse when trained on

fewer observations “there is the risk that the validation set could overestimate the test error rate for

the model fit on the entire dataset” (James et al; 2013).

Cross-validation—a refinement of this traditional validation approach—is a re-sampling method

that uses different portions of a dataset (folds) to measure the out-of-sample predictive of a model.

There are different ways to perform CV. In this work, we applied Leave-one-out cross-validation

(LOOCV), a particular case of CV where the number of folds equals the sample size. This is also
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known as the jackknife.

When we perform LOOCV, a single observation is used for the validation set and the remaining

observations form the training set. We fit the model on the n − 1 training observations: we remove

one observation i (test data) and estimate the rest of the sample (training data). Then, we compute Ŷi

for the excluded observation (the test observation) and the prediction error. The prediction error is

an approximately unbiased estimate for the test error because observationi, was not used in the fitting

process: êi∗ = yi − ŷi.

We repeat the procedure by selecting each observation for the validation data and then train the

process on the other n − 1 observations. Repeating the procedure produces n squared errors, and we

average these n to obtain
n∑

i=1

(yi − ŷi)2/(n)

LOOCV allowed us to have no randomness in the data splits present in other cross-validation

forms. In the validation approach and other CV forms, such as k − f olds cv, we will obtain different

results due to the randomness in the training/validation splits. Instead, performing LOOCV will

always produce results that can be replicated by others.

One of the main drawbacks of LOOCV is that it can be computationally expensive when the dataset

is of large dimensions, as we have to carry out the procedure for each observation in the dataset.

To choose λ, we will compute the cross-validation error for each value of λ and then select the

λ value for which the cross-validation error is the smallest. Once λ is chosen, we fit the shrinking

procedure with the selected value of the tuning parameter. Performing LOOCV to select λ allows us

to obtain a unique λ value, which provides replicability and more consistency in our results.

4 Mtcars dataset: matching Stata and R

This work will extensively use both R and STATA; both programs have built-in functions for ML.

Even experienced users might find it difficult to understand these programs, especially in trying to

reconcile the results. Thus, the first application section will be dedicated to exploring how R and

Stata work, with a familiar, readily-available dataset. Our goal is to open the “black box,” namely to

understand how the various commands work and under which conditions they give the same results.

The interpretation of results from ML commands is complicated by the fact that various commands

seem to give different results when, in fact, they are equivalent, as we shall see.

Our primary aim will be to obtain matching results between R and Stata. For this purpose, we

will use the R built-in Mtcars dataset to predict miles per gallon based on a car’s other characteristics.

We will follow this online example: https://www.datacamp.com/community/tutorials/tutor
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ial-ridge-lasso-elastic-net, to ensure that we can replicate the example results in R and then

duplicate them in STATA. The result should be both deeper understanding of the methods and added

confidence in our implementation of ML to new datasets that follow.

The Mtcars data were extracted from the US magazine Motor Trend in 1974 and comprised 11

explanatory variables that describe characteristics and performance for 32 automobiles. Our aim is

to explore the relationship between this set of variables and miles per gallon (MPG). In Table 1, we

report variable definitions taken from https://rpubs.com/neros/61800:

Table 1
# Var Description Comments
0 name Model of Vehicle
1 mpg Miles/US Gallon
2 cyl Number of cylinders
3 disp Displacement This metric gives a good proxy for the total amount of power the engine can generate.
4 hp Gross horsepower Gross horsepower measures the theoretical output of an engine’s power output.
5 drat Rear axle ratio The rear axle gear ratio indicates the number of turns of the drive shaft for every one rotation of the wheel axle.
6 wt Weight (lb/1000)
7 qsec 1/4 mile time A performance measure, primarily of acceleration.
8 vs V/S Binary variable signaling the engine cylinder configuration.
9 am Transmission Type A binary variable signaling whether vehicle has automatic or manual transmission configuration.
10 gear Number of forward gears Number of gears in the transmission.
11 carb Number of carburetors The number of carburetor barrels.

We will begin with OLS and Ridge Regression estimates, both in R and Stata, and continue with

the same approach for Lasso Regression. The advantage of starting with OLS is that OLS estimates

would be easily replicable across programs, and by other users, and it also lets us demonstrate the

effects of shrinking of the coefficients, by providing a model for comparison. Our final aim is to obtain

a successful match between the two programs. In addition, we will dedicate a section to compare

LOOCV and k-folds CV, to justify using the former approach.

4.1 Mtcars Ridge Regression in R and Stata

To replicate this https://www.datacamp.com/community/tutorials/tutorial-ridge-lasso-el

astic-net example in R we would need to use the glmnet package. We started by preparing the

data. First, we set y = mpg, and then we created the matrix of explanatory variables, X, containing

the 11 variables from Mtcars. We centered y, so that yi = mpgi −mpg whereas X will be standardized

when fitting the model. Centering y and standardizing X are essential procedures to carry out Ridge

Regression correctly. As mentioned earlier, Ridge regression is not scale-invariant. Therefore if the

explanatory variables are not standardized, the contribution of a variable’s coefficient βi to the penalty

function λ
∑p

j=1β
2
j will depend on units of measurement. In natural units of measurement, the largest

βi is the best candidate for shrinking. It is more desirable to express all xi variables using comparable

units of measurement.

After the re-scaling, we searched over values for λ by using the function cv.glmnet, which is
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the main function to perform cross-validation in R. We specified nfolds=32 to conduct LOOCV.

We decided to perform LOOCV because, as previously explained, LOOCV allows us to have no

randomness in the data splits, thereby obtaining a unique λ value, which provides replicability of

results. In comparing the results between different programs, the results otherwise might differ

solely due to different outcomes from random optimization. Moreover, we set α = 0 to specify that

we wanted to conduct Ridge Regression. It’s worth emphasizing that we conducted cv.glmnet

specifying the option standardize = TRUE. The package glmnet performs standardization but

then reports the coefficients unstandardized. From the object cv.glmnet returned we selected, by cross-

validation, the value of lambda.min, which is the value of λ that minimizes the MSE. Another option

would be to compare the values for some model-selection criterion, such as Akaike’s Information

Criterion (AIC),

AIC = nlog
azsumn

iSA=1(Yi − Ŷi)2

n
+ 2(p + 2)

or the Bayesian Information Criterion (BIC),

log
∑n

i=1(Yi − Ŷi)2

n
+ log(n)(p + 2)

which differently than AIC also imposes a penalty on N: as N increases the penalty would be higher.

Before fitting the Ridge model, we standardized y as well to obtain results scaled in the same

way. It’s worth noticing that glmnet fit the Ridge regression for 100 λ values. As we are interested

in the value of λ which minimizes MSE, we will fit Ridge regression specifying that the coefficient

on the penalty function is the λmin selected via CV. Finally, from the glmnet object we extracted the

estimated coefficients. Up to this point, we replicated the https://www.datacamp.com/community

/tutorials/tutorial-ridge-lasso-elastic-net online example to make sure to gain confidence

with glmnet and how the algorithm works in R. We decided to take a step further by experimenting

with another function in R, lmridge. Our aim is to check whether lmridge and glmnet agreed on

the coefficients estimated.

The lmridge function fits linear ridge regression after scaling the regressors and centering the

response. To fit lmridge we used the previously chosen λmin by cv.glmnet.

As Table 2 shows, we obtained similar results between glmnet and lmridge by using the option

scaled for the latter command. In the scaled option centered values for the predictors (other than

the intercept) are divided by the sample standard deviation of equal predictors. lmridge. In the

table, we also report OLS results to show the effect of using Ridge to shrink the coefficients.

Having understood how R works we will then move to Stata, using ridgereg to perform Ridge

regression. To see whether ridgereg matched our results from R, we performed Ridge Regres-
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Table 2
Ridge Regression OLS Glmnet lmridge
Intercept 12.3034 -0.0980 -0.0949
cyl -0.1114 -0.0421 -0.4237
disp 0.0133 -0.0003 -0.0033
hp -0.0215 -0.0022 -0.0022
drat 0.7871 0.1627 0.1621
wt -3.7153 -0.3129 -0.3119
qsec 0.8210 0.0516 0.0514
vs 0.3178 0.0793 0.0804
am 2.5202 0.3496 0.3496
gear 0.6554 0.1045 0.1048
carb -0.1994 -0.1098 -0.1101

sion setting λmin=2.746789, as previously estimated with LOOCV in R. Moreover, we specified the

option=orr, to perform ordinary ridge regression. We matched the results between ridgereg and

lmridge specifying the scaling option sc in the latter command (Table 3). In the scaling option sc

the divisor is
√∑p

j=1(xi − x̄2) i.e. each variable in the scaled case is multiplied by 1
√

n−1
. We report the

results in Table 3. Hence R’s lmridge and Stata’s ridgereg give identical results, but only if we

change from the scaled option to sc.

Table 3
Ridge Regression Ridgereg lmridge
Intercept -0.65925 -0.65925
cyl -0.32125 -0.32125
disp -0.00465 -0.00465
hp -0.00818 -0.00818
drat 0.86858 0.86858
wt -0.70309 -0.70309
qsec 0.14058 0.14058
vs 0.81302 0.81302
am 0.95708 0.95708
gear 0.43880 0.43880
carb -0.28942 -0.28942

As shown above we have two options to perform Ridge regression in R: lmridge and glmnet. We

managed to reconcile Stata’s ridgereg and lmridge easily by just specifying sc as scaling option.

Reconciling R’s glmnet with Stata’s ridgereg wasn’t as straightforward.

glmnet starts from a modified objective function, which is divided by the number of observations

and has standardized response variables (Y is divided by its standard deviation). The result is that

we obtain

β̂glmnet = (XTX + NλI)−1 XTY
SDY

To retrieve the original Ridge solution, we would need therefore to scale λ by a factor equal to SDY
N .

Finally, we decided to compute the coefficients for Ridge Regression without making the use of
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any package, but simply calculating

β̂ = (XTX + λI)−1XTY

with manually standardized coefficients as follows

X − X̄√
c ∗ var(X)

where c = n − 1, for sc and c = 1 for scaled.

sd_y <- sqrt(var(y)*(n-1)/n)

pmatrix=diag(p)

pmatrix[1,1]=0

beta1 <- solve(t(x1)%*%x1+lambda*(pmatrix),t(x1)%*%(y))

Once obtained this results we estimated Ridge regression with glmnet. Along with rescaling the

coefficients, before computing the solution we also we would need therefore to scale λ by a factor

equal to SDY
N . We proceeded as follows where where N = 32 and p = 11.

scale=(31/32)*sqrt(var(y))

ridge_cv <- cv.glmnet(Xs, y, alpha = 0, centered=FALSE,

standardize = T, grouped=FALSE, nfolds = 32)

lambda=ridge_cv$lambda.min

ridgematch=glmnet(Xs,y, alpha=0, standardize = F,lambda=scale*lambda/32)

Next, we estimated Ridge regression with lmridge. To match the previous results we used the

option sclaling=sc.

y <- mtcars %>% select(mpg) %>%

scale(center = TRUE, scale = FALSE) %>% as.matrix()

lmridge=lmridge(y˜Xs1,data=mtcars,scaling="sc",K=lambda)

At this point, we observed that option=sc is the option we used to match Stata’s ridgereg and

lmridge. Therefore we proceeded with the manual scaling of the coefficients in Stata before fitting

ridgereg. As Table 4. shows, this procedure allowed us to close the loop and finally obtain closely

matching results across ridgereg, glmnet and lmridge.
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Table 4
X β̂ = (XTX + λI)−1XTY Glmnet (R) Lmridge (R) Ridgereg (Stata)
cyl -3,1943 -3,2079 -3,1943 -3,1943

disp -3,2089 -3,2234 -3,2089 -3,2089
hp -3,1226 -3,1398 -3,1226 -3,1226

drat 2,5857 2,5978 2,5858 2,5857
wt -3,8303 -3,8558 -3,8303 -3,8303

qsec 1,3987 1,4032 1,3987 1,3987
vs 2,2815 2,2889 2,2815 2,2815

am 2,6590 2,6763 2,6590 2,6590
gear 1,8026 1,8103 1,8026 1,8026
carb -2,6027 -2,6219 -2,6028 -2,6027

4.2 Mtcars Lasso Regression in R and Stata

We observe that the matching between R and Stata of Lasso Regression is straightforward than Ridge

Regression. First, we performed Lasso Regression in R. To do so, we used the same package as for

Ridge regression, the glmnet package.

As with Ridge Regression, we centered y, whereas X will be standardized by glmnet when fitting

the model. As Ridge, Lasso isn’t scale-invariant: the size of the constraint put on each coefficient

depends on the units of the X variables. For this reason, we standardized the variables before fitting

Lasso.

We performed cross validation using cv.glmnet. Again, we specified nfolds=32 to conduct

LOOCV. Moreover, we set α = 1 to specify that we wanted to conduct Lasso Regression, as we

did for Ridge Regression, we specified the option standardize=TRUE, to perform cross validation:

cv.glmnet(X,y,alpha=1,standardize=TRUE, nfolds =32,grouped=FALSE), the option

grouped=FALSE, is enforced by R when carrying out LOOCV. glmnet fits the model for 100 values

of λ. As our aim is to obtain information on the predicted values estimated with λmin, value of λ

which minimizes MSE, from the cv.glmnet object we extracted λmin and re-fit Lasso Regression with

this λ value as penalty.

Usingλmin we estimated Lasso: (lasso.mod=glmnet(X,y,alpha=1,lambda=lambda.min).

From the glmnet object we extracted the estimated coefficients.

As previously mentioned, the matching with Stata was easy to obtain. First, we centered y. Then,

we decided to perform cross-validation with elasticnet as we did for Ridge Regression. For Lasso,

it is not necessary to conduct cross-validation using elasticnet as Stata conducts cross-validation

and Lasso within the same command Lasso linear.

In fact, our purpose was not to conduct CV per se, but rather to see whether elasticnet agreed

with cv.glmnet. We found out that, contrary to Ridge, we successfully obtained the same λmin as in

R [0.7295713].
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We then fit Lasso regression, lasso linear centered_mpg X,selection(cv)folds(32).

To obtain the coefficients in the same scale as R, we needed to specify the option penalized.

As Table 5 shows, we successfully matched Stata and R results. As we observe, differently

than Ridge, some coefficients were shrunk exactly to zero. The shrinkage tells us to include three

explanatory variables in the model: the number of cylinders (cly), gross horsepower (hp), and overall

weight of the vehicle (wt), which according to Lasso, will predict the miles per gallon consumed by

the cars.

Table 5
Lasso R Stata

Intercept 16.1534 16.15333
cyl -0.8907 -0.88947
hp -0.0123 -0.01228
wt -2.7492 -2.74963

5 EAWE dataset: learning how to evaluate a model quality of fit

To understand how well shrinking methods perform on a given dataset, we need to measure how the

predictions match the observed data. Therefore, the EAWE application will be used to examine how

to evaluate a model quality of fit.

EAWE stands for Educational Attainment, and Wage Equations dataset which, as mentioned

above, which is used by Dougherty in his book “Introduction to Econometrics”. The dataset is used

to estimate various models of the determinants of earnings and educational attainment. The dataset

is actually a subset of the National Longitudinal Survey of Youth, a panel survey with repeated

interviews of a sample of young males and females aged 12 to 18 in 1997. This dataset is supplied

as 22 subsets, each consisting of 500 observations, 250 drawn from male respondents and 250 from

female respondents. Each of these 22 datasets contains the same 97 variables. We combined these 22

datasets into a merged EAWE dataset containing 11,000 observations.

The subsets’ random structure allowed us to conduct a train-test evaluation of the estimators

efficiently. In the following applications we will use the first 1000 observations; i.e. the datasets

EAWE01 and EAWE02.

We discussed the importance of measuring out-of-sample predictive ability using cross-validation,

used in an ML setting to evaluate a model’s goodness-of-fit. The goodness of fit is a very familiar

concept. In OLS, the R2 is the goodness-of-fit measure that is typically reported. However, the ŷi

values that are used to calculate the RSS, and consequently the R2 are in-sample predictions which, as

already noticed, are subject to “overfitting”. This means that the R2 might give an overly optimistic
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picture of a model’s predictive power for observations beyond the sample used for estimation.

To measure how well the prediction matches the observed data, we will use the mean squared

error, MSE. If the MSE is small, then the predicted responses are close to the actual reactions. Instead,

if it’s large, the prediction and the true responses differ by a lot. The MSE, however, is calculated

based on “out-of-sample” predictions.

As before, model selection begins with the choice of the tuning parameter λ. We aim to find the

value of λ that corresponds to the lowest test MSE, i.e. out-of-sample MSE, not the lowest training

MSE, calculated using the training sample. The most common procedure is to divide the data into

training and test; the usual ratio is 80%(training)-20%(testing).

Having picked a value for the training parameter, we will use only the training observations to

estimate the various model we consider. In our case, we will fit Ridge and Lasso only on training

data, and then we will obtain predictions using the testing data. Once the predictions are obtained,

we will evaluate the test MSE:

MSE =

ntest∑
i=1

(ytest − ŷtest)2/(ntest)

5.1 EAWE Ridge Regression Quality of Fit

As β̂ols has the smallest MSE among all linear unbiased estimators, assuming the model is correctly

specified, we deemed it self-evident to compare MSEridge to MSEols, to see whether Ridge Regression,

which increases the bias and reduces the variance, would perform better than OLS.

For this purpose we decided to work with a set of predictors exhibiting multicollinearity. Specifi-

cally, following Dougherty’s (2011) example, we will use highly correlated ASVABC variables:

• ASVABC, a composite measure of cognitive ability, constructed with the scores of tests of

arithmetic reasoning,

• ASVABC4, paragraph comprehension

• ASVABAR, arithmetic reasoning;

• ASVABWK, word knowledge

We specified a model and EARNINGS as the response variable and S (years of schooling), ASVABC,

ASVABC4, ASVABAR, ASVABWK as the independent variables. In Table 6 we report the correlation

matrix for the variables used in the regression. As shown, the “ASVABC” variables are highly

correlated.

As mentioned, the EAWE structure offered us the possibility to conduct training and test evalu-

ations without splitting the data. However, as the dataset comprises 22 subsets, each consisting of

500 random observations, we selected two subsets, EAWE01 and EAWE02, corresponding to 1000
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Table 6
ASVABC ASVABC4 ASVABAR ASVABMK S

ASVABC 1
ASVABC4 0.9841 1
ASVABAR 0.9389 0.8986 1
ASVABMK 0.8184 0.8919 0.7945 1
S 0.5309 0.5618 0.4706 0.5463 1

observations. Therefore, we did not divide the observation training and testing set using random

sampling: we used 500 observations from EAWE01 and 300 from EAWE02 to make the training set

and the remaining 200 from EAWE02 for the testing set. This corresponds to the common 80% and

20% split.

First, we estimated OLS on the training set, and we computed MSEols. The MSE we obtained is

0.3273358. Next, we computed Ridge Regression. The steps we followed are structurally identical

to the ones described for the Mtcars application. We fit Ridge Regression using training data (800

observations), then we extract the predicted values using testing data (the remaining 200 observations).

First, we estimated the λ penalty value. To do so, we conducted LOOCV on the training set. From

the LOOCV, we extracted λmin and we fit Ridge Regression on the training dataset using this value of

λ. Finally, we extracted the prediction on the last 200 observations.

ridge_cv <- cv.glmnet(x[1:800], y[1:800], alpha=0,

standardize=TRUE, nfolds=800, grouped=FALSE)

ridge.mod=glmnet(x1,y[1:800],alpha=0,lambda=lambdamin)

ridge.pred=predict(ridge.mod,s=lambdamin ,newx=x[801:1000])

We computed the test MSE for Ridge Regression by subtracting the fitted values on the testing set

from the testing observed y: mean((ridge.pred-y.test)ˆ2. We obtained 0.250398, which shows

an improvement compared to the 0.3273358 OLS MSE, meaning that Ridge Regression offers better

predictions for the 200 observations in the testing dataset.

5.2 EAWE Lasso Regression Quality of Fit

As we did for Ridge Regression, we compared MSElasso to MSEols, to see whether Lasso Regression

offers better performance than traditional OLS. We decided to fit OLS and Lasso on the entire set of

EAWE variables, to strain Lasso’s variable selection ability. Once we removed the response variable

(EARNINGS) from the dataset and the variable ID, the dataset contains 94 variables.

First, we fit OLS on the training data and we computed MSEols. As a result, we obtained MSEols=

0.4205839. Then, we proceeded with LOOCV, needed to select the optimal λ penalty value to fit Lasso

Regression. From the lasso_cv object we extracted λmin and we fit a Lasso regression with λ = λmin
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on the training set. Finally, we extracted the predicted values on the testing data.

lasso_cv <- cv.glmnet(newdata[1:800,], y[1:800], alpha = 1,

standardize = TRUE, nfolds = 800, grouped=FALSE)

lasso.mod=glmnet(x[1:800],y[1:800],alpha=1,lambda=lambda.min)

lasso.pred=predict(lasso.mod,s=lambda.min,newx=x[801:1000])

We computed MSElasso which showed a great improvement compared to MSEols. In fact, we

obtained MSElasso=0.2304754, whereas the MSEols= 0.4205839. Overall, we believe this proves the

superiority of Lasso regression in a context where there is the presence of many predictors. Overall,

from the 94 variables in the X, Lasso selected 33, as reported in Table 7.

Table 7
Variables selected by LASSO Description
ASVABAR Arithmetic reasoning
ASVABMK Word knowledge
CATSE Self-employment
COHABIT Cohabiting
COLLBARG Pay set by collective bargaining
EDUCBA Bachelor’s degree
EDUCMAST Master’s degree
EDUCPHD Doctorate
EDUCPROF Professional degree
ETHHISP Ehtnicity, Hispanic
EXP Total out-of-school work experience
FAITHJ Faith, none
FEMALE Sex of respondent (0 if male, 1 if female)
HEIGHT Height, in inches
HHINC97 Gross household income,$, in year prior 1997
HOURS Usual number of hours worked per week
JOBS Number of jobs
MALE Sex of respondned (0 if male, 1 if female)
MARRIED Married,spouse present
MSA11NK MSA, not known
MSA97NCC MSA, not central city
MSA97NO Not in metropolitan statistical area
OTHSING Other single
REG97NC Census Region north central
REG97NE Census Region north east
REGNC Census Region north central
REGS Census Region south
S Years of schooling (highest grade completed)
SF Years of schooling of biological father
SFR Years of schooling of residential father
SIBLINGS Number of siblings
TENURE Tenure (years) with current employer
WEIGHT11 Weight, in pounds

6 EAWE dataset: exploring Lasso extensions

In the following section, we will provide three illustrative examples of extensions to Lasso using the

EAWE dataset. The aim is to show how these estimators work in practice and how different the results

are from traditional Lasso. For the applications, we will use the EAWE dataset with the same subsets

selected from EAWE01 and EAWE02, corresponding to a total of 1000 observations. We decided,

when possible, to fit the models on the entire set of EAWE variables, as we did for Lasso.

21



6.1 Adaptive Lasso

To estimate the two-stage approach in Adaptive Lasso, we used the package glmnet, specifying the

option penalty.factor.

First, we performed the same data splitting as we did for Lasso, then we estimated OLS to obtain the

estimates “consistent and unbiased” to specify the adaptive lasso weights. As previously explained,

to compute the weight we take the inverse of the absolute values of the OLS coefficients raised to the

power γ. In our application, we considered four different γ values: 0.1, 0.5,1 and 2 to see how different

γ values affected results from Adaptive Lasso. Below, we report the code to compute ŵj = 1∣∣∣∣β̂ j
0.1

∣∣∣∣ . We

used the specified weights both to conduct LOOCV and to fit the model. In the following lines of code

we the command needed to estimate Adaptive Lasso. First we compute the adaptive lasso weights

using previously estimated OLS coefficient using as γ value 0.1. Then we conduct LOOCV specifying

the option penalty.factor which allow us to use the previously defined weights. Finally, we

extracted the predicted values using the testing dataset.

weight1 <- 1/abs(matrix(best_ols_coef)

[, 1][2:(ncol(x1)+1)])ˆ0.1

alasso1_cv <- cv.glmnet(x1,y,

type.measure = "mse",

nfold = 800, alpha = 1,

penalty.factor = weight1,

keep = TRUE,grouped=FALSE)

alasso.coef=predict(alasso1,

type="coefficients",s= alasso1_cv$lambda.min, newx = x2) [1:91,]

In Table 8 we report the different variables selected estimated for the different γ values. As the

table shows the fewer variables were included for a value of γ=1 and for γ=0.1.

Moreover, we compute the out-of-sample MSE for each model estimated. As Table 9 shows, as γ

increases the out-of-sample MSE increases, though the increases are quite small in magnitude.

6.2 Induced Smoothed Lasso

We performed islasso in R, using the package islasso, following Sottile et al. (2019). The pack-

age islasso returns point estimates, reliable standard errors, and corresponding p-values for the

regression coefficients. We aimed to conduct Islasso on the entire X matrix of EAWE explanatory

variables. However, unlike traditional Lasso, we had to remove the following variables—because

multicollinearity—to make Islasso work: HHBMONLY, HHBFONLY, MSA97NK, RS97UNKN, MSA11NIC.
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Table 8
γ=0.1 γ=0.5 γ=1 γ=2
ASVABAR FEMALE FEMALE ASVABAR
ASVABMK ASVABAR ASVABMK ASVABMK
ASVABPC ASVABMK ASVABPC ASVABPC
CATPRI ASVABPC CATSE ASVABWK
CATSE ASVABWK COLLBARG BYEAR
COHABIT BYEAR EDUCAA CATSE
COLLBARG CATPRI EDUCBA COLLBARG
EDUCAA CATSE EDUCGED EDUCAA
EDUCBA COHABIT EDUCMAST EDUCBA
EDUCGED COLLBARG EDUCPHD EDUCGED
EDUCMAST EDUCAA EDUCPROF EDUCHSD
EDUCPHD EDUCBA ETHHISP EDUCMAST
EDUCPROF EDUCGED EXP EDUCPHD
ETHHISP EDUCMAST FAITHJ EDUCPROF
EXP EDUCPHD HHBFONLY ETHHISP
FAITHJ EDUCPROF HHBMBF EXP
FEMALE ETHHISP HHBMONLY FAITHC
HEIGHT EXP MARRIED FAITHJ
HHBMBF FAITHJ MSA11NCC FAITHO
HOURS HEIGHT MSA11NO FEMALE
JOBS HHBFONLY MSA97CC HHBFONLY
MARRIED HHBMBF MSA97NO HHBMBF
MSA11NCC HHBMONLY REG97NE HHBMOF
MSA11NO HHOMBF REGNC HHBMONLY
MSA97NCC HOURS REGNE HHOMBF
MSA97NO JOBS REGW MARRIED
REG97S MARRIED RS97RURL MSA11CC
REGNC MSA11NCC S MSA11NCC
REGW MSA11NO TENURE MSA11NO
RS97RURL MSA97CC p=29 MSA97CC
S MSA97NO MSA97NO
SF PRFSTYAN PRFSTYAN
SFR REG97NE PRFSTYPE
SIBLINGS REGNC REG97NE
TENURE REGNE REGNC
WEIGHT11 REGW REGNE
p=38 RS97RURL REGW

S RS97RURL
SIBLINGS S
SINGLE TENURE
TENURE URBAN
URBAN p=41
p=42

Table 9
Out of sample MSE
γ=0.1 0.2254022
γ=0.5 0.2277718
γ=1 0.2281781
γ=2 0.2333396

Once we removed these variables, we selected λ by LOOCV, as previously explained. Then, as sug-

gested by Sottile et al. (2019), to make the algorithm work faster, we multiplied the λmin by the number

of observations.

model=with(EAWE,cv.glmnet(x[1:800,],y, standardize=TRUE,type.measure=’mse’,

nfolds=800,alpha=1, grouped=FALSE))

lambda=model$lambda.min

lambdalasso=lambda*800

Having selected λmin we proceeded by fitting islasso on the training dataset:

islasso.mod=islasso(y˜.,data=data.frame(x[1:800,]), lambda=lambda,family=gaussian)
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As previously explained,islasso doesn’t shrink the coefficients precisely to zero, but it returns

the p-value from the output of the fitted model. Stepping back to Lasso, we recall that 33 X variables

were selected (Table 7). Table 10 reports the 19 variables that Islasso reported as statistically significant.

Moreover, we computed out-of-sample MSE and compared it with OLS MSE. As a result, we obtained

0.2435632 out-of-sample MSE for islasso, which shows an improvement with respect to 0.4204438

OLS.

Table 10
Estimate Std. Error Df z value Pr(> |z|)

(Intercept) -73.701212 41.270703 1 -1.786 0.074132.
FEMALE -0.107792 0.055788 0.999 -1.932 0.053338.
MALE 0.000073 0.000036 0.001 2.028 0.042566*
BYEAR 0.037494 0.020811 0.999 1.802 0.071608.
AGE -0.000026 0.000014 0.001 -1.826 0.067861.
S 0.059571 0.01597 1 3.73 0.000191 ***
EDUCMAST 0.192818 0.104526 0.955 1.845 0.065084 .
EDUCHSD -0.024029 0.000235 0.997 -102.087 2E-16 ***
MARRIED 0.078924 0.043512 0.999 1.814 0.0697 .
FAITHP -0.006592 0.000196 0.997 -33.671 2E-16***
HEIGHT 0.015658 0.006964 1 2.248 0.024546 *
REG97NE 0.156453 0.088152 0.922 1.775 0.07593 .
REG97S -0.000506 0.000131 0.856 -3.856 0.000115***
JOBS -0.013206 0.006276 1 -2.104 0.035369 *
HOURS 0.004228 0.001736 1 2.436 0.014849 *
TENURE 0.021939 0.008426 1 2.604 0.009222 **
CATSE 0.237506 0.069172 1 3.434 0.000596 ***
COLLBARG 0.254832 0.057437 1 4.437 0.00000913***
MSA11CC -0.006041 0.000153 0.996 -39.575 2E-16 ***
EXP 0.043212 0.010169 1 4.249 0.00002144***
Signif. cod: 0 ‘*** ’ 0.001 ‘**’ 0. 01 ‘* ’ 0.05 ‘.’ 0.1 ‘ ’ 1

6.3 Relaxed Lasso

To estimate Relaxed Lasso, we used the package glmnet specifying the option relax = TRUE. As

explained above, the Relaxed Lasso is equivalent to estimating two consecutive Lasso models. The

first step is needed to perform variable selection as an ordinary Lasso, and the second is for the

shrinkage of coefficients. Essentially, the second step is necessary to ensure that we obtain the best

parameters estimates, based on a prediction criterion, for the best set of predictors. As the code below

reports, other than adding the option relax = TRUE, the procedure is identical to the traditional

Lasso estimation. The major difference is that from the cv.glmnet object we extract not only λmin

but also γmin. As for Lasso, the parameter λ controls for the variable selection part, whereas the

parameter γ controls the shrinkage of coefficients. If γ=1, then Lasso and relaxed Lasso estimators are

identical for γ < 1, the shrinkage of coefficients is reduced compared to ordinary Lasso estimation.

cv.glmnet uses by default 5 values of γ: (0, 0.25, 0.5, 0.75, 1). The λ we obtained is λmin=0.03289,

whereas γmin=0.25.

cv=(cv.glmnet(x1,y[1:800], standardize=TRUE,type.measure=’mse’,nfolds=800,

alpha=1, grouped=FALSE, relax=TRUE))

relax.coef=predict(cv,type="coefficients",
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s= 0.01714892, newx = x2,gamma="gamma.min",

lambda="lambda.min",alpha=1)[1:97,]

relax.coef[relax.coef!=0]

In Table 11 we reported the variables selected by relaxed Lasso. Moreover, we computed the

out-of-sample MSE, which results in MSE=0.235308.

Table 11
Variables Selected by Relaxed Lasso
ASVABAR ASVABMK
ASVABMK CATSE
COHABIT COLLBARG
EDUCBA EDUCMAST
EDUCPHD EDUCPROF
ETHHISP EXP
FAITHJ FEMALE
HEIGHT HHINC97
HOURS JOBS
MALE MARRIED
MSA11NK MASA97NCC
MSA97NO OTHSING
REG97NC REG97NE
REGNC REGS
S SF
SFR SIBLINGS
TENURE WEIGHT11

6.4 Traditional Lasso vs. Lasso Extensions

In Table 12 we summarized the variables that each method included, adding a column to identify

which ones were always selected across different estimation methods. It’s important to emphasize that

the variables chosen by Lasso and Relaxed Lasso are identical, as Relaxed Lasso is simply updating

the estimated coefficients by estimating Lasso twice: the difference would be in the shrinkage of the

selected variables but not in their inclusion or exclusion. For the Islasso, we reported the variables

that resulted statistically significant after the estimation. The variables that were included for every

estimation technique were:

• CATSE, self-employment

• COLLBARG, pay set by collective bargaining

• EDUCMAST, master’s degree

• FEMALE, sex of respondent

• S, years of schooling (highest grade completed)

• TENURE, tenure (years) with current employer

Moreover, we also reported the MSE across the different estimation techniques. As Table 13 shows,

Lasso and Islasso have similar MSE, and the lowest MSE is obtained with the adaptive procedure and

γ = 0, 1. Overall, each model specification show improvement with respect to OLS.
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Table 12
EAWE Lasso Islasso Adaptive Lasso γ = 0.1 Adaptive Lasso γ = 0.5 Adaptive Lasso γ = 1 Adaptive Lasso γ = 2 Relaxed Lasso Variables always included
AGE X
AGEMBTH
ASVABAR X X X X X
ASVABC
ASVABC4
ASVABCS
ASVABMK X X X X X X
ASVABMV
ASVABNO
ASVABPC X X X X
ASVABWK X X
BYEAR X X X
CATGOV
CATMIS
CATNPO
CATPRI X X
CATSE X X X X X X X X
COHABIT X X X X
COLLBARG X X X X X X X X
EDUCAA X X X X
EDUCBA X X X X X X
EDUCDO
EDUCGED X X X X X
EDUCHSD X
EDUCMAST X X X X X X X X
EDUCPHD X X X X X X
EDUCPROF X X X X X X
ETHBLACK
ETHHISP X X X X X X
ETHWHITE
EXP X X X X X X X
FAITHC X
FAITHJ X X X X X X
FAITHM
FAITHN
FAITHO X
FAITHP X
FEMALE X X X X X X X X
HEIGHT X X X X X
HHBFONLY X X X
HHBMBF X X X X
HHBMOF X
HHBMONLY X X X
HHINC97 X X
HHOMBF X
HHOTHER
HOURS X X X X X
JOBS X X X X X
MALE X X X
MARRIED X X X X X X X
MSA11CC X X
MSA11NCC X X X X
MSA11NIC
MSA11NK X X
MSA11NO X X X X
MSA97CC X X X
MSA97NCC X X X
MSA97NK
MSA97NO X X X X X
OTHSING X X
POVRAT97
PRFSTYAE
PRFSTYAN X X
PRFSTYPE X
PRFSTYUN
PRMONF
PRMONM
PRMSTYAE
PRMSTYAN
PRMSTYPE
PRMSTYUN
REG97NC X X X X X
REG97NE X X X X X X
REG97S X X X X
REG97W X
REGNC X X X X X
REGNE X X
REGS X X
REGW X X X X
RS97RURL X X X X
RS97UNKN
RS97URBN X
S X X X X X X X X
SF X X X
SFR X X X
SIBLINGS X X X X
SINGLE X
SM
SMR
TENURE X X X X X X X X
URBAN X X
VERBAL
WEIGHT04
WEIGHT11 X X X
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Table 13
MSE

OLS 0.4204438
Lasso 0.2304754
Islasso 0.243563
Adaptive γ = 0, 1 0.2254022
Adaptive γ = 0, 5 0.2277718
Adaptive γ = 1 0.2281781
Adaptive γ = 2 0.2333396
Relaxed Lasso 0.235308

7 Mtcars & EAWE LOOCV vs k-folds cross validation

Earlier, we emphasized using the LOOCV method to pick the Lasso penalty value. LOOCV’s ad-

vantage is that two researchers would not obtain different results due solely to random sampling to

construct the folds. As we underlined, another common approach is k− f olds cross-validation, where

observations are divided into k folds: the first fold is treated as a validation set and the remaining

k − 1 as the training set. The issue of which cross-validation method is best is not settled in the

literature. James et al. (2013) underline that even if LOOCV gives unbiased test error estimates, it

could have higher variance than k − f olds CV. Indeed, when we perform LOOCV, we average the

outputs of n fitted models, trained with almost overlapping training sets leading to highly positively

correlated outputs, thereby higher variance. If there is a spurious correlation in a training set, it’s hard

to determine a spurious and real correlation when refitting the model because the training set never

changes. To summarize, according to James et al. in terms of bias reduction, LOOCV is preferred to

k − f olds, but not necessarily in terms of variance.

As we do not aim to settle the dispute among cross-validation methods, in the next section, we

will offer a perspective on each technique, comparing their results. As we will be using a CV to pick

λ′s we believe that LOOCV is a better technique for replicating the results.

7.1 LOOCV vs. k-folds cross validation with Mtcars

To perform cross-validation in R we will use the Mtcars dataset and the the glmnet package,

specificallycv.glmnet. First we set y = mpg, specifying the center=TRUE, scale=FALSE option.

Then, we created the matrix of explanatory variables X. Our aim is to perform the cross-validation

procedure 10 times, to see how results for λmin differ across replications. As noted earlier, the ran-

domness in selecting the training and evaluation datasets means that running the command multiple

times is likely to lead to multiple values of λmin. First, we will proceed with cross-validation for Ridge

regression, thereby setting α = 0:
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y <- mtcars %>% select(mpg) %>% scale(center=TRUE, scale=FALSE) %>% as.matrix()

X <- mtcars %>% select(-mpg) %>% as.matrix()

lambdas=matrix(-99,1,nreps) #create space to store lambda_{min}

cvm=matrix(-99,nreps)

for (iii in 1:nreps) {

cvridge=(cv.glmnet(X, y, alpha = 1,

standardize = TRUE, nfolds = 10, grouped=FALSE))

lambda=cvridge$lambda.min

I0=which(cvridge$lambda==cvridge$lambda.min)

lambdas[iii]=cvridge$lambda.min

cvm[iii]=cvridge$cvm[I0]

}

As shown, the first thing to do is to set a random seed: k− f olds cross-validation contains randomness,

and setting a random seed allows us to replicate the results later. We first specified 10-folds cross-

validation: this approach randomly divides the sample into ten folds of approximately equal size.

The first fold is treated as a validation set, and the method is fit using data from the remaining nine

folds. Then, the MSE is computed on the held-out observation. The procedure is repeated t times

and each time a different group of observations is treated as a validation set. In other words, for

each replication, we create different t cross-validation folds. λmin is obtained by picking the value that

minimize the CV measure calculated across all t-folds. As a result, for different replications since the

folds are random, we obtain different values of λmin. We reported the ten λmin values obtained with

10-folds cv in Table 13.

We observe that λmin values are repeated across replications, thus across different cross-validation

folds. This is because glmnet performs Ridge Regression for an automatically selected range of λ.

We performed the same procedure but with nfolds=32 to perform LOOCV. In this case, we obtained

the same λmin across replications, as shown in the second column of Table 14.

To compare how different λmin expected values affect model estimation, we fit a Ridge model for

each of the λmin values selected by cross-validation. Then, we extracted the estimated coefficients,

ŷ, and the predictions and we computed the % change among coefficients fit between λ’s value,

keeping as s reference value the λminLOOCV. We considered the difference between λminLOOCV and

the smallest and largest λmin obtained by k-folds cross validation. We observe that there is a large

variability among the estimated values. On average, comparing the results using λminLOOCV to those

using λmin=2.2804328 there is a 20% difference and comparing results from λminLOOCV with those using

λmin=3.014598, there is an 11% difference.
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Table 14
10foldsCV LOOCV

3.014598 2.746789
2.746789 2.746789
3.014598 2.746789
2.502772 2.746789
3.014598 2.746789
3.014598 2.746789
2.502772 2.746789
2.280432 2.746789
2.280432 2.746789
2.502772 2.746789

Table 15
10 folds CVM LOOCV CVM

7.349375 7.336113
7.259769 7.336113
6.905356 7.336113
8.244306 7.336113
9.359265 7.336113
7.990501 7.336113
7.122686 7.336113
7.042466 7.336113
7.894833 7.336113

Moreover, as shown in Table 14, from the object cv.glmnet we extracted the cvm, the mean

cross-validated error value. As cv.glmnet fits the model for 100 λ, the cvm is a vector of the same

length of λ so we extracted only the cvm value corresponding to each λmin.

We repeated the same procedure but for Lasso Regression, thereby setting α = 1. In Table 16 and

Table 17, we report the λmin selected from LOOCV and 10 − f olds cross validation. Again, we observe

that the λminLOOCV value is in the middle of the range of λ′s selected by 10 − f oldsCV.

Table 16
10 foldsCV LOOCV
0.6647582 0.7295713
0.8007036 0.7295713
0.7295713 0.7295713
0.6057029 0.7295713
0.6647582 0.7295713
0.7295713 0.7295713
0.6647582 0.7295713
0.4174875 0.7295713
0.4174875 0.7295713
0.458192 0.7295713

Table 17
10folds CVM LOOCV CVM
7.949812 7.994084
8.403699 7.994084
7.628242 7.994084
8.083009 7.994084
8.687241 7.994084
9.989269 7.994084
8.287426 7.994084
7.393465 7.994084
7.898742 7.994084
8.845132 7.994084

We observe we observe that for Lasso there is less variability among the predicted values than

Ridge Regression. On average, comparing the results using λminLOOCV to those using λmin=0.4174875

there is a 16% ; difference and comparing results from λminLOOCV with those using λmin=0.8007036,

there is an 10% difference.

To conclude, we decided to use LOOCV motivated by the fact that there is no randomness in the

data splits and replicability of results. Moreover, the high variability in the predicted ŷ led us to say

that to choose a method where the randomness is reduced to a minimum.
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7.2 LOOCV vs. k-folds cross validation for EAWE

As for Mtcars, we conduced the same LOOCV vs. k − f olds CV for the EAWE dataset. Following the

previous section we decided to use two different datasets to fit Ridge and Lasso.

For Ridge cross-validation we will use EARNINGS as response variables and S, ASVABC, ASV-

ABC4, ASVABAR, ASVABWK as independent variables. Whereas for Lasso we will use the entire X

matrix of independent variables available.

To perform cross-validation in R we will use the glmnet package, specifically the cv.glmnet.

Our aim is to perform cross-validation procedure 10 times, to see how different results for λmin across

replications. First, we will proceed with cross-validation for Ridge regression, thereby setting α = 0.

From Table 18 we observe that λminLOOCV is in the middle range of the λmin selected by 10 folds cross

validation. Moreover, as we did for Mtcars, we also fit a Ridge model for each of the λmin selected

by cross-validation. Then, we extracted the estimated coefficients ŷ, and we computed the % change

among coefficients fit between λ’s value, keeping as a base reference the λminLOOCV. We observe

that for the EAWE dataset there is less variability among the estimated coefficients. On average

between λminLOOCV- λmin=0.01755245 there is a less than 1% difference and the same goes for between

λminLOOCV-λmin=0.05360264.

Table 18
10foldsCV LOOCV
0.01755245 0.0254656
0.01755245 0.0254656
0.05360264 0.0254656
0.02794846 0.0254656
0.01755245 0.0254656
0.01755245 0.0254656
0.0306734 0.0254656
0.0306734 0.0254656
0.0306734 0.0254656
0.0306734 0.0254656

Table 19
10folds CVM LOOCV CVM
0.2870256 0.2875486
0.2874746 0.2875486
0.2893539 0.2875486
0.2871482 0.2875486
0.2873814 0.2875486
0.2874786 0.2875486
0.2882417 0.2875486
0.2883017 0.2875486
0.288728 0.2875486
0.2879898 0.2875486

Moreover, we conducted the same analysis for Lasso regression. Again, we observe that for

the EAWE dataset there is less variability among the estimated coefficients compared to Mtcars: on

average between λminLOOCV- λmin=0.017148922 there is a less than 1% difference and the same goes for

λminLOOCV-λmin=0.01882091.
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Table 20
10 folds LOOCV

0.01882091 0.01714892
0.01562545 0.01714892
0.01562545 0.01714892
0.01714892 0.01714892
0.01714892 0.01714892
0.01714892 0.01714892
0.01562545 0.01714892
0.01562545 0.01714892
0.01714892 0.01714892
0.01714892 0.01714892

Table 21
CVM 10 folds LOOCV
0.243252 0.2432404
0.2421694 0.2432404
0.2451041 0.2432404
0.2457068 0.2432404
0.2463512 0.2432404
0.2457754 0.2432404
0.2421929 0.2432404
0.2473571 0.2432404
0.2455701 0.2432404
0.2420777 0.2432404

8 UC Davis transfer students: an application

8.1 Data Description

This work aims to assess UC Davis transfer student performance, measured by time to degree.

Specifically, we will use a dataset composed of 4,091 observations, over 11 years, of transfer students

who enrolled initially in either Managerial Economics or Economics. The 126 variables which make

up the dataset will enable us to understand the reasons why some transfers student do not graduate

two years after transfer. Although the sample size is large, the large number of possible explanatory

variables suggest that the use of shrinkage estimators might be beneficial.

Data from UC System (https://www.universityofcalifornia.edu/infocenter/transfer

s-major), indicate that transfer enrollment for the Economics major decreased over time, whereas

the enrollment in the Managerial Economics increased over time. Moreover, we observe in Table 22

that the admit rate has been around 76% for Economics and 77% for Managerial Economics, with a

negative peak in 2020. Since 2020, referring to the class entering in Fall 2020, the pandemic surely

reduced both applications and acceptance. However, from the perspective of tracking these students

only through Fall 2021, they should not enter in analysis of completion given that it is not possible to

finish a bachelor’s degree in less than 2 years after transferring.

To be considered as a transfer student, a student ”must have completed 60 semesters or 90 quarter

of UC-transferable units at one (or more) California community college, by the end of the spring term

before fall enrollment”. Moreover, a student should earn at least a 2.40 GPA in UC-transferable classes

to meet UC requirements. Specifically, UC Davis requires a minimum 2.80 GPA to be considered for

admission.

Usually, students transfer at the end of their Sophomore year; therefore, they enter UC Davis

in the fall of their third year (Junior year). In this work, we considered only students who started
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Table 22
Economics

Year Applicants Admit Enrolls Admit rate
2013 1720 1372 347 80%
2014 1817 1381 372 76%
2015 1942 1434 398 74%
2016 2111 1684 429 80%
2017 1850 1507 358 81%
2018 1998 1395 308 70%
2019 1837 1308 285 71%
2020 1238 964 187 78%

Managerial Economics
Year Applicants Admit Enrolls Admit rate
2013 451 366 153 81%
2014 422 338 145 80%
2015 471 354 160 75%
2016 484 410 180 85%
2017 676 549 193 81%
2018 730 585 213 80%
2019 701 566 231 81%
2020 1554 864 190 56%

and ended their academic careers at a California community college before transferring. A number

of students transferred to UC Davis with units from institutions other than California Community

Colleges (CCCs). Even if such students had taken some units from CCCs, they were excluded from

this analysis (286 observations).

To be considered graduating on time, students should graduate in two years: if a student enrolled

in Fall 2014, she must graduate by Spring 2016. Nearly all students entered in the fall quarter. We

dropped a small number of observations corresponding to students who entered in a different quarter

other than the fall.

We analyzed the student’s performance for two majors, Managerial Economics and Economics

(Table 23). Overall in our sample 2,639 students enrolled as Economics majors, whereas 1,481 transfer

students entered as Managerial Economics majors. We observe that from 2011 to 2021 the gap between

those entering into Economics and Managerial economics shrunk.

Table 23
ENTRYMAJOR

2011 205 66% 105 34% 310
2012 255 65% 135 35% 390
2013 261 69% 115 31% 376
2014 275 72% 109 28% 384
2015 298 72% 123 29% 421
2016 300 68% 141 32% 441
2017 284 67% 138 33% 422
2018 238 58% 169 42% 407
2019 220 56% 171 44% 391
2020 148 51% 140 49% 288
2021 135 52% 126 48% 261

Overall 238.09 63% 133.82 37% 371.91
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As we aim to understand the characteristics that increase the probability of late graduation by

transfer students, we will proceed with a descriptive analysis of the variables that seem likely to

predict a student’s time to degree.

First, we analyzed how many students stayed in their major until graduation: we defined the

binary variable “STAYED” to see whether students switched majors or not. As Table 24 shows, 7.50%

of Economics students changed majors and almost 13% of Managerial Economics students did so,

thereby showing a higher attrition rate. It is important to note that if the student switched between

these two majors, then they would still count as “STAYED=1” because the two majors are sufficiently

similar that switching between the two could presumably be expected to have no effect on the time to

degree. Other students who transferred first onto other major (let’s say sociology) and then changed

major to Managerial Economics or Economics are not included in the analysis, and they count as

STAYED=0. Similarly, we presumed that having more than one major could increase the probability

Table 24

Entering Class Stayed=0 Stayed=1
Economics % Man Econ % Economics % Man Econ %

2011 12 5.85% 6 10.81% 193 94.15% 99 94.29%
2012 16 6.27% 12 11.51% 239 93.73% 123 91.11%
2013 28 10.73% 5 20.29% 233 89.27% 110 95.65%
2014 20 7.27% 11 16.95% 255 92.73% 98 89.91%
2015 28 9.40% 9 19.72% 270 90.60% 114 92.68%
2016 27 9.00% 10 17.09% 273 91.00% 131 92.91%
2017 17 9.40% 14 12.06% 267 94.01% 124 89.86%
2018 17 7.14% 17 10.06% 221 92.86% 152 89.94%
2019 11 5.00% 12 6.47% 209 95.00% 159 92.98%
2020 7 4.73% 10 5.11% 141 95.27% 130 92.86%

Overall 18.3 7.48% 10.6 12.86% 230.1 92.86% 124 92.12%

of graduating late. As Table 25 shows only 3.89% of these Economics student graduated with a

double major, whereas just 2% of Managerial Economics student have done so. Moreover, as Table 26

reports, we analyzed whether students had a minor. Again we presume that having a minor might

increase the probability of graduating late. Overall, 25.64% of Economics students had a minor and

26.33% of Managerial Economics did so. In both cases, the reason is straightforward: the additional

requirements for a second major or a minor could complicate the scheduling of required courses of

lead to greater total units before graduation.

We also analyzed how many students benefited from the transfer admission guarantee (TAG)

program. The TAG program provides community college students with a guarantee of admission to

UC when they are ready to transfer. Six UC campuses (Davis, Irvine, Merced, Riverside, Santa Barbara,

and Santa Cruz) offer guaranteed admission to students from any of the California community colleges

These students must meet campus-specific requirements to qualify for a TAG. To be considered for

a TAG at UC Davis, a student must have at least a 3.20 GPA. We presume that having a TAG would
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Table 25

Entering Class Double Major=1 Double Major=0
Econ % Man Econ % Econ % Man Econ %

2011 9 4.39% 2 1.90% 196 95.61% 103 98%
2012 8 3.14% 1 0.74% 247 96.86% 134 99%
2013 11 4.21% 1 0.87% 250 95.79% 114 99%
2014 15 5.45% 3 2.75% 260 94.55% 106 97%
2015 13 4.36% 1 0.81% 285 95.64% 122 99%
2016 7 2.33% 3 2.13% 293 97.67% 138 98%
2017 10 3.52% 2 1.45% 274 96.48% 136 99%
2018 7 2.93% 1 0.59% 232 97.07% 168 99%
2019 10 4.55% 5 2.92% 210 95.45% 166 97%
2020 6 4.05% 2 1.43% 142 95.95% 138 99%

Overall 9.6 3.89% 2.1 2% 238.9 96.11% 132.5 98%

Table 26

Entering Class Minor=1 Minor=0
Econ % Man Econ % Econ % Man Econ %

2011 63 30.73% 16 15.24% 142 69.27% 89 84.76%
2012 75 29.41% 16 11.85% 180 70.59% 119 88.15%
2013 64 24.52% 18 15.65% 197 75.48% 97 84.35%
2014 54 19.64% 23 21.10% 221 80.36% 86 78.90%
2015 68 22.82% 21 17.07% 230 77.18% 102 82.93%
2016 63 21.00% 30 21.28% 237 79.00% 111 78.72%
2017 92 32.39% 31 22.46% 192 67.61% 107 77.54%
2018 60 25.21% 45 26.63% 178 74.79% 124 73.37%
2019 55 25.00% 37 21.64% 165 75.00% 134 78.36%

Overall 66 25.64% 26.33 19.21% 194 74.36% 108 80.35%

decrease the probability of graduating late, as TAG students should have a high GPA and meet stricter

requirements. But, it is also possible that the TAG simply reflects better planning or advising. As we

observe from Table 27, 35.35% of Economics students and 48.22% of Managerial Economics students

benefited from a TAG, almost 42% of our sample.

Next, we analyzed how many students enrolled in the Educational Opportunity Program (EOP).

The EOP provides admission, academic and financial support services to historically underserved

students throughout California. Therefore, we can reasonably presume that EOP students come from

underprivileged backgrounds. We presume that this might increase the probability of late graduation:

Jury et al. (2017) stated that the higher education system seems to favor students with more privileged

socioeconomic background bringing more burden to the students from lower socioeconomic back-

grounds. EOP students may need to work to help finance their education and they are more likely

to be the first in their family to attend college. Overall, as reported in Table 28, 12.21% of Economics

students and 17.63% of Managerial Economics enrolled in EOP.

Another variable we deemed interesting to comment is how many students had to pay a non-

residential supplemental tuition (NRST). The NRST is paid by all students who are not residents

of California, including both residents of other states and international students. We presume that
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Table 27

Entering Class TAG=1 TAG=0
Economics % Man Econ % Economics % Man Econ %

2011 104 50.73% 71 67.62% 101 49.27% 34 32.38%
2012 70 27.45% 64 47.41% 185 72.55% 71 52.59%
2013 68 26.05% 49 42.61% 193 73.95% 66 57.39%
2014 108 39.27% 49 44.95% 167 60.73% 60 55.05%
2015 83 27.85% 51 41.46% 215 72.15% 72 58.54%
2016 80 26.67% 62 43.97% 220 73.33% 79 56.03%
2017 80 28.17% 54 39.13% 204 71.83% 84 60.87%
2018 84 35.29% 78 46.15% 154 64.71% 91 53.85%
2019 90 40.91% 74 43.27% 130 59.09% 97 56.73%
2020 71 47.97% 76 54.29% 77 52.03% 64 45.71%
2021 52 38.52% 75 59.52% 83 61.48% 51 40.48%

Overall 80.91 35.35% 63.91 48.22% 157.18 64.65% 69.91 51.78%

Table 28

Entering Class EOP=1 EOP=0
Economics % Man Econ % Economics % Man Econ %

2011 26 12.68% 17 16.19% 179 87.32% 88 83.81%
2012 29 11.37% 25 18.52% 226 88.63% 110 81.48%
2013 32 12.26% 25 21.74% 229 87.74% 90 78.26%
2014 32 11.64% 13 11.93% 243 88.36% 96 88.07%
2015 38 12.75% 25 20.33% 260 87.25% 98 79.67%
2016 25 8.33% 22 15.60% 275 91.67% 119 84.40%
2017 32 11.27% 20 14.49% 252 88.73% 118 85.51%
2018 28 11.76% 32 18.93% 210 88.24% 137 81.07%
2019 31 14.09% 33 19.30% 189 85.91% 138 80.70%
2020 23 15.54% 25 17.86% 125 84.46% 115 82.14%
2021 17 12.59% 24 19.05% 118 87.41% 102 80.95%

Overall 28.45 12.21% 23.73 17.63% 209.64 87.79% 110.09 82.37%

paying more each quarter will decrease the probability of graduating late. As Table 29 shows, 31% of

Economics students and 17% of Managerial are classified as non-California residents.

Lastly, we considered the satisfaction of the Intersegmental General Education Transfer Curricu-

lum (IGETC) as an explanatory variable. IGETC is a series of courses that California CC students can

complete to satisfy most freshman/sophomore-level general education requirements before transfer-

ring to UC. 91.30% of Economics students and 91.25% of Managerial Economics students self-declared

having completed IGETC. Table 30 shows that 75.20% of Economics students and 80.18% of Manage-

rial Economics students provided proof of completion of IGETC. In recently admitted students, it is

possible that they simply not yet provided documentation at the time the dataset was assembled. But

for students from earlier years it seems reasonable to presume that they instead needed to take the

additional courses to complete GE requirements.
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Table 29

Entering Class NRST=1 NRST=0
Economics % Man Econ % Economics % Man Econ %

2011 50 24.39% 21 15.56% 155 75.61% 114 84.44%
2012 86 33.73% 14 12.17% 169 66.27% 101 87.83%
2013 76 29.12% 24 22.02% 185 70.88% 85 77.98%
2014 80 29.09% 22 17.89% 195 70.91% 101 82.11%
2015 106 35.57% 29 20.57% 192 64.43% 112 79.43%
2016 116 38.67% 32 23.19% 184 61.33% 106 76.81%
2017 84 29.58% 25 14.79% 200 70.42% 144 85.21%
2018 79 33.19% 31 18.13% 159 66.81% 140 81.87%
2019 68 30.91% 27 19.29% 152 69.09% 113 80.71%
2020 38 25.68% 8 6.35% 110 74.32% 118 93.65%

Overall 78.3 30.99% 23.3 16.99% 170.1 69.01% 113.4 83.01%

Table 30
Entering Class Student Indicates IGETC Completed IGETC Verified

Economics % Man Econ % Economics % Man Econ %
2011 194 94.6 95 90.5 157 76.6 65 61.9
2012 236 92.5 118 87.4 204 80 91 67.4
2013 241 92.3 98 85.2 209 80.1 74 64.3
2014 262 95.3 102 93.6 221 80.4 70 64.2
2015 287 96.3 109 88.6 239 80.2 73 59.3
2016 285 95 126 89.4 246 82 82 58.2
2017 267 94 130 94.2 228 80.3 91 65.9
2018 222 93.3 158 93.5 177 74.4 115 68
2019 211 95.9 152 88.9 158 71.8 98 57.3
2020 141 99.3 134 95.7 96 64.9 83 59.3
2021 133 98.5 122 96.8 35 25.9 40 31.7

Overall 225.36 91.30% 122.18 91.25% 179.09 75.20 80.18 59.77%

We will now analyze a set of variables that reflect students’ math skills and abilities: we believe

that a lack of previous math preparation would lead students to graduate later. We considered this

set of binary variables:

• Apcalc: whether a student had taken an Advancement Placement course (AP) in calculus;

• Precalc: whether students took courses that could be considered pre-calculus;

• Furthcalc: whether students took calculus courses beyond one year of calculus;

• tookCALCTEST: whether students took the UCD math screening test needed to evaluate a

student’s math skills. Not every student has to take the test, only students who haven’t taken

Calculus yet. A test score lower than 30 disqualifies the student from MAT 16A, below 25

from MAT 12, pre-calculus. We presume that taking the test shows a lack of previous math

preparation and therefore a higher probability of late graduation;

• met16A: this binary variable takes the value of 1 if the grade of the equivalent MAT16A was

higher than 0. In other words, if the grade is higher than 0, we presume students met the
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Calculus requirements for the two majors;

• tookSTA13: takes the value of 1 if students took an exam equivalent to Elementary Statistics

(STA13);

• TookMAT16A: takes the value of 1 if students took a course equivalent to Math 16A (Short

Calculus).

As Table 31 and Table 32 show, the math skills are similar between Economics and Managerial

Economics. Interestingly, we observe that there is a gap between the students who took a course

equivalent to MAT16A for both majors and those who met the MAT16A GPA requirement. This

indicates that we should be careful when evaluating results: taking a course doesn’t necessarily imply

having proficient math skills.

Table 31

% of students by entry year Economics
Apcalc Precalc Furthcalc Calctest met16A tookSTA13 TookMAT16a

2011 3.41% 69.27% 14.15% 13.17% 51.71% 91.71% 88.78%
2012 7.06% 67.45% 10.20% 15.29% 57.65% 89.41% 88.24%
2013 5.36% 66.28% 11.49% 16.48% 60.92% 93.49% 91.57%
2014 4.36% 70.91% 13.82% 8.73% 65.82% 94.18% 93.82%
2015 5.37% 73.83% 10.07% 9.73% 62.08% 94.30% 93.29%
2016 4.36% 72.00% 9.33% 6.33% 63.67% 93.00% 95.00%
2017 4.58% 62.68% 13.38% 7.04% 65.85% 93.66% 93.66%
2018 4.20% 69.75% 12.61% 9.24% 67.65% 94.12% 93.70%
2019 6.82% 69.09% 13.64% 9.09% 62.73% 93.18% 94.09%
2020 6.08% 62.84% 15.54% 1.35% 72.97% 96.62% 98.65%
2021 8.15% 57.78% 20.00% 0.00% 83.70% 85.93% 98.52%
Overall 5.43% 67.44% 13.11% 8.77% 64.98% 92.69% 93.57%

Table 32

% of students by entry year Managerial Economics
Apcalc Precalc Furthcalc Calctest met16a tookSTA13 TookMAT16A

2011 3.81% 66.67% 7.62% 19.05% 55.24% 96.19% 85.71%
2012 8.89% 62.96% 6.67% 14.07% 62.96% 97.78% 88.89%
2013 4.35% 66.96% 10.43% 13.91% 67.83% 98.26% 89.57%
2014 6.42% 54.13% 3.67% 15.60% 66.06% 98.17% 87.16%
2015 4.07% 62.60% 2.44% 14.63% 52.85% 93.50% 87.80%
2016 9.22% 65.25% 7.09% 16.31% 60.99% 95.74% 87.94%
2017 3.62% 69.57% 6.52% 13.77% 51.45% 95.65% 87.68%
2018 4.14% 64.50% 5.92% 10.06% 57.99% 96.45% 89.94%
2019 8.77% 62.57% 5.85% 9.36% 57.31% 92.40% 92.98%
2020 10.00% 60.00% 7.14% 10.71% 74.29% 98.57% 90.00%
2021 8.73% 62.70% 10.32% 0.79% 82.54% 98.41% 98.41%
Overall 6.66% 63.52% 6.65% 12.22% 62.43% 96.33% 89.80%

Moreover, we checked how many students had already taken equivalent core prerequisite courses.

We presume that the more classes transfer students had taken, the lower the probability of graduating

late. We specified a set of binary variables (took course=1, 0 otherwise) for the most important classes:
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• MAT16A-Short Calculus, MAT16B-Integral Calculus, MAT16C-Short Calculus;

• ECN1A-Principles of Microeconomics, ECN1B-Principles of Macroeconomics;

• MGT11A-Elementary Accounting, MGT11B-Managerial Accounting;

• ARE18: Business Law

• PLS21: Computers in Technology;

• ECS15: Introduction to Computers;

• ECS32A: Introduction to Programming:

• CMN1-Introduction to public speaking, CMN3 Interpersonal Communication Competence.

As table 33 shows, results differ much among classes. Most of the students took core Economics classes

such as ECN1A and ECN1B, but few students took preparatory courses for Programming (ECS32A)

and Computers (ECS15) in general. Across the three programming courses, only one of which is

required, fewer than 50% have taken one of the three courses. Managerial Economics transfers are

more likely to have completed courses in accounting (MGT11A,MGT11B) and business law(ARE18)

which are required for Managerial Economics but not for Economics.

Table 33
Prerequisites Econ Man Econ

Mean Mean
ECN1A 98.77% 97.56%
ECN1B 99.18% 97.99%
CMN3 7.38% 10.53%
CMN1 41.77% 60.46%
PLS21 0.75% 1.38%
ECS15 13.97% 29.82%
ECS32A 19.36% 36.03%
MGT11A 61.34% 87.16%
MGT11B 33.54% 66.67%
ARE18 26.13% 55.64%

Table 34 compares students grouped by their TAG status. Again, we do not observe significant

differences between the two majors regarding which courses they had taken. Finally, in Table 35, we

reported GPA across Major for all students, TAG and EOP students. In general, TAG has a higher

GPA than non-TAG students, and surprisingly, EOP students show a slightly higher GPA.
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Table 34
Percent of Students Taking the Course TAG Non-Tag
ECN1A 99.00% 96.10%
ECN1B 99.20% 97.00%
CMN1 62.70% 58.60%
CMN3 12.60% 8.80%
PLS21 1.70% 1.10%
ECS15 36.70% 24.10%
ECS32A 40.50% 32.30%
MGT11A 90.10% 84.70%
MGT11B 71.80% 62.40%
ARE18 60.10% 51.90%
STA13 98.30% 93.30%
MAT16A 95.30% 84.60%
MAT16B 0.10% 0.30%
MAT16C 69.60% 51.70%

Table 35
GPA

Economics Man Econ
GPA 3.394901 3.439787
TAG 3.479046 3.540994
EOP 3.419049 3.465208

We will now descriptively analyze the relationship between the variables described so far and the

students who graduate late. We defined two binary variables to describe late graduation: GLATE, a

stricter measure not including “summer term” after senior year as graduating on time, and GLATE2,

which includes “summer term” as graduating on time. From Table 36, we observe that if we consider

GLATE 47.5% of Economics students and almost 49.9% of Managerial Economics students gradu-

ated late. Instead, if we consider GLATE2, 26.7% of Economics students and 27.4% of Managerial

Economics students graduated late.

Table 36

Entering Class GLATE GLATE2
Economics Man Econ Overall Economics Man Econ Overall

2011 0.4190 0.5073 0.4632 0.2381 0.2976 0.2678
2012 0.4963 0.5176 0.5070 0.2444 0.2902 0.2673
2013 0.5652 0.5441 0.5546 0.3739 0.2874 0.3306
2014 0.4771 0.5491 0.5131 0.2661 0.3018 0.2839
2015 0.4715 0.5134 0.4925 0.3008 0.2752 0.2880
2016 0.4539 0.4333 0.4436 0.2695 0.2600 0.2648
2017 0.4928 0.5176 0.5052 0.2536 0.2711 0.2624
2018 0.4497 0.4328 0.4412 0.2308 0.2395 0.2351
2019 0.4503 0.4318 0.4411 0.2339 0.2455 0.2397
Overall 0.4751 0.4941 0.4846 0.2679 0.2742 0.2711

Our results don’t different much from those that the UC Information Center reports on the general

population of transfer students https://www.universityofcalifornia.edu/infocenter/ug-out
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comes. Assuming that a student transfers at the end of the sophomore year, they should graduate

within two years. The results show that on average, from 2010-2018, 59% graduated on time, which

is higher than what we obtained just for Economics and Managerial Economics.

In addition, these statistics show that late graduation is more common for transfer students than

a regular freshmen. In fact, averaging results from 2010 to 2016, 69% graduated on time.More

specifically,we know that the general graduation rate (2012-2015) for freshman enrolled in Managerial

economics is 70.50%, whereas for transfer students it is 64.10%

In Table 37, we report how the previously discussed variables influence late graduation.

Table 37
Economics Man Econ

GLATE
TAG=1 44.98% 41.30%
EOP=1 52.01% 52.10%
Apcalc=0 49.66% 49.91%
Precalc=0 46.19% 45.84%
Furthcalc=0 50.30% 50.51%
Tookcalctest=1 76.13% 78.18%
met16A=0 56.74% 57.43%
TookSTA13=0 63.58% 45.36%
TookMATH16=0 71.28% 76.87%
MAJDUM=1 81.11% 84.21%
MINDUM=1 36.53% 38.40%
NRST=1 40.27% 39.25%
IGETCSELF=0 49.48% 46.97%
IGETCVER=0 44.59% 40.58%
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8.2 Descriptive analysis

To understand why transfers student tends to graduate later than freshmen, we used the set of

predictors reported in Table 38. As noted, there are both demographic and more academic-related

variables. Summing up what we discussed in the descriptive data section of this work, the following

are the main hypothesis we drew:

1. being a TAG student would decrease the probability of late graduation;

2. being an EOP student would increase the probability of late graduation;

3. a lack of solid math preparation would increase the probability of late graduation;

4. having two majors/a would increase the probability of late graduation;

5. paying a non-residential student fee would decrease the probability of late graduation;

6. not having completed equivalent core courses at community college increases the probability of

late graduation;

7. switching majors increases the probability of late graduation.

Before implementing the shrinking estimators discussed in the previous chapters, we started with

a more traditional stepwise regression approach. We carried out the stepwise selection, and we

estimated explanatory Probit models in Stata. The stepwise selection is a method for selecting subsets

of predictors. There are two types of selection:

• forward stepwise selection;

• backward stepwise selection.

To perform forward stepwise selection, we start from the null model (p = 0). Then, we consider

all the possible single-variable models, choosing the model with the highest statistically significant

variable, in other words selecting the model that does the best by itself. Next, we consider all

possible 2-variable models that consider the regressor chosen in the first step and choose the one

with the highest statistically significant variable. Finally, we continue the process until we consider

all p-variable models that include regressors in step (p-1) until there are no statistically significant

variables.

Instead, to perform backward stepwise selection, we start from the full model. First, we consider

all possible p-1 variables models, excluding one variable at a time, choosing the model with the least

statistically significant variables. Then we consider all the possible p-2 variables model, excluding

only one variable from those chosen in the first step. We continue the process until each variable

remaining is statistically significant.
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Table 38
Predictors Mean Sd Min Max

PERMRES 1=California permanent resident, 0=otherwise 0.1144 0.3183 0 1
TAG 1=Student has a tag, 0=otherwise 0.3894 0.4877 0 1
RETURN 1=returning student, 0=otherwise 0.0939 0.2917 0 1
ATHLETE 1=Athlete, 0=otherwise 0.0056 0.0748 0 1
OSSJA (Office of students support and Judicial Affairs) 1=Imposed delay, 0=otherwise 0.0032 0.0563 0 1
HSCA 1=High School California, 0=otherwise 0.7707 0.4239 -1 1
HSUS 1=High School USA, 0=otherwise 0.0372 0.1892 0 1
HSENG 1=High School English Speaking country, 0=otherwise 0.0044 0.0662 0 1
HSCHINA 1=High School China, 0=otherwise 0.1474 0.3545 0 1
HSHK 1=High School Hong Kong, 0=otherwise 0.0308 0.1728 0 1
HSKOR 1=High School Korea, 0=otherwise 0.0095 0.0972 0 1
HSOTH 1=High School Other countries, 0=otherwise 0.0592 0.2359 0 1
MAJDUM 1=Double Major, 0=otherwise 0.0286 0.1667 0 1
MINDUM 1=More than one minor, 0=otherwise 0.2034 0.4026 0 1
IGETCVER 1=IGETC verified, 0=otherwise 0.6971 0.4596 0 1
EOP 1=student has EOP, 0=otherwise 0.1403 0.3473 0 1
FEMALE 1=student is female, 0=otherwise -0.2664 2.3203 -9 1
NONCA 1=student is domestic but non Ca, 0=otherwise 0.0320 0.1761 0 1
NRST 1=if a student pay non residential student fee, 0=othewrise 0.2601 0.4387 0 1
FVISA 1=if the student has an F visa, 0=otherwise 0.2359 0.4246 0 1
year Year of enrollment 2015.8630 2.9650 2011 2021
met16A 1=if student satisfied GPA requirement for 16A, 0=otherwise 0.6343 0.4817 0 1
TUNITSUSED Transferrable Units-Units Lost 98.5831 7.8109 42 105.1
UNITSUSED TUNITSUSED+Ap Credits 101.7422 8.4929 42 159
GPA Student’s GPA 3.4108 0.2677 2.68 4
STAYED 1=student didn’t change major, 0=otherwise 0.9294 0.2563 0 1
TOOKECN1A 1=student took equivalent ECN1A, 0=otherwise 0.9841 0.1251 0 1
TOOKECN1B 1=student took equivalent ECN1B, 0=otherwise 0.9883 0.1077 0 1
TOOKCMN3 1=student took equivalent CMN3, 0=otherwise 0.0836 0.2768 0 1
TOOKCMN1 1=student took equivalent CMN1, 0=otherwise 0.4903 0.5000 0 1
TOOKPLS21 1=student took equivalent PLS21, 0=otherwise 0.0105 0.1020 0 1
TOOKECS15 1=student took equivalent ECS15, 0=otherwise 0.2063 0.4047 0 1
TOOKECS32A 1=student took equivalent ECS32A, 0=otherwise 0.2569 0.4370 0 1
TOOKMGT11A 1=student took equivalent MGT11A, 0=otherwise 0.7057 0.4558 0 1
TOOKMGT11B 1=student took equivalent MGT11B, 0=otherwise 0.4432 0.4968 0 1
TOOKARE18 1=student took equivalent ARE18, 0=otherwise 0.3627 0.4809 0 1
TOOKSTA13 1=student took equivalent STA13, 0=otherwise 0.9413 0.2350 0 1
TOOKMAT16A 1=student took equivalent MAT16A, 0=otherwise 0.9201 0.2712 0 1
TOOKMAT16B 1=student took equivalent MAT16B, 0=otherwise 0.0005 0.0221 0 1
TOOKMAT16C 1=student took equivalent MAT16C, 0=otherwise 0.6355 0.4813 0 1
Apmicro 1=student has AP micro, 0=otherwise 0.0193 0.1376 0 1
Apmacro 1=student has AP macro, 0=otherwise 0.0178 0.1324 0 1
Apstat 1=student has AP statistics, 0=otherwise 0.0325 0.1774 0 1
Apcalc 1=student has AP calculus, 0=otherwise 0.0577 0.2332 0 1
ENTRYMAJOR 76=Economics, 77=Managerial Economics 76.3598 0.4800 76 77

We shall remember that as opposed to best subset selection, despite being more computationally

feasible, stepwise doesn’t consider all possible models, but only some combinations. Thereby it is

not guaranteed it will give the best result. Other than that, there are some significant shortcomings

embedded in stepwise regression that have been widely emphasized in the literature.

Standard statistical testing is usually used to test a hypothesis on a pre-specified model. It is not

valid for stepwise regression as variables are selected in a series of steps (Smith, 2018). At each step,

the variables with the smallest p-value are included in the model. This implies that the p-values of

the variables left in the model are typically much smaller than they would be if we’d fitted a single

model.

We carried out forward stepwise selection in Stata, specifying different level of significance.

stepwise , pe(.01): probit GLATE $predictors

In table 39, we report the variables included by the stepwise procedure following the different levels

of significance. Moreover, the Stata command allowed us to fit a Probit model for each subset of
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variables selected by the stepwise procedure. The choice of starting with the stepwise procedure is

motivated by our will to show why shrinking estimators are a better option for variable selection.

Table 39
stepwise, pr(.01) stepwise,pe(.05) stepwise,pe(.10) stepwise,pe(.15) stepwise,pe(.20) stepwise, pe(.25)
TOOKMAT16A GPA FEMALE FEMALE HSCA FEMALE
STAYED IGETCVER GPA GPA GPA GPA
MAJDUM MAJDUM IGETCVER IGETCVER IGETCVER IGETCVER
TOOKMGT11B MINDUM MAJDUM MAJDUM MAJDUM MAJDUM
GPA NRTS MINDUM MINDUM MINDUM MINDUM
UNITUSED STAYED NRST NRST UNITUSED NRST
NRST TOOKMAT16A STAYED STAYED STAYED STAYED
TOOKMAT16C TOOMKAT16C TOOKMAT16A TOOKECN1B NRST TOOKECMN3
MINDUM TOOKMGT11B TOOKMAT16C TOOKMAT16A HSUS TOOKECN1B
IGETCVER TOOKSTA13 TOOKMGT11B TOOKMAT16C HSHK TOOKMAT16A

UNITSUSED TOOKSTA13 TOOKMGT11B TOOKMAT16C TOOKMAT16C
UNITUSED TOOKSTA13 PERMRES TOOKMGT11A

UNITUSED TOOKMGT11B TOOKMGT11B
TOOKMAT16A TOOKSTA13
HSCHINA UNITUSED
HSENG
Apcalc
TOOKECN18
TOOKSTA13
FEMALE

8.3 Does Lasso improve our model predictive power?

As we discussed in the data description section, we have the availability of 30 variables, some more

related to students’ characteristics. In contrast, others are more strictly related to students’ academic

performances. We first decided to subset the variables into academic and personal and carry out

Lasso on this subset. We decided to conduct a preliminary analysis on these two subsets of variables

as we were interested in analyzing whether academic or personal characteristics are more important

to predict transfer’s late graduation. We considered the sets of variables reported in Table 40.

Table 40
Academic Variables Personal Variables
MAJDUM PERMRES
MINDUM TAG
IGETCVER RETURN
MET16A ATHLETE
TUNITUSED FEMALE
UNITUSED HSCA
GPA HSUS
STAYED HSENG
TOOKECN1A HSCHINA
TOOKECN1B HSHK
TOOCMN3 HSKOR
TOOKCMN1 HSOTH
TOOKPLS21 EOP
TOOKECS15 NONCA
TOOKECS32A FVISA
TOOKMGT11A year
TOOKMGT11B NRST
TOOKARE18 MILITARY
TOOKSTA13
TOOKAMT16A
TOOKMATH16B
TOOKAMAT16C
Apmicro
Apmacro
Apstat
Apcalc
ENTRYMAJOR
OSSJA
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We start with the analysis of academic variables. Before proceeding with the application of Lasso,

we fit a Probit model as on the entire set of academic variables. We will use this model as a baseline

to see whether the shrinking techniques will improve the model’s predictive power. We report the

results in Table 41. As shown, MAJDUM, MINDUM, UNITUSED, GPA, STAYED, TOOKECN1B,

TOOKMGT11B, TOOKMAT16A, TOOKMAT16C are statistically significant. The results show that

students who have two majors (MAJDUM) and took ECN1B (TOOKECN1B) are more likely to grad-

uate late. The other significant variables have a negative direction, decreasing the probability of late

graduation. As the conventional R2 measures are problematic for models with a dichotomous de-

pendent variable, to assess the validity of the Probit model we computed a confusion matrix, thereby

measuring the proportion of correct predictions. We classified the observations as a “success”, if

ŷi > 0.5, ŷi=late graduation, and as a ”failure” otherwise.

Table 41

Dependent variable

Y

MAJDUM 1.170∗∗∗ (0.173)
MINDUM −0.167∗∗∗ (0.060)
IGETCVER −0.403∗∗∗ (0.060)
met16A −0.025 (0.058)
TUNITSUSED −0.006 (0.005)
UNITSUSED −0.010∗∗ (0.005)
GPA −1.002∗∗∗ (0.104)
STAYED −0.796∗∗∗ (0.094)
TOOKECN1A 0.045 (0.221)
TOOKECN1B 0.504∗∗ (0.255)
TOOKCMN3 −0.067 (0.100)
TOOKCMN1 −0.007 (0.054)
TOOKPLS21 −0.397 (0.346)
TOOKECS15 −0.068 (0.065)
TOOKECS32A −0.006 (0.063)
TOOKMGT11A −0.088 (0.065)
TOOKMGT11B −0.183∗∗∗ (0.060)
TOOKARE18 0.052 (0.061)
TOOKSTA13 −0.134 (0.111)
TOOKMAT16A −0.229∗∗ (0.106)
TOOKMAT16B −4.294 (57.936)
TOOKMAT16C −0.291∗∗∗ (0.057)
APmicro −0.099 (0.258)
APmacro 0.248 (0.264)
Apcalc −0.159 (0.125)
APstat −0.016 (0.161)
ENTRYMAJOR 0.016 (0.061)
OSSJA 0.750 (0.656)
Constant 4.907 (4.711)

Observations 2833
Log Likelihood -1712.270
Akaike Inf. Crit. 3842.540

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 , SE in parentheses

Overall, as Table 42 shows, we obtained 11.5% of false-negative predictions (type 2 errors) and

20.7% of false-positive predictions (type 1 errors). The misclassification rate (percentage of total

incorrect classifications made by the model) is 32.44%.
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Table 42

0 1

0 323 147

1 82 157

Next, we proceeded with estimation using Lasso. For this purpose, we split the sample into

training and test data. As have 3542 observations and we proceeded with an 80-20 approach, we had

2833 observations in the validation sample and 710 in the test sample. First, we conducted LOOCV

to select the λmin. The λmin selected was 0.00431814.

lasso.mod <- cv.glmnet(X1[1:2833,],Y[1:2833],

family = binomial(link = "probit"),alpha=1,nfolds=2833)

As in previous analyses, we found that λmin selected through LOOCV was in the middle range of the

λ’s selected by 10-folds CV, as shown in Table 43.

cv=lapply(1:10, function(i) {cv.glmnet(X1[1:2833,],Y[1:2833],

alpha=1, standardize=TRUE, type.measure=’mse’,

nfolds=10,grouped=FALSE) })

Table 43
10 folds CV LOOCV
0.004728778 0.00431814
0.004728778 0.00431814
0.006251166 0.00431814
0.004728778 0.00431814
0.003577147 0.00431814
0.004308686 0.00431814
0.004728778 0.00431814
0.004728778 0.00431814
0.003925914 0.00431814
0.004728778 0.00431814

We proceeded with the Lasso estimation.

lasso.coef=predict(lasso.mod,type="coefficients",

s=lambdaloocv ,newx=X1[2834:3542,])[1:29,]

lasso.coef[lasso.coef!=0]

In Figure 3. we report the coefficients path. In this plot, each colored line represents the value

taken by each coefficient according to different values of λ. We observe that some coefficients go

precisely to zero for specific values of λ. The larger the λ, the more coefficients are shrunk to

zero. Still, even with large λ, some keep having a value different from zero, meaning that they
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are valuable for predicting graduating late. Looking at the graph, we concluded that MAJDUM,

OSSJA, TOOKECN1B, TOOKCMN1, STAYED, GPA, TOOKMAT16B are the most important variables

in predicting graduating late.

Figure 3
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In Table 44 we report the variables selected. We observe that out of 28 variables, Lasso procedure

selected 22 variables.

Table 44
Variables selected by Lasso
MAJDUM
MINDUM
IGETCVER
met16A
TUNITUSED
UNITUSED
GPA
STAYED
TOOKECN1B
TOOKECMN3
TOOKPLS21
TOOKECNS15
TOOKMGT11A
TOOKMGT11B
TOOKARE18
TOOKSTA13
TOOKMAT16A
TOOKMAT16B
TOOKMAT16C
Apmacro
Apcalc
OSSJA
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To sum up our results, in Table 45 we report the Probit and Lasso model AIC’s,the smallest is

obtained with Lasso.

Table 45
Model AIC

Probit 3842,54

Lasso 3540,48

Moreover, we also computed the confusion matrix for the Lasso predicted values (Table 46) and

its misclassification rate. We obtained 11.1% of false-negative predictions (type 2 errors) and 20.4%

of false-positive predictions (type 1 errors). Overall, the misclassification rate (percentage of total

incorrect classifications made by the model) is 31.59%, thereby showing improvement compared to

the Probit misclassification rate 32.44%.

Table 46
0 1

0 325 145

1 79 160

In a second step, we conducted the analysis for the personal variables. We conducted the same

procedure as above. First, we fit a Probit model with the entire set of personal variables. Overall,

as the confusion matrix reported in Table 48 shows, we obtained 19.3% of false-negative predictions

(type 2 errors) and 24.4% of false-positive predictions (type 1 errors). The misclassification rate is

43.66%. We observe that the classification rate when we include only personal variables is more than

10% higher compared to the model including only academic variables.

Table 47

Dependent variable

Y

PERMRES −0.265∗∗∗ (0.090)
TAG −0.248∗∗∗ (0.051)
RETURN 0.003 (0.084)
FEMALE −0.132∗∗ (0.052)
ATHLETE 0.049 (0.287)
HSUS 0.423∗ (0.243)
HSENG 0.319 (0.324)
HSCHINA −0.284∗∗ (0.115)
HSHK −0.187 (0.161)
HSKOR 1.026∗∗∗ (0.278)
HSOTH −0.049 (0.134)
EOP −0.008 (0.074)
NONCA 0.109 (0.380)
FVISA 0.265 (0.345)
year −0.014 (0.012)
NRST −0.554 (0.338)
MILITARY 4.035 (62.957)
Constant 28.896 (23.819)

Observations 2,833
Log Likelihood -1,894.853
Akaike Inf. Crit. 3,825.706

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 48
0 1

0 268 173
1 137 132

Next, we started conducing the procedure to fit Lasso. The λLOOCV identified was 0.003548358.

As before, we also conducted 10 folds-CV to see whether λLOOCV was falling in the middle range. As

Table 49 shows also in this case λLOOCV falls in the middle range of the λ’s selected by 10-folds CV.

Table 49
10 foldsCV LOOCV
0.003540590 0.00354059
0.003226054 0.00354059
0.003540590 0.00354059
0.004264653 0.00354059
0.004680451 0.00354059
0.003885793 0.00354059
0.003885793 0.00354059
0.002678326 0.00354059
0.002939460 0.00354059
0.004264653 0.00354059

In Figure 4, we report the path for the academic variables coefficients. As the figure shows

MILITARY, HSKOR,HSUS,HSENG,FEMALE, HSHK, TAG, PERMRES,HSCHINA, NRST are the most

important variables in predicting graduating late.

Figure 4
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In Table 50 we report the variables selected by Lasso fit with λLOOCV.

Table 50
Variables selected by Lasso
PERMRES
TAG
FEMALE
HSUS
HSENG
HSCHINA
HSHK
HSKOR
HSOTH
year
NRST
MILITARY

To sum up our results in Table 51 we report the different models AIC. We observe that AIC’s are

similar across model and we do not observe a significant improvement across models.

Table 51
Model AIC

Full Probit 3825,706

Lasso 3836,441

Moreover, we also computed the confusion matrix for the Lasso predicted values (Table 52) and

its misclassification rate. We obtained 19.6% of false-negative predictions (type 2 errors) and 24.4%

of false-positive predictions (type 1 errors). Overall, the misclassification rate (percentage of total

incorrect classifications made by the model) is 44.01%, which is higher than the Probit misclassification

rate.

Table 52
0 1

0 315 136

1 90 169

Comparing the confusion matrices and the misclassification rates, we conclude that the subset

of academic variables predicts the probability of graduation late better than the subset of personal

variables.

After conducting a separate analysis for these two subset of variables, we decided to perform

Lasso on a merged dataset in which we combined personal and academic variables (i.e., variables

reported in Table 40). First, we run a Probit model on the entire set of variables. The confusion matrix

reported in Table 54 shows that we obtained 13% of false-negative predictions (type 2 errors) and

17.3% of false-positive predictions (type 1 errors). The misclassification rate is 31.83%.
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Table 53

Dependent variable:

Y

MAJDUM 1.176∗∗∗ (0.175)
MINDUM −0.192∗∗∗ (0.062)
IGETCVER −0.366∗∗∗ (0.061)
met16A 0.0001 (0.059)
TUNITSUSED −0.003 (0.006)
UNITSUSED −0.014∗∗∗ (0.005)
GPA −0.996∗∗∗ (0.111)
STAYED −0.772∗∗∗ (0.097)
TOOKECN1A 0.028 (0.228)
TOOKECN1B 0.525∗∗ (0.258)
TOOKCMN3 −0.086 (0.101)
TOOKCMN1 −0.067 (0.056)
TOOKPLS21 −0.403 (0.345)
TOOKECS15 −0.047 (0.067)
TOOKECS32A −0.016 (0.064)
TOOKMGT11A −0.046 (0.067)
TOOKMGT11B −0.228∗∗∗ (0.062)
TOOKARE18 −0.005 (0.063)
TOOKSTA13 −0.069 (0.113)
TOOKMAT16A −0.241∗∗ (0.107)
TOOKMAT16B −4.650 (92.126)
TOOKMAT16C −0.255∗∗∗ (0.059)
APmicro −0.124 (0.259)
APmacro 0.249 (0.264)
APstat −0.044 (0.163)
Apcalc −0.209∗ (0.126)
ENTRYMAJOR −0.001 (0.063)
OSSJA 0.897 (0.667)
PERMRES −0.270∗∗∗ (0.097)
TAG −0.009 (0.057)
RETURN −0.049 (0.091)
ATHLETE −0.315 (0.330)
FEMALE −0.070 (0.055)
HSCA −1.173∗∗∗ (0.287)
HSUS −0.682∗ (0.351)
HSENG −0.809∗ (0.424)
HSCHINA −1.291∗∗∗ (0.272)
HSHK −1.253∗∗∗ (0.294)
HSOTH 0.215 (0.143)
EOP 0.075 (0.079)
NONCA −0.121 (0.396)
FVISA −0.061 (0.364)
year 0.005 (0.013)
NRST −0.325 (0.357)
MILITARY 3.755 (64.784)
Constant −2.330 (27.409)

Observations 2,833
Log Likelihood -1,674.783
Akaike Inf. Crit. 3441.566

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 54
0 1

0 313 123
1 92 182
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Then we started with the procedures needed to fit Lasso. We conducted CV to select λmin. As

Table 55 shows,λloocv was in the middle of the λ ’s selected by 10-folds CV.

Table 55
10 folds CV LOOCV
0.005695830 0.005201214
0.005695830 0.005201214
0.005695830 0.005201214
0.005695830 0.005201214
0.005189828 0.005201214
0.003925914 0.005201214
0.006251166 0.005201214
0.006251166 0.005201214
0.005189828 0.005201214
0.005695830 0.005201214

In Figure 4. we report the coefficients path. Looking at the graph, we concluded that MA-

JDUM, MILITARY, HSKOR, TOOKCMN1, STAYED, GPA, TOOKMAT16B, TOOKMGT11B,HSUS,

TUNITUSED are the most important variables in predicting graduating late.

Figure 4
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In Table 56 we report the variables selected by Lasso.

Table 56
Variables selected by Lasso

MAJDUM PERMRES
MINDUM ATHLETE
IGETCVER FEMALE
TUNITSUSED HSUS
UNITSUSED HSENG
GPA HSCHINA
STAYED HSHK
TOOKECN1B HSKOR
TOOKCMN3 HSOTH
TOOKCMN1 EOP
TOOKPLS21 FVISA
TOOKECS15 NRST
TOOKMGT11A MILITARY
TOOKMGT11B
TOOKSTA13
TOOKMAT16A
TOOKMAT16B
TOOKMAT16C
Apmacro
Apcalc
OSSJA

To sum up our results in Table 57 we report the different models AIC. We observe that AIC’s are

similar across model and we do not observe a significant improvement across models.

Table 57

Model AIC

Probit 3441.566

Lasso 3503.499

Finally, we computed the confusion matrix for the Lasso predicted values (Table 58) and its

misclassification rate. We obtained 11.8% of false-negative predictions (type 2 errors) and 19.7%

of false-positive predictions (type 1 errors). Overall, the misclassification rate (percentage of total

incorrect classifications made by the model) is 31.97%.

Table 58
0 1

0 321 143
1 84 162

In table 59 we reported the coefficient selected across the three different Lasso specification.
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Table 59
X variables Academic Lasso Personal Lasso Full Lasso

Apcalc X X

Apmacro X X

Apmicro

Apstat X

ATHLETE X

ENTRYMAJOR

EOP X

FEMALE X X

FVISA X

GPA X X

HSCA

HSCHINA X X

HSENG X X

HSHK X X

HSKOR X X

HSOTH X X

HSUS X

IGETCVER X

MAJDUM X X

MET16A X

MILITARY X X

MINDUM X X

NONCA

NRST X X

OSSJA X

PERMRES X X

RETURN

STAYED X X

TAG X

TOOCMN3 X X

TOOKAMAT16C X X

TOOKAMT16A X X

TOOKARE18 X X

TOOKCMN1 X

TOOKECN1A

TOOKECN1B X X

TOOKECS15 X

TOOKECS32A

TOOKMATH16B

TOOKMGT11A X X

TOOKMGT11B X X

TOOKPLS21 X X

TOOKSTA13 X X

TUNITUSED X

UNITUSED X

year X
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8.4 How to conduct inference on Lasso estimated coefficients: Islasso

Until now, we have stuck to the discussion on whether Lasso can improve predictive power. We

will now dedicate the last section to see how to conduct inferences on the estimated coefficients.

As explained, model selection and inference have long been considered conflicting. Fitting an un-

penalized model or assessing coefficient significance after conducting Lasso it’s a highly debated

question: it is often considered cheating as we are peeking at the data twice. As a result, p-values

and usual conference intervals are not valid. Therefore, rather than re-fitting an unpenalized model

after Lasso we decided to adopt a different strategy. Researchers are debating on the best way to

solve the inference-selection gap. The previous section presented different extensions to Lasso (adap-

tive, relaxed, and Islasso), allowing practitioners to conduct hypothesis testing on Lasso’s estimated

parameters. Another common approach is Belloni and Chernozhukov’s OLS post-Lasso estimator

(Belloni and Chernozhukov, 2013). If the sparsity assumption holds, the method allows fitting a

naive post-Lasso with the variables selected by Lasso. In this work, we decided to apply Induced

smoothed Lasso, as described in section 2.3.2, to conduct inference on Lasso estimated coefficients.

Islasso enables us to conduct inference directly on the coefficients estimated by Lasso

islasso.mod=islasso(Y[1:2833]˜.,X11[1:2833,] ,alpha=1,lambda=bestlambda ,

family=binomial)

To perform islasso, we followed the same steps as Lasso. Therefore, we started with the academic

variables analysis. Comparing Table 44 and Table 60 we observe some similarities between the

coefficients selected by Lasso and those reported as significant by Islasso. Overall, comparing the two

methods, we observe that Islasso reports fewer coefficients as significant than the coefficients selected

by traditional Lasso.

We computed the confusion matrix for Islasso and the misclassification rate. We obtain almost

11.7% of false-negative predictions (type 2 errors) and 20.2% of false-positive predictions (type 1

errors). The misclassification rate is 31.31%.
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Table 60
Estimate St. Error Df z value Pr(> |z|)

Intercept 9.204.644 3.992.281 1.000 2.306 0.02113 *
MAJDUM 1.038.962 0.239861 0.963 4.332 1.48e-05 ***
MINDUM -0.213988 0.092921 0.962 -2.303 0.02128 *
IGETCVER -0.523862 0.094139 0.995 -5.565 2.63e-08 ***
met16A -0.075473 0.068629 0.752 -1.100 0.27145
TUNITSUSED -0.009442 0.007114 0.985 -1.327 0.18444
UNITSUSED -0.018709 0.006676 0.999 -2.802 0.00507 **
GPA -1.293.819 0.160780 0.984 -8.047 8.47e-16 ***
STAYED -1.021.564 0.148813 0.986 -6.865 6.66e-12 ***
TOOKECN1A -0.000001 0.050522 0.000 0.000 0.99998
TOOKECN1B 0.000059 0.067934 0.000 0.001 0.99931
TOOKCMN3 -0.000041 0.058788 0.001 -0.001 0.99945
TOOKCMN1 0.000037 0.000299 0.009 0.125 0.90021
TOOKPLS21 -0.000048 0.121895 0.000 0.000 0.99969
TOOKECS15 -0.025411 0.055355 0.553 -0.459 0.64619
TOOKECS32A 0.000016 0.052597 0.001 0.000 0.99976
TOOKMGT11A -0.092253 0.076759 0.754 -1.202 0.22942
TOOKMGT11B -0.226580 0.088514 0.978 -2.560 0.01047 *
TOOKARE18 0.018272 0.053430 0.566 0.342 0.73236
TOOKSTA13 -0.026148 0.053158 0.286 -0.492 0.62280
TOOKMAT16A -0.188966 0.128517 0.731 -1.470 0.14146
TOOKMAT16B -0.000034 0.372973 0.000 0.000 0.99993
TOOKMAT16C -0.447193 0.087674 0.995 -5.101 3.38e-07 ***
APmicro -0.000002 0.077489 0.000 0.000 0.99998
APmacro 0.000023 0.047952 0.000 0.000 0.99961
APstat -0.000002 0.056875 0.000 0.000 0.99997
Apcalc -0.008023 0.043033 0.185 -0.186 0.85211
ENTRYMAJOR -0.000020 0.051586 0.001 0.000 0.99969
OSSJA 0.000039 0.139069 0.000 0.000 0.99978
Significance Codes: 0 *** 0.001 ** 0.01 * 0.05 .

Table 61
0 1

0 326 144
1 78 161

Then, we estimated Islasso with the subsample of personal variables. We reported the results

in Table 62. Comparing Table 52 and Table 62 we observe that Lasso and Islasso partially agree

with the coefficients selected and reported as significant. Again, Islasso reports fewer coefficients

as significant than those selected by Lasso, but overall the two methods lead to similar results. As

for the other model specifications in Table 63 we computed the confusion matrix for Islasso and the

misclassification rate we obtain almost 19.1% of false-negative predictions (type 2 errors) and 24.3%

of false-positive predictions (type 1 errors). The misclassification rate is 43.58%.
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Table 62

Estimate St. Error Df z value Pr(> |z|)

Intercept 45.642.176 43.298.163 1.000 1.054 0.291820

PERMRES -0.422325 0.164797 1.000 -2.563 0.010386*

TAG -0.399764 0.092011 1.000 -4.345 1.39e-05 ***

RETURN 0.002736 0.152303 1.000 0.018 0.985667

ATHLETE 0.075154 0.520257 0.999 0.144 0.885140

FEMALE -0.211158 0.093749 1.000 -2.252 0.024299 *

HSCA -0.086218 0.079794 0.369 -1.080 0.279920

HSUS 0.586742 0.403044 0.912 1.456 0.145454

HSENG 0.421495 0.522758 0.866 0.806 0.420075

HSCHINA -0.543726 0.179881 0.984 -3.023 0.002505 **

HSHK -0.383966 0.249871 0.880 -1.537 0.124378

HSKOR 1.594.855 0.427698 0.989 3.729 0.000192 ***

HSOTH -0.077980 0.243887 1.000 -0.320 0.749169

EOP -0.012551 0.134346 1.000 -0.093 0.925570

NONCA 0.188861 0.672120 0.999 0.281 0.778716

FVISA 0.427938 0.610729 0.999 0.701 0.483490

year -0.022395 0.021495 1.000 -1.042 0.297466

NRST -0.892696 0.596481 1.000 -1.497 0.134496

MILITARY 5.072.556 1.651.552 0.960 3.071 0.002131 **

Table 63
0 1

0 268 173
1 136 132
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Finally we fit Islasso on the merged subset of academic and personal variables. We reported the

results in Table 64. Comparing Table 53 and Table 64 we observe that once again Islasso reports fewer

variables as significant compared to Lasso.

Table 64
Estimate Std. Error Df z value Pr(> |z|)

(Intercept) 3.384.577 35.929.022 1.000 0.094 0.924949
PERMRES -0.050459 0.056379 0.448 -0.895 0.370783
TAG -0.013614 0.046195 0.508 -0.295 0.768219
HSUS 0.007196 0.037654 0.119 0.191 0.848437
HSENG 0.000040 0.327011 0.000 0.000 0.999902
HSCHINA -0.382816 0.126027 0.980 -3.038 0.002385**
HSHK -0.042358 0.050277 0.196 -0.843 0.399507
HSKOR 0.053499 0.097722 0.127 0.547 0.584063
HSOTH -0.000014 0.029824 0.000 0.000 0.999635
year 0.002784 0.017863 0.884 0.156 0.876157
NRST -0.165147 0.093181 0.851 -1.772 0.076339.
MILITARY 0.000030 0.212554 0.000 0.000 0.999886
MAJDUM 0.853150 0.234823 0.956 3.633 0.000280***
MINDUM -0.234770 0.094189 0.968 -2.493 0.012683*
IGETCVER -0.473260 0.094559 0.994 -5.005 5.59e-07***
met16A -0.054181 0.057877 0.645 -0.936 0.349209
TUNITSUSED -0.005030 0.007006 0.967 -0.718 0.472768
UNITSUSED -0.025300 0.006805 1.000 -3.718 0.000201***
GPA -1.200.021 0.162883 0.980 -7.367 1.74e-13***
STAYED -0.914225 0.148530 0.983 -6.155 7.50e-10***
TOOKECN1B 0.000102 0.143655 0.000 0.001 0.999435
TOOKCMN3 -0.000023 0.035798 0.000 -0.001 0.999484
TOOKPLS21 -0.000060 0.181257 0.000 0.000 0.999737
TOOKECS15 -0.015346 0.047077 0.452 -0.326 0.744444
TOOKMGT11A -0.069020 0.063759 0.652 -1.083 0.279028
TOOKMGT11B -0.255452 0.087712 0.986 -2.912 0.003587**
TOOKARE18 0.000010 0.038757 0.001 0.000 0.999794
TOOKSTA13 -0.008376 0.038940 0.181 -0.215 0.829681
TOOKMAT16A -0.135996 0.098522 0.612 -1.380 0.167475
TOOKMAT16B -0.000017 0.206943 0.000 0.000 0.999933
TOOKMAT16C -0.384001 0.088202 0.994 -4.354 1.34e-05***
APmacro 0.000008 0.021517 0.000 0.000 0.999696
Apcalc -0.012060 0.044798 0.169 -0.269 0.787763
OSSJA 0.000059 0.223905 0.000 0.000 0.999789
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In Table 65 we computed the confusion matrix for Islasso and the misclassification rate we obtain

almost 11.5% of false-negative predictions (type 2 errors) and 19.2% of false-positive predictions (type

1 errors). The misclassification rate is 30.85%, the lowest among all the model specifications.

Table 65
0 1

0 323 137
1 82 168
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In table 66 we reported the variables selected by each Lasso and the variables reported as significant

from Islasso.

Table 66
X variables Academic Lasso Personal Lasso Full Lasso Academic Islasso Personal Islasso Full Islasso

Apcalc X X

Apmacro X X

Apmicro

Apstat X

ATHLETE X

ENTRYMAJOR

EOP X

FEMALE X X X

FVISA X

GPA X X X

HSCA

HSCHINA X X X X

HSENG X X

HSHK X X

HSKOR X X X

HSOTH X X

HSUS X

IGETCVER X X X

MAJDUM X X X X

MET16A X

MILITARY X X X

MINDUM X X X X

NONCA

NRST X X X

OSSJA X

PERMRES X X X

RETURN

STAYED X X X X

TAG X X

TOOCMN3 X X

TOOKAMAT16C X X X X

TOOKAMT16A X X

TOOKARE18 X X

TOOKCMN1 X

TOOKECN1A

TOOKECN1B X X

TOOKECS15 X

TOOKECS32A

TOOKMATH16B

TOOKMGT11A X X

TOOKMGT11B X X X X

TOOKPLS21 X X

TOOKSTA13 X X

TUNITUSED X X

UNITUSED X X X

year X
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Moreover, in Table 67, we report Lasso AICs and Islasso AIC. We observe that Islasso results in

lower AIC for every model specification.

Table 67

Lasso AIC Islasso AIC

Academic 3540.5 3487.4

Personal 3836.4 3825.9

Full 3503.4 3470.7

9 Conclusions

This thesis aimed to explore the application of linear shrinkage methods for variable selection to show

whether these methods improve a model’s predictive power. Moreover, we looked at ways to perform

inference on the parameters selected via shrinkage.

Before starting with the novel dataset application, we explored how R and Stata worked, whether

we could obtain matching results between the programs. To reach this purpose, we used the Mtcars

dataset. We discovered that Stata and R adopt different scaling techniques when performing Ridge

Regression. R’s glmnet starts with a modified objective function, which is divided by the number

of observations and has a standardized response variable. Therefore, to retrieve the original Ridge

solution, we would need to scale the tuning parameter λ by a factor equal to SDY
N and manually

standardize the coefficients. To match Stata’s ridgereg we would need to manually standardize the

coefficients. On the other side, we found that obtaining matching results between R and Stata for

Lasso regression was easier. For R’s glmnet we would need to center y and standardize X, while in

Stata we need to remember to specify the option penalized.

Before starting with the analysis of the novel dataset, we analyzed different techniques to pick

the tuning parameter. As highlighted in the theoretical section of this work (Section 3), selecting the

tuning parameter λ is fundamental because it determines the degree of shrinkage used by Lasso and

the objective function for any extension to Lasso.

We applied cross-validation (CV) to select a value for the parameter. It is common practice to

use a 10 − f olds cross-validation, but as we used LOOCV we decided to compare both techniques

to highlight their differences. We found that λmin selected by LOOCV typically falls in the middle

range of the λ values selected with 10 − f olds. Indeed, LOOCV allows us to have no randomness

in the folds and always obtain the same value of λ. We found that predicted values changed much

according to the λ chosen to fit the model. This variability was much higher for Ridge than for Lasso

estimated coefficients. Considering this variability, we believe that LOOCV is better because it ensures
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replicability of results.

Once we understood how the program worked and how to pick the tuning parameter, we pro-

ceeded with an application of Lasso (and its extensions) to the EAWE dataset, to evaluate a model’s

quality of fit. We found that Lasso and every extension (Adaptive, Relaxed, and Islasso) improved the

MSE compared to OLS. Specifically in Table 13, we observed that Adaptive Lasso with the parameter

γ = 0.1 gave the lowest MSE across the different estimation methods. The adaptive Lasso is an

extension where weights penalize different coefficients in the L1 penalty.

Adaptive Lasso aims to make Lasso consistent in both selection and estimation. Therefore, these

weights must come from unbiased and consistent estimates. Therefore, OLS is a natural choice, but

according to the author, in the case of multicollinearity, Ridge regression can also be used to estimate

the weights. Despite giving the lowest MSE, we are still concerned about the arbitrariness of this

method. Therefore, we decided to use other strategies to obtain unbiased and consistent estimates for

the application to our novel dataset.

Once this exploratory work concluded, we applied shrinkage estimators to the novel dataset

composed of 126 variables and 4,091 observations of UC Davis transfers students. We aimed at

understanding transfers students’ performance, specifically why some students do not graduate

within two years after the transfer.

Before estimating the model, we presumed that:

1. being a TAG student would decrease the probability of late graduation (TAG);

2. being an EOP student would increase the probability of late graduation (EOP);

3. a lack of solid math preparation would increase the probability of late graduation;

4. having two majors/a would increase the probability of late graduation (MAJDUM);

5. paying a non-residential student fee would decrease the probability of late graduation (PERMRES);

6. not having completed equivalent core courses at community college increases the probability of

late graduation (IGETCVER)

7. switching majors increases the probability of late graduation (STAYED).

We divided the 126 variables into two subsets: academic and personal. We presumed that academic

variables would be the most important in predicting students’ late graduation. Therefore, to highlight

predictive differences, we started by analyzing these subsets separately, and only as a last step, we

merged the variables in a single design matrix.

The Lasso run with academic variables resulted in 31.59% misclassification error, 20.4% of type

1 errors and 11.1% of type 2 errors. In comparison, the Lasso run on personal variables results in

a 44.01% misclassification error, 19.6% of type 1 errors and 24.4% of type 2 errors. Instead, when

merging the variables, we obtained a misclassification error of 31.97%, 19.7 % of type 1 errors and
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11.8% of type 2 errors.

Overall we conclude that academic variables are far more important for predicting late graduation

as we obtain the lowest misclassification error and also the lowest AIC.

Finally, we applied Islasso. As explained in Section 2.3.2, Islasso aims to extend Lasso and obtain

reliable p-values allowing hypothesis testing.

We first fit Islasso on the set of academic variables. MAJDUM, MINDUM, GPA, TOOKMAT16C,

IGETCVER and STAYED were statistically significant. More specifically, having two majors increases

the probability of late graduation (MAJDUM). Transfers students who completed the course require-

ment (IGETCVER), didn’t switch majors (STAYED=1), had a minor (MINDUM), a higher GPA, and

completed relatively more calculus classes (MAT16C) had a lower probability of graduating late.

Overall, we obtained a misclassification rate of 31.31%, 20.2% of type 1 errors and 11.7% of type 2

errors.

Then, we fit Islasso with the set of personal variables. PERMRES, TAG, FEMALE, HSCHINA,

HSKOR, MILITARY resulted statistically significant. Paying the non-resident tuition (PERMRES)

being a TAG student (TAG), being a female (FEMALE), and coming from a Chinese high school

(HSCHINA, i.e., a proxy for being Chinese) decreases the probability of late graduation. Instead

coming from a Korean high school (HSKOR) and being a Military student (MILITARY) increases the

probability of late graduation. Following the same pattern as Lasso, we obtained a higher misclassi-

fication rate than Lasso fit with academic variables. Specifically, we obtained a misclassification rate

of 43.58%, 24.3% of type 1 errors and 19.1% of type 2 errors.

Finally, we ran Islasso on the merged variables matrix. The merged model reported HSCHINA,

MAJDUM, MINDUM, IGETCVER, UNITSUSED, GPA, STAYED, TOOKMGT11B, TOOKMATC16C

as statistically significant. As for the academic Islasso, having a double major increase the probability

of graduating late. Instead, having a minor, having a high GPA, not switching between majors,

having completed math and accounting classes (MAT16C and MGT11B) and a greater number of

units transferred decrease the probability of late graduation. The only personal variable that resulted

as statistically significant was HSCHINA, meaning that students who studied in a Chinese high school

have a lower probability of late graduation. Islasso conducted on the entire set of variables gives us the

lowest misclassification rate among all the model specifications with the lowest AIC and the lowest

misclassification rate, 30.85%: 19.2% of type 1 errors and 11.5% of type 2 errors.

Overall, we believe that Lasso helped us understanding which variables belonged to the model and

reinforced many prior presumptions on which variables should have entered in the model. Moreover,

Islasso is a good compromise to close the gap between inference-selection as it allows us to perform

variable selection and obtain reliable confidence intervals for a model’s coefficients at the same time.
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