
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Evaluating pre-harvest food safety risks in livestock raised outdoors on diversified small-
scale farms in California

Permalink
https://escholarship.org/uc/item/3nk2z1h2

Author
Patterson, Laura

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3nk2z1h2
https://escholarship.org
http://www.cdlib.org/


 i 

 

Evaluating pre-harvest food safety risks in  livestock raised outdoors on 

diversified small-scale farms in California 

 

 

By 

 

LAURA PATTERSON 

DISSERTATION 

Submitted in partial satisfaction of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in 

 

Epidemiology 

 

in the 

 

OFFICE OF GRADUATE STUDIES 

of the 

UNIVERSITY OF CALIFORNIA 

DAVIS 

Approved: 

_____________________________________ 

Alda F.A. Pires, Chair 

_____________________________________ 

Beatriz Martínez-López 

_____________________________________ 

Joan D. Rowe 

_____________________________________ 

Irina Udaltsova 

Committee in Charge 

2021 



 ii 

Evaluating pre-harvest food safety risks in 

livestock raised outdoors on 

diversified small-scale farms in California 

 
by 

 

Laura Patterson 

 

Dissertation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

September 8, 2021 

 

 

 

 



 iii 

Table of Contents 

TABLES ........................................................................................................................................ iv 

FIGURES ...................................................................................................................................... vi 

ACKNOWLEDGMENTS............................................................................................................. vii 

Dissertation Abstract ................................................................................................................... viii 

Dissertation Introduction ............................................................................................................... 1 

Chapter 1 ........................................................................................................................................ 7 

     Abstract ...................................................................................................................................... 8 

     Introduction ............................................................................................................................. 10 

     Materials & Methods .............................................................................................................. 11 

     Results...................................................................................................................................... 17 

     Discussion................................................................................................................................ 26 

     Conclusion ............................................................................................................................... 32 

Chapter 2 ...................................................................................................................................... 34 

     Abstract .................................................................................................................................... 35 

     Introduction ............................................................................................................................. 37 

     Materials and Methods ........................................................................................................... 40 

     Results...................................................................................................................................... 46 

     Discussion................................................................................................................................ 52 

     Conclusion ............................................................................................................................... 59 

Chapter 3 ...................................................................................................................................... 60 

     Abstract .................................................................................................................................... 61 

     Introduction ............................................................................................................................. 63 

     Materials & Methods .............................................................................................................. 65 

     Results...................................................................................................................................... 70 

     Discussion................................................................................................................................ 80 

     Conclusion ............................................................................................................................... 86 

Dissertation conclusion................................................................................................................ 87 

REFERENCES ............................................................................................................................ 93 

 



 iv 

TABLES 

Table 1.1: Shiga toxin-producing Escherichia coli prevalence (%) and O-serogroup (count) per 

livestock species for n=76 positive samples collected between May 2015 and June 2016 from 16 

diversified small-scale farms in California. .................................................................................. 18 

 

Table 1.2: O-serogroups (count and percentage) identified in 79 Shiga toxin-producing 

Escherichia coli positive isolates collected from diversified small-scale farms in California, 

between May and to June 2016, compared to CDC’s list of the top 7 serogroups of concern for 

public health from the 2016 National Shiga toxin-producing Escherichia coli Surveillance Annual 

Report.…………………………………………………………………..………………………. 19 

 

Table 1.3: Virulence genes discovered in 79 O-serogroups from 76 positive Shiga toxin-producing 

Escherichia coli samples collected from 16 California diversified small-scale farms, between May 

2015- June2016, separated by livestock species, O-serogroup and genes.………………..….… 20 

 

Table 1.4: Mean, median and range (i.e., minimum and maximum) of selected numeric factors 

assessed for model building and collected during a cross-sectional study conducted from 2015-

2016 on 14 diversified small-scale farms in California. ………………….………….………..…….… 22 

 

Table 1.5: Bivariate analysis for selected categorical variables stratified by positive (n=69) or 

negative (n=433) Shiga toxin-producing Escherichia coli status. Samples were collected during a 

cross-sectional study from 2015-2016 on 14 diversified small-scale farms in California.…..… 23 

 

Table 1.6: Association between risk factors and the presence of Shiga toxin-producing 

Escherichia coli in fecal samples (n=502) collected from 14 diversified small-scale farms in 

California between May 2015 and June 2016, as demonstrated by a generalized linear mixed 

model, with farm as a random effect. …………...……………………………..………………. 24 

 

Table 2.1: Publicly available predictor layers assessed during variable selection for Maximum 

Entropy model building.. ……………………………………………………………………….  42 

 

Table 2.2 The analysis of variable contribution table provided estimates of the relative contribution 

of each variable to the final MaxEnt model…………………………………………………….. 48 

 

Table 2.3: Percentage of 305 OPO identified in each MaxEnt suitable feral pig habitat level. The 

final MaxEnt model contains a probability scale of 0.00 to 0.87 and was divided into equal 

intervals. Regarding the percentage of OPO located near suitable feral pig habitat, 49.18% of 305 

OPO were identified in high or extremely likely suitable areas.. ………………………………52 

 



 v 

Table 3.1: Shiga toxin-producing Escherichia coli (STEC) O157:H7 and non-O157 STEC 

prevalence and the number of positive samples per swine category (feral or domestic), and county, 

from a cross-sectional study conducted in 2018 in California, from 17 study 

participants.…………………………………………………………………………….……… ..73 

 

Table 3.2: Serotypes and virulence factors detected by whole genome sequencing in 25 of 35 Shiga 

toxin-producing Escherichia coli isolates collected from feral pigs and domestic swine raised 

outdoors from participating ranches in California during 2018. ………………..………………74 

 

Table 3.3: Mean, median and range (i.e., minimum and maximum) of selected numeric factors 

assessed for model building and collected during a cross-sectional study conducted in 2018 from 

11 outdoor-raised pig operations in California. ………………………………………………… 76 

 

Table 3.4: Characteristics of selected categorical variables stratified by positive or negative 

Shiga toxin-producing Escherichia coli (STEC) status during bivariate analysis. Fecal samples 

were collected during a cross-sectional study conducted in 2018 on 11 outdoor-raised pig 

operations in California. …………………..……………..…………………………..…………. 77 

 

Table 3.5: Association between the presence of Shiga toxin-producing Escherichia coli in swine 

fecal samples and significant risk factors as determined by a multilevel logistic regression model, 

from data gathered in California between February and August 2018…………………………..78 

 

 

 

 

 

 

 

 

 

 



 vi 

FIGURES 

Figure 1.1: USDA plant hardiness zone map used as a proxy for the various microclimates found 

in California during generalized linear model building to assess the association between risk 

factors and the presence of Shiga toxin-producing Escherichia coli in fecal samples collected from 

diversified small-scale farms in California between May 2015 and June 2016….…………...….15 

 

Figure 1.2: Q-Q plot of simulated scaled residuals (left) and residuals versus predicted values plot 

(right) from the DHARMa package in R.………….. ………………………………………….. 25 

 

Figure 2.1: Final MaxEnt model predicting suitable feral pig habitat in California. Color-coded 

categories represent the probability of suitable feral pig habit on a scale of almost zero (<0.01) to 

extremely high (0.66-0.87), based on equal intervals. .……………………………..….………  47 

 

Figure 2.2: Jackknife results for final MaxEnt model and indicates importance of key variables. 

BIO6 was the minimum temperature of the coldest month, AVGMODIS was the annual maximum 

green vegetation fraction, BIO13 was the precipitation of the wettest month, BIO15 was the 

variation of annual precipitation and elevation…………………………………………………. 49 

 

Figure 2.3: MaxEnt response curves for the five significant variables used in final MaxEnt model. 

The response curves generated with MaxEnt show the predicted probability of suitable feral pig 

habitat for each individual variable, for each level of the predictor. BIO6 was the minimum 

temperature of the coldest month, AVGMODIS was the annual maximum green vegetation 

fraction, BIO13 was the precipitation of the wettest month, BIO15 was the variation of annual 

precipitation and elevation………………………………………. ……………………………. 49 

 

Figure 2.4: Risk map demonstrating areas in California at greatest risk for contact between feral 

pigs and outdoor-raised domestic pigs within a 5km radius from each farm, using the Kernel 

Density tool in QGIS. Colors are based on the probability of suitable feral pig habitat from the 

final MaxEnt model at each OPO, with sharper colors representing denser clustering of OPO. 

Included is an inset map of the Bay Area……………………………………………………..…51 

 

Figure 3.1: Q-Q plot of residuals (left) and residuals versus predicted values plot (right) from the 

DHARMa package in R.………………..………………..……………………………….……  79 

 

 

 

 

 



 vii 

ACKNOWLEDGMENTS 
 

I am grateful for the mentoring of my advisor Dr. Alda Pires, who encouraged my passion to 

study agriculture and provided guidance and knowledge throughout my entire graduate school 

experience. I am also grateful for my mentor Dr. Beatriz Martínez-López, who saw my deep 

interest in zoonotic diseases and farming and inspired my interest in pigs. Thank you also to the 

remaining members of my dissertation committee: Dr. Irina Udaltsova for her statistical 

knowledge and Dr. Joan Rowe for her guidance during the evolution of my research.  

 

Thank you to Dr. Nora Navarro-Gonzalez for spending hours discussing epidemiology, 

foodborne pathogens and pigs with me while driving the back roads of California to collect farm 

samples. Thank you also to other co-authors who provided time, dedication and knowledge to 

improve my dissertation chapters: Dr. Jaber Belkhiria, Dr. Erin DiCaprio, Dr. Richard V. Pereira, 

La’Chia Harrison, Dr. Carl Basbas, and Dr. Thais Ramos. Deep gratitude for all my professors at 

UC Davis including Dr. Maurice Pitesky, Dr. Philip Kass, Dr. Dr. Robert Atwill, Dr. Janet Foley, 

Dr. Bruno Chomel, Dr. Chris Barker, Dr. Brett McNabb, Dr. Rebecca Schmidt, Dr Mary 

Christopher, Dr. Bradley Pollock, Dr. Theresa Keegan, Dr. Maria Marco, Dr. Ellen Gold, Dr. 

Irva Hertz-Piciotto, Dr. Laurel Beckett, Dr. Heejung, Dr. Woutrina Smith and Dr. David Rocke. 

 

I want to express my heartfelt gratitude to my friends at UCD - thank you for your friendship, 

humor and fun adventures during graduate school (in alphabetical order): Amlan Aggrawal, Abhi 

Bari, Dr. Jerome Baron, Dr. Karen Holcomb, Dr. Wendi Jackson, Gad Keidar, Dr. Ester 

Kukielka, Dr. Kyuyoung Lee, Dr. Hanqi Luo, Dr. Gaby Meier, Brandon Merritt, Dr. Nora 

Navarro-Gonzalez, Dr. Kathleen O’Hara, Seanchan Owen, Dr. Pascale Stiles, Dr. Gema Vidal, 

Dr. Xiao Wei and Dr. Tada Yatabe. I could not have completed my PhD without your support. 

 

Thank you also to the many farmers who graciously volunteered to participate in our studies: for 

all of you who need to remain anonymous due to privacy concerns, thank you so much for 

believing in my research projects and trusting me to conduct field work on your farms. And 

thank you to all USDA-WS, USDA-APHIS, CDFW and CDFA staff who spent time working 

with me to cultivate projects involving feral pigs, including Dr. Dana Nelson, Dr. Ben Gonzalez, 

Dr. Hector Webster and Dr. Rebecca Mihalco. 

 

Special heartfelt appreciation and gratitude for my husband Eric Patterson, who has supported 

and encouraged me with kindness and love throughout my entire graduate school program. He 

also provided technical support (making sampling tools, weed-whacking, etc.) and conducted 

field work with me. I would not have finished my PhD without you - you are my foundation and 

love. 

 

Thank you all! 



 viii 

Dissertation Abstract 

The increasing number of diversified small-scale farms (DSSF) and outdoor-raised 

livestock in California and nationwide, reflects growing consumer interest and demand for 

organic or sustainably-produced local foods, including humanely-raised animal products such as 

meat and eggs. However, there is a lack of research evaluating the unique agricultural 

management practices of DSSF and how these farming systems may involve risk factors that 

affect the transmission of foodborne pathogens in the food supply. 

Diversified farms are often small-scale and raise a combination of livestock and produce, or 

multiple livestock species with the intent of selling specialized animal products directly to 

consumers. However, livestock are reservoirs for foodborne pathogens like Shiga toxin-

producing Escherichia coli (STEC). Additionally, raising pigs outside provides an opportunity 

for contact with feral pigs, which harbor zoonotic and foodborne pathogens. STEC remains one 

of the major causes of foodborne outbreaks in the US and STEC outbreaks associated with DSSF 

are most likely underreported 

The overall goal of this dissertation focused on evaluating the pre-harvest food safety risks 

on DSSF in California: Chapter 1 estimated the prevalence of STEC in cattle, goats, sheep and 

pigs raised on DSSF and evaluated risk factors associated with the prevalence of STEC using a 

multilevel logistic regression model. Chapter 2 used a species distribution modeling method 

Maximum Entropy (MaxEnt) to predict suitable habitat for feral pigs in California. Then the 

MaxEnt prediction map was overlapped with the location of over 300 outdoor-raised pig 

operations (OPO) in California to create a risk map, identifying areas most at risk for disease 

transmission between these two growing swine populations. In the past few decades, California 

has experienced an increase of feral pigs and a resurgence of outdoor-based domestic pigs and 
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this trend has implications for pathogen transmission in the wildlife-livestock interface. The feral 

pig–outdoor-raised pig risk map built in Chapter 2 identified counties to target for a STEC 

prevalence study in Chapter 3. Fecal samples from both feral pigs and domestic pigs raised 

outdoors were collected in counties that had a higher risk for contact between feral pigs and 

domestic swine raised outdoors. The overall goal of Chapter 3 included assessing the prevalence 

of STEC in those counties as well as using a multilevel logistic regression model to assess risk 

factors associated with the presence of STEC in fecal samples.  

Although consumers perceive small-scale farms or outdoor-raised meat as safer or more 

natural, these three studies together demonstrated that livestock raised outdoors on small-scale 

farms are reservoirs for STEC and indicated the need for more studies to ascertain risk factors of 

foodborne pathogens on DSSF. As the number of DSSF farms continues to grow, evaluating risk 

factors and management practices that are unique to these small operations will help identify risk 

mitigation strategies and develop extension outreach materials to keep food safe from farm to 

fork and protect California’s agricultural economy. 
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Dissertation Introduction 

The increasing number of diversified small-scale farms (DSSF) and outdoor-raised 

livestock (i.e., grass-fed, pasture-raised) in the United States (US), reflects growing consumer 

interest and demand for sustainably-produced or organic local foods, including animal products 

such as meat and eggs.(1)(2) However, there is a lack of research evaluating the unique 

agricultural management practices of DSSF and if these types of farming operations involve risk 

factors that affect the transmission of foodborne pathogens in the food supply. 

California is the top agricultural production state in the US with annual sales over $50 

billion from 69,900 total farms.(3)(4) California is also the sole producer in the US (defined as 

producing at least 99% of a crop) of 17 crops including figs, artichokes and almonds.(3) 

Additionally, California leads organic sales, accounting for 40% of all organic crop production 

and 18.16% (3,012/16,585) of United States Department of Agriculture (USDA) certified 

organic farms.(3)(5) Many organic farms are small-scale and diversified and these type of DSSF 

sell food directly to consumers through marketing channels, such as farmers markets or 

Community Supported Agriculture (CSA) programs.(6)(7) To suit the unique characteristics of 

California’s diverse, and within interior valley regions, year-round growing environment, we 

adjusted the USDA-ERS definition of “small-scale farm” to encompass operations that gross less 

than $500,000 annually and market directly to consumers through farmers markets, farm stands, 

CSAs, etc.(8-10) DSSF are defined as those operations that grow a combination of livestock and 

specialty crops or raise multiple livestock species with the intent of selling sustainably-raised 

animal products (e.g., pasture-based) directly to consumers. Some diversified farms integrate 

livestock and crop production (i.e., integrated crop-livestock or mixed crop-livestock farms) by 

using their animals to graze crop residues or cover crops before planting with fresh market crops. 
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(1),(11) Grazing enhances soil fertility, recycles farm nutrients and animals provide another 

source of revenue through fiber or food products.(1)(12)(13) 

Many consumers perceive small-scale farms or outdoor-raised livestock as more natural 

and safer than food grown on large-scale conventional farms or meat animals raised in 

confinement systems, but animals naturally harbor foodborne pathogens that can cause severe 

human illness, like Salmonella spp., Campylobacter spp. and Shiga toxin-producing Escherichia 

coli (STEC).(2)(14-19) For instance, a study by Patterson et al (2018) calculated a 4.17% 

prevalence of STEC in sheep raised on a diversified organic farm in California.(20) Animals are 

intermittent shedders of enteric pathogens and shedding may increase under certain conditions, 

such as during periods of stress (e.g., transportation) or due to husbandry practices (e.g., diet, 

stocking density).(21)(22) Many foodborne pathogens can exist in the soil for extended periods 

of time and can be transmitted to humans through direct contact with feces or animals, or indirect 

contact with a contaminated environment or through ingestion of produce, meat or 

water.(23)(24)  

STEC is consistently one of the major pathogens involved in foodborne outbreaks in the 

US.(25-27) Vegetables and fruit consumed raw, including spinach, tomatoes and melons, are 

especially considered high-risk foods.(28-31) In the summer of 2011, a small family farm u-pick 

berry operation was the center of an E. coli O157:H7 outbreak when strawberries were 

contaminated by wild deer feces.(32) Six of the fifteen cases were hospitalized and two people 

died. More recently, several nationwide outbreaks of E. coli O157:H7 have occurred through 

consumption of romaine lettuce, including one outbreak traced back to California farms and 

linked to cattle grazing upstream from the lettuce fields.(33) STEC outbreaks associated with 

DSSF might be underreported, due to their smaller volume of sales compared to large farms. A 
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study by Harvey et al (2016) identified six STEC outbreaks connected with organic agricultural 

operations between 1992-2014.(25) All these foodborne outbreaks underscore the need to 

conduct prevalence studies of foodborne pathogens on DSSF. 

Swine are especially a livestock species of concern because they are reservoirs for 

zoonotic diseases like swine influenza and brucellosis and foodborne pathogens like STEC and 

Campylobacter spp. (14)(16-19)(34-37) Although most swine production in the US occurs inside 

buildings with high levels of biosecurity, the US is currently experiencing a resurgence of 

outdoor-based swine operations, due to consumer demand for sustainably-raised animal 

products.(38-40) Still primarily considered a niche production system in the US, outdoor-raised 

pig operations (OPO) (e.g., backyard producers, commercial meat operations) are numerous and 

broadly distributed within California. The USDA National Animal Health Monitoring System 

(NAHMS) swine report defined “small-enterprise operations” as those raising fewer than 100 

pigs.(41) Approximately 68.8 - 78.9% of the small operations included in this nationwide survey 

raised domestic pigs with some level of outside access.(41)  

A challenge in raising domestic pigs outdoors is the increasing risk of their directly or 

indirectly interacting with wildlife like feral pigs, and a subsequent potential increase for 

pathogen sharing, especially as feral pig abundance and distribution grows throughout the 

US.(37)(42-47) Feral pigs are considered an invasive species as they only need water, food and 

shrub cover to survive, can double their population in four months and are difficult to 

eradicate.(34)(48),(49) Moreover, if an area contains favorable habitat for feral pigs, (e.g., 

agricultural areas, oak forests) then their population numbers can be maintained or increase over 

time.(50) They also have the widest geographic distribution and one of the broadest habitat 

ranges of any large mammal except humans.(34) The wide distribution of feral swine is in part 
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due to their ability to adapt to many ecological habitats and their opportunistic omnivore 

diet.(34) California has one of the largest and widest distributions of feral pigs.(51)(52)  

Feral pigs in the US are a mix of introduced Eurasian wild boars, which are native to Asia 

and Europe, and domestically-raised pigs turned feral. Feral and domestic pigs share the same 

genus and species (Sus scrofa) and therefore can share pathogens.(45)(49)(53)(54) As early as 

2005, Corn et. al described the disease implications of expanding feral pig populations in the US, 

because they can serve as a vehicle for pathogen transmission to domestic pigs, and they could 

play a significant role in the transmission and maintenance of transboundary animal diseases 

(TBD), that may be introduced or re-introduced to North America (e.g., African swine fever 

(ASF), classical swine fever).(46)(43) Other studies have also reported the disease risks from the 

expanding distribution of feral pigs in the US, including their future role as spreaders of TBD 

like ASF, which was recently found in the Dominican Republic, a mere 700 miles from Florida, 

US.(47)(55-57) Additionally, eradicated diseases in indoor-pig herds (e.g., pseudorabies, 

brucellosis) have been documented in feral swine populations in California, for example, feral 

pig samples collected by the California Department of Fish and Wildlife (CDFW) from 1978-

2013 showed feral pigs testing positive for Brucella suis, Leptospira spp. and swine influenza 

virus (Gonzales, unpublished).(42)(44) Contact between feral pigs and outdoor-raised pig herds 

increases the risk for the transmission of these diseases in domestic swine.(42)(44)(58)(37) 

Many studies have reported that feral pigs (also known as wild hogs, wild boars, etc.) 

maintain and transmit zoonotic and foodborne pathogens; however, only a small subset of these 

studies focused on the risk of pathogen sharing between feral pigs and outdoor raised pigs. 

(35)(43)(46)(56)(59) Transmission of pathogens between feral pigs and outdoor raised pigs has 

been documented in the US. (56)(46)(60) For example, a 2016 human brucellosis case on a New 
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York State farm began with a feral pig infecting domestic pigs reared outdoors.(60) Swine sold 

from this index farm led to Brucella suis positive domestic swine in nine other herds in multiple 

states.(60) Additionally, one swine brucellosis case each in Texas, Iowa and Georgia in 2005 

also involved domestic swine being exposed to feral pigs through inadequate biosecurity or 

wildlife controls.(46) 

Feral pigs are known to forage on farmland and some California farmers and ranchers 

regularly experience feral pig intrusions in their crop fields and/or contact between outdoor-

raised pigs and feral pigs.(49) According to studies conducted in California and Texas, contact 

has been documented between feral pigs and outdoor-raised pigs.(57)(56) A 2012 spatial study 

by Wyckoff et al (2012) reported that feral pigs are attracted to agricultural habitats as food 

sources, which may facilitate pathogen transmission to livestock raised outdoors and humans or 

contaminate crops.(59) The authors assessed habitat and movement of feral swine within 10 

miles (i.e., 16.10km) of outdoor domestic pig operations in Texas and calculated that at least 

50% of these facilities were surrounded by suitable feral pig habitat.(59) Another Wyckoff et al 

(2009) study assessed the disease transmission risk of feral pigs near domestic pigs facilities in 

Texas. (56) This 2009 study used GPS collars to quantify contact between feral and domestic 

pigs and detected evidence of direct contact, as well as antibodies for the same diseases (i.e., 

brucellosis, pseudorabies) in both swine groups.(56) They concluded that feral swine are an 

increasing risk for the reintroduction of eradicated diseases as well as emerging TBD, especially 

for operations that allowed domestic swine outdoor access, as male feral pigs are attracted to 

female pens.(56) International studies have also assessed the risk of disease transmission at the 

wild boar-domestic pig interface.(61-63) All these findings highlight the need for further 
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investigation to identify high-risk areas for disease spread in the event of a future disease 

outbreak in California or nationwide.  

My overall thesis goal entailed evaluating the risk of STEC on DSSF and the risk of 

disease transmission in the spatial overlap of feral pigs and domestic swine raised outdoors in 

California. In Chapter 1, we collected fecal samples from cattle, goats, sheep and pigs raised on 

DSSF to estimate the prevalence of STEC on these unique operations. I used a multilevel logistic 

regression model to assess the association between risk factors and STEC presence in fecal 

samples. In Chapter 2, I used a species distribution modeling (SDM) method Maximum Entropy 

(MaxEnt) to predict suitable habitat for feral pigs in California. Then I overlapped this MaxEnt 

model with the location of over 300 OPO in California to create a risk map that identified areas 

most at risk for disease transmission between these two growing swine populations. The 

increasing potential for contact between domestic swine raised outdoors and feral pigs provides 

an opportunity for the widespread transmission of diseases throughout California, as each pig 

could serve as a link in the transfer of pathogens between wildlife, livestock and humans. 

Additionally, the transmission of diseases to domestic pigs raised outside could negatively 

impact the sustainability of California’s agriculture economy. In Chapter 3, I designed a study to 

evaluate the prevalence of STEC in six counties at highest risk for contact between feral pigs and 

OPO, based on the risk map built in Chapter 2. I collected fecal samples from both feral pigs and 

domestic pigs raised outdoors and used a multilevel logistic regression model to assess risk 

factors associated with the presence of STEC in samples. The results of these last two chapters 

fill critical information gaps regarding the epidemiology of STEC harbored in outdoor-raised 

pigs on DSSF located near suitable feral pig habitat.  
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Abstract 

The increasing number of diversified small-scale farms (DSSF) that raise outdoor-based 

livestock in the United States, reflects growing consumer demand for sustainably-produced local 

foods. Diversified farms are most often small-scale and raise a combination of livestock and 

numerous produce varieties, or multiple livestock species, with the intent of selling sustainably-

raised animal products directly to consumers. However, there is a lack of science-based 

information characterizing the risk factors for transmission of foodborne pathogens, such as 

Shiga toxin-producing Escherichia coli (STEC), in livestock raised on DSSF. Livestock are 

asymptomatic reservoirs and intermittent shedders of enteric pathogens.  

The aim of this study is to a) describe the unique characteristics of DSSF, b) estimate the 

prevalence of STEC in livestock raised on DSSF and c) evaluate the association between risk 

factors and the presence of STEC in livestock raised on DSSF located in California. 

During 2015-2016, we conducted a repeated cross-sectional study to test for STEC in 

fecal samples collected from livestock raised on DSSF. Livestock species sampled in this study 

included dairy and beef cattle, dairy and meat goats, pigs and sheep. A 41-question questionnaire 

was administered to farm owners. Prevalence of STEC was estimated and generalized linear 

mixed models were used to assess the association between STEC presence in fecal samples and 

risk factors.  

Sixteen farms participated in our study and were located in four regions of California. 

Overall STEC prevalence was 13.62% (76/558) and farm-level STEC prevalence ranged from 

0% to 30%. Positive STEC samples were detected in all sampled livestock species. Significant 

variables in the mixed effect logistic regression model included daily maximum temperature (OR 

= 0.95; CI95%: 0.91-0.98), livestock sample source (cattle (OR = 4.61; CI95%: 1.64-12.96) and 
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sheep (OR = 5.29; CI95%: 1.80-15.51)), multiple species shared the same barn (OR = 6.23; CI95%: 

1.84-21.15) and livestock had contact with wild areas (OR = 3.63; CI95%: 1.37-9.62). 

Identification of STEC serogroups of public health concern in this study indicate the need 

for mitigation strategies to keep food safe by evaluating the risk factors and management 

practices that lead to the spread and prevalence of foodborne pathogens in a pre-harvest 

environment on DSSF.  
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Introduction 

The increasing number of diversified small-scale farms (DSSF) that raise outdoor-based 

(i.e., grass-fed, pasture-raised) livestock in the United States (US), reflects growing consumer 

demand for sustainably-produced local foods, including animal products such as meat and 

eggs.(1)(2) (9)(64-66) California is the top producer of agricultural products in the US and also 

leads the country in organic food sales, which includes products from DSSF (64)(10) However, 

there is a lack of science-based information characterizing the risk factors associated with the 

prevalence of foodborne pathogens, such as Shiga toxin-producing Escherichia coli (STEC), in 

livestock raised on DSSF. 

Diversified farms are most often small-scale and raise a combination of livestock and 

numerous types of produce or multiple livestock species, with the intent of selling specialized 

(e.g., organically-grown, pasture-based) animal products directly to consumers.(66) Some 

diversified farms integrate livestock and crop production (i.e., integrated crop-livestock farms) 

by using their animals to graze crop residues or cover crops before planting a field to fresh 

produce.(1)(11) Grazing improves soil fertility and provides farm owners with another source of 

revenue through fiber or meat products.(1)(12) 

Many consumers perceive produce grown on small-scale farms and/or meat raised on pasture 

as more “natural” or safer (i.e., chemical-free or pesticide-free) than food grown on large-scale 

conventional farms or meat animals raised in confinement systems.(2)(25)(15) However, 

livestock are asymptomatic reservoirs for foodborne pathogens and without adequate mitigation 

strategies, these pathogenic microorganisms may enter into the food supply.(14)(67-73) 

Livestock are intermittent shedders of enteric pathogens and shedding may increase under certain 

conditions, such as during periods of stress (e.g., transportation), due to certain management 
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practices (e.g., changes in diet, high stocking rate) or seasonally.(74) Foodborne pathogens 

survive in the soil for extended periods of time and can spread to humans directly through 

contact with livestock or indirectly via contaminated food (e.g., produce, meat, eggs) or 

water.(23)(75-77)  For instance, cattle grazing uphill from a produce field was likely the 

causative factor for the 2019 E. coli O157:H7 romaine lettuce outbreak.(27) STEC remains one 

of the top enteric pathogens associated with foodborne outbreaks in the US.(30) The top seven 

STEC O-serogroups that cause the most severe illness in humans (e.g., O157:H7, O26, O103, 

O111, O121, O145, O45) have been traced to consumption of produce consumed raw, such as 

spinach, tomatoes and melons. (74)(78)(79) Fresh produce consumed raw (e.g., tomatoes, 

melons), which has been contaminated by livestock or wildlife feces containing STEC, can 

become a vehicle for these pathogens to enter the food supply. (29)(28)(80-82) 

The aim of this study is to a) describe the unique characteristics of DSSF, b) estimate the 

prevalence of STEC in livestock raised on DSSF and c) evaluate the association between risk 

factors and the presence of STEC in livestock raised on DSSF located in California. 

Materials & Methods 

Study design and farm enrollment 

During 2015-2016, we conducted a repeated cross-sectional study in Northern and 

Central California to test for Campylobacter spp., Salmonella spp. non-O157 STEC and E. coli 

O157:H7 in fecal samples collected from livestock raised on DSSF. This current manuscript 

reports that STEC and E. coli O157:H7 results.(14) Enrollment criteria for participating DSSF 

was based on USDA-ERS definition of small-scale farms (9)(83), but adjusted to fit the unique 

growing conditions of California operations: 1) small- to medium-scale farm (i.e., poultry 

producers raising <1,000 birds per year or livestock producers with an annual gross-sales 
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<$500,000 and that raised a maximum of 500 goats/sheep and/or 100 cattle and/or 100 pigs); 2) 

raised a diversity of crops and/or multiple species of livestock and poultry; 3) marketed farm 

products directly to consumers, for instance through farmers markets or a Community Supported 

Agriculture (CSA) program; and 4) willingness to participate. We enrolled farms from four 

regions closest to our university: Shasta Cascade, North Coast, Central Valley and Central 

Coast.(84) Farm recruitment occurred through personal communications, announcements at 

agriculture outreach seminars and contact at farmers markets or agricultural fairs. 

Sample collection 

Farms were visited twice between May 2015 and June 2016, once during each of the 

following periods: summer/autumn or winter/spring, which reflect California growing seasons 

and the seasonality of STEC shedding.(14) Livestock species sampled in this study included 

dairy and beef cattle, dairy and meat goats, pigs and sheep. Sample sizes were calculated using 

Epitools  based on the total number of animals on each farm, with an assumed STEC prevalence 

of 5% and 10% precision error, stratified by each livestock species.(85) Individual fresh fecal 

samples were collected from the ground. Samplers wore gloves and placed approximately 50-

100 grams of feces into each sterile whirl-pak bag (Nasco, Modesto, CA). Bags were 

immediately placed into plastic coolers containing ice packs, transported to the laboratory at the 

end of the sampling day and most samples processed within 24 hrs. 

E. coli O157:H7 and non-O157 STEC culture and PCR  

STEC was isolated from fecal samples as described previously with modifications.(74) In 

brief, 10 grams of fecal material was placed in 90 ml Tryptic Soy Broth (TSB; Becton, 

Dickinson and Company, Franklin Lakes, NJ, USA) and homogenized before and after. Samples 

were then incubated for 2 hrs at 25°C with 100 rpm agitation, followed by 8 hrs at 42°C with 100 
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rpm agitation, and held overnight at 6°C, using a Multitron programmable shaking incubator 

(Eppendorf, Hauppauge, NY). For detecting E. coli O157:H7, immunomagnetic separation 

(IMS) using Dynal anti-E. coli O157 beads (Invitrogen/Dynal, Carlsbad, CV) was performed on 

TSB enrichment broths with the automated Dynal Bead Retriever (Invitrogen) per the 

manufacturer’s instructions. After incubation and washing, 50 µL of the resuspended beads were 

plated onto Rainbow agar O157 (Biolog, Hayward, CA) with novobiocin (20 mg/L) and tellurite 

(0.8 mg/L) (MP Biomedicals, Solon, OH). Fifty µL of the resuspended beads were also plated 

onto MacConkey II Agar using sorbitol supplemented with potassium tellurite (2.5 mg/L) and 

Cefixime (0.05 mg/L) (CT-SMAC); plates were streaked for isolation and incubated for 24 hrs at 

37°C. Suspect E. coli O157:H7 isolates were confirmed using traditional PCR for the rfbE 

gene.(86)  

To detect non-O157 STEC, 1 mL of pre-enrichment broth was incubated in mEHEC 

selective media (Biocontrol, Bellevue, WA) for 12 hrs at 42°C followed by plating and 

incubating on Chromagar STEC (DRG International Inc., Springfield, NJ). Up to 8 presumptive 

STEC positive colonies were confirmed for the presence of stx1 and/or stx2 genes by real-time 

PCR. (74)  Confirmed STEC isolates were then characterized for virulence genes (stx1, stx2, 

eaeA, hlyA and ehxA) using conventional PCR.(86) After PCR testing, one colony from each 

positive sample was submitted to the Pennsylvania State University E. coli Reference Center to 

confirm O-serogroups.(74)(87) 

Farmer questionnaire and environmental factors 

A 41-question questionnaire, consisting of mostly closed-ended questions, was 

administered to farm owners at the end of the study period. The questionnaire included sections 

regarding farm demographics, animal health, farm management practices, and water sources 
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(questionnaire provided upon request). Variables analyzed for model building included risk 

factors from the farmer questionnaire, sample day factors (e.g., temperature) and variables that 

were created using known information about each farm, for instance, whether a farm raised 

multiple types of livestock or if they integrated livestock within produce fields before planting. 

Variables from the questionnaire included whether farmers allowed different livestock species to 

share the same barn and if livestock had contact with wild areas (e.g., streams, forest, wetlands). 

Weather data from the nearest California Irrigation Management Information System (CIMIS) 

weather station (http://www.cimis.water.ca.gov) within a similar microclimate, provided 

environmental factors for possible model inclusion (e.g., average relative humidity, daily 

maximum temperature).(88) Also, USDA plant hardiness zones, which are based on the average 

annual minimum winter temperature, were included as a proxy for the many microclimates in 

California (Figure 1.1).(89) Only three zones were necessary to categorize our participating 

farms: zone 7b ( -15 to -12.2 ºC),  9a (-6.7 to -3.9 ºC) and 9b (-3.9 to -1.1 ºC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.cimis.water.ca.gov/
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Figure 1.1: USDA plant hardiness zone map used as a proxy for the various microclimates 

found in California during generalized linear model building to assess the association between 

risk factors and the presence of Shiga toxin-producing Escherichia coli in fecal samples 

collected from diversified small-scale farms in California between May 2015 and June 2016. 

USDA Zone map can be found online: https://planthardiness.ars.usda.gov  

 

 

 

 

 

https://planthardiness.ars.usda.gov/
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Statistical data analysis and model building 

Descriptive statistics, (e.g., mean, range) were calculated for all data. STEC was 

estimated for the overall study and per livestock species (number of positive samples divided by 

total number of samples collected per category, for instance swine). Generalized linear mixed 

models were used to assess the association between STEC presence in fecal samples and risk 

factors. The binary outcome of interest was whether each fecal sample was STEC positive or 

negative. Univariate analysis assessed the distribution of variables. During bivariate analysis, 

variables with low variability, small cell sizes (<5), or large standard errors were either modified, 

collapsed if appropriate, or discarded from model building.(90)(91) Correlation of numeric 

variables was measured with Spearman’s rank correlation coefficient; those variables that were 

correlated 0.80 or more were highlighted during the model-building phase to evaluate for 

multicollinearity issues. To identify possible confounders, each variable was evaluated using a 

directed acyclic graph (DAG) and then added to the model to determine whether the variable 

affected the odds ratios of the other variables by more than 10%.(92)  

The glmer function was used from the lme4 package in R to build models, with farm 

added as a random effect to account for possible farm-level clustering effects when analyzing 

individual samples.(93) Manual two-way stepwise variable selection was employed for model 

building. Variance inflation factors (VIF) identified possible multicollinearity and variables in 

the model that had a VIF over 5 were assessed for removal. Top models were compared, and a 

final model chosen based on the lowest Akaike Information Criterion (AIC), smallest deviance, 

relative to the other models. Intraclass correlation (ICC). Diagnostic plots from the DHARMa 

package in R were used to assess the final model and included fitted vs binned residuals, a Q-Q 

plot and the Kolmogorov-Smirnov test statistic.(94) Odds ratios and 95% confidence intervals 
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(CI95%) were calculated for variables in the final model. All data analysis was performed using R 

Statistical Software (i.e., R) version 1.4.1036 ©.(95) 

Results 

Study participants 

Sixteen farms participated in our study and were located in four regions of California: 

Central Valley (n=10), Central Coast (n=3), Shasta Cascade (n=2) and the North Coast (n=1). 

Four of the sixteen farms (25.00%) raised livestock only, nine farms (56.25%) raised a 

combination of produce and livestock and used the animals to graze crop fields, and three 

produce farms (18.75%) rented sheep seasonally to graze cover crops and did not raise any other 

livestock or poultry. Four farms were not organic (25.00%), 56.25% (9/16) were certified 

organic and 18.75% (3/16) used organic practices but were not certified by a third party. 

STEC prevalence 

A total of 558 fecal samples were collected from 16 farms. Overall STEC prevalence was 

13.62% (76/558; CI95%: 10.88 - 16.75%) Farm-level STEC prevalence ranged from 0% - 30%; 

however, 37.50% (6/16) of farms had no positive samples. Of the 62.50% (10/16) of farms with 

positive STEC samples, the mean prevalence was 17.24%, with a median of 16.73%. Positive 

STEC samples were detected in all sampled livestock species. STEC prevalence and the count of 

each O-serogroup per livestock species are shown in Table 1.1. Beef cattle had the highest STEC 

prevalence at 27.66% (13/47: CI95%: 15.62 - 42.64%) and second highest were dairy cattle 

18.18% (12/66; CI95%: 9.76 - 21.61%), with a 22.12% prevalence for all cattle combined. Goats 

had the next highest prevalence at 16.13% (15/93; CI95%: 9.32 - 25.20%), and next sheep 13.40% 

(28/209; CI95%: 9.09 - 18.78%). Swine samples had the lowest prevalence: 5.59% (8/143; CI95%: 

2.45 - 10.73%). E. coli O157:H7 was found only in cattle, for a prevalence of 5.31% (6/113). 
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Table 1.1: Shiga toxin-producing Escherichia coli prevalence (%) and O-serogroup* (count) per 

livestock species for n=76 positive samples collected between May 2015 and June 2016 from 16 

diversified small-scale farms in California.  

 

* One O-serogroup was untypeable. Three positive samples contained two serogroups each. 
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Of the 76 positive STEC fecal samples, 73 were non-O157 STEC, with three samples 

being positive for both E. coli O157:H7 and a non-O157 STEC (all three from beef cattle), for a 

total of 79 O-serogroups. O26 was the most prevalent O-serogroup, accounting for 27.85% 

(22/79) of positive isolates (Table 1.2). One STEC positive sample was unable to be serotyped. 

Virulence factors for the 79 O-serogroups are listed in Table 1.3. Stx2 was identified in 16.46% 

(13/79) of O-serogroups, stx1 was identified in 69.62% (55/79) and 13.92% (11/79) contained 

both stx1 and stx2. All six O157:H7 positive isolates contained virulence factors stx2, ehxA, hlyA 

and eaeA, but not stx1.  

 

 

Table 1.2: O-serogroups (count and percentage) identified in 79* Shiga toxin-producing 

Escherichia coli positive isolates collected from diversified small-scale farms in California, 

between May and to June 2016, compared to CDC’s list of the top 7 serogroups of concern for 

public health from the 2016 National Shiga toxin-producing Escherichia coli Surveillance 

Annual Report.  

 

CDC 

Rank 
O-Serogroup # % 

1 O157 6 7.59% 

2 O26 22 27.85% 

3 O103 9 11.39% 

4 O111 1 1.27% 

5 O121 0 0.00% 

6 O45 0 0.00% 

    

* Includes three samples classified as O157:H7 that contained a second non-O157 serogroup.  

 

 

 

 

 



 20 

Table 1.3: Virulence genes discovered in 79 O-serogroups from 76 positive Shiga toxin-

producing Escherichia coli samples collected from 16 California diversified small-scale farms, 

between May 2015 - June 2016, separated by livestock species, O-serogroup and genes.  
 

Source 
# 

isolates* 

O-

serogroup 
ehxA hlyA eaeA stx2 stx1 

Beef cattle 1 O109    +  

Beef cattle 1 O111 + + + + + 

Beef cattle 1 O15    +  

Beef cattle 4 O157 + + + +  

Beef cattle 2 O178 + +  +  

Beef cattle 1 O22 + +  + + 

Beef cattle 1 O26 + + +  + 

Beef cattle 1 O46 + +  + + 

Beef cattle 3 O5 + + +  + 

Beef cattle 1 O7     + 

Dairy cattle 1 O136 + +  +  

Dairy cattle 2 O157 + + + +  

Dairy cattle 2 O182 + + +  + 

Dairy cattle 2 O22 + +  + + 

Dairy cattle 1 O26 + +   + 

Dairy cattle 3 O43 + +  + + 

Dairy cattle 1 O5 + + +  + 

Goat 2 O176 + +   + 

Goat 11 O26 + + +  + 

Goat 1 O43 + +  + + 

Goat 1 NA + + +  + 

Sheep 7 O103 + + +  + 

Sheep 2 O146 + +  + + 

Sheep 3 O174     + 

Sheep 5 O176 + +   + 

Sheep 7 O26 + + +  + 

Sheep 4 O85 + +   + 

Swine 2 O100    +  

Swine 2 O103 + + +  + 

Swine 1 O116  + +  + 

Swine 1 O165 + +   + 

Swine 2 O26 + + +  + 

*Number of isolates containing the same O-serogroup and virulence genes.  

 One O-serogroup was untypeable.   
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Risk Factor Analysis 

Of the 16 participating farms, two were not included in model building, as their 

questionnaires were not completed, leaving a total of 502 fecal samples for model building. The 

mean, median and range of selected numeric variables assessed for inclusion during model 

building are shown in Table 1.4. Farms in this study ranged from two to 500 acres and had been 

farming two to 30 years. Stocking rate was calculated by dividing the total number of livestock, 

excluding poultry, by the total number of farm acres (i.e., number of animals / number of farm 

acres). Selected categorial variables, stratified by whether they were STEC positive or negative 

are presented in Table 1.5.P -values were reported for chi-square test or Fisher’s Exact test if cell 

sizes were less than five. For instance, 28.99% (20/69) of positive samples came from farms that 

mixed livestock species within a barn, whilst only 15.70% (68/433) of negative samples came 

from farms with shared barns (p-value 0.012). Moreover, 72.46% (50/69) of positive samples 

were from farms that allow livestock to have contact with bordering wild areas (p-value 0.026).  
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Table 1.4: Mean, median and range (i.e., minimum and maximum) of selected numeric factors 

assessed for model building and collected during a cross-sectional study conducted from 2015-

2016 on 14* diversified small-scale farms in California.  

 

 

*Two of the total 16 participant surveys were not completed. 

 

 

 

 

 

Description Mean Median Minimum Maximum 

Number of farm acres 88.93 29 2 500 

Average relative humidity (%) 52% 45% 23% 95% 

Daily maximum temperature (ºC) 28.32ºC 29.00ºC 11.70ºC 39.80ºC 

Daily minimum temperature (ºC) 10.85ºC 11.60 ºC 0.40ºC 21.40ºC 

Density (# animals/acre) 3.11 1.48 0.20 13.75 

Soil temperature (ºC) 19.41ºC 20.60ºC 3.80ºC 28.70ºC 

Total # chickens per farm 1,984 100 0 21,500 

Total # cattle (beef or dairy) per farm 8 0 0 47 

Total # goats (dairy or meat) per farm 8 5 0 31 

Total # sheep per farm 37 0 0 181 

Total # pigs per farm 36 10 0 325 

Number of years farm has been in 

operation 

10.29 7 2 30 
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Table 1.5: Bivariate analysis for selected categorical variables stratified by positive (n=69) or 

negative (n=433) Shiga toxin-producing Escherichia coli status. Samples were collected during a 

cross-sectional study from 2015-2016 on 14* diversified small-scale farms in California. 

 

Description Levels 
STEC Negative 

ct (%) 

STEC Positive 

ct (%) 

p-value 

(chi-sq) 

California regions based on USDA 

climate zones a. 
7b 87 (20.09%) 25 (36.23%) 0.003* 

 9a 206 (47.58%) 20 (28.99%)  

 9b 140 (32.33%) 24 (34.78%)  

     

Different livestock species share the same 

barn 
No 365 (84.30%) 49 (71.01%) 0.012* 

 Yes 68 (15.70%) 20 (28.99%)  

     

Farm rotates different animals within the 

same field 
No 140 (32.33%) 27 (39.13%) 0.329 

 Yes 293 (67.67%) 42 (60.87%)  

     

Livestock were allowed contact with wild 

areas 
No 184 (42.49%) 19 (27.54%) 0.026* 

 Yes 249 (57.51%) 50 (72.46%)  

     

Is the farm certified organic b. No 129 (29.79%) 19 (27.54%) 0.073 

 Not certified 125 (28.87%) 29 (42.03%)  

 Yes 179 (41.34%) 21 (30.43%)  

     

Does farm raise swine No 82 (18.94%) 16 (23.19%) 0.507 

 Yes 351 (81.06%) 53 (76.81%)  

     

Species of collected sample Cattle 88 (20.32%) 25 (36.23%) 0.002* 

 Goats 78 (18.01%) 15 (21.74%)  

 Sheep 132 (30.48%) 21 (30.43%)  

 Swine 135 (31.18%) 8 (11.59%)  

     

Number of years in operation 6-30 years 270 (62.4%) 50 (72.5%) 0.137 

 1-5 years 163 (37.6%) 19 (27.5%)  

 

a.USDA Zone information can be found online: https://planthardiness.ars.usda.gov Three USDA zones were used to 

categorize participating farms: zone 7b ( -15 to -12.2 ºC), 9a (-6.7 to -3.9 ºC) and 9b (-3.9 to -1.1 ºC). 
b.Organic: Some farms use organic practices but were “not certified” organic by a third party. 

* No missing values; two surveys not completed. 

https://planthardiness.ars.usda.gov/
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Final multivariable model results 

The final mixed effect multivariable logistic regression model is shown in Table 1.6 and 

was chosen based on the lowest AIC and smallest deviance, relative to other models. The AIC of 

the final model was 369.5, with a deviance of 351.5. The highest variance inflation factor for any 

of the variables in the model was only 2.02, which was below our threshold of 5. The number of 

years a farm operated was identified as a confounder and adjusted in the final model.  

Table 1.6: Association between risk factors and the presence of Shiga toxin-producing 

Escherichia coli in fecal samples (n=502) collected from 14 diversified small-scale farms in 

California between May 2015 and June 2016, as demonstrated by a generalized linear mixed 

model, with farm as a random effect.  

Variable Level Estimate OR 95% CI p-value 

Intercept  -2.57   0.001* 

Daily maximum 

temperature ºC 
numeric -0.06 0.95 0.91 - 0.98 0.003* 

Sample source species Swine Reference    

 Goats 0.97 2.64 0.90 – 7.70 0.076 

 Sheep 1.67 5.29 1.80 – 15.51 0.002* 

 Cattle 1.53 4.61 1.64 – 12.96 0.004* 

Multiple species 

shared a barn 
No Reference    

 Yes 1.83 6.23 1.84 – 21.15 0.003* 

Livestock were allowed 

contact with wild areas 
No Reference    

 Yes 1.29 3.63 1.37 – 9.62 0.009* 

Number of years in 

operation 
6-30 years Reference    

 1- 5 years -0.98 0.38 0.13 - 1.11 0.076 

* Indicates statistical significant variables with a p-value < 0.05 
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Diagnostically, the simulated residuals versus predicted values did not show any 

significant problems: the Q-Q plot of DHARMA simulated scaled residuals was linear with no 

major deviations, and the Kolmogorov-Smirnov test indicated no deviation from uniform 

distribution of the scaled residuals (see Figure 1.2).  The adjusted ICC was 0.08 for the final 

model, which signifies the proportion of the variance that is explained by farm clustering and 

indicated the need for a farm random effect. The isSingular test function in the lme4 package 

was false, which indicated no singularities existed in the final model. 

 

Figure 1.2: Q-Q plot of simulated scaled residuals (left) and residuals versus predicted values 

plot (right) from the DHARMa package in R.  
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Interpreting significant parameters in the final model (i.e., confidence interval does not 

contain 1.0) while holding all others constant on average: for every ºC increase in the daily 

maximum temperature, the odds of a STEC positive sample decreases (OR = 0.95; CI95%: 0.91-

0.98). The odds of a positive STEC sample were 4.61 times higher for cattle (OR = 4.61; CI95%: 

1.64-12.96) compared to swine and more than five times greater in sheep (OR = 5.29; CI95%: 

1.80-15.51). Goats had two times greater odds of a positive STEC sample; however, this estimate 

was not significant (OR = 2.64; CI95%: 0.90-7.70). The odds of STEC increased by 6.23 times for 

those farms that house multiple livestock species within the same barn versus those farms that 

housed livestock separately (OR = 6.23; CI95%: 1.84-21.15). The odds of a positive STEC sample 

were more than three times greater (OR = 3.63; CI95%: 1.37-9.62) for a farm that allowed its 

livestock contact with wild areas (e.g., forest, wetlands) in comparison to a farm that did not 

allow its livestock to have contact with wild areas. The effect of the number of years a farm had 

been in 0peration was not significant (p-value 0.076; CI95%: 0.13-1.11), but was included in the 

model as a possible confounder.   

Discussion  

This is one of the first studies to describe the unique characteristics of diversified small-

scale farms in California, while ascertaining significant associations between risk factors and the 

prevalence of STEC. This study detected STEC on more than half of the enrolled farms and in all 

the livestock species sampled. Moreover, O-serogroups isolated in this study included ones that 

cause serve illness in humans, including O157:H7, O26, O103 and O111.(79) Significant risk 

factors associated with the presence of STEC included the daily maximum temperature, whether 

multiple livestock species shared a barn, the livestock source of the collected fecal sample, and 

whether livestock had contact with wild areas. 
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Overall STEC prevalence measured for the 16 farms in this study was 13.62%. Six of the 

16 farms had 0% STEC prevalence; however, due to the intermittent shedding of STEC which 

may be affected by many factors, this result does not necessarily indicate that they are free from 

STEC. Although STEC prevalence in livestock raised on large farms has been measured 

frequently in past studies, evaluation of STEC prevalence and associated risk factors estimated 

on DSSF is less common. (74)(96)(97)(19) However, a study conducted by USDA-APHIS 

collected fecal samples from dairy cows in 21 states and stratified E. coli O157:H7 prevalence 

between large dairies (i.e., 500 or more cows) and small dairies (i.e., 100 cows or less) and 

reported that small ranches had 29.4% E. coli O157:H7 and large dairies had 53.9% 

prevalence.(98) Although this USDA-APHIS study indicated that small farms have less E. coli 

O157:H7 than large farms, the 29.4% prevalence they detected on small dairies is still larger than 

the 18.18% we identified in dairy cattle. Risk factors for the transmission of foodborne 

pathogens on large farms may be different, especially if they only raise one crop or livestock 

type, instead of a diversity of species.  

One of our studies published in 2018 measured a 4.17% STEC prevalence in sheep raised 

on a mixed crop-livestock organic farm in California, which was lower than the 13.4% 

prevalence in sheep identified in this current study.(20) A study that screened livestock at the 

California state fair in 2005, which usually hosts livestock raised on small farms or in backyards, 

observed a 3% prevalence of E. coli O157:H7 in pigs, but did not find O157:H7 in any other 

livestock samples including dairy cows, whereas our study identified O157:H7 in cattle but not 

pigs.(99) A 2002 study that also collected fecal samples at fairs in three states, identified an E. 

coli O157:H7 prevalence of 11.4% in cattle, 1.2% in swine and 3.6% in sheep and goats, 

whereas we measured a 5.31% (6/113) E. coli O157:H7 in all cattle (i.e., combined dairy and 
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beef cattle samples).(100) Differing STEC prevalence in these aforementioned studies may 

reflect different management practices on farms or other climate or animal-level factors. 

Additionally, since ruminants are the main reservoirs for STEC, our results indicating that STEC 

prevalence in swine is lower comparatively than the other sampled species (i.e., cattle, goats and 

sheep) is in agreement with previous research, however, pigs are still a livestock species of 

public health concern, as they harbor E. coli O157:H7 as indicated by many 

studies.(100)(96)(101) Our model results also indicated that cattle and sheep are a significant 

factor in STEC presence on farms, as compared to goats and pigs. However, differences in 

location, laboratory methods and sampling methods make comparison between studies 

challenging.  

More than half of the identified O-serogroups in this study are on CDC’s list of the top 7 

STEC of concern for public health, including six O157:H7, twenty-two O26, nine O103 and one 

O111.(79) Stx2, which is the more virulent form of the Shiga toxin gene that has been implicated 

in severe human disease, was identified in 16.46% (13/79) of O-serogroups; 13.92% (11/79) 

contained both stx1 and stx2. The eaeA gene, which allows STEC bacteria to attach to human 

host cells, was detected in 55.69% (44/79) of positive STEC samples, contrary to a study 

conducted by Dewbury et al, which rarely discovered eaeA in their non-O157 isolates from cattle 

fecal samples.(102)(103)(104)(105) The ehxA gene, which is reported in severe human cases of 

STEC, was detected in 88.61% of the positive isolates (70/79).(104) Compared to a study 

conducted by Djordjevic et al in adult sheep and lambs, they detected stx1, stx2 and ehxA in 

78.2% of their positive serogroups, versus our study which only identified those three genes in 

1.27% (1/79) of positive serogroups. However, they reported 0.8% of their serogroups had just 

stx2 and ehxA genes, whereas in this current study, 11.39% (9/79) of the positive isolates 
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contained these two virulence genes.(104) The pathogenic STEC O-serogroups, genes and 

virulence factors identified in this study highlight the need for continued studies on DSSF, as 

well as outreach to stakeholders regarding pre-harvest food safety risks and development of on-

farm mitigation strategies.  

Significant risk factors identified by the final mixed effect model included daily maximum 

temperature °C. The data in our study ranged from 11.7°C – 39.80°C. An experiment that 

measured the decline of E. coli O157:H7 in inoculated manure at four temperatures, 7°C, 16°C, 

23°C and 33°C,  reported that E. coli O157:H7 declined significantly faster in manure at 23°C 

and 33°C, than at 7°C and 16°C, for both oscillating and constant temperatures.(106) This study 

confirms our model result, which suggested that as the daily maximum temperature increased, 

the odds of finding STEC in a fecal sample was less likely. A study by Franklin et al (2013) also 

identified daily maximum temperature as a significant risk factor, when conducting a study of 

STEC in wild ungulates in Colorado.(107) They detected a positive association between 

temperature and STEC presence in fecal samples, whereas our model identified a negative 

association with the daily maximum temperature.(107) However, the range of daily maximum 

temperatures displayed in their analysis were narrower than our recorded daily maximum 

temperatures, which may account for this difference.(107) Although many studies indicate that 

STEC sheds more in summer months, California microclimates differ from each other and from 

the majority of seasons in other states.(89) California valleys and foothills experience low 

humidity and temperatures above 37.78°C in the summer and autumn, which may affect STEC 

shedding from livestock raised on California farms located in different microclimates.(98) For 

instance, to compensate for the numerous microclimates in California in our study on 

Campylobacter spp., which included the same farms included in this current STEC study, we 
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divided the California summer season into Coastal and Inland and season was a significant risk 

factor in that final multilevel logistic regression model.(14) Interestingly, our Campylobacter 

study also found a significant association between presence of Campylobacter spp. and a farm  

owning swine, with 13.76% prevalence of Campylobacter spp. measured in pigs raised outdoors. 

Difference in climate conditions (i.e., humidity, temperature range) between states in the US 

reveal a need to report the full range of temperatures and other environmental factors measured 

for studies estimating the effect of weather on foodborne pathogen shedding in livestock. For 

instance, a study that collected samples from conventional dairy and beef cattle in Michigan 

revealed that high average temperatures (more than 28.9°C) measured one to five days before 

sampling had a 2.5 times greater odds of STEC than lower temperatures, which differs from our 

study results that suggested that STEC survival is less likely at higher maximum 

temperatures.(22) Michigan results contradict ours, however the highest maximum daily 

temperature measured in our study (i.e., 39.8°C) is not a temperature normally observed in many 

areas of the US. The range of daily maximum temperatures for the Michigan study was 22.78 – 

32.2°C, with one 36.11°C outlier. Additionally, our study included winter temperatures, while 

their study was only conducted in summer (i.e., May through August for both 2011 and 2012). 

Extreme temperature, heat index or humidity values observed in different parts of the world may 

affect conclusions and interpretations of results, especially between studies. 

Stanford et al (2017) reported the effects of severe weather events on STEC shedding in 

Canadian cattle. (108) Although they also observed that STEC prevalence increased when 

ambient temperatures were higher than 28.9°C, a separate finding indicated that the O-serogroup 

O26 had a significant  (p-value < 0.05) reduction in prevalence during extreme heat in July and 

August.(108) Almost 28% of the O-serogroups in our study were O26, and the final model 
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results may have been influenced by this strain. The ways that different non-O157 STEC strains 

react to varying environmental conditions, such as temperature or humidity, may account for 

variations in results between studies.(108) Moreover, changes in the host species during various 

temperature fluctuations or extreme weather events should also be studied.(109) For instance, 

Dawson et al (2018) measured behavioral changes in cattle during increased temperatures, as a 

possible driver of changes in STEC prevalence, such as increased water consumption or change 

in grazing habits. (109) Their simulation results indicated that higher summer temperatures may 

encourage more resting by cattle in crowded areas, such as under shade trees, which can lead to 

direct transmission of STEC.(109) Since the aforementioned studies differ in conclusions 

regarding the direction of environmental effects on STEC shedding in livestock, this risk factor 

needs further investigation, as perhaps there are underlying mechanisms accounting for the 

difference between results, including microclimates or animal level factors.(108)(75)   

Our multivariable model also indicated that livestock sharing a barn with other animals 

resulted in 3.5 greater odds of a positive STEC sample. Multiple livestock housed in a barn could 

share pathogens by cross-contamination of food or water troughs or persistence of STEC in a 

barn environment that may not be subjected to regular cleaning. (77)(110)(111) Other studies 

have indicated that STEC persists for long periods of time in barns or on surfaces within the farm 

environment. For instance, one study swabbed multiple barn surfaces at a dairy ranch and 

measured 14.9% - 19.1% STEC in samples from cattle or calf feeders, and 11.3% – 18% on 

other surfaces.(112) Another study implicated water troughs as harboring E. coli O157:H7, and 

inferred that shared water troughs play a key role in the persistence and maintenance of 

continued E. coli O157:H7 infections in cattle.(113) A British study reported that housed beef 

cattle shed more STEC than unhoused and suggested that this may be due to shared water 
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sources or feeding bins and an accumulation of pathogens in a shared environment.(110)  

Finally, the last significant risk factor from the multivariable final model indicated that 

livestock in contact with wild areas, such as forests or wetlands, have a higher likelihood of 

STEC presence in their feces. Wildlife, including feral pigs, deer, rodents and birds are known 

reservoirs of STEC. (114)(115)(42)(32) A study conducted in California identified a low 

prevalence of E. coli O157:H7 in rodents (0.2%), however, they did not test for non-O157 STEC 

in samples, which may have a higher prevalence in rodents.(116) A 2016 published study 

discovered the stx2 gene in over twenty percent of Canada geese fecal samples and seven percent 

of nearby water samples from Lake Eric bordering Ohio, USA.(115) A case-control study 

conducted after 15 human cases of E. coli O157:H7, identified the source of STEC as those who 

ate fresh strawberries contaminated by deer feces.(32) Livestock that graze in wild areas may be 

exposed to indirect sources of STEC, for instance through environmental contamination of soil 

or water, or because wildlife that live in these bordering wild areas enter agricultural areas and 

contaminate the pastures grazed by farm animals.(117)(82)  

Limitations of this study include the small sample size of farms that were convenience 

sampled, so the model results are not generalizable to other regions and farms. Moreover, 

because we collected the freshest fecal samples available and did not randomize sample 

collection, we may have added bias to the study results. Unmeasured variables that should be 

included in future studies include the age of the animal and whether livestock have direct or 

indirect contact with neighboring livestock.   

Conclusion 

Many consumers perceive diversified small-scale farms and outdoor-raised livestock as 

safer and more humane than food grown on large-scale conventional farms or meat animals 
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raised in confinement systems. However, identification of STEC O-serogroups that are of public 

health concern indicate the need for mitigation strategies, such as housing livestock species 

separately and restricting access to wild areas, to keep food safe by evaluating the risk factors 

and management practices that lead to the transmission of foodborne pathogens in a pre-harvest 

environment.  
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Abstract 

Although a majority of commercial swine production in the United States (US) occurs 

indoors with high levels of biosecurity, the US is currently experiencing a return to raising 

domestic pigs outdoors, due to consumer demand for sustainably-raised animal products. A 

challenge in raising pigs outdoors is the possibility of these animals interacting with wildlife 

disease reservoirs, such as feral pigs, and the associated risk of pathogen transmission. California 

has one of the largest and widest geographic distributions of feral pigs. Locations at greatest risk 

for increased contact between both swine populations are those regions that contain feral pig 

suitable habitat located near outdoor-raised domestic pig premises.  

The main aim of this study entailed spatially identifying potential high-risk areas of 

disease transmission between these two swine populations. This aim was achieved by a three-

step process: 1) predicting suitable feral pig habitat in California using a species distribution 

modeling method, Maximum Entropy (MaxEnt); 2) mapping the spatial distribution of outdoor-

raised pig operations (OPO) in California; and 3) identifying high-risk regions where there is 

spatial overlap between feral pig suitable habitat and OPOs.  

MaxEnt produces a prediction map with estimates of the relative probability of suitable 

feral pig habitat within each pixel, using presence-only points and predictor rasters. For feral pig 

presence data, we obtained feral pig hunting tags recorded with GPS coordinates. Publicly 

available biotic and abiotic predictor layers were included in variable selection steps for model 

building. To create the risk map for California, the final MaxEnt model predicting suitable 

habitat for feral pigs was overlapped with the location of OPOs in California to categorize areas 

at greatest risk for disease transmission. Five variables were identified as important in predicting 

suitable feral pig habitat in the final model including the annual maximum green vegetation 
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fraction, elevation, the minimum temperature of the coldest month, precipitation of the wettest 

month and the coefficient of variation for seasonal precipitation. The risk map reflects areas at 

greatest risk for contact between feral swine and domestic pigs raised outdoors and subsequent 

potential disease transmission.  

Since raising pigs outdoors is a remerging trend, feral pig numbers are increasing 

nationwide, and both groups are reservoirs for various pathogens, the contact between these two 

swine populations has important implications for disease transmission in the wildlife-livestock 

interface.  
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Introduction 

Although a majority of commercial swine production in the United States (US) occurs 

indoors with high levels of biosecurity, the US is currently experiencing a return to raising 

domestic pigs outdoors.(38)(118) Before the 1950s, most swine operations in the US were small-

scale family farms and either a hybrid of indoor/outdoor or solely outdoor-based.(39)(38) 

Beginning in the 1960s, commercial swine production began transitioning to indoor systems, 

based on goals to increase efficiency and reduce swine disease transmission (e.g., brucellosis) as 

well as a public health mandate to decrease human trichinosis cases.(40)(119-121)  However, 

consumer demand for sustainable or pasture-raised animal products within the past few decades 

has revived traditional methods of raising swine outdoors or on pasture (i.e., outdoor-raised pigs, 

pasture-based).(38)(118)(122)(123) While primarily considered a niche production method in the 

US, outdoor-raised pig operations (OPO) (e.g., commercial pork producers, backyard operations) 

are broadly distributed throughout California.  

A challenge in raising pigs outdoors is the possibility of these animals interacting with 

wildlife disease reservoirs, such as feral pigs, and the associated risk of zoonotic and/or swine 

pathogen transmission (43)(37)(56)(124-126)(62) Both domestic and feral pigs share the same 

genus and species (Sus scrofa) and can be reservoirs for zoonotic pathogens (e.g., swine 

influenza virus, Shiga toxin-producing Escherichia coli) (19)(127-129)(17),58)(45) Also, swine 

diseases eradicated in conventional indoor-raised herds (e.g., pseudorabies, brucellosis) have 

been documented in feral swine in California and contact between feral pigs and outdoor-raised 

swine herds is a risk factor for the reintroduction of these diseases to domestic herds in the US. 

(120) (62)(128)(121)(130-132)  For example, a 2016 human case of brucellosis in New York 

state was traced to a feral pig intrusion event on a pasture-raised pig farm. Brucella suis was then 
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transmitted to domestic pigs raised outdoors in 13 other states through animal sales.(131)(60) 

Feral pigs could also play a significant role in the transmission and maintenance of 

transboundary animal diseases (TAD) introduced to North America.(37) (133),(57)(126) For 

instance, African Swine Fever (ASF) is actively spreading in eastern Europe, with wild boars 

transmitting this devastating disease between and within countries.(134) Similarly, wild boars 

abet the transmission of ASF in South Korea, spreading the virus to outdoor-raised 

swine.(135)(136) And most recently, ASF was identified in domestic swine in the Dominican 

Republic, which is the closest to the US that ASF as spread in this century.(55) 

During the past few decades, feral pig populations have greatly increased in the US from 

17 to 41 states.(137-139) California has one of the largest and widest geographic distributions of 

feral pigs and this invasive species has the broadest habitat range of any large mammal except 

humans, which is in part due to their ability to adapt to a diverse range of ecological habitats and 

their opportunistic omnivore diet.(34)(140)(49)(53)(51)(139) Feral pig population distribution 

and abundance is dynamic yet has not been documented at fine spatial units. Previous presence 

maps reported feral pigs for an entire county, even if there had only been a single occurrence 

recorded countywide.(140-142)  

Hypothetically, an area is at higher risk of disease transmission if it is more likely to 

experience interactions between feral pig and domestic pigs raised outdoors, as these outdoor-

based pigs can serve as a conduit for disease spread from wildlife to humans. Locations at 

greatest risk for increased contact between both swine populations are those regions that contain 

feral pig suitable habitat located near outdoor-raised domestic pig premises, especially those 

OPO with relatively low levels of biosecurity.(130),(132),(143)(139) Contact between feral pigs 

and outdoor-raised pigs in California has been documented, as feral pigs are attracted to 
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agricultural regions for food, water and mates.(57),(56),(59)(43)(144-146) There is enormous 

value in identifying agricultural regions with a higher probability of feral pig contact, because 

these areas could benefit from targeted cost-effective disease surveillance and risk-mitigation 

strategies to prevent disease transmission.  

Predicting suitable habitat for feral pigs (i.e., likelihood of feral pig presence) in 

combination with spatially characterizing the distribution of OPO can provide an important tool 

to ascertain possible high-risk areas of contact at the feral-domestic pig interface and identify 

future disease spillover areas.(145)(147)(148) Species distribution modeling (SDM) methods 

have been widely used in ecological studies and are becoming popular for use in epidemiological 

investigations of disease transmission between wildlife and livestock.(149-152)(146) Maximum 

Entropy (MaxEnt), which is one type of SDM, allows usage of presence-only data for the species 

of interest (i.e., feral pigs).(153) In combination with biologically-appropriate covariate factors, 

MaxEnt is able to spatially predict the probability of suitable habitat for a species for a chosen 

spatial unit (i.e., pixel). (154) 

These two parallel trends of expanding feral pig populations and a resurgence of raising 

domestic swine outside has important implications for disease transmission, which could 

negatively impact both public health and California’s agricultural industry. To the best of our 

knowledge, there are no maps characterizing where suitable feral pig habitat overlaps with 

domestic pigs raised outdoors at the farm-level in California. The overall objective of this study 

entailed spatially identifying potential high-risk areas of disease transmission between these two 

swine populations. This objective was achieved by a three-step process: 1) predicting suitable 

feral pig habitat in California using MaxEnt; 2) mapping the spatial distribution of OPO in 
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California; and 3) identifying high-risk regions where there is spatial overlap between feral pig 

suitable habitat and OPOs, as potential disease transmission areas.  

Materials and Methods 

Maximum Entropy model 

MaxEnt is an established SDM method that produces an output prediction map 

containing estimates of the relative probability of suitable habitat areas for the species of interest 

(i.e., feral pigs) within each pixel, using presence-only points and predictor rasters (i.e., covariate 

layers). (136)(155-160)(148) (153)(144) For feral pig presence data, we obtained feral pig 

hunting tags from 2012-19 that were cleaned and recorded with GPS coordinates by the 

California Department of Fish and Wildlife (CDFW). Hunters in California are voluntarily asked 

to report feral pig harvest locations by submitting hunting tags to CDFW. Using hunting records 

for presence-points of feral pigs or wild boars has been used in previous studies.(161)(146) 

CDFW 2012-19 feral pig hunting tags totaled 5,148 after removing duplicates. Due to the large 

amount of data points, hunting tags were also manually filtered (i.e., subsampled) by year as a 

way to decrease the abundance of points before running models to reduce sampling bias and 

increase model stability, as suggested by previous analyses of MaxEnt.(146)(160)(162-166)    

Publicly available predictor layers online, including biotic (e.g., land cover, vegetation) 

and abiotic (e.g., temperature, precipitation, elevation), were included in variable selection steps, 

see Table 2.1. These predictors were chosen based on known feral pig behaviors, habitat and 

food preferences.(34)(144)(167-170)(52)(50)  For instance, AVGMODIS was the annual 

maximum green vegetation fraction (MGVF) combined with 12 years of normalized difference 

vegetation index data (NDIV) and relates to food and shrub cover for feral pigs.(170-173) Other 

variables included elevation, as feral pigs may prefer specific altitudes, and nineteen 
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environmental variables from the WorldClim set of 30 year trend climatic factors.(174) 

Examples of environmental variables used from the WorldClim site included BIO6, which is the 

minimum temperature of the coldest month, BIO13 which represents precipitation of the wettest 

month and BIO15 which is the coefficient of variation for seasonal precipitation.(175)  
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Table 2.1: Publicly available predictor layers assessed during variable selection for Maximum 

Entropy model building. 

 

Name Description  Source 

AVGMODIS* Annual maximum green vegetation 

fraction, 12 years of normalized 

difference vegetation index data 

modis.gsfc.nasa.gov/data/ 

CropScape USDA National Agricultural Statistics 

Service Cropland Data Layer  

https://nassgeodata.gmu.edu/CropScape/ 

ELEVATION* Elevation/Altitude www.worldclim.org/ 

FVEG Raster representation of statewide 

vegetation with WHR types, WHR size 

and WHR density 

https://frap.fire.ca.gov/mapping/gis-data/ 

GAP  USGS GAP analysis project: land cover https://www.usgs.gov/core-science-

systems/science-analytics-and-

synthesis/gap/science/ 

Global Human 

Influence Index 

Nine global data layers: human 

population pressure,  human land use and 

infrastructure, and human access  

https://sedac.ciesin.columbia.edu/data/set/wildareas-

v2-human-influence-index-geographic/maps 

NDVI Normalized difference vegetative index https://data.nodc.noaa.gov/cgi-

bin/iso?id=gov.noaa.ncdc:C00813  

NLCD National Land Cover Database https://www.mrlc.gov/data  

Open Water Multiple integrated global remote 

sensing-derived land-cover products and 

prevalence of 12 land-cover classes 

http://www.earthenv.org/ 

PRISM   Seven climatic variables for the US. 

Annual and monthly precipitation 

temperature and other data 

http://www.prism.oregonstate.edu/ 

Streams Streams in the US, used to measure 

distance to water 

https://catalog.data.gov/dataset/cdfg-100k-streams-

2003 

USDA zones Hardiness zones based on mean extreme 

annual minimum temperature 

https://planthardiness.ars.usda.gov/ 

WorldClim*  19 Bioclimatic variables: 30-year 

averages 1970-2000 

www.worldclim.org/bioclim 

* Indicates variables included in the final model.

http://modis.gsfc.nasa.gov/data/
https://nassgeodata.gmu.edu/CropScape/
http://www.worldclim.org/
https://frap.fire.ca.gov/mapping/gis-data/
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/
https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic/maps
https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic/maps
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00813
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00813
https://www.mrlc.gov/data
http://www.earthenv.org/
http://www.prism.oregonstate.edu/
https://catalog.data.gov/dataset/cdfg-100k-streams-2003
https://catalog.data.gov/dataset/cdfg-100k-streams-2003
https://planthardiness.ars.usda.gov/
http://www.worldclim.org/bioclim
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MaxEnt models were built in R Statistical Software version 0.98.110253 ©.(95) The 

following R packages were used to run MaxEnt: dismo, sp, and raster.(156)(176-179) MaxEnt 

settings were chosen based on previously published literature and included using 25 random test 

points, 15 replicates, 5000 maximum iterations and the 10-percentile training for the threshold 

rule. (149),(152)(156),(154) (180)  A regularization multiplier of 1 through 5 was assessed to 

avoid overfitting and the default 1 was determined to be the optimal setting for the final 

model.(180) Logistic values for output was used as well as cross validation, which separates 

presence points into 80% training and 20% testing data (i.e., model validation), using k-fold sub-

sampling to fit a model.(149)(154)(181) The relative contribution of each variable in a MaxEnt 

model was assessed comparing both percent contribution and permutation of importance, 

averaged over the number of iterations run and ascertained by jackknife tests.(149)(181)(153) 

Predictors for the final model were assessed using a backward variable selection approach: 

variables remained at each step if their percent contribution or permutation importance was 

approximately 10% or more.(136)(149) The response curves generated within MaxEnt showed 

the predicted probability of suitable feral pig habitat for each individual variable, changing per 

each level of the predictor.(50)(167)(182)  

MaxEnt model performance was assessed using the area under the curve (AUC) of the 

receiver operator characteristic (ROC), averaged over the number of chosen replicate runs. 

(149)(152)(183) AUC reflects a model’s prediction ability, on a scale of 0 to 1.00, with 0.50 

representing random chance. While AUC is a standard diagnostic method to evaluate MaxEnt 

models, some authors suggest calibrating the AUC (i.e., AUCc), which removes spatial sorting 

bias (ssb) (i.e., spatial autocorrelation) by using point-wise distance sampling.(184)(156)(176) A 

ssb close to 1 indicates no spatial sorting bias, whereas a ssb close to 0 suggests a large spatial 
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bias, and the need to use AUCc.(184) The final model was chosen based on the highest AUCc, 

relative to other models. 

Risk Map and OPO 

The feral pig-domestic pig risk map was built by overlapping California OPO locations 

with the final MaxEnt feral pig suitable habitat raster. Between 2014-2019, a list of California 

OPOs was compiled through various sources (e.g., agricultural festivals, local farmers markets, 

University of California Cooperative Extension (UCCE) advisors, web-based searches (search 

terms: “pasture-raised pork”, “pastured pigs”). GPS coordinates for all OPO were identified 

using Google Earth Pro v7.3.3.(185) Additionally, an online survey that contained an interactive 

map component was built with Survey 123 v3.6.(186) The survey contained 29 questions that 

consisted mainly of multiple choice questions, with a few open ended questions about the 

number of animals raised (e.g., how many sows or boars raised on average each year). The 

survey included questions regarding biosecurity practices, swine health and feral pig presence. 

This online survey was announced electronically (e.g., media, e-newsletters) to swine related 

groups and organizations or conducted in-person at events, such as agricultural fairs. The survey 

instrument and protocols were reviewed and exempted by the Institutional Review Board (IRB) 

of the University of California-Davis (No. 1180798-1). 

To build a risk map for California, the final MaxEnt model predicting suitable habitat for 

feral pigs was overlapped with the location of OPOs to categorize areas at greatest risk for 

disease transmission, due to contact between these two swine populations, and characterize risk 

at the farm-level. The underlying assumption presumed that direct or indirect contact between 

feral pigs and domestic pigs raised outdoors is a risk for disease transmission. The probability of 

suitable habitat for feral pigs was extracted from the final MaxEnt model for each OPO location, 
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using the Sample Raster Value tool in QGIS and added to the OPO shapefile. Then the Kernel 

Density tool in QGIS was used to make the risk map, matching the 270m x 270m resolution of 

the MaxEnt model and using the MaxEnt model probabilities as weights. Additionally, we used a 

radius of 5 km at each OPO location, which was an extrapolated average estimate from US based 

studies that measured home range of feral pigs, understanding that home ranges vary depending 

on age and gender of animal, as well as resource availability.(187)(188)(144)(52) The Kernel 

Density map was overlaid with the final MaxEnt model.  

Results 

MaxEnt model results 

The final MaxEnt model was chosen based on the highest AUCc of 89.7, relative to other 

models (see Figure 2.1). Probability values that predict suitable habitat were divided into five 

equal interval categories: minimal (< 0.01); low (0.01-0.22); moderate (0.23-0.43); high (0.44-

0.65); and extremely high (0.66-0.87), with 0.87 being the highest predicted probability in the 

final MaxEnt model. Areas with the highest likelihood of suitable feral pig habitat in California 

(i.e., orange, and red categories) included the north coast from Mendocino County all the way 

south along the coast to Santa Barbara County, and counties that border these coastal counties 

(e.g., Lake, Napa, Contra Coast, Santa Clara and San Benito). Additionally, suitable habitat areas 

included the foothills of the Sierra mountains, from Shasta County south to Tulare County. Least 

likely suitable habitat included the Central Valley and eastern counties of California, from the 

most northern county of Modoc all the way to Imperial County in the south. 
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FIGURE 2.1 Final MaxEnt model predicting suitable feral pig habitat in California. Color-coded 

categories represent the probability of suitable feral pig habit on a scale of almost zero (<0.01) to 

extremely high (0.66-0.87), based on equal intervals.  
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Five variables were identified as significant in predicting suitable feral pig habitat in the 

final model based on 2017 hunting tags (n=1,745). The five significant variables were 

AVGMODIS, Elevation, BIO6, BIO13 and BIO15. All five variables provided approximately 

10% or more percent contribution and permutation importance to the final model. (Figure 2.2). 

The jackknife test results provided more information regarding the importance of each variable 

in the final model (Figure 2.3). For example, BIO15 was the variable with the highest gain when 

used alone and elevation had the most information that was not available in the other variables. 

The response curves for the significant five variables indicated the predicted suitability range of 

each variable for feral pigs (i.e., the x-axis values above 0.50 on the y-axis). (Figure 2.4)  For 

instance, feral pigs are predicted to prefer vegetative cover (i.e., AVGMODIS) of at least 60% or 

more.  

 

Table 2.2: The analysis of variable contribution table provided estimates of the relative 

contribution of each variable to the final MaxEnt model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable 
Percent 

Contribution 

Permutation 

Importance 

BIO6: minimum temperature of 

the coldest month 
28.2 21.4 

AVGMODIS: Annual maximum 

green vegetation fraction 
21.7 9.5 

BIO13: rainfall of the wettest 

month 
20.7 27.2 

BIO15: Variation of annual 

rainfall 
9.4 11.5 

Elevation 20.1 30.5 
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Figure 2.2: Jackknife results for final MaxEnt model and indicates importance of key variables. 

BIO6 was the minimum temperature of the coldest month, AVGMODIS was the annual maximum 

green vegetation fraction, BIO13 was the precipitation of the wettest month, BIO15 was the 

variation of annual precipitation and elevation. 

 

 

 

Figure 2.3: MaxEnt response curves for the five significant variables used in final MaxEnt model. 

The response curves generated with MaxEnt show the predicted probability of suitable feral pig 

habitat for each individual variable, for each level of the predictor. BIO6 was the minimum 

temperature of the coldest month, AVGMODIS was the annual maximum green vegetation 

fraction, BIO13 was the precipitation of the wettest month, BIO15 was the variation of annual 

precipitation and elevation. 
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Risk map and OPO 

A total of 305 OPOs were identified between 2014-2019, from 79.30% (46/58) of 

California’s 58 counties (i.e., no OPO data for 12 counties). The most OPOs were identified in 

the following counties: Sonoma (n=48), Mendocino (n=19), Nevada (n=16) and Yolo (n=12). 

From the online survey, 39 OPO locations were gathered from 44 respondents and included in 

the final total. All survey respondents raised domestic swine outdoors and 25.00% (11/44) had 

seen feral pig presence within two miles or less of their domestic swine raised outdoors, with 

15.91% (7/44)  observing feral pigs within 500 feet of their pig herd. Domestic pig herd size 

ranged from 1- 350 animals, with a mean of 24 and median of six. Acres dedicated to raising 

pigs ranged from 1/16 to 30 acres with a mean of 4.67 and median of two acres, with nine not 

answering. 

The risk map reflects areas at greatest risk for contact between feral swine and domestic 

pigs raised outdoor and subsequent potential disease transmission (Figure 2.5). Risk levels start 

at blue for low-risk areas and range up to orange and red for the highest risk areas. Areas with 

the most risk for contact between these two swine populations are denoted in orange or red, with 

sharper colors representing denser clustering of OPO. The counties with the highest likelihood of 

suitable feral pig habitat and densest clustering of OPO included: Sonoma, Marin, Napa, Yolo, 

Nevada, Mendocino and Lake counties. Areas at lowest risk include the full eastern edge of 

California, which includes the Cascadian and Sierra Nevada Mountain ranges as well as deserts 

in the south. Table 2 categorizes the distribution of OPO at each level of probable suitable feral 

pig habitat using the final MaxEnt model levels. The results indicated that 49.18% of OPO are 

located near extremely high or highly suitable feral pig habitat. 
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Figure 2.4: Risk map demonstrating areas in California at greatest risk for contact between feral 

pigs and outdoor-raised domestic pigs within a 5km radius from each farm, using the Kernel 

Density tool in QGIS. Colors are based on the probability of suitable feral pig habitat from the 

final MaxEnt model at each OPO, with sharper colors representing denser clustering of OPO. 

Included is an inset map of the Bay Area (see right figure). 
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Table 2.3: Percentage of 305 OPO identified in each MaxEnt suitable feral pig habitat level. The 

final MaxEnt model contains a probability scale of 0.00 to 0.87 and was divided into equal 

intervals. Regarding the percentage of OPO located near suitable feral pig habitat, 49.18% of 305 

OPO were identified in high or extremely likely suitable areas. 

 

Levels 
 

%OPO  

(ct/305) 

Minimal (< 0.01) 
 

0.98% (3/305) 
 

Low (0.01-0.22) 
 

19.67% (60/305) 

Moderate (0.23-0.43) 
 

30.16% (92/305) 

High (0.44-0.65) 
 

25.90% (79/305) 

Extremely high (0.65 +) 
 

23.28% (71/305) 

 

 

 

Discussion 

In this study, we built a feral pig suitable habitat prediction model for California using 

MaxEnt at a fine scale of 270m x270m. Significant predictors of suitable feral habitat included 

precipitation, minimum temperature, elevation, and percentage of vegetation. Additionally, this 

study overlapped MaxEnt predicted suitable feral pig habitat and outdoor-raised pig operations to 

create a risk map for potential disease transmission in California at the feral pig-domestic pig 

interface. To the best of our knowledge, this is one of the first studies that identified areas at risk 

for feral and domestic pig contact in California. Although previous studies discussed the 

possibility of feral pig populations spreading disease to outdoor-raised pigs at the county level, to 

our knowledge, this is the first study to predict risk at the farm-level in California. 

Since the exact location of most feral pig populations is unknown, species distribution 

predictive methods like MaxEnt are important to understand where feral pigs could potentially 
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interface with domestic swine raised outside, either currently or in the future. Our final MaxEnt 

prediction model provides a more informative picture of suitable habitat for feral pigs than 

previous studies, which only showed single presence points or reported feral pigs at the county 

level, even if only one feral pig was identified in that county.(139-142) For instance, although 

previous county-level maps indicated that all California counties except for Imperial County 

harbored feral pigs, our MaxEnt model shows almost no suitable habitat in an additional five 

counties: Modoc, Mono, Alpine, Lassen and Inyo. This result may indicate that few feral pigs 

have been seen in those counties.  

Additionally, the final MaxEnt model was based on a fine spatial scale and indicated 

heterogenous suitable habitat, not a uniform distribution, for each county, which is compatible 

with the fact that feral pigs need shrub cover and food to survive, which would not be found in 

cities or deserts.(51) Earlier feral pig mapping studies by the Southeastern Cooperative Wildlife 

Disease Study and National Feral Swine Program (NFSP) focused on the entire US and only 

county level occurrence of feral pigs.(141)(142)(189) A 2015 USDA study overlapped NFSP 

county-based feral pig locations with data from the 2012 NAHMS study of small-enterprise swine 

operations, specifically whether these survey respondents had seen feral pigs on their premises or 

within the same county, to ascertain the level of agreement between the two datasets.(139) They 

identified five counties in California that were in agreement with our MaxEnt model findings for 

suitable feral pig habitat: Mendocino, Tehama, Nevada, El Dorado, and San Luis Obispo, and two 

counties that differed: Ventura and Los Angeles counties. However, their map does not reflect the 

heterogeneity of feral pig habitat in each county nor identify high-risk contact areas between farms 

and feral pigs in California, as they did not identify any outdoor-raised domestic swine in 

California. Although these county-based maps are important to demonstrate the trend of increasing 
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feral pig populations nationwide, stakeholders and feral pig disease surveillance agencies could 

benefit from targeting outreach and mitigation strategies to specific regions within a county using 

our maps.  

The results of our final MaxEnt model indicated five variables that were useful in 

predicting suitable feral pig areas in California, including three WorldClim layers: BIO6: the 

minimum temperature of the coldest month, BIO13: precipitation of the wettest month, and BIO15: 

the coefficient of variation for seasonal precipitation.  Other studies also used WorldClim factors 

to predict the distribution of wild boar or feral pigs. These bioclimatic variables have been widely 

used in environmental studies and are now becoming popular for use in epidemiological 

investigations.(175) These climate variables are 30 year averages and “capture broader biological 

trends better than the temperature or the amount of precipitation for a given day due to the inherent 

variability associated with weather.”(175) Bosch et al (2014) built a MaxEnt model for wild boar 

in Spain and their model also contained BIO6 and BIO15 as did regional models built by Pittiglio 

et al (2018) with BIO13 being significant as well. (170)(190) BIO6 is the minimum temperature 

of the coldest month and is interpreted as being a useful variable when deciding if the species of 

interest is affected by extreme cold events throughout a year.(175) Hill et al (2014) used MaxEnt 

to predict the distribution of Trichinella and Toxoplasma gondii in feral pigs in the US and also 

identified BIO6 and elevation as significant predictor variables, along with land cover and other 

WorldClim factors. (132) The response curve for BIO6 in our model peaks at the predicted ideal 

range for feral pigs, with both ends indicating extreme cold temperatures that may be avoided by 

feral pigs. A 2015 study by McClure et al (2015) indicated that suitable feral pig habitat may be 

limited by cold temperatures, precipitation and water availability, which reflects our findings.(144) 

BIO13 is defined as precipitation of the wettest month and is useful if extreme rainfall patterns 
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influence the range of feral pigs.(175) BIO15 measures the variation in annual precipitation totals 

per month (i.e., seasonality of precipitation) and reflects the variability of rainfall that may affect 

a species.(175) According to the Jackknife graph, the variable with the highest gain when used 

alone was BIO15, and therefore had the most important information for predicting suitable feral 

pig habitat. Snow et al (2017) used Bayesian methods to predict the expansion of feral pigs in the 

US , but also detected that temperature and precipitation levels were significant predictors.(140)  

The final MaxEnt model gain is decreased the most if elevation is ignored and therefore it 

has significant information that is not available from the other variables in predicting feral pig 

suitability.  Elevation was also significant in the MaxEnt models built by Hill et al (2014).(132) 

These results combined with the response curve possibly reflect feral pigs preference for lower 

altitudes in the US. AVGMODIS, a measure of the annual maximum green vegetation fraction 

on a scale of 0 to 100, was also an important predictor of suitability, which reflects feral pigs’ 

need for available food and vegetative cover.(172) Garza et al (2018) identified NDVI, which 

AVGMODIS is based upon, and precipitation as important variables in predicting home ranges 

of feral pigs or wild boar worldwide, using generalized linear models.(167)  

The significant layers identified in our study to predict feral pig suitability are not unique, 

and this may be due to the fact that feral pigs are a highly adaptable and opportunistic omnivores. 

(140) Lobe et al (2008) stated that MaxEnt AUC values will be lower for generalist species that 

are widely distributed.(191) However, the AUCc of our final model was 89.7, which indicates a 

good model. Additionally, 2017 hunting tags (n=1,745) vs. all 5,148 points for 2012-19 provided 

the best model. MaxEnt is an important method to predict the distribution of rare species, and an 

upper maximum range for the number of species occurrence points has not been previously 

determined. However, our result fits with a study conducted by Chen et al (2012) to determine the 
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sample size for the outcome variable in building MaxEnt models. They reported that standard 

deviation decreased and MaxEnt models became more stable using species occurrence points of 

1,000-1,200.(162)(163)(166) Most likely the sample size of the outcome variable that reaches 

asymptote is dependent on geographic extent and characteristics of the species of interest. 

Regarding feral pig presence on farms, the most recent NAHMS survey asked 

participating swine small-enterprise producers in the US (i.e., those raising 100 pigs or less) 

about presence of feral swine in their county but did not separate farms based on whether they 

raised domestic swine indoors or outdoors. However,  a 2015 United States Department of 

Agriculture (USDA) report regarding overlap of feral and domestic pigs in the US used this 

NAHMS dataset and reported that of 320 participating US counties, 74% of these counties had 

small-enterprise swine producers who allowed their pigs some level of outdoor access.(139) The 

NAMHS results indicated that 52.9% of small-enterprise swine producers in the West/South 

region, which included California, reported feral pigs in the same county, with 16.2% of those 

having feral pig presence on their operation, similar to our survey results that showed 15.91% of  

respondents had seen feral pigs within 500 feet of their pig herd.(41) Another study that 

measured co-occurrence of feral pigs and agriculture to understand the risk of disease 

transmission, but did not separate outdoor versus indoor herds, reported that on average, 47.7% 

of all types of farms had feral pigs in the same counties, including California, showing a 

significant increase in the decade from 2002-2012.(54) The results of these aforementioned 

survey-based studies indicated together that more than 45% of farms have feral presence within 

the same county, which matches the results from our risk map that showed almost half of the 

identified OPO had suitable feral pig habitat nearby(139)(41)(54) These findings indicate the 
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need for targeted outreach and mitigation strategies for those farms at highest-risk for feral pig 

contact, due to the potential for disease transmission between these two swine groups. 

Studies that identified high-risk areas in California between feral pigs and domestic swine 

raised outdoors are sparse. A 2015 USDA report extracted outdoor operations with NFSP feral 

swine populations and did not identify any hot spots of overlap in California as seen in our 

results. However, they did not report the number of OPO per state or county and most likely our 

state-focused study identified more OPO than their survey-based national study. A 2017 study by 

Miller et al also assessed possible disease transmission between feral pigs and farm at the county 

level.(54) They reported that domestic swine, either raised indoors or outside, have been 

increasing in counties that also had feral pig presence. The lack of maps identifying areas at 

high-risk for disease transmission between these two swine populations indicates a need for 

further research. Additionally, the risk map identified eastern counties as having the lowest risk. 

However, we did not identify OPO in many of these counties, therefore we cannot say there is no 

risk in these regions. 

A limitation of this study involves using hunting tags as a proxy for presence of feral pigs to 

predict suitable habitat. Hunting tags are voluntarily submitted to CDFW by hunters and 

estimated to account for only 30% of all hunted pigs and most likely biased toward easy to 

access areas. Also, only half of the land in California is public land and accessible to hunters, 

therefore feral pigs hunted on private land are not included in our data sets. However, Rutten et 

al (2019) used similar hunting bags and MaxEnt to successfully predict the distribution of wild 

boar in Belgium.(146) And Alexander et al (2016) also used hunting records to predict wild boar 

habitat in Europe.(161) Additionally, MaxEnt assists in overcoming these challenges by 

identifying similar habitats in all parts of California and predicting suitable areas.  
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Both the MaxEnt model and risk map are limited because they are static maps that use fixed 

layers as their foundation; consequently, they do not incorporate dynamic events over various 

years (e.g., wildfires, landscape changes, weather fluctuations). Also, feral pigs may migrate 

seasonally due to shifting weather, resource availability, hunting pressure or wildfire and future 

research could focus on species distribution modeling that includes dynamic real time variables 

or remote sensing data; however, seasonal or dynamic spatial data are not available yet for most 

spatial predictors in California. (144)(146)(167)(187)(192-194) However, our approach is 

valuable as a first step in identifying multiple high-risk areas for future research, where 

additional data could be collected. Furthermore, future research could add feral pig disease data 

collected statewide to evaluate if high-risk areas for feral-domestic pig contact equates to those 

areas with higher prevalence of diseases.(147) 

There are some challenges and limitations to the risk map generated in this study. For 

instance, farms and ranches in California, including backyard and commercial operations, are not 

required to register with state agricultural agencies, therefore, the total number, distribution, and 

size of OPOs remains unknown and are underrepresented in this study. A majority of the 

identified OPO in this study were commercial pork producers with an online presence or ones 

that attend conferences, farmers markets and fairs. If more OPO locations could be identified, 

than a more comprehensive map of high-risk areas could be generated. Additionally, because we 

are based at the University of California, Davis in Yolo County, there is selection bias in the 

OPO identified as our agricultural networks are within the UCCE network. Overrepresented 

counties reflected either sampling bias or clustering of these niche operations or both. 

Nevertheless, the number of OPOs included in this study (n=305) and the fact that more than 

40% of these operations were in highly suitable areas for feral pig contact is relevant as an initial 
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approximation of a likely much larger risk of disease transmission at the feral-domestic swine 

interface in California. In the future, adding disease cases to this risk map would add additional 

epidemiological information regarding possible pathogen transmission.  

Conclusion 

This study evaluated the feral-domestic pig interface of two parallel trends: expanding 

feral pig populations and an increase in outdoor-raised pig operations in California, as related to 

the risk for future disease transmission. Since both swine populations are reservoirs for various 

pathogens, the contact between these two swine groups has important implications for disease 

transmission in the wildlife-livestock interface. This study provides a foundation to design 

targeted, cost-effective disease surveillance and risk mitigation programs in regions at highest 

risk for wild- domestic pig contact and can serve as a template for similar efforts nationwide. 

Moreover, the results of this study provide a framework to create an outreach extension program 

and inform all stakeholders (e.g., farmers, government agencies) that may be called upon to 

respond to future zoonotic or TAD outbreaks, such as ASF. The results of this study, despite 

limitations, can provide important information to stakeholders and organizations that handle 

swine diseases or public health problems originating from any swine group in California. 
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Abstract 

The trend to raise domestic swine outside in the United States, instead of inside 

confinement barns, has been increasing in the last few decades and is a risk factor for the 

transmission of disease. Both feral and domestic swine are considered a species of concern for 

sharing of pathogens (e.g., Shiga toxin-producing Escherichia coli (STEC)). Outdoor-raised pig 

operations (OPO) are primarily considered a niche market; however, they are broadly distributed 

throughout California, providing an opportunity for the transmission of newly emerging or 

reemerging diseases.   

The objectives of this study focused on a) measuring the prevalence of STEC in outdoor-

raised domestic pigs and feral pigs located near these OPO, and b) analyzing risk factors for the 

presence of STEC on OPO that operate near feral pig populations in high-risk counties. 

Fecal samples from outdoor-raised domestic pigs and feral pigs were collected. Sample 

collection was targeted to high-risk counties that had a higher likelihood of feral pig to outdoor-

raised pig contact. STEC prevalence was estimated at the farm, type of pig, and county-level. 

Data analysis was conducted using generalized linear mixed models to identify significant risk 

factors for the presence of STEC in outdoor-raised pigs. 

At the county level, STEC prevalence for feral pigs ranged from 0% to 25.00% and 0% to 

57.14% for domestic outdoor-raised pigs. Overall, 35 out of the total 192 samples (18.23%) were 

positive for STEC, with five samples collected from feral pigs (11.63%; 5/43) (CI95 = 5.07% - 

24.48%) and 30 samples gathered from domestic pigs (20.13%; 30/149) (CI95 = 14.48% - 

27.29%). Three of the top seven serogroups that cause the most severe human illness in the US 

were identified in this study: O157:H7, O26  and O103. 
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Five of the 11 OPO (45.45%) had seen evidence of feral pig presence on their farm, with 

four (36.36%) stating that feral pigs had direct contact with their domestic pigs. Significant 

variables identified in the final multivariable logistic regression model were the juvenile age 

group of the sample source (OR = 8.66 ; CI95: 2.11-47.89), distance to the nearest surface water, 

(OR = 0.03; CI95: 0.00-0.23), and if the farm raised pigs in an area that had access to a wild area 

(OR = 18.24; CI95: 2.94-520.31). 

As the number of OPO continues to grow, evaluating risk factors that are unique to these 

operations will help identify mitigation strategies to keep food safe from farm to fork and protect 

California’s agricultural economy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 63 

Introduction 

The trend to raise domestic swine outside on pasture in the United States (US), instead of 

inside confinement barns with high levels of biosecurity, has been increasing in the last few 

decades and is a possible risk factor for the transmission of foodborne disease in the wildlife-

livestock-human interface.(62)(38)(195)(196)(122)(123) Generic Escherichia coli are 

commensal bacteria living in all mammals; however, pathogenic Shiga toxin-producing 

Escherichia coli (STEC) strains can cause severe illness in humans and can be transmitted 

through consumption of contaminated produce and meat from livestock or wild animals. Both 

feral and domestic swine are considered a species of concern for the transmission of foodborne 

pathogens, because they are the same taxonomy (i.e., Sus scrofa) and therefore can share 

diseases, and both harbor zoonotic pathogens such as STEC, Salmonella spp., Brucella suis and 

swine influenza virus.(62)(145)(18)(197)(16)(17)(14)(127)(47)(63)(198) Information regarding 

the prevalence of STEC in domestic swine raised outdoors is sparse, and more data is needed to 

understand whether feral pigs that live near these outdoor swine operations may pose a risk for 

the transmission of pathogens between these two swine populations.  

Referenced in this study as outdoor-raised pig operations (OPO), these type of farms are 

primarily considered niche market production operations.(38)(199) However, OPO are broadly 

distributed throughout California, providing an opportunity for the transmission of emerging or 

reemerging diseases that had been eradicated in confinement swine herds, as each outdoor-based 

domestic pig could act as an intermediary host between feral pigs and humans. Feral pigs in the 

US are a mix of introduced Eurasian wild boars and escaped domestically-raised pigs turned 

feral.(49)(51) Additionally, feral pigs harbor and transmit emerging or transboundary diseases 

(TBD), such as African Swine Fever and pseudorabies. (61)(134)(200-202) Feral pigs are also 
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attracted to agricultural areas for food, water and mates, which facilitates direct or indirect 

pathogen transmission.(203)(204)(63)(187) States at greatest risk for increased contact between 

feral and domestic pigs and consequential potential disease transmission, are those regions 

containing large populations of feral pigs living near outdoor-raised domestic pigs reared with 

low levels of biosecurity.(63)(130)(143)(125) Despite multiple control and eradication efforts, 

California has one of the largest and widest distributions of feral pig populations, which 

continues to expand.(34)(139) High-risk contact areas between feral pigs and outdoor-based 

swine could have an important role in the spread of future emerging or reemerging diseases, 

including TBD, which could negatively impact California, the top agricultural production state in 

the US.(10)(47)(126)  The risk map built in Chapter 2 determined that more than 40% of the 305 

identified OPO in California are situated within suitable feral pig habitat areas.(205) 

Both feral and domestic swine are reservoirs for STEC. (18)(206-208) A study identified 

feral pigs in California as reservoirs of E. coli O157:H7, with prevalence ranging from 5.0% to 

23.4%, depending upon sample type.(31) A 2018 Georgia study, another state in the US with 

large feral pig populations, reported 19.5% STEC prevalence in feral pigs.(198) In Chapter 1, 

Patterson et al (2021) reported a STEC prevalence of 5.59% (8/143) in pigs reared outdoors on 

small-scale diversified farms in California. Moreover, serogroups O26 and O103 were found in 

positive STEC samples in Chapter 1, which are listed in the top seven serogroups (i.e., O157:H7, 

O111, O103, O26, O121, O45, and O145) that account for over 95% of human STEC illness in 

the US.(209) Foodborne STEC infections have previously occurred in humans ingesting 

contaminated pig products. For instance, outbreaks of E. coli O157:H7 occurred in Canada in 

2011 and 2014 from consumption of contaminated pork products.(210-212) Although pork is not 

currently considered a major source of foodborne infection in the US, many studies recognize the 
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importance of STEC maintained in both domestic pigs and feral swine in the US and 

internationally.(207)(197)(213-218) 

The objectives of this study focused on a) measuring the prevalence of STEC in outdoor-

raised domestic pigs and feral pigs located near these OPO, and b) analyzing risk factors for the 

presence of STEC on OPO that operate near feral pig populations in six high-risk California 

counties, as determined by the risk map built in Chapter 2.  

Materials & Methods 

Study design and participant enrollment 

We conducted a cross-sectional study between February and August 2018 to collect fecal 

samples from outdoor-raised domestic pigs and feral pigs in six high-risk California counties. 

Sample collection was targeted to six high-risk counties that had a higher likelihood of feral pig 

to outdoor-raised pig contact, based on the risk map built in Chapter 2 and communication with 

landowners that had feral pig presence on their land. OPO enrollment criteria for this study 

included 1) reared domestic pigs outdoors in one of the six targeted counties; 2) willingness to 

participate; and 3) farm owners had seen evidence of feral pigs on their property, or their farm 

was located near suitable feral pig habitat, according to the risk map built in Chapter 2. 

Recruitment techniques included personal farm visits, previous working or research connections, 

farmers markets, and agricultural festivals. Once OPO were enrolled, we identified feral pig 

locations on or near those farms or at least within the same county. Feral pig locations were 

identified through conversations with landowners, hunters, University of California Cooperative 

Extension advisors or United States Department of Agriculture Wildlife Services (USDA-WS) 

staff, who conduct disease surveillance in feral pigs in some California counties.  

Sample collection and questionnaire 
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We collected domestic swine fecal samples from participating OPO, including ones that 

also had feral pig presence on their farm. To collect feral pig fecal samples, we worked with 

landowners to identify known locations on their properties, then we looked for signs of feral pig 

presence, such as wallowing areas, swine footprints and/or rooting for food. Once feral pig areas 

were identified, we searched for fecal samples. A feral pig fecal sample was considered authentic 

if the fecal pile resembled typical pig feces, was surrounded by at least of one of the feral pig 

presence signs listed above and there were no other livestock within the collection pasture that 

could contaminate a sample. All study sites were visited once, except for one private ranch that 

had high feral pig presence throughout the study period and was visited three times. 

 Based on previous studies, we assumed a STEC prevalence of 5% for outdoor-raised pigs 

and 10% for feral pigs with a 10% precision error for both, which resulted in needing 

approximately 204 domestic pig samples and 72 feral pig samples.(219) Sample size per farm 

was calculated by proportional stratified methods. The total number of samples collected per 

farm was based on total pig count and the number inside each paddock, pen or pasture. Fresh 

fecal samples were collected from the ground or from a feral pig’s colon, if it had been freshly 

hunted. Fecal samples were gathered with gloves and placed into sterile cups (MedicusHealth, 

Kentwood, MI US) with sterilized wooden tongue depressors (Puritan, Guilford, ME US) 

Samples were placed into a cooler containing ice packs and brought to the lab for processing 

within 24-48 hrs.  

All participants were asked to complete a questionnaire that included topics regarding 

known nearest feral pig locations, farm demographics and domestic pig health, as related to each 

type of study participant. The survey instrument and protocols were reviewed by the Institutional 

Review Board of the University of California-Davis (No. 1180798-1). A directed acyclic graph 
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(DAG) was built to assess key questions to include in the questionnaire. (91)(92)(220) Once the 

study participant completed the questionnaire, they were sent a $30 gift card as a thank you gift 

for assisting us with the study and as a motivation to complete the survey. Participants completed 

the questionnaire via phone, email or mail.  If missing data was identified, then a follow-up call 

or email was initiated to gather these answers.  

Laboratory methods 

Fecal sample preparation  

All fecal samples were screened for E. coli O157:H7 and non-O157 STEC and tested for 

stx1 and stx2 genes. Upon arrival to the laboratory, fecal samples were cultured for STEC, using 

a modified version of a previous protocol.(74) Briefly, for each fecal sample, a Tryptic Soy 

Broth (TSB) enrichment was performed for detection of non-O157 STEC and E. coli 

O157:H7.(74)  Ten grams of fecal material was weighed and added to a pre-refrigerated 24 oz 

Whirl-Pak sterile bag (Nasco, Modesto, CA) filled with 90 mL of TSB (1:10 dilution) and 

manually homogenized for one minute. Then samples were incubated in a shaking incubator at 

100 RPM and held at 4°C. A Multitron programmable  shaking  incubator  (Eppendorf,  

Hauppauge,  NY,  USA) was employed in this study. 

Non-O157 STEC enrichment, isolation and confirmation  

For non-O157 STEC confirmation, 1 mL of TSB enrichment media was added to 9 mL of 

modified enterohemorrhagic E. coli (mEHEC) selected media (Biocontrol, Bellevue, WA, USA), 

and then was incubated at 42°C for 12 h with agitation. Next, ten µL were streaked onto 

CHROMagar STEC  (CHROMagar™, Paris, France) with an inoculation loop and the plates 

were incubated at 37°C for 24 hrs. Up to six presumptive non-O157 STEC colonies were selected 

from the primary plates and sub-streaked to secondary and tertiary plates.(74)  Presumptive 
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positives were plated onto Tryptic Soy Agar (TSA) and subjected to PCR for confirmation, 

which tested for stx1 and stx2 genes.(221) Up to six isolates were banked per sample in a 15% 

glycerol and 85% TSB solution and stored in a -80°C freezer. (For more details see Ramos et al 

2019).(222) 

E. coli O157:H7 STEC enrichment, isolation and confirmation 

One mL of TSB enrichment media for each sample was subjected to immunomagnetic 

separation (IMS) to concentrate E. coli O157:H7 on CT-SMAC (BBL™; Sorbitol MacConkey II 

Agar 285with Cefixime and Tellurite) and RainbowAgar O157:H7 with novobiocin (Biolog, 

Hayward, CA) using previously described protocols.(74)(97)(223) Up to four presumptive E. 

coli O157:H7 colonies per sample (two per media) were selected for PCR confirmation using the 

PCR protocol outlined previously for E. coli O157:H7 detection.(224) Positive samples were 

banked in a 15% glycerol and 85% TSB solution and stored in a -80°C freezer. 

Whole genome sequencing to identify virulence genes and serotypes 

DNA Extraction and Purification for WGS  

STEC isolates were sent for whole genome sequencing (WGS) to the University of 

California, Davis Genome Center, after PCR confirmation, clean-up and DNA extraction. 

Briefly, isolates were grown overnight aerobically at 37°C in autoclaved 15 mL culture tubes 

containing 10 mL Brain Heart Infusion broth. DNA was then extracted according to the DNeasy 

Blood and Tissue Kit (Qiagen N.V., Carlsbad, CA). To ensure adequate purity for DNA 

sequencing, eluted DNA was purified according to the Zymo Quick-DNA Miniprep Kit (Zymo 

Research, USA). 30 µL of purified DNA was eluted for each isolate into a sterile 2 mL micro 

centrifuge tube. DNA quantification was conducted for all isolates using a NanoDrop OneC 

(Thermo Fisher Scientific, Wilmington, DE). DNA samples were stored at -80°C. 
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Whole genome sequencing and bioinformatics  

The raw reads were pre-processed using HTStream (version 1.3.2)(225) to remove 

contamination, remove duplicates, overlap reads, and trim based on quality and length. Next, the 

processed reads were assembled using SPAdes (version 3.14.1).(226) BUSCO (version 

4.1.4)(227) was utilized to check assembly completeness and find common single-copy 

orthologs across all of the isolates. Using common sequences, "pseudo-genomes" were created 

for each isolate, after which mafft (version 7.471)(228) was used to create a multiple alignment 

across all of them. The final analysis used VirulenceFinder (version 2.0)(229) to identify 

virulence genes for all of the isolates. Custom R (version 4.0.1)(230) code was used to collate the 

results of each of the finders into a superset of the hits for each of the analyses. Using the 

supersets, heatmaps were generated across all the isolates and genes.  

Risk factor analysis and model building 

Descriptive analysis of variables was conducted, including calculating STEC prevalence 

(number of positive samples divided by total number of samples collected per sample category) 

at the farm-level and county-level with a 95% confidence interval (CI95). Sampling day weather 

data was resourced from online sites, including the California Irrigation Management Irrigation 

systems (CIMIS) weather stations within a similar microclimate (http://www.cimis.water.ca.gov) 

and  National Oceanic and Atmospheric Administration, National Centers for Environmental 

Information (NOAA NCEI)  (https://www.ncdc.noaa.gov/cdo-

web/datatools/findstation).(88)(231) Distance between each OPO and the nearest surface water 

or wild area was measured using GoogleEarthPro to estimate suitable resources for feral pigs 

nearby.(185) 

Data analysis was conducted using generalized linear mixed models (i.e., logistic 

http://www.cimis.water.ca.gov/
https://www.ncdc.noaa.gov/cdo-web/datatools/findstation
https://www.ncdc.noaa.gov/cdo-web/datatools/findstation
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regression with farm as a random effect) to identify significant risk factors for the presence of 

STEC in outdoor-raised pigs (i.e., binary outcome STEC presence yes or no). Univariate analysis 

was used to initially assess the distribution of variables. During bivariate analysis, variables with 

low variability, small cell sizes (<5), or large standard errors were either modified, collapsed if 

appropriate, or discarded from model building. Correlations between variables were ascertained 

using the Spearman’s rank correlation coefficient. Possible confounders were identified using a 

directed acyclic graph (DAG) and then included in models to assess significant changes in the 

odds ratio. The sample size in this study was too small to detect effect modifiers. 

Manual two-way stepwise variable selection was employed for model building, using 

add1 and drop1 functions in the stats R package. Models were built using the glmer function 

from the lme4 package, with farm as a random affect.(95)(93) Variance inflation factors 

measured multicollinearity within each model. Top models were compared, and a final model 

was chosen based on the lowest Akaike Information Criterion (AIC) and smallest deviance. 

Model diagnostics were conducted on final models using the DHARMa package.(94) Intraclass 

correlation (ICC) was calculated. Odds ratios and 95% confidence intervals (CI95) were 

calculated for all variables in the final model. All data analysis was performed using R Statistic 

Software version 1.4.1036 ©.(95) 

Results 

Study participants 

The entire study included 17 farms or ranches, but not including the two feral pig samples 

collected by USDA-WS, of the remaining 16 participants: 56.25% (9/16) were diversified farms 

(i.e., those that raised a mix of livestock and crops); 18.75% raised multiple types of livestock, 

but no crops (3/16); 12.5% reared pigs only (2/16); and the remaining two ranches, (12.50%) 
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were private landowners who did not raise domestic pigs, but had feral pig presence on their land 

(2/16). Of the 16 participants, 62.50% (10/16) also raised poultry, 25.00% (4/16) sheep, 31.25% 

(5/16) cattle, 31.25% (5/16) goats, and 12.5% (2/16) equine. Domestic swine diseases reported 

by farmers during the 2018 study period included pneumonia, diarrhea, PRRS and a non-

diagnosed respiratory condition; each of these was reported on one farm each. 

Fourteen of the 16 questionnaires were completed,  of which 11 were for OPO. The two 

incomplete questionnaires belonged to the two participants who only raised swine, not crops or 

other livestock. None of the answering 11 OPO had direct bordering neighbors who raised 

domestic swine. Five of the 11 OPO (36.36%) reared their domestic swine outdoors with access 

to wild areas (e.g., forest, rangelands) and approximately half of the responding 11 OPO 

(54.54%; 6/11) allowed visitors direct contact with pigs. 

Five of the 11 OPO (45.45%) had seen evidence of feral pig presence on their farm (e.g., 

animals, rooting, wallowing) with four (36.36%) stating that feral pigs had direct contact (i.e., 

within 100ft) with their domestic pigs in pastures, pens or barns. Of the five that had feral pig 

presence on their farms, three witnessed feral swine monthly and two observed them on a weekly 

basis. The number of feral pigs reported per farm owner ranged from a minimum of one up to 

100 pigs and the maximum number observed ranged from 15 up to 300. Of the remaining six 

OPO with no feral pig presence on their farms, five (45.45%) had seen feral pigs in their counties 

less than five miles from their operation and only one OPO (9.09%) had never seen signs of feral 

pigs in their county.  

Of the six targeted counties in this study, we enrolled one to four OPO and one to three 

feral pig locations per county. Although we were able to enroll OPO in each of the targeted six 
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counties, feral pig samples were unattainable in San Mateo, Nevada and Monterey counties. 

Feral pig samples were collected in Mendocino, Yolo, and Sonoma.  

STEC prevalence and serotypes 

A total of 192 fecal samples were collected during the 2018 study period: 43 feral pig 

samples and 149 outdoor-raised pig samples. Mean number of fecal samples collected at each 

farm was eleven with a median of ten. Feral pig fecal samples were collected on eight properties 

with a sample number range of 1-14 per location.  

Regarding STEC prevalence on the 13 participating OPO, at least one STEC positive 

sample was collected on 61.54% (8/13) farms. STEC prevalence per farm ranged from 0% to 

83.33% with a mean of 23.00% and median of 20.00%. At the county level, overall STEC 

prevalence for feral pigs ranged from 0% to 25.00% and 0% to 57.14% for domestic outdoor-

raised pigs (Table 3.1). Overall, 35 out of the total 192 samples (18.23%) were positive for 

STEC, with five samples collected from feral pigs (11.63%; 5/43) (CI95 = 5.07% - 24.48%) and 

30 samples gathered from domestic pigs (20.13%; 30/149) (CI95 = 14.48% - 27.29%). Results for 

E. coli O157:H7 included one positive feral pig sample (2.33%; 1/43) (CI95 = 0.12% - 12.06%) in 

Yolo County and three E. coli O157:H7 positive domestic pig samples (2.01%; 3/149) (CI95 = 

0.69% - 5.75%), one from Yolo County and two from Sonoma County. Non-O157 STEC 

positives included four feral pig samples (9.30%; 4/43) (CI95 = 3.68% - 21.60%) and 27 domestic 

pig samples (18.12%; 27/149) (CI95 = 12.76% - 25.08%).  
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Table 3.1: Shiga toxin-producing Escherichia coli (STEC) O157:H7 and non-O157 STEC 

prevalence and the number of positive samples per swine category (feral or domestic), and 

county, from a cross-sectional study conducted in 2018 in California, from 17 study participants. 

 

County 
# Total 

samples 

# non-

O157 

positive 

# 

O157:H7 

positive 

Prevalence 

non-O157 

Prevalence 

O157:H7 

Total All 

STEC 

Prevalence 

FERAL PIGS       

Mendocino 21 0 0 0.00% 0.00% 0.00% 

Yolo 16 3 1 18.75% 1.17% 25.00% 

Sonoma 5 1 0 20.00% 4.00% 20.00% 

Monterey 1 0 0 0.00% 0.00% 0.00% 

Nevada 0 NA NA NA NA NA 

San Mateo 0 NA NA NA NA NA 

All Feral Pigs 43 4 1 9.30% 2.33% 11.63% 

OUTDOOR-

RAISED 

DOMESTIC 

PIGS 

      

Mendocino 25 0 0 0.00% 0.00% 0.00% 

Yolo 36 10 1 27.78% 2.78% 30.56% 

Sonoma  39 2 2 5.13% 5.13% 10.26% 

Monterey  26 3 0 11.54% 0.00% 11.54% 

Nevada  7 4 0 57.14% 0.00% 57.14% 

San Mateo 16 8 0 50.00% 0.00% 50.00% 

All Domestic Pigs 149 27 3 18.12% 2.01% 20.13% 

       

    All Pigs 

non-O157 

All Pigs 

O157 

Overall 

STEC 

Prevalence 

GRAND TOTALS 

(Feral + Domestic) 
192 31 4 16.15% 2.08% 18.23% 
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Table 3.2: Serotypes and virulence factors detected by whole genome sequencing in 25 of 35* 

Shiga toxin-producing Escherichia coli isolates collected from feral pigs and domestic swine 

raised outdoors from participating ranches in California during 2018.  

 

Swine Source 
Feral pigs 

nearby? 
Serotype ehxA eae stx2 stx1 

Domestic on farm O8:H21 - - - - 

Domestic on farm O5:H11 - - - - 

Domestic on farm O26:H11 - + - + 

Domestic on farm O26:H11 - + - + 

Domestic on farm O26:H11 + + - + 

Domestic w/in 3.22 km O26:H11 + + - + 

Domestic w/in 3.22 km O26:H11 + + - + 

Domestic none  O26:H11 + + - + 

Domestic none  O26:H11 + + - + 

Domestic on farm O178:H19 - - - + 

Domestic on farm O154:H32 - - - - 

Domestic on farm O153:H4 - - - - 

Domestic w/in 3.22 km O141:H29 - - + - 

Domestic w/in 3.22 km O141:H29 - - + - 

Feral pig NA O118:H16 + + - + 

Feral pig NA O118:H16 + + - + 

Domestic none  O100:H20 - - + - 

Domestic none  O100:H20 - - + - 

Domestic none  O100:H20 - - + - 

Domestic none  O100:H20 - - + - 

Domestic on farm O103:H11 + + - + 

Domestic on farm :H34 - - - - 

Domestic w/in 3.22 km :H26 - - - - 

Domestic on farm :H21 - - + - 

Domestic w/in 3.22 km :H21 - - + - 

 

*Ten positive isolates were not sent for whole genomic sequencing, but four of those were 

identified as O157:H7 in our lab: three from domestic pigs and one from a feral pig but these four 

O157:H7 are not included in the table. 

+ indicates presence, - indicates absence 

 Also contained O141ab and O141ac 

 



 75 

Table 3.2 shows the serotypes and virulence factors identified in 25 of the 35 total 

positive STEC samples sent for WGS. Ten isolates were not sent for WGS, but four of those 

were reported as E. coli O157:H7 in our laboratory. Stx2 was detected in 32.00% (8/25) and stx1 

in 44.00% (11/25) of sequenced isolates. Of the 25 sequenced isolates, seven (28.00%) were 

O26:H11, which all contained stx1 but not stx2. The ehxA gene was detected in 32.00% (8/25) of 

sequenced isolates and eae found in 36.00% (9/25). Six samples did not indicate presence of 

Shiga-toxin genes (i.e., stx1 and stx2). Two samples were identified as both O118 and 

O151.(232) 

Risk Factor Analysis 

Variable selection for generalized linear mixed model building began with over 80 

factors, including sampling day data (e.g., ambient humidity, season), individual or pen-level 

characteristics related to the collected fecal sample (e.g., sex, age) and questionnaire variables.  

Table 3.3 showcases mean, median and range of selected numeric demographic variables. For 

instance, the size of domestic swine herds for the 11 OPO ranged from 3 - 350 pigs (mean=72; 

median = 35). Stocking density ranged from 0.67 to 106.67 pigs per acre, based on total area 

dedicated to pigs on each farm (mean = 17.44 pigs/acre; median 7.0 pigs/acre). The average 

number of acres per OPO participating in this study was 508.12 with a median of 62.00 acres. 

Enrollees had been farming for a mean of 14.73 years and median of 12.00 years but had been 

raising domestic pigs for a mean of 8.18 years, with a median of 6.00 years. 
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Table 3.3: Mean, median and range (i.e., minimum and maximum) of selected numeric factors 

assessed for model building and collected during a cross-sectional study conducted in 2018 from 

11 outdoor-raised pig operations in California.  

 

Description Mean  Median Minimum Maximum 

Density (#pigs/acre) 17.44 7.00 0.67 106.67 

Total number of pigs raised per farm 72 35 3 350 

Number years farm has been in operation 14.73 12.00 1.00 55.00 

Number years farm has been raising pigs 8.18 6.00 1.00 25.00 

 Total farm acres 508.12  62.00  5.00  2200.00 

Total acres used for outdoor-raised pigs 35.55  5.00  0.10  300.00  

Mean pig herd size 84 35 3 350 

Distance to nearest surface water (km) 1.14  0.51 0.10  5.07 

Distance to nearest wild area (km) 1.08 0.66 0.13  5.84  

Nearest known feral pig location (km) 8.39 2.32 0.14  24.00 

 

Table 3.4 displays selected categorial variables stratified by positive (n=24) and negative 

STEC samples (n=112) for the 11 OPO that finished their questionnaire. P-values were reported 

with chi-square test or Fisher’s Exact test if cell sizes were less than five. Regarding type of 

operation, 87.50% (21/24) of the positive samples were collected on diversified OPO (i.e., raised 

livestock and crops) vs. 12.50% (3/24) from farms rearing multiple types of livestock, but no 

crops. All the 24 positive STEC samples were collected in the spring, none of the STEC positive 

samples were gathered in the summer months. Most positive samples (70.83%; 17/24) were 

isolated from juveniles (i.e.,  aged 1-11 months and weaned). Most of the STEC positive samples 

(79.17%; 19/24) were from farms that raised their domestic pigs with access to wild areas (e.g., 

forests, riparian areas). Most positive samples (87.50%; 21/24) were from farms that do not use 

antimicrobials, either in feed or as injectables. 
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Table 3.4: Characteristics of selected categorical variables stratified by positive or negative 

Shiga toxin-producing Escherichia coli (STEC) status during bivariate analysis. Fecal samples 

were collected during a cross-sectional study conducted in 2018 on 11 outdoor-raised pig 

operations in California.  

 

 

Description 

 

Levels 

STEC 

negative 

ct (%) 

STEC 

positive 

ct (%) 

 

p-

value 

Type of farm Diversified a. 67 (59.82%) 21 (87.50%) 0.019 

 Multiple livestock 45 (40.18%) 3 (12.50%)  

Sample season Spring (Feb-April) 74 (66.07%) 24 (100.00%) < 0.001 

 Summer (May-

August) 
38 (33.93%) 0   (0.00%)  

Age of 

pig fecal source 

Adult (12 months or 

older) 
57 (50.89%) 3 (12.50%) 0.001 

 Juvenile (> 1-

11months) 
44 (39.29%) 17 (70.83%)  

 Piglets (on sow) 11  (9.82%) 4 (16.67%)  

Does farmer use 

antimicrobials for pigs? 
Yes 36 (32.14%) 3 (12.50%) 0.093 

 No 76 (67.86%) 21 (87.50%)  

Source for swine drinking 

water 
Surface 53 (47.32%) 12 (50.00%) 0.989 

 Private well 59 (52.68%) 12 (50.00%)  

Is there direct contact 

between feral pigs &  

domestic pigs? 

Yes 58 (51.79%) 14 (58.33%) 0.720 

 No 54 (48.21%) 10 (41.67%)  

Where have you seen 

evidence of feral pigs? 
On-farm 61 (54.46%) 14 (58.33%) 0.038 

 None 20 (17.86%) 0   (0.00%)  

 In the same county 31 (27.68%) 10 (41.67%)  

Does farm allow domestic 

swine access to wild areas? 
No 57 (50.89%) 5 (20.83%) 0.012 

 Yes 55 (49.11%) 19 (79.17%)  

New or long-time farmer Long 74 (66.07%) 16 (66.67%)  

 New 38 (33.93%) 8 (33.33%)  
a. Diversified farms raise a combination of livestock and numerous types of produce  
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Final multivariable model results 

The final mixed effect multivariable logistic regression model is shown in Table 3.5 and 

was chosen based on the lowest AIC and smallest deviance, relative to other models. The AIC 

was 97.9 and deviance was 83.9. The highest variance inflation factor for any variable in the 

final model was three, which was below our threshold of five. The ICC was 0.09, which accounts 

for the proportion of the model variance explained by clustering by farm and indicated that 

including the farm as a random effect was necessary. The isSingular test function in the lme4 

package was false, which indicated that no singularities existed in the final model. 

 

Table 3.5: Association between the presence of Shiga toxin-producing Escherichia coli in swine 

fecal samples and risk factors as determined by a multilevel logistic regression model, from data 

gathered in California between February and August 2018.  

 

Variable Level Estimate OR 
OR  

95% CI 
p-value 

Intercept  -3.29   < 0.001* 

Pig age group  

Adult (12 

months or 

older) 

reference    

 Juvenile (> 

1-11months) 
2.16 8.66 2.11 - 47.89 0.005* 

 
Piglets (on 

sow, not 

weaned) 

1.55 4.73 0.71 - 33.88 0.102 

Nearest 

surface water 
numeric -3.43 0.03 0 - 0.23 0.020* 

Pig allowed 

access wild 

areas? 

No reference    

 Yes 2.90 18.24 2.94 - 520.31 0.013* 

Years farming 6-30 years reference    

 1-5 years 1.84 6.31 0.76 - 148.06 0.100 

* Denotes statistical significant at the 0.05. 
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Diagnostically, the simulated residuals versus predicted values did not show any 

significant problems: the Q-Q plot of DHARMA simulated scaled residuals was linear with no 

major deviations, and the Kolmogorov-Smirnov test indicated no deviation from uniform 

distribution of the scaled residuals (see Figure 3.1). The adjusted ICC was 0.09 for the final 

model, which signifies the proportion of the variance that is explained by farm clustering and 

indicated the need for a farm random effect. 

 

Figure 3.1: Q-Q plot of residuals (left) and residuals versus predicted values plot (right) from the 

DHARMa package in R. 
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Significant variables identified in the final multivariable logistic regression model were 

the pig age group of the sample source, distance to the nearest surface water, and if the farm 

raised pigs in an area that had access to a wild area (yes/no). Whether the farm was new (farmed 

< 5 years) or had been farming for a longer period (> 6 years) was adjusted for as a confounder 

in the final model according to a DAG but was not significant (p-value = 0.10). On average, 

while holding other effects constant, for every one km increase in distance between the OPO and 

nearest surface water, the odds of a STEC positive sample decreased (OR = 0.03; CI95: 0.00-

0.23). The odds of a STEC positive sample are 18.24 times higher on farms that allowed 

domestic pigs access to wild areas than farms that did not (OR = 18.24; CI95: 2.94-520.31). The 

odds of a STEC positive sample were more than eight times greater for a fecal sample collected 

from a juvenile pig (OR = 8.66 ; CI95: 2.11-47.89), than adults.  

Discussion 

This study determined STEC prevalence for feral pigs and domestic pigs raised outside 

near feral pig locations in high-risk California counties and assessed risk factors associated with 

the presence of STEC on OPO. We estimated an overall STEC prevalence in outdoor-raised pigs 

of 20.13%, and 11.63% in feral pigs. Also, serotypes implicated in severe human disease were 

identified in fecal samples through WGS. Significant risk factors associated with STEC presence 

on OPO included age of swine sampled (i.e., juveniles), the distance to the nearest surface water, 

and whether a farm raised domestic swine with access to a wild area (e.g., forest, wetlands). 

The non-O157 STEC prevalence in this study was 18.12% in domestic pigs reared 

outdoors and 9.30% in feral pigs. E. coli O157:H7 results were 2.33% in feral pigs and 2.01% in 

domestic pigs. Prevalence of E. coli O157:H7 and non-O157 STEC in swine varies greatly 

worldwide, and US studies measuring STEC in OPO are sparse. Although STEC was identified 
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in outdoor raised domestic swine in both Chapters 1 and 3, the overall prevalence was much 

larger in Chapter 3 versus Chapter 1 (i.e., 5.59%). Prevalence of STEC in domestic pigs reared 

outdoors on diversified small-scale farms from Chapter 1 was lower than this current study, but 

had a similar sample size (i.e., n=143 vs n=149 in Chapter 3). Samples were collected in 2018 

for Chapter 3 and 2015-16 for Chapter 1. Differences in STEC prevalence between 2015-2016 

and 2018 may be due to different laboratory processing methods or environmental factors. Both 

study periods were drought years in California; however, 2017 was a very wet year, which may 

have affected 2018. Three farms participated in both studies and all three farms saw increases in 

STEC prevalence between 2015-16 and 2018: Farm 1 had a 5.13% (2/29) STEC prevalence in 

2015-16 compared to 20.00% (6/30) in 2018, Farm 2: 0% (0/15) STEC prevalence increased to 

83.33% (5/6) and Farm 3: 11.11% (1/9) to 66.67% (2/3). However, a smaller number of samples 

and animals for Farm 2 and 3 accounts for some of this seemingly large increase between 

studies. A 2018 study conducted in Georgia reported 62.5% (5/8) STEC in organic “free-

ranging” domestic swine, but reported a small sample size of eight.(198) Differences between 

STEC prevalence may be due to different study designs, laboratory tests, environmental factors 

or farm management practices, such as the density of pigs raised in each paddock. STEC has 

been identified in indoor raised swine herds but comparison studies are lacking.(233)(19) The 

scarcity of data regarding STEC in swine raised outdoors indicates a need for future studies. 

Studies measuring the prevalence of STEC in feral pig populations in the US are 

infrequent, unlike European studies.(234)(58)(235) A 2006 US study sampled swine necropsy 

and fecal samples and reported 0 - 23.4% prevalence E. coli O157:H7 in feral pigs.(31) A 2018 

study conducted in Georgia detected an overall STEC prevalence of 19.5% (17/87) in feral swine 

and they identified a higher prevalence of STEC in feral pigs sampled in agricultural 
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counties.(198) Feral pigs are attracted to agricultural areas because of resource availability (e.g., 

fresh produce, livestock feed, mates), and their direct or indirect contact with livestock may 

create a risk of foodborne pathogen transmission. The risk of pathogen sharing between feral 

pigs and domestic swine has been studied, but only a small subset of these studies investigated 

the risks to outdoor based pigs, even though there have been multiple cases of feral pigs 

transmitting pathogens, such as Brucella suis, to domestic swine raised 

outdoors.(46)(56)(59)(60) Wyckoff et al (2009) concluded that increasing populations of feral 

swine are a risk for the reintroduction of eradicated diseases as well as emerging TBD, especially 

for backyard operations that allow domestic swine outdoor access, because male feral pigs are 

attracted to female pens.(56) In a Corsica study that focused on traditional pig farms that raise 

their animals outdoors, the authors determined that a significant risk factor for the spread of 

diseases between wild boars and domestic swine was interactions between these two swine 

groups.(236) Our study results indicated that 45.45% of farm participants had seen evidence of 

feral pig presence on their farms. Schembri et al (2015) conducted a questionnaire of backyard 

and small-scale swine producers in Australia and found that a third of producers, both indoor and 

outdoor, had seen feral pigs on their farms.(125) Understanding the prevalence of STEC in feral 

pigs, combined with the aforementioned study results indicating that these animals reside near 

resource-rich farms, highlights the need for further studies to address the risk of disease 

transmission associated with feral pig presence near operations that raise swine outdoors. 

Serotypes identified in this study that can cause severe human illness included E. coli 

O157:H7 (n=4), O26:H11 (n=7) and O103:H11 (n=1). (209) The serogroups O26:H11 and 

O103:H11 contained only the stx1 gene, not stx2. The only O103:H11 serotype contained both 

eae and ehxA and all the O26:H11 isolates contained the eae gene, with five (71.43%) O26:H11 
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serotypes also containing the ehxA gene. A study by Cha et al (2018) also found O26 with stx1 

and eae in commercial swine raised indoors in Ohio, US. (207) A study conducted in finishing 

swine, measured 6.9% of positive samples were O26 and 2.4% contained O103. (237)  In 2017, 

the US Food Safety and Inspection Service (FSIS) conducted a Raw Pork Baseline Study to 

determine the prevalence of STEC in various types of pork products at slaughterhouses and 

processing facilities and measured a prevalence of 0.2% STEC, mostly in comminuted pork 

products.(214) However, this study only looked for the top seven STEC serogroups, even though 

309 other samples were positive for key virulence factors like stx and eae genes.(214) 

Additionally, on-farm or slaughterhouse swine samples may reflect different prevalence ranges 

than meat products. Considering most studies identified E. coli O157:H7 and non-O157 STEC 

serotypes that cause human illness in swine samples, pigs should be considered an important 

reservoir of STEC, and mitigation strategies established to prevent the spread of foodborne 

pathogens from farm to consumer.  

Significant risk factors associated with the presence of STEC in fecal samples collected 

during this study included distance from the nearest surface water and whether domestic swine 

had access to wild areas, such as forest or wetlands. These variables were measured as a proxy 

for suitable feral pig habitat that borders farms.(61)(47)(58)(238-240) Feral pigs are reservoirs of 

STEC, and surface water and/or wild areas provide habitat for these animals to exist near 

OPO.(62)(63)(203)(204) For instance, a study by Rutten et al (2019) predicted suitable habitat 

for wild boar in Belgium and identified forest (e.g., coniferous and deciduous), as a significant 

predictor.(146) Additionally, Wu et al (2012) reported distance from a forest to be a significant 

risk factor for contact with wild boars in Switzerland, especially those domestic pigs less than 

500 meters from a forest.(62) A 2017 study reported that distance to water affects feral pig 
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movement mostly in states where water is scarce (e.g., Texas, California) versus states where 

water is more prevalent (e.g., Georgia, Louisiana).(187) Additionally, feral pigs may 

contaminate these habitat areas, which may lead to indirect STEC transmission to swine raised 

outdoors, as studies have shown that STEC can be transmitted through contaminated surface 

water sources and the environment. (187)(241)(242) A 2014 study conducted in the Central 

Coast of California detected E. coli O157:H7 and non-O157 in many water sources.(242) These 

results indicate a need to separate domestic swine raised outdoors from wild areas to avoid direct 

or indirect transmission of pathogens from feral pigs. 

In this current study, only the juvenile age group, which included weaners, finishing and 

market swine (i.e., ages 1-11 months), was significant when compared to adults. Many US and 

international studies have tested similar-aged pigs at slaughterhouses and reported a wide range 

of STEC prevalence.(208)(243) A study by Tseng et al (2015) sampled finishing pigs (i.e., aged 

10-24 weeks), which are included in our juvenile category, and determined that the highest 

prevalence (i.e., 39.5-59.2%) amongst three cohorts occurred between 14-18 weeks of age.(197) 

At 24 weeks, STEC prevalence in all cohorts had dropped and ranged from 0 - 6.7% in the three 

groups. (197) This same study mentions that the finishing age group are most susceptible to 

STEC oedema, which is caused by E. coli strains carrying the stx2 gene and may be associated 

with detecting STEC in this juvenile age category. A longitudinal study conducted by Cha et al 

(2018) in commercial indoor domestic swine found that 68.3% (82/120) of finishing pigs (i.e., 

aged 10-24 weeks) shed STEC at least once during the study period, which showcases the 

intermittent nature of STEC shedding in swine.(207) The high prevalence (i.e., 68.3%) identified 

in this study might be due to repeated sampling over a longer period of time than conducted in 

our study. Additionally, our study sampled all ages of swine only once, which might indicate an 
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underreporting of STEC in our results. The effect of age on STEC shedding is more frequently 

reported in cattle versus swine.(244)(245) For instance, a Raies et al (2016) study sampled beef 

cattle and reported that STEC prevalence was highest during the first six months of life and then 

decreased toward adulthood.(244) Another study by Cho et al  (2013) also detected that calves 

over one month old were two times more likely to shed STEC than those younger than one 

month, except for pre-weaned calves.(245) If age is a risk factor for STEC shedding in swine, 

then targeting key age groups for STEC mitigation strategies to reduce the overall bacterial load 

in slaughtered swine may reduce the risk of these pathogens in the food supply. 

Limitations of this study included a small sample size for the total number of farm 

participants as well as the final number of feral pig samples collected, as we could only gather 

feral pig feces in three of the six targeted counties. The post-hoc power calculation results were 

0.12 for feral pigs and 0.69 for OPO, which indicated that the prevalence estimates are inexact. 

Moreover, many of the significant variables in the final logistic regression model had wide 

confidence intervals, which indicates less precise estimates. Since this was a cross-sectional 

study conducted only during two seasons and only one season per farm, we may have missed 

STEC positive farms due to seasonality of shedding or other factors that affect STEC detection 

in feces, including the intermittent nature of shedding in pigs. Our study participants volunteered 

and therefore we could not conduct random sampling; our study results contain selection bias 

and are not generalizable to other OPO in California or the US. 

Strengths of our study included measuring STEC in both feral pig and outdoor reared 

pigs in California. This study is an innovative approach toward evaluating areas of contact 

between feral and domestic pigs reared outdoors, by targeting STEC surveillance based on a risk 

map built in Chapter 2. Moreover, assessing STEC prevalence in feral pigs near OPO serves as a 
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proxy for the risk of exposure and transmission of other zoonotic pathogens to domestic pigs 

reared outdoors. Future research studies could enhance our current study results by comparing 

STEC strains between the two swine groups using WGS bioinformatic analyses. Similarity of 

STEC isolates can be used as a biological indicator to track possible transmission of diseases 

between feral and outdoor-raised swine, as noted in a few recent studies.(62)(145)(204)(37)(45)  

Conclusion 

Feral and domestic swine are reservoirs of foodborne pathogens like STEC and other 

zoonoses. Raising domestic pigs outside provides an opportunity for direct and indirect contact 

with feral pigs that may harbor these pathogens. This study is significant because it will provide 

a foundation to design targeted, cost-effective disease surveillance and foodborne pathogen 

mitigation strategies for those areas at highest risk for feral to domestic pig contact. Furthermore, 

study results will provide a framework to create outreach extension programs to inform 

stakeholders that raise domestic swine outdoors about disease risks associated with feral pigs. As 

the number of OPO continues to grow, evaluating risk factors that are unique to these operations 

will help identify biosecurity practices and develop extension outreach materials to keep food 

safe from farm to fork and protect California’s agricultural economy.  
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Dissertation conclusion  

The three scientific research projects in this dissertation added important epidemiological 

information to the body of knowledge regarding STEC detected on DSSF in California and the 

risk of potential disease transmission from suitable feral pig habitat located near domestic pigs 

raised outdoors. Although consumers perceive small-scale farms or outdoor-raised meat as safer 

and more natural, these studies together demonstrate that even livestock raised outdoors on 

small-scale farms are reservoirs for STEC, including serogroups that cause severe illness in 

humans, including O157:H7, O26, O103 and O111. Interestingly, Chapter 1 and 3 models 

indicated that livestock raised outdoors that have access to wild areas, such as wetlands or forest, 

was a key risk factor for the presence of STEC. Chapter 2 results revealed that nearly 50% of 

domestic pigs raised outdoors are located near suitable feral pig habitat, and this overlap of feral 

and domestic swine could be a risk factor for potential emerging or reemerging disease 

transmission. Also, STEC was detected in domestic swine in both Chapter 1 and 3, even though 

pigs are currently considered a low risk key species for STEC outbreaks by the US FSIS. These 

study results indicate the need for further studies on DSSF to ascertain risk factors for foodborne 

pathogens.  

The objective of Chapter 1 entailed conducting an overall assessment of prevalence and risk 

factors of STEC on diversified small-scale farms in California, while also describing the unique 

characteristics of DSSF. Temperature was a key risk factor identified in the final multilevel 

logistic regression model. Many foodborne pathogen studies indicate season as a risk factor for 

STEC, however, seasons vary across the US. For instance, California summers are characterized 

by dry heat whereas summers in most states are humid and hot.(89) Measuring and monitoring 
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temperature during field sampling may be a more precise indicator of risk than season and allow 

for more accurate comparisons between studies. Additionally, as weather patterns shift due to 

climate change, assessing environmental factors, (e.g., humidity and temperature), as a risk 

factor for the presence of STEC on farms will be useful for stakeholders, to understand how 

weather affects the presence of foodborne pathogens in livestock raised on DSSF. Studies 

elucidating whether ambient temperature affects survival of STEC in a farm environment or 

whether temperature affects the host animal harboring STEC will be useful, especially as 

extreme climate events become more common. Future research projects could also benefit from a 

larger sample size to analyze farm-level differences and whole genome sequencing (WGS) of 

positive isolates to ascertain any genetic relatedness between livestock species or between farms, 

as well as presence of antimicrobial resistance genes. 

In Chapter 2, the risk map determined regions at highest risk for contact between feral pigs 

and outdoor-raised pigs, and these areas will be important to target surveillance and outreach, in 

the case of future disease transmission between these two swine groups. This project can be 

expanded nationwide to create awareness of high-risk contact and potential disease transmission 

areas, to protect both public health and agriculture in the US. For example, this risk map could be 

used to plan surveillance programs to prevent transmission of imported diseases to the US, such 

as African Swine Fever (ASF) that was recently detected in the Dominican Republic, or prevent 

the spread of reemerging diseases like pseudorabies, which was detected in feral pig populations 

in Mendocino County, CA in 2015. A 2015 report by the European Food Safety Authority 

(EFSA) concluded that surveillance programs will be key in preventing the introduction and 

spread of ASF in North America and other naïve countries.(246) Additionally, if feral or 

outdoor-based domestic swine disease location data were readily accessible in the US, additional 
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risk maps could predict the spread of specific pathogens. Disease risk maps are useful to support 

decision making for agencies focused on wildlife management and conservation as well as 

animal and public health. Currently, USDA collects data through surveys for swine operations 

only in the top 16 producing pork states in the US, and California is not included, which reduces 

available data for disease risk models. However, the swine NAHMS is due to be conducted again 

in 2021 with a larger focus on small-scale swine operators. 

Another avenue for future research entails using covariate rasters from specific years or 

decades to predict the distribution of a feral pigs. Few SDM or MaxEnt comparison projects have 

compared temporality of covariate rasters for model prediction accuracy. Currently available 

rasters are limited and are not available for individual years. Shifts in weather patterns, as well as 

the dynamics of large fires, will most likely be exacerbated by climate change and will affect 

wildlife movements and locations in the future, which may indicate the importance of choosing 

temporally-specific variables for model building.(151)(192)(140)(193)(247-249) Additionally, if 

climate change and wildfires accelerate in California, current static rasters may become 

inaccurate in predicting future suitable habitat. California’s annual precipitation levels fluctuate 

between drought and excessive precipitation associated with El Niño and La Niña events. 

Climatologists predict volatility of rainfall patterns and temperature for California, which may 

affect suitable habitat for wild mammals such as feral pigs, and emphasizes the need for dynamic 

climate rasters.(192)(249)  

Both the MaxEnt model and risk map in Chapter 2 are limited because they are static 

maps that used fixed layers as their foundation; consequently, they do not incorporate dynamic 

events. Future species distribution models could incorporate temporal environmental patterns 

into models, due to dynamic changes over time, especially in regions like California where 
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climate change and large wildfires can affect the distribution of certain 

species.(151)(192)(140)(249) Extreme weather events can alter feral pigs’ normal sedentary 

patterns.(48)(151) For instance, Snow et al (2017) used temporally dynamic prediction models 

and examined three decades from 1982 to 2012 to report evidence of feral pig expansion due to 

climate change. Also, feral pigs in Canada build “pigloos” to be able to survive the harsh 

Canadian winters, expanding their habitat northward.(250)(251) A 2015 study on climate change 

affecting wild boars in Europe also reported that milder winters allow for expanded abundance of 

these mammals.(248)(252). Additionally, feral pigs may migrate seasonally due to food and 

water availability in California, therefore future projects could incorporate migration patterns and 

develop risk maps for specific time periods as Lee et al (2020) conducted with waterfowl 

species, although these data are not available yet for most predictors in California. 

(192)(194)(253)(144)(146)(167)(187) Building real time dynamic risk maps that incorporate 

remote sensing data, such as satellite information, could be the next step in predicting high-risk 

disease transmission areas, as built previously for avian influenza by the California Waterfowl 

tracker.(194) However, tracking birds may be easier than collaring feral pigs. 

Chapter 3 combined aspects of Chapters 1 and 2, by determining the prevalence of STEC 

in feral pigs that reside near domestic swine raised outdoors and predicted possible areas of 

contact between these two swine populations. Both multilevel logistic models in Chapters 1 and 

3 identified outdoor-raised livestock with access to wild areas, such as wetlands or forests, as a 

significant risk factor for the presence of STEC in samples. One possible pathway for shared 

pathogens in wild areas may be wildlife contaminating food or water, which are then consumed 

by livestock. Additionally, Chapter 3 results could be improved upon by using WGS to analyze 

relatedness between feral pig and domestic pig samples. Although the pathway for pathogen 
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spillover can be bi-directional and temporality may be unclear, identifying clusters of shared 

indicator pathogens is an important next step in analyzing disease risks from feral pigs in 

California and nationwide.(145)(45)  

Chapters 2 and 3 analyzed feral pig populations and their risk to farms that raised domestic 

swine outdoors. In Chapter 3, 45.45% (5/11) of survey respondents observed feral pig presence 

on their farm, with 36.36% stating that feral pigs had direct contact (i.e., within 100ft or 30.48m) 

with their domestic pigs in pastures, pens or barns. These results match the risk map from 

Chapter 2, which overlapped predicted suitable habitat for feral pigs and OPO locations and 

showed that 49.18% of the 305 OPO identified in California overlapped with suitable feral pig 

habitat, indicating that spillover of an emerging or transboundary disease is possible, given the 

correct drivers. We know human or livestock encroaching into tropical forests are drivers for 

zoonotic diseases such as COVID-19 or Nipah Virus, usually with an intermediate host such as 

bats.(254) Although emerging zoonotic diseases in many cases originate at the interface of 

wildlife-livestock-humans, the US is not considered a hot spot for zoonotic disease outbreaks 

according to Daszak and the EcoHealth Alliance (2017), yet zoonotic pathogen outbreaks can 

still occur.(255)(256) Possible drivers of disease spillover in the US between feral and domestic 

pigs raised outdoor include density of animals, shared natural areas between domestic and 

wildlife and increasing contact between these two growing swine populations.(255)(256) 

As the number of DSSF farms continues to grow, continued evaluation of risk factors and 

agricultural management practices that are unique to these small operations will identify 

additional risk mitigation strategies and develop extension outreach materials to keep food safe 

from farm to fork and protect California’s agricultural economy. Additionally, as the two parallel 

trends nationwide of expanding feral pig populations and outdoor-based domestic swine 
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continues, disease surveillance of feral pigs located near outdoor-raised domestic swine is key in 

preventing transmission of emerging or reemerging pathogens in the future. 
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