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Systematic Review

HIV-1 Antiretroviral Drug Resistance in Mozambique:
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Abstract: This systematic review assessed the prevalence of transmitted and acquired HIV drug
resistance (HIVDR) and the associated risk factors in Mozambique. A search of the PubMed, Cochrane,
B-On, and Scopus databases up to December 2023 was conducted and included 11 studies with
1118 HIV-1 pol sequences. Drug resistance mutations (DRMs) to NNRTIs were found in 13% of
the drug-naive individuals and 31% of those on ART, while NRTI resistance occurred in 5% and
10%, respectively. Dual-class resistance (NNRTI + NRTI) was detected in 2% of the drug-naive and
8% of ART-experienced individuals. DRMs to protease inhibitors (PIs) were found in 2% of the
drug-naive and 5% of ART-experienced individuals. The rate of DRMs was significantly higher in
Beira than in Maputo, as well as in pediatric patients than in adults and pregnant women. Subtype C
predominated (94%) and was associated with lower viral loads and DRM rates as compared to the
other subtypes. The high prevalence of DRMs, particularly to NNRTIs and NRTIs, highlights the
need for ongoing surveillance and targeted interventions. These findings are critical for optimizing
ART regimens and informing public health strategies in Mozambique, with particular attention to
regions such as Beira and vulnerable populations such as pediatric patients.

Keywords: HIV drug resistance (HIVDR); antiretroviral therapy (ART); Mozambique; drug resistance
mutations (DRMs); systematic review and meta-analysis

1. Introduction

In 2022, 2.4 million adults and children were living with HIV in Mozambique
(12.4%) [1–3]. HIV prevalence in Mozambique is higher in women (15.2%) than in men
(9.5%) [3,4]. Since the first AIDS case report in 1986, the country has faced three major
phases of the HIV incidence trend. A steady increase until 2001, with up to 150,000 new
infections per year, a plateau trend over the following decade, and a decreasing trend
thereafter, reaching 94,000 new cases in 2021 [4]. AIDS-related deaths peaked in 2006
(73,000) and decreased to about 35,463 deaths in 2021 [2]. The epidemic is mainly driven
by HIV-1 subtype C [5–17].

Since 2004, free antiretroviral therapy (ART) has been available in Mozambique,
based on the World Health Organization (WHO) public health approach to ART deliv-
ery [18,19]. In the early stages of ART roll-out, adults were treated with the first-line
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fixed dose combination of a non-nucleoside reverse transcriptase inhibitor (NNRTI),
nevirapine, and two NRTI, stavudine/lamivudine (d4T/3TC/NVP). Later, first-line
therapy consisted mainly of the NNRTI efavirenz (EFV)-based therapy, mostly with
tenofovir (TDF) and 3TC [18–20]. However, in 2020, the high rate of resistance (50% to
97%) [5,11,14,16,21–24] led to a shift to a dolutegravir (DTG)-based first-line regimen
with two NRTIs as an optimized backbone [25,26]. Second-line ART regimens consist
of a protease inhibitor (PI) and two NRTIs [20]. For prevention of mother-to-child
transmission (PMTCT), recent guidelines recommend DTG+3TC+TDF for mothers and
AZT+NVP dual syrup prophylaxis for all exposed infants [27]. In the early stages of ART
roll-out, pediatric patients were treated with d4T/3TC/NVP. Later, most children were
on AZT/3TC/NVP until a PI-based first-line regimen for younger children with boosted
lopinavir (LPV/r) was introduced in 2018. The massive switch to DTG in children
occurred in 2022 with the introduction of the pediatric formulation pDTG (10 mg) plus
abacavir/lamivudine (ABC/3TC).

Generalized antiretroviral therapy has reduced HIV transmission and mortality in
Mozambique but, as in the rest of the world, it has increased the prevalence of drug
resistance [2,3,24]. A recent survey of drug-naive subjects showed that the northern region
of Mozambique had the highest prevalence of transmitted drug resistance (TDR) (8.5%,
95% CI: 4.9; 14.3) compared with the southern (6.4%, 95% CI: 3.7; 10.2) and central (3.9%,
95% CI: 3.9; 9.7) regions [16]. The most common NNRTI TDR mutations are K103N, E138A,
V179D, and G190A, and M184V and thymidine analogue mutations (TAMs) (M41L, D67N
and T215A) are the most common mutations associated with resistance to NRTIs.

The risk of developing drug resistance in subjects on ART in Mozambique is high
due to low uptake of VL monitoring (64% in 2022), drug resistance testing [27], and
low virologic suppression rates [28]. The country has one of the lowest levels of trained
nurses and doctors in the world, with only 0.04 doctors and 0.41 nurses/midwives per
1000 people [29]. Between 2005 and 2021, the coverage of health facilities with ART services
in the country increased from 1% to 96% [27]. However, retention in HIV care and treatment
remains a major challenge, with studies have reported a 66% retention at 12 months,
dropping to 52% at 24 months, and then to 44% at 36 months [19,27,30]. Poor retention in
HIV care has been linked to several factors, including stigma and discrimination, poverty
and unemployment, work/childcare responsibilities, distance and transport to the health
facilities, side effects of ART medication, the complexity of dosing schedules, and the
reliance on traditional medicines [30–33].

This systematic review and meta-analysis aims to provide a consolidated understand-
ing of the prevalence, trends, and patterns of HIV drug resistance (HIVDR) in Mozambique
and to assess the associated risk factors. Close monitoring of drug resistance aids in in-
forming healthcare policies, guiding treatment strategies, and identifying areas for further
research or intervention to effectively combat HIV/AIDS in Mozambique.

2. Materials and Methods

This review was conducted in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [34], and its protocol was
registered on the PROSPERO international prospective register of systematic reviews of
the National Institute for Health Research (Ref. ID: CRD42022327228).

2.1. Electronic Databases

The following four databases were searched for relevant studies: PubMed, B-on,
Scopus, and the Cochrane Library. We supplemented the database searches by manually
screening the bibliographies of systematic reviews in the Cochrane database.

2.2. Search Strategy for Study Identification

A broad search strategy was used, combining ART, HIVDR, and HIV infection terms
and text words with Medical Subject Heading (MeSH) terms. The literature search al-
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gorithm was designed to identify studies that reported HIVDR data among PLWH in
Mozambique since the first AIDS case was reported in 1986. The search was conducted
between May 2022 and 31 December 2023. The bibliographies of retrieved studies were
reviewed to identify additional papers. The search terms used are listed in Table S1.

2.3. Study Selection and Inclusion Criteria

Three authors (RM, PG, and CP) reviewed the studies. If different reports were based
on the same original trials or observational studies and there was data redundancy, only one
report was included in the review. However, the excluded reports were still screened for
additional information on study population characteristics that may not have been included
in the selected study report. We included any original study on PLWH in Mozambique
reporting HIVDR data. We did not have any language or publication status restrictions.
For reviews, we checked their bibliographies for original studies. We excluded studies that
did not include original data; studies with less than ten participants; studies conducted in a
migrant population; and studies that did not report GenBank accession numbers for pol
gene sequences.

2.4. Data Extraction

To ensure data quality (consistency and accuracy), study level and patient data were
systematically extracted. The following study-level data were extracted as they may
influence HIVDR: study location, year of sample collection, age, sex, pregnancy status,
CD4+ T cell count (cells/mm3), and HIV viral load. Additionally, exposure to antiretroviral
(ARV) drugs before treatment initiation was considered (yes, no, or unknown).

2.5. Sources of HIV Sequences and Identification of DRMs

HIV-1 nucleotide sequences were retrieved from GenBank (NCBI) using the accession
numbers provided in the selected articles. A complete list of these accession numbers
is provided in Table S2. HIV-1 subtypes were confirmed by phylogenetic analysis using
the maximum likelihood (ML) method with 1000 bootstrap replicates in the IQ-tree 1.6.8
software [35] and visualized using FigTree V1.4.3 [36]. The best-fitting partitioning scheme
and nucleotide substitution model were selected based on the lowest Bayesian Information
Criterion (BIC) values as implemented in IQ-tree. Bootstrap values >70% were considered
definitive for significant clustering.

Resistance-associated mutations in PR, RT, and IN coding regions and resistance
profiles were identified using the Stanford HIVdb algorithm version 9.3 [7,37,38].

2.6. Statistical Analyses

Categorical variables were reported as percentages, while continuous variables were
presented as medians with interquartile range (IQR) or means with standard deviations
(SDs). The prevalence of mutations was compared between the study groups (drug-naïve
and those receiving antiretroviral therapy) using Fisher’s exact test. All meta-analysis
(MA) statistics and associated plots were performed using the Open Meta Analyst software,
version 3.9 [39]. Four distinct outcomes were calculated as pooled effect sizes from the
data extracted from the selected articles. The primary outcome was the drug resistance
mutation rate per sequence (DRMR), defined as the ratio of the total number of resistance
mutations to the total number of sequences. The secondary effect sizes were the relative
mutation risk ratio (MRR), derived from the DRMR, and, when available in the selected
studies, the mean plasma viral load (log10 HIV RNA copies/mL) and the CD4+ T-cell
count (cells/mm3). The MRR was calculated as the ratio between the ART and drug-
naive subjects’ DRMR meta-regression exponentiated coefficients. All MA overall results
were estimated using restricted maximum likelihood random effects models and reported
with 95% confidence intervals (95% CI). The overall results from all meta-analyses were
evaluated for homogeneity using the I2 heterogeneity index. The chi-squared (χ2) test for
heterogeneity was employed to ascertain the degree of homogeneity, classified as high or
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low [40]. Z-tests for proportions or means were employed, where appropriate, to ascertain
whether the MA outcomes were significant and associated with some effect. The same Z-
tests were employed to compare the MA outcomes between the study groups. Furthermore,
meta-regressions were conducted to ascertain the potential sources of heterogeneity in the
meta-analysis. The study population meta-regression covariates evaluated were, where
available, antiretroviral therapy exposure, mean age, male-to-female ratio, sample type from
which HIV-1 sequences were obtained, participant group (adults, neonates/children, or
pregnant women), study region, and HIV subtype C ratio. The fitted parameters of the meta-
regressions included coefficients for each covariate that quantified the correlational effect
of the variable(s) of interest on the meta-analytic outcome. The combined impact of the
study population covariates was assessed whenever the meta-regression model coefficients
yielded significant Z-test results. The proportion of the overall outcome variance explained
by the variables in the meta-regression was defined by R2. For all statistics, the significance
was defined as a two-tailed p-value of less than 0.05.

2.7. Risk of Bias Assessment

The internal validity (risk of bias) of the included studies was evaluated using the
Joanna Briggs Institute (JBI) critical appraisal checklist for studies reporting prevalence or
incidence data [41]. The tool comprises nine questions with four possible answers, each
assigned a score of 1 (yes), 0 (no), or 0 (unclear or not applicable). The obtained score is
presented in percentages that categorize each study according to the different levels of risk
of bias, as follows: high (20–50%), moderate (50–80%), or low (80–100%). The Risk-Of-Bias
VISualization (ROBVIS) tool was employed to generate risk-of-bias plots [42]. Two authors
(RM and PG) evaluated the quality of the studies, and any discrepancies were resolved
through discussion with a third author (PM).

3. Results
3.1. Study Selection

A total of 302 studies were identified through the search process, of which 69 were
duplicates. After removing the duplicates (n = 69), 204 studies were excluded after review-
ing the title and/or abstract. From the overall 29 entries included for full article review
eligibility, 14 did not report GenBank accession numbers for pol gene sequences, and 4
were conducted in a migrant population. This process led to the inclusion of 11 studies
in the final review [5,6,8–11,13–15,23,43]. The PRISMA flow diagram, which provides a
summary of the process of identification, screening, and inclusion of the relevant studies
based on the inclusion and exclusion criteria, is presented in Figure 1.

3.2. Studies Characteristics

The main characteristics of the studies included in this review are presented in Table 1.
All studies were observational and conducted in the cities of Maputo, Beira, Nampula,
and Pemba. A total of 152 pediatric subjects, comprising neonates, infants, and children,
were included in two studies. Pregnant women (363) were included in three studies, while
adults (591) were included in the remaining six studies. The age of the subjects ranged
from 0 to 63 years old. The adult cohort comprised 278 women and 254 men. The sex of
the remaining 59 adult participants was not reported in the studies. A total of 837 subjects
(75%) were drug naive. The remaining 281 subjects (25%) were on NNRTI-based ART with
a 2-NRTI backbone, specifically AZT (or d4T) + 3TC + NVP (or EFV). One study employed
NVP (postnatal) + AZT (first week of life).
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Figure 1. The PRISMA flow chart summarizing the process of identifying, screening, and including
relevant studies (n = 11) based on the specified inclusion and exclusion criteria.

The studies encompassed a total of 1118 HIV-1 polymerase (pol) gene sequences
derived from viruses present in plasma, breast milk, and cells. A total of nine studies ana-
lyzed reverse transcriptase and protease sequences, while one study focused on integrase
sequences. All sequences were subjected to phylogenetic and drug resistance genotyping
analysis. Phylogenetic analysis revealed that 94% (1055/1118) of the sequences were classi-
fied as subtype C, 2% (25/1118) as subtype A, 1% (16/1118) as subtype G, 1% (10/1118) as
subtype D, and 0.2% (2/1118) as subtype B. Circulating recombinant forms (CRF37_cpx
and CRF41_CD) were observed in 1% (9/1118) of the sequences, while unique recombi-
nant forms were identified in 0.1% (1/1118). The nine studies that analyzed amino acid
sequences of the reverse transcriptase enzyme identified mutations that confer resistance
to NRTIs and NNRTIs.

3.3. Risk of Bias Within Studies

All the studies provided a clear description of their subjects and settings (question 4 in
Figure 2). A majority of the studies had an appropriate sample frame to address the target
population (n = 8, 73%) (question 1), justified the sample size (n = 7, 63%) (question 3),
conducted a data analysis with sufficient coverage of the identified sample (n = 10, 91%)
(question 5), and provided an adequate statistical analysis (n = 10, 91%) (question 8 in
Figure 2). However, several studies significantly failed to provide information on the
sample selection criteria (n = 8, 73%) (question 2), a clear description of the study protocol
(n = 9, 82%) (question 6), a clear report of the experimental protocol (n = 9, 82%) (question 7),
and a complete response rate analysis (n = 9, 82%) (question 9).
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Table 1. Study level data from included studies (n = 11).

Authors
[Year of

Publication]

Information

Main Findings Funding
No. Sequences Sample

Collection Date

HIV Viral
Population

from
Participants

Age in Years
[Mean (SD);

Median (IQR)
or Range)]

Male/
Female Region Antiretroviral

Drugs

Andreotti et al.
(2009) [10] 101 2009

Plasma
Breast milk

PBMC
Pregnant [26.2 (+/−4.5);

26 (17–39)] 0/53 Maputo AZT (or d4T)
+ 3TC + NVP

Almost all strains were subtype
C (exceptions: 1 subtype A and 1
subtype G). DRMs:

■ NRTI: M184I/V
■ NNRTI: K103N, V106A

and V108I

Drug Resource Enhancement
against AIDS in Mozambique
(DREAM Program)

Oliveira et al.
(2012) [13] 57 December 2009

to August 2010 Plasma Adult >18 (NA) 18/39 Maputo AZT (or d4T)
+ 3TC + NVP

92.9% of sequences were subtype
C (exceptions: 1.7% subtype A
and 5.4% URF_CG). DRMs:

■ INSTI accessory: T97A
(1.8%) and E157Q (1.8%)

Brazilian National Research
Council, (471299/2009-0) and
National AIDS
Program/Ministery of Health,
Brazil, and Universidade
Federal do Rio de Janeiro
(UFRJ), Brazil

Lahuerta et al.
(2008) [9] 51 1999 and 2004 Plasma Adult

Means:
33 (IQR 25–48)

and
23 (IQR 20–30)

0/81 Maputo Naive All sequences were subtype C.
No DRMs.

Spanish Ministry of Education
and Science (SAF-05845)
(BFU2006-01066/BMC) (FIPSE
project 36549/06); Vizcaya
Argentaria foundation (BBVA
02-0); Spanish Fondo de
Investigación Sanitaria
(FIS01/1236).

Micek et al.
(2014) [43] 33

Between June
2005 and May

2008
PBMC Neonates/Infants 0–2 (NA) NA Beira

NVP (after
birth) and
AZT (first

week of life)

All sequences were subtype C.
NVP resistance was detected in
37.5% of infants infected via
breast milk.
DRMs:

■ NRTI: M41L and M184V
■ NNRTI: K103N, Y181C

and G190A

National Institutes of Health
(R01 AI058723 and STD/AIDS
T32 AI07140) and the
University of
Washington/Fred Hutch
Center for AIDS Research
(CFAR) (P30 AI027757).

Bila et al.
(2013) [14] 112 March to June in

2007 and in 2009 PBMC Pregnant 15–25 (NA) 0:234 Maputo and
Beira Naive

All sequences were subtype C.
TDR was classified as <5% in
Maputo and 5–15% in Beira.
DRMs:

■ NRTI: M41L and M184V
■ NNRTI: K103N, E138A/G,

V179E and Y181H.
■ PI accessory: Q58E

NA
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Table 1. Cont.

Authors
[Year of

Publication]

Information

Main Findings Funding
No. Sequences Sample

Collection Date

HIV Viral
Population

from
Participants

Age in Years
[Mean (SD);

Median (IQR)
or Range)]

Male/
Female Region Antiretroviral

Drugs

Vubil et al.
(2016) [15] 95 November 2009

and June 2010 Plasma Adult 29 (NA) 120:0 Nampula and
Pemba Naive

80% of strains were subtype C
(exceptions: 10.5% subtype A,
3.2% subtype D and 2.1%
subtype G).
DRMs:

■ NRTI: K219E
■ NNRTI: K101E, K103N

and G190A
■ PI accessory: L10I/F

Instituto Nacional de Saúde,
Mozambique; Fundo Nacional
de Investigação, Mozambique
(IOC-FIOCRUZ)

Bellocchi et al.
(2005) [5] 58 First months of

2003 Plasma Adult NA - Maputo Naive

All virus strains were subtype C.
DRMs:

■ NNRTI: E138A and
V170D/E

■ PI major: I50L
■ PI accessory: V32G

Drug Resource Enhancement
against AIDS in Mozambique
(DREAM Program)

Parreira et al.
(2006) [6] 43 August and

October 2003 PBMC Adult Mean:
28.8 (1–63) 34:96 Beira Naive

All virus strains were subtype C.
DRMs:

■ NRTI: K70Q/R, V75A,
F116Y and M184I/T

■ NNRTI: A98G, K103N,
E138A, V179D, Y181C and
P236L

■ PI major: I84V
■ PI accessory: M46V, N83D

and L89V

Fundacão GlaxoSmithKline
das Ciências de Saúde,
Portugal

Bártolo et al.
(2009) [11] 186 Between

2002–2004 Plasma Adult Mean:
41 (+/−12) 82:62 Maputo Naive

Most strains were to subtype C
(exceptions: 3.8% subtype G,
6.7% CRF37_cpx and 7.7% of
other CRFs).
DRMs:

■ NRTI: M41L, D67N, K70R,
M184V, L210W, T215F/Y,
K219Q

■ NNRTI mutations: A98G,
K1001E, K103N, E138A,
V179T, Y181C, G190A,
P225H

■ PI major: M46I and L90M
■ PI accessory: K20T, Q58E

and T74P

NA
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Table 1. Cont.

Authors
[Year of

Publication]

Information

Main Findings Funding
No. Sequences Sample

Collection Date

HIV Viral
Population

from
Participants

Age in Years
[Mean (SD);

Median (IQR)
or Range)]

Male/
Female Region Antiretroviral

Drugs

Vaz et al. (2012)
[23] 112 October 2007

and June 2008 Plasma Infants/Child Median:
2 (1.3–5.9) 43:76 Maputo

ZDV or d4T +
3TC + NVP

(or EFV)

All virus strains were subtype C.
DRMs:

■ NRTI: A62V, K65R, K70R
and L74I/V

■ NNRTI: A98G, M184I/V,
K219E, K101E, K103N,
V106A/M, V108I,
E138A/G, V179D, Y181C,
Y188F, G190A and H221Y

■ PI accessory: K43T and
Q58.

The Bill & Melinda Gates
Foundation (K23 AI074423-05)
European Community’s
Seventh Framework
Programme (FP7/2007–2013)

Abreu et al.
(2008) [8] 76 2002 Plasma Pregnant NA - Multicenter Naive

Northern: 64.3% of isolates were
subtype C (exceptions: 18%
subtype A, 11% subtype D and
7.1% others CRFs).
Southern: 95% isolates were
subtype C (exceptions: 5%
subtype D).
Central: 100% of isolates were
subtype C.
DRMs:

■ NNRTI: V108I, E138A/G,
V179D and Y181C.

■ PI accessory: L10F, I50F
and I84M.

Programa de Cooperação em
Ciência, Tecnologia e Inovação
com Países da
África-PROAFRICA (Proc#
491367/2005-8) with Federal
University of Rio de Janeiro,
Rio de Janeiro, Brazil

NA—Not available; AZT—Zidovudine; d4T—Stavudine; 3TC—Lamivudine; NVP—Nevirapine; EFV—Efavirenz; SD—Standard deviation; IQR—Interquartile range; DRM—Drug
resistance mutations; TDR—Transmitted drug resistance; PBMC—Peripheral blood mononuclear cells; PI—Protease inhibitor; NRTI—Nucleoside/nucleotide reverse transcriptase
inhibitors; NNRTI—Non-nucleoside reverse transcriptase inhibitors.
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3.4. Results of the Meta-Analysis

In drug-naive subjects, the DRM rate (DRMR) was lower in Maputo (0.095; 95% CI:
0.024; 0.207; I2 = 91.4%) than in other cities, especially when compared to Beira, which had
the highest DRMR (0.535; 95% CI: 0.386; 0.680) (Table 2 and Figure S1). The DRMR was
similar in the pregnant women (0.166; 95% CI: 0.077; 0.281; I2 = 85.4%) and adult subjects
(0.169; 95% CI: 0.048; 0.344; I2 = 94.6%). Finally, the DRMR determined in plasma viruses
of these subjects was found to be lower (0.126; 95% CI: 0.056; 0.218; I2 = 90.0%) than the
DRMR determined in integrated proviral DNA (cell viruses) (0.367; 95% CI: 0.105; 0.683;
I2 = 92.5%).

Table 2. Meta-analysis of drug resistance mutation rate (DRM Rate) from all studies in drug-
naive subjects.

Variable No. Studies
Total No. of

DRMs/Total No. of
Sequences

DRM Rate
(95% CI) a

Heterogeneity Index I2

(%)

Localization:
Maputo 5 78/511 0.095 (0.024; 0.207) 91.4 *

Maputo/Beira 1 25/112 0.233 (0.151; 0.305) NA
Nampula/Pemba 1 19/95 0.200 (0.126; 0.286) NA

Beira 1 23/43 0.535 (0.386; 0.680) NA
Multicentric 1 17/76 0.224 (0.138; 0.324) NA

Sequence origin:
Plasma 7 114/682 0.126 (0.056; 0.218) 90.0 *

Cells 2 48/155 0.367 (0.105; 0.683) 92.5 *
Participant’s group:

Pregnant women 3 56/364 0.166 (0.077; 0.281) 85.4 *
Adults 6 106/473 0.169 (0.048; 0.344) 93.2 *

a Drug resistance mutation (DRM) rate—ratio of the total number of DRMs to the total number of sequences;
* Chi-squared p-value < 0.01 for heterogeneity (H0: I2 > 50%); CI—Confidence Interval; NA—Not applicable.

Among those receiving antiretroviral therapy (ART), the DRMR values were also
lower in Maputo (having plasma viruses as source: 0.318; 95% CI: 0.059; 0.664; I2 was 96.3)
and higher in Beira (having cells as source: 0.848; 95% CI: 0.708; 0.948). It is noteworthy
that neonates, infants, and children on ART exhibited a higher DRMR (0.747; 95% CI: 0.533;
0.912; I2 = 81.7%) compared to adults and pregnant women (Table 3 and Figure S2).

No treatment group (drug-naive individuals) was associated with a lower DRMR
(0.169; 95% CI: 0.082; 0.280; I2 = 93.3%) (Table 4 and Figure S3). Infants treated with
NVP (after birth) + AZT (first week of life) had the highest DRMR compared to the other
treatments (0.848; 95% CI: 0.708; 0.948), followed by individuals treated with AZT (or d4T)
+ 3TC + NVP (or EFV) (0.652; 95% CI: 0.561; 0.737). Individuals treated with AZT (or d4T) +
3TC + NVP (or EFV) and drug-naive individuals had similar levels of DRMR (Table 4).
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Table 3. Meta-analysis of drug resistance mutation rate (DRM Rate) from all studies in subjects on ART.

Variable No. Studies
Total No. of

DRMs/Total No. of
Sequences

DRM Rate
(95% CI) a

Heterogeneity Index I2

(%)

Localization (sequence
origin):

Maputo (Plasma) 3 101/248 0.318 (0.059; 0.664) 96.3 *
Beira (Cells) 1 28/33 0.848 (0.708; 0.948) NA

Participant’s group:
Pregnant women 1 26/118 0.220 (0.151; 0.299) NA

Adults 1 2/18 0.111 (0.012; 0.292) NA
Neonates/Infants/Children 2 101/145 0.747 (0.533; 0.912) 81.7 *

a Drug resistance mutation (DRM) rate—Ratio of the total number of DRMs to the total number of sequences;
* Chi-squared p-value < 0.01 for heterogeneity (H0: I2 > 50%); CI—Confidence Interval; NA—Not applicable.

Table 4. Meta-analysis of the drug resistance mutation rate (DRM Rate) according to treatment regimen.

Treatment Regimen No. Studies
Total No. of

DRMs/Total No. of
Sequences

DRM Rate
(95% CI) a

Heterogeneity Index I2

(%)

Drug-naive 9 162/837 0.169 (0.082; 0.280) 93.3 *
AZT (or d4T) + 3TC + NVP 2 28/136 0.192 (0.105; 0.298) 27.7

NVP (after birth) + AZT
(first week of life) 1 28/33 0.848 (0.708; 0.948) NA

AZT (or d4T) + 3TC + NVP
(or EFV) 1 73/112 0.652 (0.561; 0.737) NA

a Drug resistance mutation (DRM) rate—ratio of the total number of DRMs to the total number of sequences;
* Chi-squared p-value < 0.01 for heterogeneity (H0: I2 < 50%); CI—Confidence Interval; NA—Not applicable.
Abbreviations: AZT—Zidovudine; d4T—Stavudine; 3TC—Lamivudine; NVP—Nevirapine; EFV—Efavirenz.

The combination of AZT (or d4T) with 3TC and NVP (or EFV) in adults and NVP
(after birth) with AZT (in the first week of life) was associated with a 2.9-fold and 3.8-fold
relative increase in DRMR risk, respectively, compared to no ART (drug-naive individuals)
(Table 5).

Table 5. Relative mutation risk ratio (MRR) according to treatment regimen.

Treatment Regimen MRR a 95% CI b Std. Error p-Value *

Drug-naive 1 - - -
AZT (or d4T) + 3TC + NVP 0.586 0.1670; 1.0058 0.2140 0.2301
AZT (or d4T) + 3TC + NVP

(or EFV) 2.883 2.5829; 3.1839 0.1533 <0.00001

NVP (after birth) + AZT
(first week of life) 3.754 3.3274; 4.1797 0.2174 <0.00001

a MRR—Mutation Risk Ratio; b CI—Confidence Interval; * Z-test for means (H0: MRR = 1). Abbreviations:
AZT—Zidovudine; d4T—Stavudine; 3TC—Lamivudine; NVP—Nevirapine; EFV—Efavirenz.

Potential confounders of DRMR, including characteristics of the study population
and some individual-level predictors, were examined by meta-regression. Subtype C (the
predominant type) was associated with a lower DRMR than the average DRMR for all the
other subtypes combined (p < 0.0012) (Table 6). The AZT (or d4T) + 3TC + NPV (or EFV)
regimen was associated with significantly elevated DRMR compared to the AZT/d4T +
3TC + NVP regimen (p = 0.0011). Regarding the origin of the sequenced viruses, the results
show a significant increase in DRMR for the viruses from cells compared to the plasma
viruses (p < 0.0001). The pooled results show a significantly lower DRMR associated with
Maputo as compared to the other regions (Figure S1 and Table 2); however, when this rate
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is adjusted for other covariates (male %, subtype C, treatment, HIV viral population and
patient), Nampula/Pemba takes the lead (Table 6).

Table 6. Drug resistance mutation rate meta-regression adjusted for treatment, male ratio, subtype C
ratio, origin of HIV sequences, region of study and participant group (I2 = 54.0% and R2 = 34.3%).

Index Specimen Coefficient Std. Error p-Value *

Overall

Intercept 16.28 5.17 0.0016
Male (%) 5.58 6.89 0.4183

Subtype C −17.31 5.36 0.0012
Treatment (AZT or d4T + 3TC + NVP as reference)

Drug-naïve 0.39 0.40 0.3229
AZT (or d4T) + 3TC+ NVP (or EFV) 1.95 0.60 0.0011

NVP (after birth) + AZT (first week of life) 0.86 0.54 0.1133
Sequence origin (cells)

Plasma −4.45 1.13 <0.0001
Localization (Nampula/Pemba as reference)

Mozambique multicentric 1.21 0.47 0.0104
Maputo 2.23 0.71 0.0016

Maputo and Beira −0.73 0.51 0.1505
Participant group (Adult as reference)

Pregnant women −0.14 0.38 0.7057
Neonates/Infants/Children 0.86 0.54 0.1133

* Z-test for means (H0: Coefficient = 0). AZT—Zidovudine; d4T—Stavudine; 3TC—Lamivudine; NVP—Nevirapine;
Std. error—Standard error.

We also performed a meta-analysis to analyze the influence of different predictors on
viral load (VL). Drug-naive individuals were associated with a 1.4-fold increase in VL as
compared to treated individuals (Table 7 and Figure S4).

Table 7. Meta-analysis of viral load by study treatment.

Treatment Regimen No.
Studies

Viral Load
(log10 HIV-1 RNA

Copies)
95% CI a I2 (%)

Drug-naive 3 4.373 4.053; 4.694 86.5 *
AZT (or d4T) + 3TC + NVP 1 3.100 2.778; 3.422 NA

a CI—Confidence Interval; * Chi-square p-value < 0.01 for heterogeneity (H0: I2 < 50%); NA—Not applicable;
Abbreviations: AZT—Zidovudine; d4T—Stavudine; 3TC—Lamivudine; NVP—Nevirapine.

HIV-1 subtype C infection was associated with a lower VL as compared to the other
subtypes combined (p < 0.001) (Table 8, model 1). In the same model, ART consisting of
AZT (or d4T) + 3TC + NVP was associated with a decrease in VL as compared to that of
the drug-naive subjects (p < 0.001). In model 2, the meta-regression analysis showed no
confounding variables related to the participant group (Table 8). Finally, ART consisting of
AZT (or d4T) + 3TC + NVP was associated with an increase in mean CD4+ T-cell count
(p < 0.001) compared to the drug-naive subjects (Table 9).

3.5. Genotypic Drug Resistance Analysis

Genotypic analysis of the 1118 sequences included in the study showed that 2.0%
(17/837) of drug-naive subjects and 7.8% (22/281) of those receiving ART had at least
one mutation conferring resistance to RT inhibitors. Approximately 12.7% (106/837) of
drug-naive participants and 31.0% (87/281) of those receiving ART had DRMs to NNRTIs.
Between 11% and 13% of drug-naive subjects had reduced susceptibility to EFV, ETR,
NVP, and RPV (Figure 3a). DRMs to NVP and EFV were identified in 11.9% (100/837)
of the drug-naive subjects and 29.9% (84/281) of those receiving ART. Specifically, 16.7%
(47/281) of participants receiving ART had a high-level resistance to NVP and 6% to EFV
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(Figure 3b). Up to 23.5% (66/281) of participants on ART had low-level resistance (LLR) and
intermediate-level resistance (IR) to RPV, and approximately 14.9% (42/281) had reduced
susceptibility to DOR and ETR. The most common NNRTI resistance mutations were
K103N (naive, n = 8/837, 1.0%; treated, n = 11/281, 3.9%), E138A/G (naive, n = 67/837,
8.0%; treated, n = 20/281, 7.1%), Y181C/H/L (naive, n = 4/837, 0.5%; treated, n = 21/281,
7.5%), and G190A (naive, n = 5/837, 0.6%; treated, n = 8/281, 2.8%) (Table S3).

Table 8. Viral load meta-regression models adjusted for subtype C and treatment for model 1, and
treatment and patient group for model 2.

Index Specimen Studies Coefficient Std. Error p-Value *

Model 1
Intercept 21.13 4.31 <0.001

Subtype C −17.03 4.36 <0.001
Treatment (Drug-naïve as reference) 3 - - -

AZT/d4T + 3TC + NVP 1 −2.24 0.32 <0.001
Model 2
Intercept 4.60 0.18 <0.001

Treatment (Drug-naïve as reference) 3 - - -
AZT/d4T + 3TC + NVP 1 −1.50 0.27 <0.001

Participant group (pregnant as reference) 2 - - -
Adults 2 −0.35 0.21 0.098

* Z-test for means (H0: Coefficient = 0). AZT—Zidovudine; d4T—Stavudine; 3TC—Lamivudine; NVP—Nevirapine;
Std. error—Standard error.

Table 9. CD4+ T-cell counts meta-regression adjusted for treatment and participant group.

Index Specimen Studies Coefficient Std. Error p-Value *

Intercept 374.00 35.24 <0.001
Participant group (pregnant as reference) 2 - - -

Adults 2 12.40 49.05 0.800
Treatment (Drug-naive as reference) 3 - - -

AZT/d4T + 3TC + NVP 1 244.00 64.06 <0.001

* Z-test for means (H0: Coefficient = 0). AZT—Zidovudine; d4T—Stavudine; 3TC—Lamivudine; NVP—Nevirapine;
Std. error—Standard error.
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Figure 3. Susceptibility and resistance to NNRTIs and NRTIs in drug-naive subjects (a) and subjects on
ART (b). HIVDR was predicted using the Stanford HIVdb algorithm score: Susceptible (0–9); Potential
Low-Level Resistance (PLLR) (10–14), Low-Level Resistance (LLR) (15–29), Intermediate Resistance
(IR) (30–59), and High-Level Resistance (HLR) (>60). NRTIs: ABC, Abacavir; AZT, Zidovudine; FTC,
Emtricitabine; 3TC, Lamivudine; TDF, Tenofovir. NNRTIs: DOR, Doravirine; EFV, Efavirenz; ETR,
Etravirine; NVP, Nevirapine; RPV, Rilpivirine.
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Approximately 4.5% (38/837) of drug-naive subjects and 9.6% (27/281) of those receiv-
ing ART had mutations conferring resistance to NRTIs. The most common mutation was
M184I/T/V (naive, n = 9/837, 1.1%; treated, n = 17/281, 6.0%) (Table S3). Approximately
7.8% (22/281) of those receiving ART had resistance mutations to FTC and 3TC, of which
6.0% (17/281) conferred a high-level resistance (Figure 3b). Drug-naive participants had
high levels of susceptibility to all NRTIs (Figure 3a). Approximately 8.9% (25/281) of
participants on ART had low or intermediate resistance to ABC (Figure 3b).

Although none of the 281 participants on ART had been treated with PIs, 4.6% (13/281)
had at least one mutation conferring PI resistance. Approximately 2.4% (20/837) of the
sequences belonging to drug-naive individuals also had PI resistance mutations. Only
0.2% (2/837) of drug-naive individuals and 0.7% (2/281) of individuals receiving ART
had mutations associated with resistance to INSTI. All mutations are listed in Table S3.
Some mutations conferring resistance to NNRTIs, NRTIs, and PIs were significantly more
common in the subjects on ART as compared to the untreated subjects (Table 10).

Table 10. Prevalence of non-polymorphic and polymorphic HIV-1 reverse transcriptase and protease
mutations in drug-naive and treated subjects.

Resistance Mutations Naive, No (%)
(n = 837)

Treated, No. (%)
(n = 281) p-Value *

NRTI resistance mutations
K65R 0 (0) 3 (1.1) 0.002

M184V 9 (1.1) 17 (6.0) <0.0001
NNRTI resistance mutations

K103N 8 (0.96) 11 (3.9) 0.001
V106M 0 (0) 3 (1.1) 0.002
Y181C 2 (0.24) 21 (7.5) <0.0001
G190A 5 (0.60) 8 (2.8) 0.002
H221Y 0 (0) 4 (1.4) 0.0005

PI resistance mutations
Q58E 2 (0.24) 7 (2.49) 0.0003
G73S 0 (0) 3 (1.1) 0.002

* Z-test for pairwise comparison of proportions; No—Number.

4. Discussion

We conducted the first systematic review and meta-analysis of the prevalence of trans-
mitted drug resistance and acquired HIVDR in Mozambique and assessed the risk factors
associated with the emergence of HIVDR. Overall, our analysis showed that 2% of the drug-
naive individuals and 8% of those on ART had at least one mutation conferring resistance
to reverse transcriptase inhibitors (NRTI or NNRTI). The prevalence of NNRTI resistance
was 13% in the drug-naive subjects and 31% in the subjects on ART. The most recent WHO
survey of drug resistance in Africa reported an average prevalence of transmitted NNRTI
resistance of 11%, which is similar to our findings [24]. However, the prevalence of acquired
NNRTI resistance (i.e., in treated individuals) is higher across Africa than in Mozambique,
ranging from 50% to 97% [22,24,44–47]. The prevalence of NNRTI resistance among people
on ART in Mozambique is likely to be underestimated, as the most recent survey on this
issue in Mozambique dates back to 2014.

The most prevalent NNRTI resistance mutations found in our study were K103N,
Y181C, G190A (major mutations), and E138A (accessory mutation), which confer high- or
intermediate-level resistance to NVP and EFV, the most commonly used NNRTIs in first-
line ART regimens in Africa [22,24]. Y181C is of concern because it also confers resistance
to the newer generation of NNRTIs, such as etravirine (ETR) and rilpivirine (RPV) [37].

The prevalence of resistance to NRTIs was estimated to be 5% among the drug-naive
subjects, which is close to the mean prevalence reported in the WHO survey (3%) [24]
and in Mozambique’s neighboring countries (ranging from 1% in Zambia, Zimbabwe, and
Eswatini to 8% in Tanzania) [24,44,47–51]. However, the mean prevalence of an acquired
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resistance to NRTIs was much lower than that reported in the WHO survey (10% vs.
48%) [24] and in Mozambique’s neighboring countries (ranging from 53% in Eswatini to
68% in Zambia) [24,44–47]. As with NNRTI resistance, the NRTI results in Mozambique
are also likely to be underestimated, as the most recent survey of NRTI drug resistance in
treated individuals also dates back to 2014. As in the previous studies, the most common
NRTI resistance mutation in our dataset was M184V (n = 26, 7%) [24,44,46–54]. The
low prevalence of TAMs and K65R and the absence of multidrug resistance mutations
(T69ins, Q151M) are in contrast to the previous studies and probably do not reflect the
current situation.

In our study, less than 1% of subjects had resistance mutations for INSTIs, which, when
combined with the high prevalence of NNRTI resistance, highlights the appropriateness
of moving to DTG-based regimens as the preferred first-line regimen for PLWH initiating
ART, in line with WHO recommendations [26]. DTG is a second-generation INSTI with
significant public health benefits due to its availability as a low-cost fixed-dose combination
of TDF, 3TC, and DTG and its high genetic barrier to resistance [55–57]. Few major PI
resistance mutations were detected in this study, supporting the continued use of PI-based
regimens as an alternative therapeutic regimen in cases of virologic failure.

Among subjects on ART, the DRMR was higher in pediatric participants compared to
pregnant women and adults (3.4-fold and 6.7-fold, respectively), and infants treated with
NVP (after birth) + AZT (first week of life) had the highest risk ratio for a higher DRMR.
These findings are consistent with the low effectiveness of the current NVP-based PMTCT
regimens used in sub-Saharan Africa and provide further support for a rapid transition to
DTG-based regimens [25,55–62].

Living in Beira was associated with the highest DRMR among both people on ART
and drug-naive subjects, which is consistent with the data reporting that Sofala, of which
Beira is the capital, is the province with the lowest uptake of viral load monitoring and
drug-resistance testing in Mozambique [27].

A higher DRM rate was found in the proviral DNA than in the plasma viral RNA of
both the drug-naive and treated individuals. Cell-associated proviral DNA archives wild-type
and drug-resistant viruses for months to years, even in the absence of therapy [63–65]. In
contrast, the selection and maintenance of plasma viruses with DRM requires an exposure
to antiretroviral drugs because, in the absence of therapy, the drug-resistant viruses are
easily outcompeted by wild-type viruses or mutate back to their wild-type form [63,64,66–70].
Therefore, the lower DRM rate found in viral RNA in this study may be a consequence of low
adherence to ART and poor retention in HIV care in this population [63,64].

HIV-1 subtype C accounted for 94% of the HIV-1 infections in our dataset, but other
subtypes (A, B, D, G) and recombinant forms were also found, suggesting a dynamic
epidemic with multiple sources. Natural polymorphisms that occur in different HIV-1
subtypes can influence antiretroviral drug susceptibility, the extent of resistance, and the
propensity to acquire some DRMs [71–76]. In a recent global clinical trial, a subtype C
infection was associated with a shorter time to virological failure on antiretroviral treatment
as compared to subtype B, and an infection with non-B-non-C subtypes was associated
with a longer time to failure [77]. In our dataset, subtype C infection was associated with
a lower viral load and a lower DRMR compared to the other subtypes, suggesting better
treatment management of subtype C-infected subjects compared to non-C-infected subjects.

This review has several limitations. First, despite using a broad and highly sensitive
search strategy and searching several academic research databases, only a limited number
of studies conducted in Mozambique were available for inclusion. The studies in question
provided rather limited and simplified information and failed to include some crucial
details such as the ethnicity of the participants, the mode of transmission, the duration
of HIV-1 infection, the duration of treatment and the level of adherence. Second, all the
studies included in the meta-analysis were of low or moderate quality. Most studies lacked
inclusion criteria for participants, a clear description of the selection and experimental
protocol, and an analysis of the response rate. These issues are important to minimize
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selection bias and strengthen the generalizability of the results. Third, our meta-analysis
showed high heterogeneity among the included studies. The variation between studies
may be due to the lack of methodological homogeneity and information (mentioned above),
which could have influenced the overall results of each study.

5. Conclusions

This systematic review and meta-analysis highlight significant concerns regarding
HIV drug resistance (HIVDR) in Mozambique, particularly among patients receiving
antiretroviral therapy (ART). The findings indicate a considerable prevalence of drug
resistance mutations (DRMs), especially to NNRTIs and NRTIs, which underscores the
critical need for continuous surveillance and tailored interventions. The notably higher
DRM rates in Beira as compared to Maputo, as well as among the pediatric groups as
compared to the adults and pregnant women, point to geographical and demographic
disparities that warrant targeted strategies. The predominance of subtype C, associated
with lower viral loads and DRMRs, suggests the potential subtype-specific differences in
drug resistance that should be considered in treatment protocols. These insights are crucial
for optimizing ART regimens, improving patient outcomes, and informing public health
policies in Mozambique to effectively manage and mitigate HIVDR.
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