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ARTICLE OPEN

Characterising the shared genetic determinants of bipolar
disorder, schizophrenia and risk-taking
Guy Hindley 1,2,11✉, Shahram Bahrami1,11, Nils Eiel Steen 1, Kevin S. O’Connell 1, Oleksandr Frei1,3, Alexey Shadrin 1,
Francesco Bettella 1, Linn Rødevand1, Chun C. Fan4,5, Anders M. Dale 4,6,7,8, Srdjan Djurovic 9,10, Olav B. Smeland 1 and
Ole A. Andreassen 1✉

© The Author(s) 2021

Increased risk-taking is a central component of bipolar disorder (BIP) and is implicated in schizophrenia (SCZ). Risky behaviours,
including smoking and alcohol use, are overrepresented in both disorders and associated with poor health outcomes. Positive
genetic correlations are reported but an improved understanding of the shared genetic architecture between risk phenotypes and
psychiatric disorders may provide insights into underlying neurobiological mechanisms. We aimed to characterise the genetic
overlap between risk phenotypes and SCZ, and BIP by estimating the total number of shared variants using the bivariate causal
mixture model and identifying shared genomic loci using the conjunctional false discovery rate method. Summary statistics from
genome wide association studies of SCZ, BIP, risk-taking and risky behaviours were acquired (n= 82,315–466,751). Genomic loci
were functionally annotated using FUMA. Of 8.6–8.7 K variants predicted to influence BIP, 6.6 K and 7.4 K were predicted to
influence risk-taking and risky behaviours, respectively. Similarly, of 10.2–10.3 K variants influencing SCZ, 9.6 and 8.8 K were
predicted to influence risk-taking and risky behaviours, respectively. We identified 192 loci jointly associated with SCZ and risk
phenotypes and 206 associated with BIP and risk phenotypes, of which 68 were common to both risk-taking and risky behaviours
and 124 were novel to SCZ or BIP. Functional annotation implicated differential expression in multiple cortical and sub-cortical
regions. In conclusion, we report extensive polygenic overlap between risk phenotypes and BIP and SCZ, identify specific loci
contributing to this shared risk and highlight biologically plausible mechanisms that may underlie risk-taking in severe psychiatric
disorders.

Translational Psychiatry          (2021) 11:466 ; https://doi.org/10.1038/s41398-021-01576-4

INTRODUCTION
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental
disorders with overlapping clinical characteristics that are leading
causes of morbidity and mortality worldwide [1]. With cardiovas-
cular disease and suicide prominent in both [2–4], a better
understanding of risk-taking behaviours such as smoking [5],
substance use [6] and self-harm [7], could improve health
outcomes [8]. Investigating genetic and neurobiological processes
underlying the relationship between risk-taking, risky behaviours
and SCZ and BIP may therefore offer novel opportunities for risk-
stratification and intervention.
Risk-taking is defined as a willingness to engage in behaviours

not only with potential reward but also potential harm [9]. Typified
by certain risky behaviours such as overspending, it is a core
feature of BIP and contributes to diagnostic criteria for the
disorder [10, 11]. While a pronounced increase in risk-taking is
associated with manic episodes [12], abnormalities in impulsivity,

risk aversion and risk-seeking behaviour are also present as trait
markers in euthymic people with BIP [13–15]. Additionally, mood
stabilisers and anti-psychotics reduce impulsive and aggressive
behaviour across a range of diagnoses, implying a shared
neurobiological process to risk-taking beyond BIP [16, 17].
Unlike BIP, pronounced changes in risk-taking is not a core

clinical feature of SCZ. However risky behaviours such as
substance use, smoking and violence are more prevalent in
individuals with SCZ than the general population [18–20].
Violence, in particular, is strongly associated with impulsivity, a
neuropsychological domain closely related to risk-taking [20].
Findings from self-reports and neuropsychological measures are
mixed. In one study, SCZ was not associated with self-reported risk
perception [21] but Reddy et al. reported that individuals with SCZ
were more risk averse than both individuals with BIP and healthy
controls in a behavioural task [22]. Moreover, impulsivity has been
shown to be both increased and decreased in subjects with SCZ,
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likely dependent on the subtype of SCZ and the presence or
absence of psychosis [22, 23].
Various experimental studies have attempted to delineate the

neurobiology underlying risk-taking, BIP and SCZ. Impulsivity and
dysfunctional reward processing in BIP and SCZ have been
associated with deficits in the prefrontal cortex on both functional
and structural measures [23–26], loss of grey matter in the anterior
cingulate cortex (ACC) [27, 28] and reduced white matter integrity
in the cingulum and frontal lobes [29, 30]. Moreover, dopaminer-
gic neurotransmission in the mesolimbic reward system has been
strongly implicated in risk-taking and risky behaviours [31],
demonstrated by the association between impulse control
disorders and dopamine agonists [32].
A recent genome-wide association study (GWAS) of risk-

taking and risky behaviours in over 1 million participants has
provided new insights into their genetic architecture [33]. Using
questionnaire measures for the propensity to take risks and the
first principal component of four risky behaviours, 99 risk-taking
loci were identified, 46 of which were shared with risky
behaviours, implicating glutamatergic and GABAergic neuro-
transmission [33]. Significant positive genetic correlations were
reported between risk-taking and BIP (rg= 0.21) and SCZ (rg=
0.17), suggesting a shared genetic basis [33, 34]. However, little
is known about the individual genetic loci driving these findings.
Moreover, genetic correlation does not provide a complete
representation of the shared genetic architecture between two
phenotypes [35]. This is demonstrated by recent evidence of
overlap between similar complex polygenic phenotypes with
multiple shared loci, but a mixture of concordant and opposite
effects leading to minimal genetic correlation [36, 37]. Addi-
tionally, both BIP and SCZ are highly heritable, with SNP-based
heritability estimates ranging from 20 to 40% [38–46]. An
improved understanding of this genetic component will provide
insights into their aetiology, and identify novel targets for
prevention and treatment [47].
We therefore employed the bivariate causal mixture model

(MiXeR) [43] and the conjunctional false discovery rate method
(conjFDR) [36, 48] to large-scale GWASs for BIP [38] and SCZ [40]
together with risk-taking and risky behaviours [33] in order to a)
quantify the total number of shared variants regardless of effect
direction, b) identify individual loci driving the phenotypic overlap
between risk, SCZ and BIP and c) leverage polygenic overlap to
boost statistical power to identify novel loci associated with SCZ
and BIP.

METHODS
Samples
We acquired GWAS summary statistics from recent publications. The SCZ
sample comprised 35,476 cases with SCZ and 46,839 controls [40]. The BIP
sample comprised 41,917 cases and 371,549 controls [49]. The risk-taking
cohort comprised 466,751 individuals [33]. All samples were of European
descent. Four lakhs thirty-one thousand one hundred and twenty-six of the
risk-taking sample were derived from the UK Biobank (UKB), and were
assessed by a single yes/no item asking, “would you describe yourself as
someone who takes risks?” The remaining 35,445 comprised ten individual
cohorts. Risky behaviours were measured by calculating the first principal
component of four risky behaviours in UKB (automobile speeding
propensity, alcoholic drinks per week, number of sexual partners and ever
smoker”) (n= 315,894). These items were chosen because they have been
shown to correlate with self-reported risk-taking in independent samples
[50–54], represent distinct domains of risk-taking (namely driving, alcohol
drinking, smoking and sexual behaviours), and they were available in the
entire sample [33]. For further details see supplementary methods and the
original publications [33, 38, 40]. The Regional Committee for Medical
Research Ethics—Southeast Norway has evaluated the current protocol,
and found that no additional institutional review board approval was
necessary as no individual data were used. Relevant ethics committees
approved all primary GWASs, and all participants provided informed
consent [33, 39, 49].

Data analysis
We employed MiXeR to quantify polygenic overlap between each
psychiatric disorder and risk phenotype [43]. A bivariate Gaussian mixture
model using GWAS summary statistics was constructed to estimate the
total number of shared and phenotype-specific variants that explains 90%
of SNP heritability in each phenotype. Model fit is based on likelihood
maximisation of signed test statistics (GWAS z-scores) evaluated by the
Akaike Information Criterion (AIC), and demonstrated with predicted
versus observed conditional quantile–quantile (Q–Q) plots. See supple-
mentary methods and supplementary Fig. 1 for further information. We
also calculated LD-score regression genetic correlation [42].
Conditional Q–Q plots were constructed to visualise cross-trait enrich-

ment between each pair of phenotypes. Conditional Q–Q plots compare
the association between individual SNPs and a primary phenotype (e.g.,
SCZ) as a function of their association with a secondary phenotype (e.g.,
risk-taking). Cross-trait enrichment is present if there are successive
leftward deflections from the expected Q–Q plot under the null hypothesis
(i.e., that there are no SNPs associated with the primary phenotype),
signifying a higher proportion of SNPs associated with the primary
phenotype as the strength of association with the secondary phenotype
increases [48].
To identify individual SNPs jointly associated with both phenotypes, we

employed conjFDR analysis using a threshold of conjFDR <0.05 [48].
Further details of the conjFDR analysis can be found in supplementary
methods and prior publications [36, 48, 55, 56]. ConjFDR is also able to
identify novel associations with each phenotype beyond genome-wide
significance due to the boost in power from the cross-trait analysis.

Genomic loci definition
Independent significant SNPs, lead SNPs, candidate SNPs, and genomic loci
margins were defined using the FUMA protocol (http://fuma.ctglab.nl/).
See supplementary methods for further information. Novel loci were
determined by cross-referencing identified loci with previous GWASs and
other relevant studies [33, 37–40, 48, 55, 57–66].

Functional annotation
Putative causal genes were mapped to lead SNPs using three gene-
mapping methodologies: 1) positional mapping which matches SNPs to
their nearest genes, 2) expression quantitative trait loci (eQTL) mapping
that identifies genes whose expression is associated with the SNPs’ allelic
variation, 3) chromatin interaction mapping that matches SNPs to genes
with which they are predicted to interact based on chromatin structure [67].
We conducted differential gene expression analyses using GTEx eQTL data,
Gene Ontology gene-set analyses using FUMA [68, 69], pathway analyses
using Consensus PathDB [70] and spatiotemporal gene expression analysis
of mapped genes using BrainSpan RNA sequencing data [71–73]. All
analyses were corrected for multiple comparisons using Bonferroni
correction. Further details are provided in Supplementary methods.
All code is publicly available at https://github.com/precimed.

RESULTS
Estimating total genetic overlap
MiXeR demonstrated substantial polygenic overlap between BIP,
SCZ, and each of risk-taking and risky behaviours, beyond that
captured by genetic correlation (Fig. 1). Of a total of 8.6–7 K
variants estimated to influence BIP, 6.6 K (SD= 2.0 K, 77%) and
7.4 K (SD= 0.7, 85%) were also estimated to influence risk-taking
and risky behaviours, respectively. Similarly, of a total of
10.2–10.3 K variants predicted to influence SCZ (N.B. estimates of
polygenicity for individual traits can differ between analyses due
to the random-pruning process), 9.6 K (SD= 0.5 K, 94%) and 8.8 K
(SD= 0.7, 85%) were predicted to influence risk-taking and risky
behaviours, respectively. We also found highly significant positive
genetic correlations between all phenotypic pairings (risk-taking/
BIP: rg= 0.33, p= 2.35e−31; risky behaviours/BIP: rg= 0.24, p=
7.50−16; risk-taking/SCZ: rg= 0.22, p= 7.41e−16; risky behaviours/
SCZ: rg= 0.16, p= 2.08e−10), replicating previous findings [8, 33].
Despite this, the extent of the overlap in relation to the size of the
genetic correlations indicated a mixture of shared variants with
concordant and discordant effects on each pair of phenotypes.
Accordingly, MiXeR estimated that 57–72% (SD 0.5–12%) of
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shared SNPs had concordant effects (Supplementary Table 1).
MiXeR also illustrated all four phenotypes’ extensive polygenicity.
Risk-taking and risky behaviours were estimated to be particularly
polygenic (11.5 K and 11.1 K variants respectively), helping to
explain why smaller proportions of risk-taking and risky behaviour-
associated variants were predicted to influence mental disorders
(57–83%). Model fit was adequate (further details in the
Supplementary results).

Visualising cross-trait enrichment
Conditional Q–Q plots demonstrated step-wise increments in SNP
enrichment for SCZ and BIP as a function of the strength of their
association with risk-taking and risky behaviours (Fig. 2), and for
risk-taking and risky behaviours as a function of their association
with SCZ and BIP (Supplementary Fig. 2). This further demon-
strated cross-trait enrichment between phenotypes.

Shared loci between SCZ, BIP and risk-taking
At a threshold of conjFDR<0.05, we identified 106 and 131 loci
jointly associated with BIP and each of risk-taking and risky
behaviours respectively, 98 of which were novel in BIP and 31
were overlapping across both risk phenotypes (Fig. 3, Table 1, and
Supplementary Table 2). 88% (93/106) and 85% (111/131) shared
the same direction of effect on BIP and risk-taking and risky
behaviours, respectively, in line with the positive genetic and
MiXeR predictions. With regards SCZ, there were 100 and 129 loci
jointly associated with SCZ and each of risk-taking and risky

behaviours, respectively, of which 38 were novel in SCZ (Fig. 3 and
Supplementary Table 3). Furthermore, 37 loci were overlapping
across both risk-taking and risky behaviours analyses (Table 2),
and 18 were also overlapping with loci associated with BIP and
both risk phenotypes (Table 1 and Supplementary Tables 2–3).
76% (76/100) and 74% (96/129) of all lead SNPs had the same
direction of effect on SCZ and each of risk-taking and risky
behaviours, respectively.

Functional annotation
We mapped 142 and 177 protein-coding genes to lead SNPs for
BIP and each of risk-taking and risky behaviours respectively
(Supplementary Tables 4 and 5). Thirty-nine genes were mapped
to both sets of lead SNPs, including the calcium channel CACNA1C
and the synaptic cell adhesion molecule CADM2 [74]. Expression of
mapped genes was significantly enriched in 30 and 25 tissues for
risk-taking and risky behaviours, respectively (Supplementary Figs.
3 and 4). The amygdala, hippocampus, anterior cingulate and
multiple basal ganglia structures were among the top ten tissues
for both analyses. Gene-set analysis identified 50 gene-sets
significantly enriched with mapped genes for risk-taking and
BIP, 14 of which were specific to neuronal structure (Supplemen-
tary Table 6) and pathway analysis identified 19 overrepresented
pathways (Supplementary Table 7). Regarding risky behaviours
and bipolar, 36 gene-sets were enriched, 14 of which were also
enriched in risk-taking and bipolar, including seven of the
neuronal structure gene-sets. Thirty-seven pathways were over-

Fig. 1 Genome-wide genetic overlap between risk phenotypes, bipolar disorder and schizophrenia. MiXeR analysis for a bipolar disorder
(BIP) and risk-taking, b BIP and risky behaviours, c schizophrenia (SCZ) and risk-taking, and d SCZ and risky behaviours. Venn diagrams
representing the unique and shared variants associated with risk-taking and risky behaviours and each of SCZ and BIP. Polygenic overlap is
represented in grey, Risk/risky behaviours in blue and BIP/SCZ in orange. The numbers indicate the estimated quantity of variants in
thousands per component that explains 90% of SNP heritability for each phenotype (standard error in parentheses). The size of the circle
reflects the extent of polygenicity for each trait.
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represented with mapped genes for risky behaviours and BIP, five
of which were associated with GABA-ergic neurotransmission.
Further, “twelve loci associated with ADHD”, “protein–protein
interactions at synapse” and “nicotine addiction” were also
present in BIP and risk-taking (Supplementary Tables 6 and 7).
With regards SCZ, we mapped a total of 131 and 181 genes to

lead SNPs associated with SCZ and each of risk-taking and risky
behaviours, respectively (supplementary Tables 8 and 9). Twenty-
nine were mapped to lead SNPs from both analyses, including the
GABA receptor subunit GABRA2 [75] and EPHA5, a tyrosine kinase
implicated in neurodevelopment (Table 2) [76]. When testing
differential tissue expression of mapped genes, three structures in
the basal ganglia (caudate, putamen and nucleus accumbens)
were the most significantly enriched tissues for both analyses
(Supplementary Figs. 5 and 6). Gene-set analysis identified 34
gene-sets enriched with mapped genes for risk-taking and SCZ,
and 54 for risky behaviours and SCZ (Supplementary Table 10).
Among these, 19 were common to both risk phenotypes, 14 of
which were related to neuron development, structure or function.
Pathway analysis of the same sample of genes identified 18 and
30 pathways significantly overrepresented with mapped genes for
SCZ and each of risk-taking and risky behaviours, respectively. A
single pathway, “Twelve loci atssociated with ADHD”, was
common to all four analyses (Supplementary Table 11). Further
functional annotations and spatiotemporal gene expression
analyses are presented in Supplementary results, Supplementary
Tables 12–15, and Supplementary Figs. 7 and 8.

DISCUSSION
In this analysis of GWAS summary statistics, we reveal extensive
polygenic overlap between mental disorders and risk phenotypes
beyond genetic correlation and identify and characterise inde-
pendent genomic loci underlying this overlap. Using MiXeR, we
first estimated that 77–94% of all BIP or SCZ influencing variants

also influence risk-taking and risky behaviours, despite moderate
positive genetic correlations. This has implications for how the
genetic risk for mental-health-related traits is conceptualised,
suggesting most variants influence multiple traits with few
phenotype-specific variants. We next identified 206 genomic loci
jointly associated with BIP and risk phenotypes and 192 associated
with SCZ and risk phenotypes using conjFDR. Of these, 98 were
novel in BIP and 38 were novel in SCZ, contributing to ongoing
efforts to reveal the missing heritability of SCZ and BIP.
Furthermore, 74–88% of lead SNPs had concordant effects on
mental disorders and risk phenotypes, in line with positive genetic
correlations. Finally, we highlight the role of multiple cortical and
sub-cortical brain structures and neuronal development, structure,
and function in risk phenotypes and both disorders. These
findings may lead to the new mechanistic hypotheses, the
identification of novel treatment targets and enable risk
stratification of risk-taking and risky behaviours in severe
psychiatric disorders.
Using MiXeR, we demonstrated that most variants associated

with BIP and SCZ also influence risk-taking and risky behaviours,
despite genetic correlations between 0.16–0.30 [43]. While this
may be surprising, genetic correlation provides a summary
measure between −1 and 1 of the correlation of effect sizes. This
means that mixtures of variants with concordant and opposite
effects “cancel each other out”, resulting in a genetic correlation of
0. The extensive overlap is therefore compatible with these
modest genetic correlation estimates since MiXeR predicted
57–72% of shared variants had concordant effect sizes. While
genetic correlation is useful to understand how the overall genetic
risk for one phenotype covaries with the genetic risk for another,
uncovering the fraction of overlapping and unique variants
provides another dimension to the characterisation of shared
genetic architecture. Indeed, these findings are consistent with a
growing body of evidence suggesting that, despite differing
genetic correlations, there is widespread polygenic overlap of a

Fig. 2 Polygenic enrichment of SNPs associated with bipolar disorder (BIP) and schizophrenia (SCZ) dependent on their association with
risk taking and risky behaviours. Visualising cross-trait enrichment between risk phenotypes, bipolar disorder and schizophrenia. Conditional
Q–Q plots of nominal versus empirical −log10 p values in BIP (a, b) and SCZ (c, d) above the threshold of p < 5 × 10−8 as a function of the
significance of their association with risk-taking (a./c.) and risky behaviours (RiskyBehav) (b./d.) at the level of p < 0.1, p < 0.01 and p < 0.001,
respectively.
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similar extent across a diverse range of mental-health-related
phenotypes, including almost total overlap between SCZ and
educational attainment [35, 77]. Taken together, these findings
have implications for how the genetic risk of complex polygenic
traits, like BIP and SCZ, is conceptualised. If polygenic overlap is
the norm, then each risk variant is likely to be highly non-specific
and influence multiple diverse traits. This would imply that it is, in
fact, the specific distribution of effect sizes and effect directions,
along with the interaction between different risk variants, that
differentiates risk for a specific phenotype rather than a specific
set of variants [35].
Nonetheless, the higher proportion of concordant lead SNPs

and moderate positive genetic correlations indicate a genetic
basis to the increased risk-taking and risky behaviours observed in
BIP, suggesting that risk-taking may represent a genetically

influenced endophenotype for BIP [15]. In contrast, risk-taking
has been reported to be both increased and decreased in SCZ
[22], while risky behaviours, such as smoking and violence, are
increased. Our findings therefore suggest that there is a similar
genetic tendency for risk-taking and risky behaviours in SCZ, as
with BIP. This indicates that conflicting findings in SCZ are likely to
be influenced by methodological and environmental factors, such
as the use of neuropsychiatric measures that correlate poorly with
self-report measures [78], antipsychotic medication use [21] and
cognitive symptoms [79] rather than differences in genetic
influences. This also suggests that differences in risk-taking and
risk-behaviour may be a trait-marker in SCZ as in BIP, although this
requires further investigation [13–15].
We next used conjFDR to identify specific genetic loci jointly

associated with each mental disorder and risk phenotype.

Fig. 3 Discovery of genetic loci jointly associated with risk phenotypes, bipolar disorder and schizophrenia. Manhattan plots showing the
−log10 transformed conjFDR values for A bipolar disorder (BIP) and risk-taking, B BIP and risky behaviours, C schizophrenia (SCZ) and risk-
taking and D SCZ and risky behaviours risk for each SNP (y-axis) against chromosomal position (x-axis). The dotted line represents the
threshold for significant association (conjFDR < 0.05). Black circles represent lead SNPs.
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Through leveraging the cross-trait enrichment to boost statistical
power, this enabled the identification of 98 novel risk loci in BIP
and 38 in SCZ, Although these findings require further validation
[36, 47]. A more complete understanding of the genomic
architecture of SCZ and BIP is necessary to aid the translation of
genetic research into clinical practice through more accurate
polygenic risk scores and better defined neurobiological targets
[80, 81]. We also identified 68 loci that were common to risk-taking
and risky behaviours, thus increasing the validity of these findings.
This approach was also utilised in the original risk-taking GWAS
given the limitations of using single-item questionnaire measures
[33].

We functionally annotated all jointly associated loci to explore
putative biological mechanisms linking the polygenic overlap and
phenotypic associations observed between risk-taking, BIP and
SCZ. GABAergic pathways were implicated in both disorders via
the several GABA-related gene-sets for BIP and risky behaviours,
and GABR(A) gene linked to SCZ and both risk phenotypes, in line
with findings in the original risk-taking GWAS [33]. It is also
notable that CACNA1C was mapped to lead SNPs from all four
analyses, while CADM2 was mapped to lead SNPs from BIP and
both risk-taking and risky behaviours. Interestingly, both genes
were also implicated in a recent GWAS of impulsivity and drug
experimentation [74]. Additionally, lead SNPs in the shared loci

Table 1. Ten genomic loci jointly associated with bipolar disorder (BIP) and risk-taking which physically overlapped with loci jointly associated with
BIP and risky behaviours at conjunctional FDR (conjFDR) < 0.05.

Chr Min–max BP Lead SNPs ConjFDR Direction
of effect

Novel in BIP Novel in
risk-taking

Mapped genes

1 33,761,014–33,878,554 rs12138864a 0.019 + × × PHC2b

1 44,029,353–44,196,945 rs2367724 0.039 + × Yes MED8b, KDM4Ab, ARTNb

1 61,671,468–61,743,723 rs182823 0.048 +/− × Yes NFIAb

1 205,646,278–205,799,987 rs823130 0.013 + × × NUCKSb, RAB7L1b, SLC41A1b,
PM20D1b

1 243,503,764–243,579,112 rs4146671 0.034 + Yes × SDCCAG8b

2 104,056,454–104,380,545 rs1433309 0.038 + × Yes –

2 225,334,070–225,467,840 rs2047134 0.036 + Yes × CUL3b

3 84,841,679–85,789,644 rs9831123a 0.001 + × × CADM2b

3 94,027,330–94,229,614 rs4857445 0.050 + × Yes –

4 46,191,375–46,361,545 rs535066 0.001 + Yes × GABRA2b

4 106,061,534–106,417,856 rs2647256a 0.002 + × × TET2b

5 49,442,082–49,775,649 rs20158778a 0.042 + Yes Yes –

5 152,181,095–152,329,944 rs10053762 0.026 + × Yes –

6 25,182,925–31,870,326c rs7746199 0.000 + × × BTN3A2, BTN3A3, PRSS16b,
POM121L2, ZNF184, ZSCAN23

6 98,310,291–98,792,109 rs1487445 0.004 + × × –

7 1,860,733–2,110,850 rs11768212 0.016 + × Yes MAD1L1b

7 114,940,147–115,117,353 rs10251192 0.000 + Yes × –

7 140,116,033–140,182,514 rs80274100 0.028 + × Yes RAB19b, MKRN1b

8 9,306,087–10,006,664 rs73207111 0.003 + × × –

8 38,014,429–38,310,910 rs11777067 0.016 + x Yes LSM1b

8 65,437,506–65,499,486 rs7813444a 0.007 + Yes × DDHD2b, PPAPDC1Bb, WHSC1L1b,
FGFR1b

8 92,976,563–93,180,965 rs28716374 0.019 + × Yes –

8 143,363,229–143,404,118 rs34853464 0.004 + × Yes RUNX1T1b

10 56,629,277–56,706,723 rs9888039 0.028 + Yes Yes TSNARE1b

10 104,571,436–104,962,011 rs7085104a 0.011 +/− × Yes PCDH152

11 13,230,633–13,350,131 rs10082688 0.005 + × × ARL3b, WBP1Lb, AS3MTb, CNNM2b,
NT5C2b

12 2,285,731–2,420,526 rs61909095 0.001 + × × CACNA1Cb

12 108,609,634–108,629,780 rs3764002 0.025 + Yes × WSCD2b

14 103,849,715–104,528,302 rs12892189 0.001 + × × KLC1, PPP1R13Bb, TDRD9

15 33,761,014–33,878,554 rs2071382 0.001 + × Yes FURINb, FESb

16 44,029,353–44,196,945 rs6500948 0.028 + Yes Yes RBFOX1b

Chr chromosome,min–max BPminimum–maximum base pair position, ConjFDR conjFDR value of lead SNP, Direction of effect -“+” concordant effect directions
of lead SNPs, “+/−” discordant effect direction of lead SNPs on BIP and risk-taking, Novel BIP/risk-taking: “Yes” indicates novel loci, Mapped genes genes
mapped to lead SNPs for BIP and risk-taking.
aLead SNPs that were also lead SNPs in the risky behaviour loci. For corresponding BIP and risky behaviour loci please refer to Supplementary Table 3.
bGenes that were also mapped to lead SNPs for BIP and risky behaviours.
cThis locus is within the major histocompatibility complex. Given the complex LD in this region, gene mapping strategies are not reliable. Mapped genes are
provided but should be interpreted with caution.
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from all four analyses were significantly associated with altered
gene expression in the caudate nucleus, nucleus accumbens,
putamen, amygdala and hippocampus, anterior cingulate cortex
and frontal cortex, among others. The finding of significant
differential expression in the basal ganglia is particularly

interesting given evidence of increased functional connectivity
in the nucleus accumbens and increased striatal activity on task-
based fMRI in risk-taking adolescents [82, 83]. More broadly, these
regions mirror neuroimaging and electro-encephalogram studies
which implicate the frontal cortex, the anterior cingulate cortex

Table 2. Thirty-seven genomic loci jointly associated with schizophrenia (SCZ) and risk-taking which physical overlapped with loci jointly associated
with SCZ and risky behaviours at conjunctional FDR (conjFDR) < 0.05.

Chr Min-max BP Lead SNPs ConjFDR Direction
of effect

Novel in SCZ Novel in risk-
taking

Mapped genes

1 3,121,877–3,147,290 rs7518852a 0.028 + × Yes PRDM16b

1 43,982,527–44,145,130 rs673253 0.018 + × Yes TMEM125, TIE1, MED8b,
PTPRFb

1 243,281,617–243,645,203 rs10803138 <0.001 + × × SDCCAG8

2 48,176,656–48,707,841 rs138659652 0.019 + Yes Yes MSH6, FBXO11

2 97,593,614–98,332,858 rs115507803 0.038 + × Yes FAHD2B

2 162,798,581–162,891,848 rs6707646 0.007 +/− × Yes SLC4A10

2 225,334,070–225,467,840 rs2047134 0.043 + × × CUL3b

3 84,841,679–84,961,810 rs1598080 0.018 + × × –

3 86,011,109–86,192,846 rs58783194a 0.019 +/− × Yes –

4 31,162,143–31,201,229 rs7669969a 0.022 + Yes × –

4 46,191,375–46,361,545 rs10805144 0.006 + Yes × GABRA2b

4 66,258,524–66,534,629 rs13124331a 0.018 + × × EPHA5b

5 45,411,676–50,161,698 rs13168483 0.007 + × Yes EMBb

6c 25,684,606–29,283,672 rs6923811 <0.001 + × × BTN3A2, POM121L2

7 114,940,147–115,113,279 rs4275159a 0.039 + Yes × –

7 121,952,981–122,008,804 rs988720a 0.048 + × Yes FEZF1b, CADPS2b

8c 8,088,230–12,203,305 rs9329221 <0.001 + × × MSRAb, FAM167A

8 38,014,429–38,310,910 rs7845911 0.009 + × Yes LSM1b, BAG4b, DDHD2b,
PPAPDC1Bb

8 65,437,964–65,498,165 rs6996198a 0.039 + × × –

8 143,276,606–143,404,118 rs13281016 <0.001 + × Yes TSNARE1b

9 26,447,292–27,111,268 rs56409537 0.030 + × Yes –

10 104,546,183–105,165,256 rs12416687 0.002 +/− × Yes ARL3b, WBP1Lb, BORCS7b,
AS3MTb

10 106,417,957–106,560,225 rs12761679 0.003 + × Yes SORCS3b

11 27,581,265–27,742,447 rs6265 0.010 + × Yes BDNF

11 28,375,949–28,580,338 rs12419325 0.014 + × Yes METTL15

12 2,285,731–2,420,526 rs61909095 0.002 + × × CACNA1Cb

12 108,609,634–108,629,780 rs3764002 0.024 +/− × × WSCD2b

14 78,625,653–78,659,721 rs7153461a 0.033 +/− Yes Yes –

14 103,849,715–104,537,680 rs6576006 <0.001 + × × KLC1b, PPP1R13Bb, TDRD9

15 63,460,009–63,547,859 rs6494397 0.050 +/− Yes Yes RPS27L

15 78,714,561–78,926,726 rs12442456 0.009 +/− × Yes IREB2, ADAMTS7b

15 91,403,674–91,443,059 rs2071382 0.001 + × Yes FESb, FURINb

16 7,324,960–7,417,203 rs8046401 0.031 + × Yes RBFOX1b

16 71,355,142–71,396,661 rs3826248 0.031 + × × CMTR2, DHODH, DHX38b

18 53,183,396–53,477,999 rs1382119 <0.001 + × × –

19 30,982,165–31,052,954 rs10421376 0.022 +/− × Yes ZNF536b

22 41,485,593–42,396,890 rs75843224 0.010 +/− × Yes EP300

Chr chromosome, min–max BP minimum–maximum base pair position, ConjFDR conjFDR value of lead SNP, Direction of effect “+” concordant effect directions
of lead SNPs, “+/−” discordant effect direction of lead SNPs on SCZ and risk-taking, Novel SCZ/risk-taking: “Yes” indicates novel loci; Mapped genes—genes
mapped to lead SNPs for SCZ and risk-taking.
aLead SNPs that were also lead SNPs in the risky behaviour loci. For corresponding SCZ and risky behaviour loci please refer to Supplementary Table 2.
bGenes that were also mapped to lead SNPs for SCZ and risky behaviours.
cThese loci reside within regions possessing complex LD structure and so gene mapping strategies are not reliable. Mapped genes are provided but should be
interpreted with caution.
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and the striatum in risk-taking in healthy volunteers [84, 85], SCZ
[26, 30] and BIP [24]. Interestingly, with the addition of the
amygdala and the hippocampus, these structures make up the
frontal-striatal reward system circuitry [86]. Taken with experi-
mental evidence linking dysfunctional reward system processing
and risk-taking in BIP [87] and SCZ [88], this offers a plausible
neurobiological mechanism underlying the SNP associations
reported.
Our study had several limitations. Firstly, MiXeR analysis was not

sufficiently powered to accurately quantify the shared and unique
components beyond maximum possible overlap. Larger samples
are required to provide more precise estimates, which would
enable comparison of the size of overlap between phenotypes.
Secondly, this analysis was using European samples only. It is
essential that more diverse samples and improved methods for
transancestral analysis are developed to widen the applicability of
genetic studies. Thirdly, the single yes/no item used to measure
risk-taking in the UKB cohort has limited reliability and construct
validity and has rarely been used in the context of SCZ and BIP. In
particular, it is possible that responses to this item were
confounded by concurrent affective symptoms, concurrent sub-
stance use and history of mental health diagnosis. Nonetheless,
the prevalence of BIP, SCZ and depressive symptoms were low in
the risk-taking sample, minimising the effect of these potential
confounders, this questionnaire measure correlates highly with a
variety of distinct risk-related behaviours [50–54], and the
simplicity of the item enabled the collection of a substantial
sample size. We also focused our discussion on findings replicated
across both risk phenotypes, which are likely to represent more
valid findings. Fifthly, the risky behaviours phenotype was
constructed using four distinct phenotypes, two of which were
related to substance use. In addition to risk-taking, addictive
behaviours also correlate with disinhibited personality types,
conduct disorder and attention-deficit hyperactivity disorder, all
three of which are in turn linked to the latent factor “externalis-
ing”. It is therefore important to note that the phenotypic and
genetic correlation between risk-taking and risky behaviour may
be interpreted as a correlation between two related constructs
rather than capturing the same underlying risk-taking construct.
Finally, functional annotation of highly polymorphic genetic loci
may be unstable. We therefore conducted several functional
analyses using independent datasets, including FUMA, Consen-
susPathDB and BrainSpan to triangulate these findings.
In summary, our findings reveal extensive polygenic overlap

between risk phenotypes and mental disorders with implications
for how the polygenic architecture of complex disorders are
conceptualised. We also identify specific loci underpinning this
overlap, including 38 novel SCZ loci, 98 novel BIP loci and 68 loci
common to both risk phenotypes. Functional annotation offered
insights into neurobiological mechanisms underpinning the
phenotypic overlap between BIP, SCZ and risk-taking, highlighting
convergent roles for GABAergic systems, neuronal structure and
function and structures implicated in the fronto-striatal reward
system. Future work is required to better delineate the molecular
genetic mechanisms underlying these statistical associations, and
determine their interaction with other psychiatric disorders.
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