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Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 8 State Key Joint Laboratory of Environment
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How soil microbial communities contrast with respect to taxonomic and functional
composition within and between ecosystems remains an unresolved question that
is central to predicting how global anthropogenic change will affect soil functioning
and services. In particular, it remains unclear how small-scale observations of soil
communities based on the typical volume sampled (1–2 g) are generalizable to
ecosystem-scale responses and processes. This is especially relevant for remote,
northern latitude soils, which are challenging to sample and are also thought to be
more vulnerable to climate change compared to temperate soils. Here, we employed
well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to
characterize community composition and metabolic potential in Alaskan tundra soils,
combining our own datasets with those publically available from distant tundra and
temperate grassland and agriculture habitats. We found that the abundance of many
taxa and metabolic functions differed substantially between tundra soil metagenomes
relative to those from temperate soils, and that a high degree of OTU-sharing exists
between tundra locations. Tundra soils were an order of magnitude less complex
than their temperate counterparts, allowing for near-complete coverage of microbial
community richness (∼92% breadth) by sequencing, and the recovery of 27 high-
quality, almost complete (>80% completeness) population bins. These population
bins, collectively, made up to ∼10% of the metagenomic datasets, and represented
diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling,
hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population
bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were
also present in geographically distant (∼100–530 km apart) tundra habitats (full
genome representation and up to 99.6% genome-derived average nucleotide identity).
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Collectively, our results revealed that Alaska tundra microbial communities are less
diverse and more homogenous across spatial scales than previously anticipated, and
provided DNA sequences of abundant populations and genes that would be relevant
for future studies of the effects of environmental change on tundra ecosystems.

Keywords: tundra, soil microbiology, metagenomics, ecosystem ecology, environmental science, permafrost,
climate change, microbial diversity

INTRODUCTION

Terrestrial soil systems are residence to some of the most
functionally and taxonomically diverse microbial communities
known (Torsvik et al., 1990; Whitman et al., 1998; Curtis
et al., 2002; Handelsman et al., 2007). An increasing amount
of attention has been directed toward these communities due
to human dependence on soil productivity for food and fiber,
the ecosystem services they provide (e.g., water quality, nutrient
cycling), and their role in producing and consuming greenhouse
gasses. Soil systems are estimated to contain more carbon than
aboveground plant biomass and atmospheric pools combined in
the form of degradable soil organic matter (or SOM) (Grosse
et al., 2011). Higher land temperatures are expected to cause
the release of considerable amounts of CO2 and CH4 to the
atmosphere (Heimann and Reichstein, 2008; Mackelprang et al.,
2011; McCalley et al., 2014), primarily through the microbially
mediated degradation of SOM. Thus, there is an imminent need
to further understand the role of soil microbes in the cycling
of SOM C and other major elements, both to improve climate
change predictions and possibly to mitigate climate change
impacts through changes in land management practices. Tundra
SOM is particularly sensitive to climate change (Jorgenson
et al., 2010; Grosse et al., 2011) because low temperatures
and saturated soil conditions protect organic C from microbial
decomposition (McGuire et al., 2010; Lee et al., 2012; Pries et al.,
2012). Furthermore, more than 50% of global soil organic C
is stored in northern tundra permafrost, which only accounts
for approximately 16% of the global soil area (Tarnocai et al.,
2009). It is projected that permafrost may recede by 30–70%
toward the end of the 21st century due to increasing temperatures
(Schuur and Abbott, 2011; Lawrence et al., 2012), likely resulting
in enormous terrestrial ecosystem C loss.

Our ability to predict soil ecosystem functioning and resilience
and to manipulate terrestrial soils for enhanced C sequestration
is hindered, at least partially, by the enormous diversity and as yet
uncultivated status of soil microorganisms (Whitman et al., 1998;
Handelsman et al., 2007). Several recent studies have employed
‘omics’ methodologies (i.e., metagenomics, metatranscriptomics,
metaproteomics, etc.) to characterize microbes and their
metabolisms present in tundra locations and have successfully
assembled novel population bins (i.e., consensus genome
assembly from a natural population), representing organisms
relevant to CH4 and CO2 release, a feat that opens up new
opportunities to directly study the in situ response of specific
organisms (Mondav et al., 2014; Hultman et al., 2015). However,
much remains unknown about what prokaryotic taxa dominate
tundra, how much they vary in abundance across distant sites
with similar environmental features, what pathways they encode

and perhaps more importantly, what abiotic and biotic factors
control the activity of these pathways and how environmental
changes will affect that activity. It is also unclear how the genetic
information present in the small volume of soil typically sampled
(1–2 g) by these previous surveys relates to ecosystem-scale
responses and processes. For this, surveys that analyze multiple
replicated samples are needed.

Our team has been performing warming manipulations that
raised in-situ temperatures by 2–5◦C, simulating the effect of
future climate change, for active layer soil atop permafrost at the
Carbon in Permafrost Experimental Heating Research (CiPEHR)
site (Alaska, USA; “AK site”) (Natali et al., 2011, 2014; Zhou
et al., 2012). In total, 11 soils from the CiPEHR, AK site were
collected from 15 to 25 cm depths in 2010, after about 1.5-
year of experimental warming. Only minor differences were
observed between warming and control plots at the DNA level
(metagenomics) for these samples (Xue et al., 2016), presumably
due to the slow growth kinetics of tundra microbes. Here, we took
advantage of the well-replicated sequence datasets available, and
pooled them together in order to robustly address the following
objectives: (1) evaluate the biogeography of microorganisms in
tundra soils at the 16S rRNA gene level as well as at the individual
population (whole-genome) level. The latter is a better proxy
for species since it circumvents the limitations of 16S rRNA
gene related to high sequence conservation and represents an
important and highly resolved unit of microbial communities
(Caro-Quintero and Konstantinidis, 2012). (2) Identify the
similarities in taxonomic and functional gene composition in
active-layer soil sampled from various Alaskan tundra locations,
using soil communities from temperate locations for comparison.
And, (3) assess how these tundra microbial populations might
respond to major environmental perturbations such as fire
events. Our work identified several highly abundant (>1% of
total community) populations that are ubiquitous across the
tundra ecosystem in Alaska and thus, represent important
members of the indigenous communities. It also revealed that
these populations are highly dynamic, and can undergo rapid
genomic alternations in gene content upon major environmental
perturbations.

MATERIALS AND METHODS

Site Description and Sampling
The CiPEHR site was established in September 2008 at a moist
acidic tundra area in Interior Alaska near Denali National Park
in the Eight Mile Lake region (63◦52′59′′N, 149◦13′32′′W). The
experimental plots were located in the discontinuous permafrost
region where permafrost thaw has been observed in the past
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several decades. Experimental design and site description were
described in detail previously (Natali et al., 2011). Generally, three
experimental blocks were located approximately 100 m away
from each other. In each block, two snow fences were constructed
about 5 m apart in the winter. The winter warming treatment
plots were located 5 m back from the leeward side of the snow
fences, while the paired control plots were at the windward side
of snow fences. Soil temperature was increased in the winter
warming plots due to thicker snow cover on soil surface and
lower wind strength. The snow fences were removed in the spring
before the snow melting to uniform hydraulic condition in both
winter warming and control treatments. From 1976 to 2009,
mean monthly temperature in the field ranged from −16◦C in
December to 15◦C in July, with an annual mean temperature
of −1.0◦C. The average annual precipitation was 378 mm. Only
C3 plant species were observed in this area. Dominant species
include Eriophorum vaginatum, Vaccinium uliginosum, some
other vascular species, non-vascular feather moss and lichen. In
the experimental plots, the upper 0.45–0.65 m soil was rich in
organic C materials and below was mineral soil with a mixture of
glacial till and windblown loess. The active layer depth was about
50 cm.

Eleven soil cores, five from control plots and six from warmed
plots (there were originally twelve soil samples – one control soil
was discarded as it was deemed contaminated with Oklahoma
soil DNA, and thus, incomparable to other soil samples), were
taken using electric drills in destructive sampling plots at the six
snow fences in the beginning of 2010 growing season (May), one
and half year after the initial of winter warming treatment. Soil
fractions of 15–25 cm from ground surface were used for this
study.

The experimental warming site at Oklahoma is located at
the Kessler Farm Field Laboratory (KFFL, OK site) at the Great
Plain Apiaries in McClain County, Oklahoma, USA (34◦58′54′′N,
97◦31′14′′W). Block design was applied in this field experiment
and adjacent blocks were 2 or 5 m apart. The six plots in each
of the four blocks represent control, warming, half or double
precipitation treatments and the combination manipulation of
these treatments. Additionally, every southern half subplot was
clipped twice a year to create a coupled clipping effect. Only
warming and control treatments without water and clipping
effects were included in this study. Beginning in early 2009, the
soil temperature in the warming treatment plots was increased
by the Kalglo MRM-1215 120 V, 1500 W, 65 inch-long electric
infrared radiators (Kalglo Electronics, Bethlehem, PA, USA) fixed
at 1.5 m above the ground surface at the center of each plot.
In control plots, wood “dummy” heaters were used to simulate
shading effect in warming plots. The herbivores were excluded at
this site to prevent grazing. The plant community undergoes a
relatively rapid secondary succession in this site and new species
occur every year, causing gradually change in plant community
structure. Although both C3 and C4 plants were observed, C3
species have dominated in recent years. Plant biomass peaks twice
in late spring and early autumn every year. C3 grass Bromus
arvensis and C3 forb Vicia sativa dominated the site in April
2010, while C3 forb Ambrosia trifida, Solanum carolinense and
C4 grass Tridens flavus prevailed in August 2010. Based on

Oklahoma Climatological Survey from 1948 to 1999, the mean
annual temperature in this site was 16.3◦C, with the lowest
monthly mean of 3.3◦C in January and the highest of 28.1◦C in
July. The precipitation was unevenly distributed annually, which
peaked in May and June (240 mm) and reached a low in January
and February (82 mm) with an annual mean of 967 mm (Zhou
et al., 2012). Soils from the layer 0–15 cm in four warming plots
and four control plots were sampled in the OK, USA site using
a standard soil core (2.5 cm in diameter) in October 2010. All
samples were transported to the laboratory and stored at −80◦C
immediately until analyses. Any observable plant root materials
were picked out before the soil was processed. Fungal community
composition of CiPEHR and KFFL soil communities has been
addressed previously (Penton et al., 2013). Environmental indices
for KFFL and CiPEHR, and the associated methods, are provided
in Xue et al. (2016); a summary of select soil measurements
(including C%, N%, SOM fractions, pH, and bulk density) is
given in Supplementary Table S1.

DNA Extraction of Soil Microbial
Community
Soil DNA was extracted using a PowerMax Soil DNA Isolation
Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA) according
to manufacturer’s protocol. DNA quality was assessed based
on spectrometry absorbance at wavelengths of 230, 260, and
280 nm detected by a NanoDrop ND-1000 Spectrophotometer
(NanoDrop Technologies Inc., now NanoDrop Products by
Thermo Fisher Scientific). The absorbance ratios of 260/280 nm
were around 1.8, and of 260/230 nm were larger than 1.7.
Finally, DNA was quantified by Pico Green using a FLUOstar
OPTIMA fluorescence plate reader (BMG LabTech, Jena,
Germany) and used for gene array labeling and sequencing
library preparation.

Illumina MiSeq Sequencing Protocol
The 16S rRNA library was prepared using methods introduced
by Caporaso et al. (2011, 2012). In brief, extracted DNA samples
were diluted to 2.5 ng/µL for PCR amplification. The primer
sets used to amplify the V4 region of 16S rRNA genes were
constructed to adapt the barcode Illumina MiSeq (Caporaso et al.,
2011): the forward PCR primer contains an Illumina adapter
sequence, followed by a forward primer pad, a forward primer
link and then the 515 forward primer; besides above elements
for the reverse primer (806 reverse primer was used), the reverse
PCR primer also contains a sample-unique barcode sequence
inserted between the reverse Illumina adapter and the reverse
primer pad sequences for parallel sequencing of a sample set. The
25 µL PCR reaction system and condition was as documented
in Caporaso et al. (2011). Only one PCR reaction was performed
per sample. After the amplification the products were quantified
using PicoGreen on a FLUOstar OPTIMA fluorescence plate
reader (BMG LabTech). 100 ng PCR products from each sample
were combined into one tube, ran on a 1% agarose gel at 100 V
for 45 min, and purified through QIAquick Gel Extraction Kit
(Qiagen) column. The purified sample was quantified again
using PicoGreen by triplicates, ensured the accuracy of library
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concentration. Then the pooled sample was diluted to 2 nM. Ten
microliter of 0.1 N NaOH was then added into 10 µL sample
DNA for denaturation. Then the denatured DNA was diluted to
6 pM and mixed with equal volume of 6 pM Phix library in order
to increase sequence diversity. Finally, the mixture (600 µL) was
loaded into the reagent cartridge and run on MiSeq (Illumina,
Inc., San Diego, CA, USA) for two ends by 150 bp reactions
(Illumina) following manufacturer’s instructions.

Metagenomic Shotgun Sequencing
Protocol
DNA integrity was confirmed by gel electrophoresis and sent
to Los Alamos National Laboratory to run on Illumina HiSeq
platform. The DNA was fragmented and the library was prepared
using TruSeq Kit (Illumina) according to manufacturer’s
protocol. Each of the 19 samples was sequenced in one flow cell
lane with 2× 150 bp paired-end format.

Paired-End Sequence Merging and
Quality Trimming
Reads were merged using PEAR (Zhang et al., 2014) (options:
−p 0.001). Both merged and unmerged reads underwent quality
trimming using the SolexaQA package (Cox et al., 2010); reads
were trimmed where Phred quality scores dropped below 17.

Use of Publically Available Metagenomes
from Distant Tundra and Temperate
Grassland and Agricultural Habitats
Publically available metagenomes that were used for comparison
purposes represent the 10–20 cm and 50–60 cm depths from
Nome Creek, AK (NC; 200 km from CiPEHR site; Tas̨ et al.,
2014), active layer soil (30–35 cm depth) from Bonanza Creek,
AK (BC; 100 km from CiPEHR site; Hultman et al., 2015),
Toolike Lake LTER study site (TL; 530 km from CiPEHR
site; Fierer et al., 2012), temperate steppe ecosystem in inner
Mongolia, China (ZXM; Zhang et al., 2016), and agricultural soil
from Urbana, IL, USA (UIL; Orellana et al., 2014). All datasets
were processed and analyzed as described above for CiPHER
and KFFL datasets for consistency purposes, when possible.
The Toolik Lake metagenome was omitted for comparisons of
taxonomic composition and community complexity because the
dataset size was comparatively smaller (<500 mbp). A summary
of each site, including sampling depth, year of sampling, etc. is
provided in Supplementary Table S2.

16S rRNA Analysis from Amplicon PCR
and Shotgun-Metagenome Reads
Amplicon PCR 16S rRNA sequences longer than 190 bp (75% of
expected length, 253 bp) after trimming were used for further
analysis. QIIME was employed for the majority of downstream
analysis (Caporaso et al., 2010). 16S rRNA gene (16S) amplicon
sequences were assigned to the sample they came from using
a unique 12 bp barcode identifier, allowing for up to one
mismatch. The Python script pick_de_novo_otus.py was used
to cluster 16S sequences at 97% similarity (97% OTUs) with

UCLUST (Edgar, 2010). Representative sequences of each OTU
were taxonomically identified with the RDP Classifier (Wang
et al., 2007). Representative sequences were also aligned using
PyNAST (Caporaso et al., 2010), and a phylogenetic tree was
constructed from this alignment using FastTree with default
settings (Price et al., 2010). Information on dataset quality
and number of sequences used per sample is available in
Supplementary Table S3.

The relative abundances of various prokaryotic taxa were
also determined based on 16S sequences recovered in the
metagenomes. Metagenomic reads were trimmed and sister reads
were merged using the same approach as above. 16S sequences
were identified by searching all merged and unmerged reads
longer than 70 bp after trimming against the May 2013 release
of Greengenes 16S ribosomal database (DeSantis et al., 2006)
pre-clustered at 97% identity, using blastn (BLAST + version
2.2.29, options: -word_size 16 -outfmt 6 -task blastn -dust
no -max_target_seqs 1) (Camacho et al., 2009). Only matches
along the V4 region of the 16S sequence with bit-score ≥60,
e-value<1E-7, and match length ≥70 bp were retained for
analysis. 16S sequences then underwent open-reference OTU-
picking against Greengenes database pre-clustered at 97%
(options: -m uclust_ref –s 0.97) (Edgar, 2010) (similar to methods
performed in Luo et al., 2014a). Representative sequences of
each OTU were taxonomically identified with the RDP Classifier
(Wang et al., 2007). Taxonomy abundances for each sample were
determined by the number of sequences that assigned to OTUs
corresponding to that taxonomic group, divided by the total
number of reads that passed open-reference OTU-picking step
(i.e., that were used in clustering and not discarded). Euclidian
distances of OTU tables were calculated, and the statistical
significance of tundra vs. temperate topsoil OTU differences
was determined by ANOSIM analysis. Results generalized at the
phylum level were highly consistent between 16S rRNA gene
analyses derived from 16S PCR amplicon sequences and 16S
sequences recovered from metagenomic datasets.

Analysis of Shotgun-Metagenome Short
Reads
Protein prediction of metagenomic sequences ≥100 bp after
trimming was performed with FragGeneScan (Rho et al., 2010)
(Illumina 1% error model). Resulting amino acid sequences
were searched against Swiss-Prot database [UniProt Consortium
(2015)], using blastp (BLAST + version 2.2.28) (options: –
word_size 3 outfmt 6, cutoff: bit score >75, alignment length≥25
amino acids, amino acid identity ≥40%) (Camacho et al., 2009).
Corresponding Gene Ontology (GO) annotations of functions
and processes for each Swiss-Prot entry was obtained from
http://www.uniprot.org/downloads (downloaded on December
04, 2014). Dataset quality and number of sequences used per
sample is displayed in Supplementary Table S4.

A raw (not-normalized) counts table of genes and GO
pathways (with sample metagenomes as columns and gene
annotations or metabolic process categories as rows) was
processed with the DESeq2 package (Love et al., 2014) to identify
differentially abundant pathways between the two study sites
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and to generate log2 transformations of gene/process abundance
ratios. The raw count data underwent a variance-stabilizing
transformation, which is used for logarithmically distributed
count data with low mean values that tend to have high variance.
This transformation results in new values that have a relatively
constant variance along the range of mean values and confers a
reduced false positive rate for less abundant genes (Anders and
Huber, 2010). P-values were transformed to account for false
discovery rate from multiple testing using Benjamini–Hochberg
correction (adjusted p-values; Benjamini and Hochberg, 1995).
DESeq2 was also used to generate a sample-to-sample distance
heatmap based on Euclidean distances derived from variance-
stabilizing transformations of the raw count information, as well
as to generate PCA plots based on the same transformations in
order to visualize the overall effect of experimental covariates and
batch effects.

Assembly and Characterization of
Population Bins
Initial assembly of metagenomic sequences was performed on
each of the 11 CiPEHR Alaska datasets individually with CLC
assembly package (CLC Assembly Cell 4.2.2)1 (options: −w
53). Resulting contigs ≥2 kbp were pooled together into one
file and short metagenomic sequences were recruited to each
contig to calculate the median coverage of each contig in each
metagenome dataset (megablast with default; cut-off used:≥90%
of length of the query sequence, ≥98% nucleotide identity).
Contigs ≥2 kbp were then binned using CONCOCT (Alneberg
et al., 2014). Contigs that were not binned with CONCOCT
were added to existing bins generated with CONCOCT if the
unbinned contig matched a binned contig ≥99.7% nucleotide
identity and ≥2 kbp alignment length (using megablast with
default settings). For each bin, re-assembly was performed
using only short reads matching the binned contigs; matches
≥98% nucleotide identity and ≥100 bp length were assembled
de novo with Velvet (Zerbino and Birney, 2008), including
both merged and non-merged paired-end reads, using odd-
numbered word sizes between 85 and 99. These larger word
sizes were chosen to increase assembly quality. Only contigs
>1 kbp generated by this final assembly were included in
the final bin; all contigs <1 kbp and reads and contigs from
previous steps were discarded. CheckM was used to estimate
completeness and contamination of each bin based on the
recovery of 104 single copy universal bacterial genes (Parks et al.,
2015).

Protein-coding genes of the assembled bins were predicted
with MetaGeneMark (Zhu et al., 2010) and were searched against
the Swiss-Prot database as described above [UniProt Consortium
(2015)]. The sequence abundance of each bin was determined by
the number of merged reads≥200 bp from each metagenome that
matched a population bin genome at ≥200 bp match length and
≥98% nucleotide identity. Closest ancestry was determined for
certain organisms containing full or partial 16S and 23S rRNA
sequences by searching contigs against SILVA small subunit
(SSU) and large subunit (LSU) databases (v119 releases) (Quast

1http://www.clcbio.com

et al., 2013) using megablast. A tree of phylogenetic relatedness
based on 23S sequences was made for Acidobacteria bins 03,
06, 07, and 12 using Ca. OP8 as an out-group, including
several Acidobacteria isolates and uncultured organisms. Fasta
sequences were aligned using MUSCLE algorithm (Edgar, 2004)
and PyNAST for tree building (Caporaso et al., 2010). The
resulting phylogenetic tree was visualized with FigTree V1.4.22.

Assessing Intra-Population Diversity and
Biogeography
To assess whether the assembled bins were distributed over
large geographical areas, trimmed reads from several publicly
available metagenomes were searched against each population
bin (reference) sequence using megablast. Matches ≥60%
nucleotide identity and ≥70 bp length were retained. Fragment
recruitment of these matches was performed to assess evenness
and percent representation of each population bin in the
corresponding metagenomes. Population structure was assessed
using recruitment plots, essentially as described previously for
marine metagenomes (Konstantinidis and DeLong, 2008) and
below.

To further validate the results of the recruitment plots, the
full-length (3,211–4,462-bp) β subunit of the bacterial RNA
polymerase (rpoB) gene for the population/bin of interest was
used to recruit highly matching sequences from the metagenomes
of the same or different sites. rpoB-encoding reads were identified
using megablast. All matching reads were then used in a Velvet
assembly to reconstruct partial or full-length sequences, when
possible (e.g., high enough coverage). Assembled rpoB sequences
were aligned and then truncated to retain only the overlapping
regions of all assembled rpoB sequences (overlapping region
of CiPEHR original assembly and Nome Creek partial or full
de novo assembly). Using megablast, unassembled metagenomic
reads matching the rpoB sequences in the alignment were
identified from CiPEHR, Nome Creek, and Toolik Lake
metagenomes, using as cut-off for a match ≥85 bp alignment
and ≥98% nucleotide identity. Representative reads from each
location were added to each existing alignment with MAFFT
Multiple Sequence Alignment (options: mafft –anysymbol –
addfragments –multipair) (Katoh and Frith, 2012), and a tree was
generated using Randomized Axelerated Maximum Likelihood,
or RAxML, version 730 (Stamatakis, 2006). The resulting tree
was visually inspected for the existence of a star-like phylogeny,
indicating no population structure.

We developed a resampling approach to identify genes
absent from in-situ populations in distant tundra habitats
(NC, BC, or TL) that otherwise closely matched (>95%
Average Nucleotide Identity [or ANI; Konstantinidis and Tiedje,
2005], >90% genome representation) one of the 27 reference
CiPEHR population bin assemblies. Population bin genomes
were broken up into 500 bp segments in silico and the average
coverage for each segment was calculated independently, using
recruitment of all available unassembled short sequences from
the target metagenome. A skewed normal distribution was
fit to these coverage values using the ‘enveomics.R’ package

2http://tree.bio.ed.ac.uk/software/figtree/
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available for download at http://enveomics.blogspot.com. The
parameters of the resulting skewed distribution were used to
calculate the probability that a gene with zero or near-zero
coverage (i.e., no or few reads matching to that gene) could
occur by chance (null hypothesis being that the gene was
present in the population). 500 bp segments were treated as
independent tests, and thus, p-values for each gene were adjusted
by their corresponding lengths as follows: p-value ∧ ([gene
length]/500 bp). Therefore, comparatively longer genes were
more robustly assessed for presence/absence. This analysis was
performed on all genes for selected comparisons, and p-values
were adjusted to account for false discovery rate from multiple
testing using Benjamini–Hochberg correction (Benjamini and
Hochberg, 1995)

Data Availability
Assembled population bins, as well as raw shotgun metagenome
and 16S rRNA gene sequences from CiPEHR, AK and KFFL, OK,
are deposited in the European Nucleotide Archive3 under study
no. PRJEB10725.

RESULTS

Relative Microbial Community
Complexity of Tundra Soils
Using Nonpareil, a statistical tool that employs read redundancy
to estimate the coverage of the microbial community achieved
by a metagenomic dataset (Rodriguez-R and Konstantinidis,
2014), a much more diverse community was observed in
temperate soils compared to those from Alaskan tundra. The
estimated sequencing depth required to sample 95% of the total
extracted community DNA for each CiPEHR, AK soil sample
was found to be 53.6 ± 5.45 Gbp (mean ± one standard
deviation), 56.0 ± 25.7 Gbp for Nome Creek 10–20 cm and 50–
60 cm depth metagenomes, and 34.6 ± 14.7 Gbp for Bonanza
Creek active layer (∼30–35 cm depth) metagenomes (Figure 1;
Supplementary Table S5). Using temperate soil metagenomes
for contrast, an estimated 450 ± 15.2 Gbp of sequencing depth
would be required to sample 95% of sequencing richness for
Kessler Farm Field Laboratory site in Oklahoma (KFFL, “OK”
site) soils, 281 Gbp for Urbana, IL (UIL) agricultural soil,
and 215 Gbp for temperate steppe soil from inner Mongolia,
China (ZXM). Based on a total of 139 Gbp and 62.2 Gbp
available from all replicated metagenomes from CiPEHR and
KFFL (merged sequences only), an estimated 91.8% of the
combined ‘site community’ for CiPEHR and 62.2% for KFFL
was sampled. Notably, the ‘site community’ represented by all
11 combined CiPEHR metagenomes still possessed less than half
the complexity (or estimated sequence richness) estimated from
a single KFFL metagenome. A higher level of diversity in the
OK soil microbial community is further reflected in the 97%
OTU rarefaction curve from 16S PCR amplicon sequences, where
the number of OTUs detected at OK is over twofold greater
than the number of OTUs observed at AK (Supplementary
Figure S1).

3http://www.ebi.ac.uk/ena/

Microbial Community Compositional
Differences between Study Sites
Using 16S PCR amplicon sequences prepared in parallel
from KFFL, OK and CiPEHR, AK soil samples, most OTUs
were shared between soil samples from the same site, but
comparatively few OTUs were shared between the two sites.
In particular, <6% of OTUs were shared (n = 766, from a
total of 8,290 non-singleton OTUs present at OK and 6,292
at AK) and these differences were statistically significant (p-
value < 0.001; ANOSIM) (Supplementary Figure S2). Further,
by using metagenome-extracted 16S sequences to compare
CiPEHR and KFFL datasets with those publically available,
it was found that, on average, 72.5% of the OTUs from
active layer Bonanza Creek and 74% of the OTUs from
Nome Creek soils were detectable in other tundra locations
(Figure 2). These results revealed that a high degree of OTUs
are shared within the Alaskan tundra ecosystem vs. between
ecosystem types (p-value < 0.01; ANOSIM), regardless of slight
methodological differences between studies (DNA extraction
procedure, handling, etc.). This trend is not observed when OTU
affiliations are summarized into broad taxonomic groups, such as
phylum-level evaluation (p-value > 0.1; ANOSIM).

16S fragments recovered from metagenomes revealed several
broad taxonomic groups that were common to either tundra or
temperate ecosystems (i.e., ubiquitous in one, absent from the
other). Namely, methanogenic archaeal classes Methanomicrobia
and Methanobacteria were present in all tundra locations
(CiPEHR, BC, and NC) (0.22% of total community, on average),
but were non-detectable in any temperate soil metagenome
(KFFL, ZXM, and UIL). Other groups specific to tundra
soils include Chlorobi class Ignavibacteria, Bacteroidetes class
Bacteroidia, Crenarchaeota class MCG, Nitrospirae family
Thermodesulfovibrio (obligate anaerobic sulfate reducer;
Henry et al., 1994; Sekiguchi et al., 2008), Chloroflexi
class Dehalococcoides, and phylum Lentisparae. Conversely,
Nitrososphaeraceae, an archaeal family of ammonia oxidizers,
was detected in all temperate soils (∼1% abundance, on average),
but was non-detectable in all tundra soils. Nitrosomonas, an
ammonia oxidizing bacterium (Campbell et al., 2011), displayed
patchy representation in OK 16S rRNA amplicon datasets, but
was non-detectable in all tundra metagenomes or when using
CiPEHR 16S rRNA amplicon sequences (Supplementary Table
S6).

PCR amplicon sequences of the 16S rRNA gene (which
allowed for a greater number of sequences per sample for analysis,
relative to using 16S sequences derived from metagenomes)
revealed that phylum Acidobacteria dominated the CiPEHR soil
communities, representing 51.2% ± 11.62% of all members
(mean ± one standard deviation; Supplementary Table S7),
followed by Proteobacteria (15.5% ± 6.2%), Verrucomicrobia
(15.1%± 4.4%), Actinobacteria (8.7%± 2.8%), and Bacteroidetes
(2.7% ± 4.8%). Oklahoma soils were instead dominated by
Proteobacteria (29.2%± 4.4%), Verrucomicrobia (20.9%± 6.6%),
Acidobacteria (20.2% ± 1.9%), Actinobacteria (9.2% ± 2.8%),
Bacteroidetes (4.0% ± 1.0%), Planctomycetes (3.3% ± 1.2%),
and Firmicutes (2.5% ± 1.7%). Less-dominant phyla that were
markedly more abundant at OK vs. AK were Cyanobacteria
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FIGURE 1 | Curves representing soil microbial community complexity estimations as determined by Nonpareil. Nonpareil is a statistical tool that uses
read redundancy to estimate dataset complexity and the amount of sequencing effort needed to achieve a desired level of coverage. Circles on curves represent the
coverage of the actual sequencing depth for each dataset in relation to the entire curve (projection for complete coverage after the circle). Curves positioned on the
right represent more sequence diverse metagenomes than curves positioned on the left.

FIGURE 2 | OTU sharing network based on 16S rRNA gene sequences from metagenomes. Samples are clustered (positioned) according to the presence
and abundance of their shared OTUs (using make_otu_network.py, a QIIME script; Caporaso et al., 2010). White dots represent OTUs, and a line connecting these
dots to a bolded sample dot indicates that the OTU is present in that sample. The colors of lines and bolded sample dots correspond to the source location of each
metagenome as provided in the key.
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(0.72% vs. 0.10%; OK mean vs. AK mean), Chloroflexi (1.80% vs.
0.41%), Nitrospirae (1.21% vs. 0.24%), Crenarchaeota (0.37% vs.
0.02%), OP3 (0.13% vs. 0%), and TM6 (0.15% vs. 0.01%). AD3
(1.01% vs. 0.29%; AK mean vs. OK mean), and Chlorobi (0.48%
vs. 0.04%) represented low abundant phyla that had a markedly
greater mean abundance at CiPEHR compared to KFFL.

Metabolic Comparison of Tundra and
Temperate Soils
Initial benchmarking with different read lengths indicated that
a comparison including publically available metagenomes would
not be robust given that sequences of different lengths presented
inconsistent annotations; a finding consistent with those reported
by Luo et al. (2014b). The publically available DNA sequences
were all shorter than the 2 × 150 bp sequences available from
CiPEHR, AK and KFFL, OK soil metagenomes. Thus, functional
gene comparisons were limited to the CiPEHR, AK and KFFL,
OK datasets.

Gene content dissimilarity derived from Euclidean distances
of variance-stabilized data in DESeq2 (Supplementary Figure
S3), displays high contrast between the CiPEHR, AK and KFFL,
OK sites relative to dissimilarity between samples within a site.
Analysis of functional genes from metagenomes involving the
degradation of SOM revealed site-specific patterns for several
processes. SOM degradation genes that were significantly more
abundant in AK soil metagenomes compared to OK included
those involved in the catabolism of chitin (79.3% percent
higher abundance in AK relative to OK), cellulose (73.2%),
simple carbohydrates (81.2%, on average, for monosaccharides;
40.1%, on average, for sugar acids; 68.6%, on average, for sugar
alcohols), and lipids such as triglycerides and phospholipids
(80.6 and 62.9%, respectively) (adjusted p-value <1e-3; Negative
binomial test with DESeq2; Supplementary Figure S4). These
findings were also congruent with previous studies of Artic
tundra soils that found high numbers of chitinase, sugar
alcohol, and mono- and disaccharide degradation genes in
metagenomes (Yergeau et al., 2010) and metatranscriptomes
(Tveit et al., 2014). Genes related to the catabolism of
lignin and phenolic compounds were 71.0 and 58.9% more
abundant in OK metagenomes, respectively (adjusted p-value
<1e-3; DESeq2; Supplementary Figure S5). Genes corresponding
to the Wood–Ljungdahl carbon fixation pathway (carbon
monoxide dehydrogenase/acetyl-CoA synthase subunit alpha
and 5-methyltetrahydrofolate:corrinoid/iron-sulfur protein co-
methyltransferase proteins), which are primarily used by
acetate-producing bacteria and methanogens (Roberts et al.,
1994; Matschiavelli et al., 2012), were 50–200 times more
abundant in AK metagenomes, relative to OK (Supplementary
Table S8).

While genes related to denitrification (N-loss from ecosystem)
were more abundant at OK (e.g., >3 times greater abundance
of nosZ at OK), genes related to N-fixation (N-gain) were
significantly more abundant in AK relative to OK datasets (46%,
on average) (adjusted p-value < 1e-3; DESeq2; Supplementary
Figure S5). More specifically, NifH nitrogenase iron protein
was more than 80 times more abundant in AK relative

to OK metagenomes (Supplementary Table S8). SoxAX
cytochrome complex subunit A, a protein responsible for
sulfur oxidation, was much higher in abundance in OK
metagenomes, whereas genes involved in sulfate reduction
(primarily sulfate adenylyltransferase subunit proteins),
hydrogen sulfide biogenesis and fermentation genes were more
abundant in AK soils.

Contig Binning and Population
Reconstruction from Alaska Soil
Metagenomes
Contig binning resulted in the recovery of 27 population bins,
12 of which were >80% complete based on the recovery of
104 single-copy universal bacterial genes using CheckM (Parks
et al., 2015), with 0–1.7% contamination (Table 1; Supplementary
Table S9). Fourteen of the bins had an N50 (i.e., the length
that >50% of the assembly is in contigs of this length or
longer) between 20,203 bp and 218,163 bp. Collectively, the 27
assembled population bins recruited 7.5% of all reads, on average
(9.2% max), for the 11 metagenomes (≥98% nucleotide identity;
≥200 bp alignment).

We have chosen to highlight seven of the most complete
population bins below (see also Table 1; Figures 3 and 4). Bin
01 contained full-length 16S and 23S rRNA gene sequences
matching at 96 and 93.1% nucleotide identity, respectively,
to an Opitutus sp. (phylum Verrucomicrobia) isolate from
an anoxic region of rice paddy soil (Chin et al., 2001)
(Supplementary Table S10). Protein annotation of this bin
revealed the presence of genes related to methanotrophy,
including methylamine and methanol pathways (mtaB, mtbA,
mttC1). Bin 01 also contained genes involved in assimilatory
sulfate reduction and transport (sbp, cysATW, cysDGHIJK,
nodQ), the degradation of a variety of organic compounds,
including L-arabinose, xylan/xyloglucan, D-glucuronate, ribose,
cellulose, and rhamnose, and the metabolism of molecular H2
(hndACD, hoxHY, hypABCDEF, hupE).

Bins 03, 07, 11, 12, and 22 were closely related (>80%
ANI) and together formed a novel monophyletic clade within
the family Acidobacteraceae based on partial 23S rRNA gene
sequences (Supplementary Figure S6). Bin 03 contained 100/104
single-copy bacterial genes, and partial 16S and 23S rRNA
gene sequences (338 and 568 bp, respectively; Supplementary
Table S10). The 23S sequence matched family Acidobacteriaceae
(94.4% nucleotide identity). Bin 07, possessed a partial (358 bp)
23S sequence that matched Granulicella mallensis MP5ACTX8
(also Acidobacteriaceae) at 94.7% nucleotide identity, which
was previously isolated from tundra soil in Finland (Männistö
et al., 2012). Bin 03 and 07 shared many functional genes;
including Citric Acid Cycle (TCA) with glyoxylate bypass (icl,
MAS), in addition to genes required for ‘typical prokaryotic
TCA metabolism.’ Both bins possessed genes for trimethylamine
utilization and degradation (mttBC, etfABD, mauG) and an
ammonium ion transporter on the same operon (nrgA), and
several genes involved in the degradation of many SOM
constituents, such as rhamnose import and catabolism (rhaT,
rhaB, rhaM), degradation of fatty acids (lcf, fadADEN, ech),
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TABLE 1 | Summary statistics for the most complete population bins.

Population bin contigs Single copy genes CheckM results

Bin ID n50 (bp) Longest (bp) Total Length (bp) Number Contigs 0 1 2 Completeness % Contamination %

1 87585 258416 4341484 85 5 98 1 94.0 1.7

2 44196 144885 4793253 228 21 83 0 89.7 0.0

3 167654 415574 5822639 110 4 100 0 95.7 0.0

4 36041 146424 2468837 156 14 90 0 81.0 0.0

5 20203 76412 2053920 189 12 92 0 83.5 0.0

6 54187 226195 3684989 154 2 102 0 97.4 0.0

7 142525 388009 5910590 149 12 92 0 89.8 0.0

8 65109 167976 3268372 73 3 100 1 95.7 1.7

10 12295 50046 2301754 289 18 85 1 81.3 1.7

11 51987 197629 5172412 191 2 102 0 98.8 0.0

20 13258 53656 3231835 375 31 71 2 83.1 1.0

22 27045 163169 4115219 235 30 74 0 74.4 0.0%

27 26244 147429 8218361 566 3 101 0 94.8 0.0

Assembly statistics, including N50 (i.e., the length that >50% of the assembly is in contigs of this length or longer), the length of the longest contig, the total length of
all contigs combined, and the number of contigs comprising a bin, as shown. All contigs were >1 kbp long. CheckM was used to assess each bin for completeness,
evaluating the presence of 104 single copy bacterial genes. The number in each column represents the number of instances each of the 104 bacterial single copy genes
was found in each bin (i.e., 98 single copy genes were found once in Bin 01). Bins highlighted in green indicate those detected in distant tundra locations (100–530 km
from CiPEHR, AK) at >2X representation of the genome. Single copy marker genes that occur more than once served as an indicator of contamination – i.e., that the
assembly is combined with sequences from a more than one organism.

FIGURE 3 | Abundance of individual populations (bins) in various Alaskan tundra metagenomes determined by read mapping. Results were obtained by
the number of sequences that matched a population genome at ≥200 bp and ≥98% nucleotide identity for CiPEHR metagenomes (≥90 bp and ≥98% nucleotide
identity for metagenomes at other locations), divided by the number of reads used as query (all merge-able paired-end sequences ≥200 bp at CiPEHR; sequences
≥90 bp at other sites). Bin abundance is given for two KFFL, Oklahoma metagenomes for contrast. Taxonomic affiliation is provided for bins with full or partial 16S
ribosomal sequence, along with the average amino acid identity (AAI) to the corresponding genome. ∗Nucletide identity given corresponds to the 23S sequence
because the 16S gene was not available. ∗∗AAI is derived from comparison to a genome that is not the same as the 16S match because a genome sequence was
not available for these references; instead, the next closest match was used.

genes for catabolism of succinate (sdhABC), formate (fdoGI, fdhE,
fdnHG), and several other genes for the catabolism of xylan,
xyloglucan, cellulose, arabinan, and chitin and its derivative,
N-acetylglucosamine. Bin 03 also contained genes for coenzyme

B–coenzyme M heterodisulfide reductase (hdrABC) and both
bins contained genes for other methane-related coenzyme
activity (cofDEGH). Bin 07 possessed genes for anaerobic and
aerobic degradation of aromatic compounds (hcrAB, bcrABCD,
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FIGURE 4 | Metabolic pathways identified in seven assembled population bins. Selected metabolic transformations and other cellular activities are
represented by both the name of the gene known to encode the protein enzyme for them as well as the substrate of the enzyme. Protein enzymes were identified by
searching predicted proteins against Swiss-Prot database, as well as by searching against close representatives of selected organisms: Acidobacteria Ca. Solibacter
usitatus Ellin6076 and Ca. Koribacter versatilis Ellin345 for bins 03, 06, 07, and 22; Chlorobi Ignavibacterium album JCM 16511 for bin 04; Verrucomicrobium
Opitutus terrae PB90-1 for Bin 01. In all instances besides zupT, mglA, phoU, sad, and pit, pathways were only displayed if all or most genes of an operon involved in
the same pathway/process were detected as present. Colored circles alongside genes indicate that the bin assigned to that color (see legend on top right) encoded
the gene (blastp cutoffs: e-value < 1e-20, bitscore > 100). A black-filled circle indicates that all seven bins in the upper right box possessed the accompanying gene.

dch, had, oah, boxB). On average, 1.95% of metagenomic reads
matched bin 07 at ≥98% nucleotide identity, making it the
most abundant of the assembled populations at the AK site
(Figure 3).

Bin 22 shared many metabolic strategies with bins 03 and 07.
It also contained genes for TCA cycle with glyoxylate bypass (icl,
MAS), as well as genes for the degradation of carbohydrates and
fatty acids. All three bins possessed genes for bacterial chemotaxis

(cheABRWY), motility proteins (MotAB), and along with bin 06,
possessed mutual gliding protein (MglA), but none possessed
genes necessary for flagellar assembly.

Bin 06 possessed 102/104 single-copy genes, and contained a
large contig ending in a partial 23S ribosomal sequence matching
a representative of “Candidate Division OP8” and an uncultured
Acidobacteria at 79.9 and 80.2% nucleotide identity, respectively
(Supplementary Table S10). Therefore, it probably represents a
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group more distant to known organisms than other assembled
bins (Supplementary Figure S6). This bin contained genes
for rhamnose, cellulose, and D-glucarate catabolism, hydrogen
metabolism (hyfBDEF), sulfoxide reductase (yedYZ), and a wide
variety of genes for the degradation of aromatic compounds
(hcrAB, bcrABCD, dch, had, oah, boxBC, nicAB, catIJ, mphP).

Bin 04 possessed a partial 23S rRNA gene sequence
(760 bp) matching to Ignavibacteria (phylum Chlorobi), and
also contained Coenzyme B–Coenzyme M heterodisulfide
reductase genes (hdrABC), which can be involved in anaerobic
methanotrophy, sulfur reduction, or fermentative pathways.
Bin 04 possessed only the beta and gamma subunits of
the sulfyhydrogenase I complex (hydGB) implying that it
likely transforms elemental sulfur into hydrogen sulfide with
molecular H2, or performs the reverse reaction. Bin 08,
which contained full 16S and 23 rRNA gene sequences, best
matching actinobacterial family Solirubrobacterales (99.1 and
93.4% nucleotide identity, respectively), comprised of 73 contigs
and contained 101/104 single copy genes. This genome possessed
motility proteins (MotAB), as well as genes required for flagella
assembly (fliEGHKMOPQR, flhAB, flgBCL). It also encoded genes
for sulfate binding, import, and assimilation (sbp, cysATW,
nodQ, cysH, sir1), polysulfide reduction using molecular H2
(shyACD), trimethylamine dehydrogenase (tmd), and genes
related to the catabolism of fatty acids, chitin, oligopeptides,
lipopolysaccharides, mannose, galactose, acetate, succinate and
pyruvate.

None of the 27 bins possessed denitrification genes narG, nirS,
norB, or nosZ. Bin 20 was found to encode all genes necessary
for nitrogen fixation (nifABDEHJKNQSV1WXZ). Bin 20 also
contained a contig ending in a partial 16S ribosomal sequence
matching an Acidobacteria representative at 100% nucleotide
identity (169 bp match) and 19/21 ribosomal proteins best
matched to Acidobacteria Ca. Solibacter or Ca. Koribacter.

Population Distribution in Other High
Latitude Soils
Read recruitment plots against the assembled population bin
genome sequences revealed that all bins represented sequence-
discrete populations, with short reads matching population bin
sequences mostly at 99–100% nucleotide identity, evenly across
the entire genome (examples presented in Supplementary Figure
S7). These findings revealed that soil microbial communities
are composed of discrete populations, at least for the abundant
fraction that is robustly assessed by metagenomics. These
findings echoed results reported previously for other habitats
(Caro-Quintero and Konstantinidis, 2012). Further, all 27
population bins were detected in more than one CiPEHR
metagenome (Figure 3). Surprisingly, several bins matched
reads in other publicly available tundra soil metagenomes
(>98% nucleotide identity and even coverage across the genome
sequence), indicating that these populations are widespread
in high latitudes and revealing that long-lived, sequence-
discrete, tractable populations are present in at least some soils.
Specifically, datasets from the Nome Creek area (Tas̨ et al., 2014),
located∼200 km Northeast from the CiPEHR site, contained five

of the assembled bins at high abundance (i.e., 2-10X coverage
of population bin with unassembled short sequences) (Figures 3
and 5; Supplementary Figure S8). Metagenomes containing these
populations originated from surface (10–20 cm) and middle
depth (50–60 cm) samples, which undergo seasonal thawing,
similar to the CiPHER site. Metagenomes representative of
the permafrost layer (90–100 cm) did not contain any of the
assembled bins from CiPEHR. Bin 07, the most dominant
population bin in CiPEHR and Nome Creek site metagenomes,
was also found in active-layer soil from Bonanza Creek, AK
(∼100 km Northeast from CiPEHR) and in a soil metagenome
from Toolik Lake, AK (530 km North of the CiPEHR site;
Figure 5), along with bins 09 and 10 (Supplementary Figure S8).
Because fragment recruitment using Marcell Experimental Forest
soil metagenomes (SPRUCE experiment in Northern Minnesota;
Lin et al., 2014) revealed the presence of a distinct acidobacterial
population closely related to bins 03, 07, and 11 (∼82% ANI),
de novo assembly was performed on these metagenomes in order
to recover the corresponding population bin(s) (Supplementary
Figure S9).

Genomic Adaptation to Fire Disturbance
at Nome Creek, Alaska
Bins 07 and 09 were represented by ∼3X coverage or more
in both fire-impacted (soil sampled 7 years following a fire
disturbance event) and control (undisturbed) soil metagenomes
from Nome Creek, AK (Tas̨ et al., 2014). The adequate
coverage of the CiPHER bins obtained in these samples,
allowed for the investigation, at a fine resolution level, of the
genomic adaptations likely occurring as a result of the fire-
related environmental changes. Briefly, fire disturbance at this
site resulted in a large reduction in SOM and soil moisture
content, complete thawing of permafrost, and several years of
elevated temperatures relative to adjacent undisturbed soils.
All genes belonging to population bin 07 were represented
in metagenome NC3-6 (50–60 cm depth, undisturbed; hence,
complete representation of the population bin), with an
average nucleotide identity of 99.6% using all recruited matches
resulting from megablast (cutoffs: matching length >70 bp,
nucleotide identity >60%) (Figure 5C). Comparatively, the
average nucleotide identity of matching sequences in NC2-6
(50–60 cm depth, fire-impacted) was 99.1%, and 130 genes of
the reference genome (2.5% of the total) were absent from
the in situ population (adjusted p-values <0.025). Similarly,
recruitment of short reads from metagenome NC3-6 revealed
near-complete representation of population bin 09 genes with
an estimated ANI of 99.5%, whereas 209 genes of the reference
genome were absent from the NC2-6 in situ population, and
an ANI of 98.9% estimated from the recruited sequences
(adjusted p-values <0.025). Absent genes included those involved
in transcriptional regulation (9 and 13% in bins 07 and 09,
respectively), carbohydrate transport and metabolism (18 and
12%), amino acid transport and metabolism (13 and 14%), and
nutrient transport (8 and 11%), among other functions and
hypothetical genes. Examples of selected contigs from bins 07 and
09 with high gene absence in fire-impacted soils are displayed in
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FIGURE 5 | Read recruitment plot of population bin 07 at four distinct tundra locations. Diagrams expressing coverage of population bin 07 (assembled
from CiPEHR, AK metagenomes) in metagenomic datasets from four distinct geographic locations, each separated by 100–530 km distances. All short reads from
select sample metagenomes were searched against all contigs of the bin in a megablast search. The position histogram (top left of each) displays the average
coverage of each base position, determined by a 1,000 bp window. The dark blue histogram represents the coverage at each base position determined from reads
matching ≥70 bp in length and ≥95% nucleotide identity, while the light blue represents the coverage determined from reads matching ≥70 bp in length and <95%
nucleotide identity. An even coverage across the entire contig from matching reads that are high identity (>95%) is indicative of a high quality contig from a single
population. The recruitment plot (bottom left of each) shows where individual metagenomic reads matched to the population bin and the identity (%) of the match.
The ID histogram (bottom right) displays the total number of short read-derived base-positions at given percent identities. Note that in all cases shown, a
sequence-discrete population represented by reads showing high nucleotide identity to the reference population genome sequence (typically > 95% nucleotide
identity) and even coverage across the length of the reference sequence is obvious.

Supplementary Figure S10 (read recruitment from undisturbed
soils are also shown for contrast).

DISCUSSION

Assessment of Microbial Biogeography
Reveals Conserved, Pervasive Bacterial
Populations in the Alaskan Tundra
Ecosystem
The high degree of microbial community heterogeneity often
observed in soil systems remains poorly understood. Here,
we reported the detection of discrete bacterial populations,
several of which -but not all- were also found in locations
that are separated by distances of up to 530 km (Figures 3
and 5; Supplementary Figure S8). These findings were consistent
with previous studies that reported a large degree of shared
genera between tundra locations separated by up to 70 km
(Frank-Fahle et al., 2014). The patchy representation of certain
population bins within and between study sites uncovers an
inherent feature of this heterogeneity, i.e., although soils within
close proximity (cm to m distances) may not share certain
microbial populations, these populations can be shared by soil
samples separated by several 100 km distances. These findings
reveal that micro-variable soil conditions and niche space

might be shared across large geographic regions in the tundra
ecosystem, but not uniformly. The Acidobacteria bin 07, which
possessed metabolisms for elemental hydrogen, elemental sulfur,
sulfate, methanotrophy, TCA cycle with glyoxylate bypass, and
catabolism of fatty acids, carbohydrates, and recalcitrant SOM
such as chitin and aromatic compounds, was the most dominant
population within the CiPEHR site metagenomes (Figure 3),
and was also found, at high relative abundance (Figure 5), in
metagenomes from three other tundra locations, all separated
by ≥100 km. These findings revealed a successful generalist
population, capable of thriving in many distinctive locations over
broad geographical distances, and also suggests that microbial
species conservation may dominate over high habitat specificity
for certain soil prokaryotes. Furthermore, bins 03, 07, 11, 12, and
22 comprise a monophyletic group of closely related populations
with >97% ribosomal gene sequence similarity (Supplementary
Figure S6) or high ANI (∼80% or greater). A close relative
to this group (82.2% ANI to bin 11; Supplementary Figure
S9) was assembled directly from Marcell Experimental Forest
soil metagenomes (∼3,780 km from CiPEHR; Lin et al., 2014),
and recruited up to 6.8% of all metagenomic reads from
its source metagenome. This finding underscores the high
dominance of this relatively narrow (phylogenetic) Acidobacteria
clade across large geographic distances (i.e., 3,780 km, or
more).
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Previous studies have demonstrated the rapid response of
active layer tundra soil microbes to elevated temperatures
in the laboratory (Mackelprang et al., 2011), and here, we
demonstrated the tempo and mode of adaptation of tundra
bacterial populations to environmental perturbations such as
prolonged fire events. In this case, adaptation took place by
altering 2–3% of the genome within a period of 7 years or
less. This is quite remarkable for soils microbes, especially
those in low-temperature high latitudes, which are traditionally
viewed as slow growers (Price and Sowers, 2004). Many of
the genes absent from in situ populations of fire-impacted
soils (but present intact in undisturbed soils) were assignable
to pathways related to the transport and catabolism of
simple SOM substrates and gene regulation, implying that
such disturbance events may have long lasting effects on soil
C cycling. Tas̨ et al. (2014) demonstrated that for middle
layer depths (50–60 cm; same depth assessed in our own
comparison) subject to fire, genes for simple carbohydrate
metabolism decreased in abundance; here, we demonstrate
that at least part of this change was attributable to the
genomic alteration of existing, dominant microbial populations.
Furthermore, the loss of transcriptional regulatory genes may
reflect an alleviation of prior metabolic constraints (e.g.,
due to increased temperature or decreased moisture content
in this case). Consistent with these findings, Coolen and
Orsi (2015) demonstrated that transcriptional regulation and
signal transduction represented a large category of genes
that were differentially regulated between thawed or frozen
permafrost soils. Our cross-site comparison exemplified the
usefulness of combining datasets from multiple studies and
showed that sequences and genomes recovered from soil
can be meaningfully combined with datasets representing the
same ecosystem elsewhere, at least in this Alaskan tundra
ecosystem.

Contrasting Taxonomic Composition and
Functional Gene Content in Tundra and
Temperate Topsoil
The assembled population bins were highly representative
of both the taxonomic and functional composition of the
whole-community in CiPEHR, AK soils, epitomizing several
pathways that were more abundant at tundra relative to
temperate metagenomes. Even though the bins were comprised
of organisms from several phyla, many metabolic pathways were
nearly ubiquitous amongst the bins. Namely, several organisms
contained genes indicative of methane or methylamine
metabolism(s). The majority of populations encoded genes
for the formation or catabolism of gaseous hydrogen. Many
also contained pathways for the degradation of SOM, capable
of degrading compounds of varying recalcitrance, i.e., chitin,
cellulose, cellobiose, xylan, mannan, xylose, β-galactosides,
raffinose, arabinose, aromatics, etc., several of which are highly
expressed or abundant in tundra soils, as found previously
(Yergeau et al., 2010; Tveit et al., 2014). A large portion of the
latter compounds is apparently plant-derived, revealing the
tight coupling between aboveground plant and belowground

microbial communities in the tundra ecosystem. While genes
responsible for the degradation of more labile carbohydrates
are in greater relative abundance in CiPEHR metagenomes,
it is clear that genes related to the degradation of many
recalcitrant compound categories, such as phenolics and lignin,
are more abundant in KFFL, OK metagenomes compared to
CiPEHR (Supplementary Figures S4 and S5), consistent with the
differences in aboveground plant communities between the two
sites. Further, the presence of genes recognized as hydrogeno-
and methano-trophic in annotated short reads and assembled
population bins, along with the absence of archaeal population
bins and low overall methanogen abundance determined by 16S
rRNA community analysis, suggests that methane production
likely occurs at deeper layers in CiPEHR sites and migrates
upward toward the surface, where it is either released to the
atmosphere or consumed by bacteria. Consistent with these
interpretations, a recent study using metagenomes which
included several of the assembled bins from CiPHER according
to our analysis, displayed an overall reduced archaeal presence in
active layer compared to permafrost layer soil depths (Tas̨ et al.,
2014).

Previous studies have shown that permafrost ecosystems are
nitrogen-limited (Shaver and Chapin, 1980; Martineau et al.,
2010; Wild et al., 2014) and this was reflected in both our
own Illumina datasets as well as the 454 datasets determined
by Yergeau et al. (2010) for permafrost soils. For instance,
although evidence of nitrate/nitrite transport was present, none
of the binned populations displayed a significant role in the
denitrification process. It is possible that decreased denitrification
potential (i.e., processes ultimately leading to nitrogen loss
from the ecosystem) is a community adaptation to limiting
N-availability, given that the genetic potential for this activity is
lower at CiPEHR relative to KFFL, even though other metabolic
pathways at CiPEHR are indicative of anaerobic conditions.
N-limitation likely plays a role in constricting SOM degradation
in permafrost ecosystems. If N-cycling in these systems was
altered due to anthropogenic related changes to the ecosystem
(e.g., agriculture practices and climate change), it is necessary
to understand how this will relate to greenhouse gas emissions
(climate feedbacks), i.e., an increase in N-availability would
stimulate aboveground plant communities and act as a C-sink or
would increase denitrification activity resulting in acceleration of
N2O (a potent greenhouse gas) emissions. Furthermore, previous
research demonstrated that addition of organic N to active
layer tundra soil high in SOM content resulted in a 2-3-fold
increase in SOM decomposition (Wild et al., 2014). Notably,
one Acidobacteria (bin 20) possessed a complete assortment of
nitrogen fixation genes, which is to the best of our knowledge,
the first report of nitrogen fixation for a member of phylum
Acidobacteria.

Relative Taxonomic and Functional
Complexity of Tundra and Temperate Soil
Communities
Metagenomes representing temperate topsoils displayed greater
taxonomic and functional diversity than those from Alaskan
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tundra. The lower diversity in tundra may be related to
longer generation times, restrictive metabolic conditions (e.g.,
O2 restriction or lower temperature), and/or lower diversity of
plant-derived organic carbon. Recent studies have shown that
a constraint on diversity for certain functional traits results
in decreased ecosystem functioning (Salles et al., 2012; Singh
et al., 2014). Hence, changes in the diversity of functional genes
relevant to SOM degradation may constrain or promote the
rate at which these soils systems respond to environmental
perturbations. Accordingly, the tundra microbial communities
are presumably more vulnerable (less robust) to environmental
change compared to their temperature counterparts.

Summary and Future Work
The degree to which microbial variability differs between
ecosystems is essential for research efforts endeavoring to
holistically understand soil microbial ecology in the context of
ecosystem functioning and how environmental changes affect
microbial activities and services. Our analyses revealed several
taxa, at different resolution levels, i.e., OTUs, taxonomic clades,
or individual populations, that are ubiquitous, and frequently
among the most abundant members of the corresponding
communities, in the active layer of Alaskan tundra soils. Thus,
their relative contribution to various ecosystem functions is
expected to be high. These assembled bins and DNA sequences
provided here represent potential model organisms for future in
situ experimental manipulations; for instance, through the design
of population-specific PCR for assessing gene transcript (activity)

level, allowing potential linking of methane, nitrogen, SOM, etc.
turnover to individual populations.
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