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Predictive Influence of Unavailable Values
of Future Explanatory Variables in a LinearModel

S. K. BHATTACHARJEE1, AHMED SHAMIRI1,
MD. SABIRUZZAMAN1, AND
S. RAO JAMMALAMADAKA2

1Institute of Mathematical Sciences, University of Malaya,
Kuala Lumpur, Malaysia
2Department of Statistics and Applied Probability,
University of California, Santa Barbara, California, USA

We consider an approach to prediction in linear model when values of the future
explanatory variables are unavailable, we predict a future response yf at a future
sample point xf when some components of xf are unavailable. We consider both
the cases where xf are dependent and independent but normally distributed. A
Taylor expansion is used to derive an approximation to the predictive density, and
the influence of missing future explanatory variables (the loss or discrepancy) is
assessed using the Kullback–Leibler measure of divergence. This discrepancy is
compared in different scenarios including the situation where the missing variables
are dropped entirely.

Keywords Discrepancy; Influence of variables; Kullback–Leibler divergence;
Missing variable; Predictive density; Prior density; Taylor expansion.

Mathematics Subject Classification 62F15; 62J05; 62B10; 62M20.

1. Introduction

Predictive inference has been rightly called the central focus of statistical analyses
and one may refer to Bjornstad (1990) for a review of various approaches. In
recent years, much attention has been given to the influence of variables in both
classical and Bayesian predictions. Bhattacharjee and Dunsmore (1991) considered
the problem of the influence of variables in a logistic model in Bayesian predictive
approach. In the logistic model, Zellner et al. (2004) compared the performance
of stepwise selection procedure with a bagging method. The influence of variable
selection in Bayesian diagnostic perspective in logistic model is considered by Weiss
(1995). Predictive influence of variables in normal linear regression model has been
studied by Bhattacharjee and Dunsmore (1995). Mollah and Bhattacharjee (2008)
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Influence of Missing Variables in Linear Model 4459

considered the problem of the influence of variables in general linear regression
model in Bayesian predictive approach in the presence of perfect multicollinearity.

Our aim here is to detect the influence of missing future explanatory variables
in a normal linear model. We consider an approach to prediction analysis in general
linear model when the values of some or all of the future explanatory variables
are not available. We assume that in the observed data, the past records of all the
explanatory variables are available. We want to predict a single future response yf

at a future sample point xf when some or all components of xf are unavailable.
We assume that the future variables xf are normally distributed but both the cases
are considered where xf ’s are dependent or independent. Improper prior densities
are considered to derive the predictive density to assess the influence of the missing
variables. Since the predictive density is not mathematically tractable for missing
future explanatory variables, the Taylor expansion is used to derive the approximate
predictive density. We then employ the Kullback–Leibler (K–L) directed measure of
divergence (1951) to assess the influence of the missing future variables.

2. Bayes Predictive Density in Linear Model

Let us consider the general linear model y = �0 + �1x1 + · · · + �kxk + �, where
�’s are the random errors normally distributed with mean zero and common
variance �2. Our aim is to predict a future response yf when some or all of the
future explanatory variables xf are unavailable. We denote the density of future
explanatory variables by f�xf �. Let us suppose that r future explanatory variables,
denoted by x

f
�r�, are not available. For convenience and without loss of generality,

we assume that the last r future variables are unavailable.
The density of an observed y is given by p�y � x� �� �� = N�x�� �−1�. The density

of a future response yf is p�yf � xf � �� �� = N�xf�� �−1�. Then the predictive density of
a future response yf is given by p�yf � xf ��� = ∫

p�yf � xf � �� ��p��� � � ��d�d�, where
p��� � � �� is the posterior density of � and �, and � is the observed data.

We assume that the conditional density of x
f
�r� given xf∗ is independent of �

and �, i.e., p�xf�r� � xf∗� �� �� = p�x
f
�r� � xf∗�, where xf∗ denotes the future explanatory

variables without variables x
f
�r�. First, we assume that xfi ’s are dependent and the

distribution of xf is k-dimensional multivariate normal, i.e., f�xf � = MNk��� 	�. The
conditional density of xf�r� given xf∗ is given by

f�x
f
�r� � xf∗� = MNr

(
�∗�r�� 	

∗
�r�

)
� where � = (

�∗��r�
)′
� xf =

(
xf∗xf�r�

)′
� 	 =

[
	11 	12

	21 	22

]

�∗�r� = ��r� + 	21	
−1
11

(
xf∗ − �∗

)
and 	∗

�r� = 	22 − 	21	
−1
11 	12


Then the density of future response when x
f
�r� is missing is given by

p
(
yf � xf∗� �� �) = ∫

p
(
yf � xf � �� �)f (xf�r� � xf∗)dxf�r�

= N

(
k−r∑
0

x
f
i �i +

k∑
k−r+1

�∗i �i�
k∑

k−r+1

�i�j	
∗
ij + �−1

)
�

where �∗i is the ith component of �∗�r� and 	∗
ij is the �i� j�th component of 	∗

�r�.
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4460 Bhattacharjee et al.

Using improper prior density for both � and �, the approximate predictive
density of yf when x

f
�r� is missing is given by

P�r�

(
yf � xf∗��) ≈ N

(
k−r∑
0

x
f
i bi +

k∑
k−r+1

�∗i bi�
k∑

k−r+1

bibj	
∗
ij + s2

)

×
{
1+ 1/2

k∑
0

Q∗
ij ��� �� cov

(
�i� �j

)+ 1/2Q2
� ��� �� var ���

}
(1)

evaluated at b and s2, where Q∗
ij is the multiplicative factor for the second-order

approximation.
If xf ’s are independent the corresponding approximate predictive density is

P�r�

(
yf � xf∗��) ≈ N

(
k−r∑
0

x
f
i bi +

k∑
k−r+1

�ibi�
k∑

k−r+1

b2i 	
2
i + s2

)

×
{
1+ 1/2

k∑
0

Qij ��� �� cov
(
�i� �j

)+ 1/2Q2
� ��� �� var ���

}
�

evaluated at b and s2, where �i and 	2
i are mean and variance of the ith missing

variable.
If no observation is missing then the corresponding predictive density based on

all explanatory variables is given by

P
(
yf � xf ��) = St

(
n− p� xfb� s2

(
1+ xf �X′X�−1

xf
′))

(2)

Remark 2.1. Instead of considering normal linear regression model, the problem
may be extended for more general regression model where the errors follow a
spherically symmetric distribution. The predictive density is completely unaffected
by departures of the normality assumption in the direction of the spherically
symmetric family (Jammalamadaka et al., 1987). Therefore, the predictive density
(2) based on all explanatory variables and no missing future variables will be
unaltered if any spherically symmetric distribution is considered. The predictive
density (1) for missing x

f
�r� will be changed due to different forms of the distribution

and approximation may be required to derive the predictive density.

3. Measure of Influence of the Missing Variables

To assess the influence of the missing future explanatory variables x
f
�r�, we employ

the Kullback–Leibler (K–L) directed measure of divergence DKL between the two
predictive densities (1) and (2). The form of the (K–L) divergence used here is
given by

DKL =
∫

p
(
yf � xf ��) log{p (yf � xf ��)/p�r�

(
yf � xf∗��)}dyf 


There are certainly many other measures of divergence between two distributions,
e.g., a very general divergence measure is given by Csiszar (1963). He introduced
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Influence of Missing Variables in Linear Model 4461

the following class of divergence measures, called “h-divergence”, between two
probability distributions F1�·� and F2�·�:

Ih �F1� F2� =
∫
R
h

(
dF1�x�

dF2�x�

)
dF2�x��

where h � �0��� → � is a convex function with h�1� = 0. However, we use the
special case of the K–L measure (corresponding to h�x� = − log�x�� which is
more practical and easy to calculate in our case. Also, we can use information
measure I = ∫

P�· � ·� logP�· � ·�− ∫
P�r��· � ·� logP�r��· � ·�, ratio measure R = DKL ÷

�I�, and predictive interval to assess the influence of the missing future explanatory
variables, these measures give similar conclusion to K–L directed measure of
divergence. Details of these measures may be found in Bhattacharjee (1987), the first
author’s unpublished Ph.D. thesis.

An explicit expression for DKL with Student distribution is difficult to obtain,
so we derive approximate DKL by substituting approximate normal form of (2) as

N

(
xfb�

n− p

n− p− 2
s2
(
1+ xf �X′X�−1

xf
′))


 (3)

Since it is difficult to derive the distributional form of DKL, as in Bhattacharjee and
Dunsmore (1995), any discrepancy due to missing variables x

f
�r� is less than 1% of

the largest discrepancy would be considered as negligible at 1% error. Where largest
discrepancy occurs between the predictive density based on all variables and the
predictive density based on no variable.

If x
f
i ’s are not independent then the approximate DKLbetween the predictive

densities (1) and (3) is given by

DKL ≈ 1
2
T 2

�2�r�
+ 1

2

[
�2

�2�r�
− log

{
�2

�2�r�

}
− 1

]
− 1

2

k∑
ij=0

E
{
Q∗

ij ��� �� cov
(
�i� �j

)}

+ 1
2
E
{
Q2

� ��� �� var ���
}
� (4)

evaluated at b and s2, where

�2 = �n− p� s2

n− p− 2

{
1+ xf �X′X�−1

xf
′}

�2�r� =
k∑

i=k−r+1

b2i 	
∗
ij + s2

T =
k∑

i=k−r+1

(
x
f
i − �∗i

)
bi


Proof.

DKL =
∫

p
(
yf � xf ��) log{p (yf � xf ��)/p�r�

(
yf � xf∗��)}dyf

=
∫

p
(
yf � xf ��) log p (yf � xf ��)dyf− ∫ p

(
yf � xf ��) log p�r�

(
yf � xf ��)dyf
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4462 Bhattacharjee et al.

= log
(
2
�2

)−1/2 − 1/2

−
∫

p
(
yf � xf ��) log

[
N

(
k−r∑
0

x
f
i bi+

k∑
k−r+1

�∗i bi�
k∑

k−r+1

bibj	
∗
ij + s2

)]
dyf

+
∫

p
(
yf � xf ��) log

{
1+

k∑
0

Q∗
ij ��� �� cov

(
�i� �j

)/
2+Q2

� ��� �� var ���
/
2

}
dyf

= log
(
2
�2

)−1/2 − 1/2

−

log

(
2
�2�r�

)−1/2 − �2
/

2�2�r� −
[

k∑
0

x
f
i bi −

k−r∑
0

x
f
i bi −

k∑
k−r+1

�ibi�

]2

−
∫

p
(
yf � xf ��)

{
k∑
0

Qij ��� �� cov
(
�i� �j

)/
2+Q2

� ��� �� var ���
/
2

}
dyf �

neglecting O�1/n� terms in logarithmic series

= T 2/2�2�r� +
[
�2
/
2�2�r� − log

{
�2
/
2�2�r�

}
− 1

]/
2

−
k∑

ij=0

E
{
Q∗

ij ��� �� cov
(
�i� �j

)
/2
}+ E

{
Q2

� ��� �� var ���/2
}

evaluated at b and s2


If xfi ’s are independent then the corresponding approximate DKL is same as (4) but
replacing 	∗

ij by 	2
i � �

∗
i by �i and E�Q∗

ij��� ��� by E�Qij��� ���.

4. Illustration

We use the data in a four-variable problem given by Hald (1952). The response
y is the amount of heat evolved in calories per gram of cement. The explanatory
variables x1� x2� x3, and x4 are the amount of tricalcium aluminate, tricalcium
silicate, calcium aluminium ferrate and dicalcium silicate, respectively. For the
analysis of the data, 20 future sample points x

f
i are chosen within the region of

previous experience.
We assume that in a natural informative experiment the values of the variables

x arise randomly from the same distribution as for the future variables x
f
i . We

also assume that the marginal densities of the future variables xfi ’s are normal with
means and variances are their sample means and sample variances, respectively. We
want to observe here how much information is lost due to missing future variables
and to test whether the loss of information is negligible or not. We also want
to compare this lose of information with the variable deletion case where missing
variables will be deleted from the data set and a reduced model will be constructed.
Then the predictive density will be derived based on the reduced model. The
discrepancy between the predictive density based on full model and the predictive
density based on reduced model is considered as lose of information of the variable
deletion case.
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Influence of Missing Variables in Linear Model 4463

Figure 1. K–L Divergence for single variable case.

In this example, the single most influential variable is x1 and the least influential
variable is x3. The best pair is �x1� x2�, and �x1� x4� is the second best pair
(see Bhattacharjee, 1987; Draper and Smith, 1966). The curves of DKL for missing
x
f
i when the predictive density based on any single variable xi� i = 1� 
 
 
 � 4 are given

in Fig. 1. We see from the figure that the discrepancies are large for missing x
f
1 and

negligible for missing x
f
3 . We also see that discrepancies are minimum around the

mean of the missing variable.
The plots of DKL for missing any single variable when the predictive density

based on x1x2� x1x3, and x1x4 are given in Figs. 2(a)–(c). Here, we see that DKL is
large due to missing x

f
1 in any combination with the other variables and negligible

discrepancies occurred when variable x
f
3 is missing. We also observe that DKL is

minimum at the appropriate combination with the other explanatory variables.
The discrepancies are larger toward the ends of the missing variables.

Box plots of DKL for missing a single variable when predictive density is based
on all four variables are given in Fig. 3. From this figure it is clear that if a single
variable is missing among the four variables, then the summary measures of the
discrepancies DKL due to missing x

f
1 is larger than the others and summary measures

of DKL due to missing x
f
3 are negligible.

In Fig. 4, only two variables x1 and x2 are considered. Then box plots are shown
to compare the discrepancies due to missing variable xi and due to deleting variable
xi from the data set, i = 1� 2. We see that discrepancies for missing variables are
smaller than the variable deletion case.
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4464 Bhattacharjee et al.

Figure 2. (a) DKL for missing a single variable when predictive density based on x1 and
x2, (b) DKL for missing a single variable when predictive density based on x1 and x3, and
(c) DKL for missing a single variable when predictive density based on x1 and x4. (color
figure available online.)
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Influence of Missing Variables in Linear Model 4465

Figure 3. Box plots of DKL for missing any single variable when predictive density based
on four variables.

Figure 4. Box plots of DKL for comparison of the two methods.

5. Conclusion

The minimum discrepancies occur around the mean of the missing variable. We also
see that the discrepancy depends on the influence of the missing variable. Larger the
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4466 Bhattacharjee et al.

influence of the missing variable, more the discrepancy, and less influential variable
will produce small discrepancy. Minimum discrepancies occur at the appropriate
combination of the explanatory variables. The discrepancies due to missing variables
are less than the discrepancies due to deleting the missing variables from the data
set. As in Bhattacharjee and Dunsmore (1995), one can test whether any discrepancy
is negligible or not.
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