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Optimality of Diagonalization of
Multi-Hop MIMO Relays

Yue Rong, Member, IEEE, and Yingbo Hua, Fellow, IEEE

Abstract—For a two-hop linear non-regenerative multiple-
input multiple-output (MIMO) relay system where the direct
link between source and destination is negligible, the optimal
design of the source and relay matrices has been recently
established for a broad class of objective functions. The optimal
source and relay matrices jointly diagonalize the MIMO relay
system into a set of parallel scalar channels. In this paper,
we show that this diagonalization is also optimal for a multi-
hop MIMO relay system with any number of hops, which is a
further generalization of several previously established results.
Specifically, for Schur-concave objective functions, the optimal
source precoding matrix, the optimal relay amplifying matrices
and the optimal receiving matrix jointly diagonalize the multi-
hop MIMO relay channel. And for Schur-convex objectives,
such joint diagonalization along with a rotation of the source
precoding matrix is also shown to be optimal. We also analyze the
system performance when each node has the same transmission
power budget and the same asymptotically large number of
antennas. The asymptotic analysis shows a good agreement with
numerical results under a finite number of antennas.

Index Terms—MIMO relay network, multi-hop relay, linear
non-regenerative relay, majorization.

I. INTRODUCTION

IT is well-known that multiple-input multiple-output
(MIMO) wireless communication techniques enhance sys-

tem reliability and increase system capacity. To efficiently
exploit the multi-antenna hardware, an important issue in
MIMO system design is to optimize the source precoding
matrix [1], [2]. A general framework of optimizing the source
precoding matrix has been developed in [2] by using the
majorization theory [3]. It has been shown that the optimal
source precoding matrix and the optimal receiving matrix
diagonalize the MIMO source-destination channel for Schur-
concave objective functions. And for Schur-convex objectives,
the MIMO channel is also diagonalized by the optimal source
matrix and the optimal receiving matrix except for a special
rotation matrix at the source node.

In the case of a long source-destination distance, single or
multiple MIMO relay nodes may be necessary to relay signals
from the source node to the destination node [4]-[15]. In this
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scenario, the source signals travel through two or multiple
hops before they are received by the destination node. We call
such system a MIMO relay system. When the non-regenerative
strategy is used, each relay node amplifies its received signal
vector with a matrix (known as the relay amplifying matrix)
and retransmits the amplified signal vector. Obviously, for non-
regenerative MIMO relay systems, in addition to the source
precoding matrix, it is crucial to optimize the relay amplifying
matrices, in order to achieve an optimal system performance.
Recently, it has been shown in [6] that for a three-node
two-hop linear non-regenerative MIMO relay system where
the direct link between source and destination is negligi-
ble, the optimal source, relay and receiving matrices jointly
diagonalize the source-relay-destination channel for Schur-
concave objective functions. And for Schur-convex objectives,
such joint diagonalization along with a rotation of the source
matrix is also shown to be optimal. The above result is a
generalization of that in [2] from a one-hop MIMO link to a
two-hop MIMO relay system.

In this paper, we show that the above stated results are
also true for a multi-hop non-regenerative MIMO relay system
with any number of hops using linear relaying and the linear
minimal mean-squared error (MMSE) processing at the desti-
nation. Note that although the structures of the optimal source
and relay matrices are similar for both two-hop and multi-
hop systems, the proof of the main theorem is much more
involved for the multi-hop system than for the two-hop system
[6]. In fact, for a multi-hop system, the objective function
depends on the amplifying matrices at all nodes. Moreover, the
transmission power constraint at each node is a function of the
amplifying matrices of all backward nodes. It will be seen that
the introduction of multi-hops greatly complicates the proof
of the theorem. A rigorous proof of the main theorem in this
paper is technically challenging. The generalization from two-
hop system to multi-hop systems is significant and it is one
major contribution of this paper. In this paper, for notational
convenience, we consider a narrow band single-carrier system.
However, our results can be straightforwardly generalized to
wide band multi-carrier multi-hop MIMO relay systems, as in
the case of two-hop MIMO relay system shown in [6].

Another contribution of this paper is a performance analysis
of the multi-hop MIMO relays when all nodes have the same
transmission power constraint and the same asymptotically
large number of antennas. Our numerical results indicate that
the asymptotic analysis serves as a good approximation even
for situations where each node has only a small number of
antennas.

We would like to mention a few other recent works on
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Fig. 1. Block diagram of an 𝐿-hop linear non-regenerative MIMO relay
communication system.

multi-hop non-regenerative MIMO relay systems [7]-[10]. Un-
der the assumption that the relay matrices are scaled identity
matrices, the asymptotic capacity of multi-hop MIMO relay
system is derived in [7]. The capacity scaling of multi-hop
amplify-and-forward MIMO relay system with an asymptoti-
cally large number of hops is derived in [8]. In [9], the authors
investigated the diversity gain of multi-hop MIMO relay chan-
nel when the relays use diagonal amplifying matrices. In [10],
by neglecting the noise at the relay nodes, the authors derived
the optimal relay matrices. Compared with those results in
[7]-[10], our results in this paper are more general.

Compared with regenerative strategies (for example,
decode-and-forward), the complexity of the linear non-
regenerative MIMO relay system is much lower, since decod-
ing multiple data streams involves much more computational
efforts and processing latency than simply amplifying them.
However, when the source-destination distance is very large,
a combination of regenerative and non-regenerative relays
should be used to provide a good tradeoff between the
end-to-end delay and the end-to-end error rate. The more
regenerative relays, the less end-to-end error rate. The more
non-regenerative relays, the less end-to-end delay.

The rest of this paper is organized as follows. In Section II,
we introduce the model of a multi-hop linear non-regenerative
MIMO relay communication system. The structures of the
optimal source and relay matrices are shown in Section III. An
asymptotic performance analysis is developed in Section IV.
In Section V, we show some numerical examples. Conclusions
are drawn in Section VI.

II. SYSTEM MODEL

We consider a wireless communication system with one
source node, one destination node, and 𝐿− 1 relay nodes. In
this paper, we consider the scenario where 𝐿 ≥ 2. The case
of 𝐿 = 1 has been investigated in [2]. We assume that due
to the propagation path-loss, the signal transmitted by the 𝑖th
node can only be received by its direct forward node, i.e., the
(𝑖+ 1)-th node. Thus, signals transmitted by the source node
pass through 𝐿 hops until they reach the destination node.
We also assume that the number of antennas at each node is
𝑁𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿+ 1, and the number of source symbols in
each transmission is 𝑁𝑏. Like [5], [6], [11]-[14], a linear non-
regenerative relay matrix is used at each relay. The system
block diagram is shown in Fig. 1.

The 𝑁1 × 1 signal vector transmitted by the source node is

x1 = F1s (1)

where s is the 𝑁𝑏×1 source symbol vector, and F1 is the 𝑁1×
𝑁𝑏 source precoding matrix. We assume that E[ss𝐻 ] = I𝑁𝑏

,
where E[⋅] stands for the statistical expectation, (⋅)𝐻 denotes
the Hermitian transpose, and I𝑛 is an 𝑛 × 𝑛 identity matrix.

The 𝑁𝑖 × 1 signal vector received at the 𝑖th node is written
as

y𝑖 = H𝑖−1x𝑖−1 + v𝑖, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿+ 1 (2)

where H𝑖−1 is the 𝑁𝑖×𝑁𝑖−1 MIMO channel matrix between
the 𝑖th and the (𝑖−1)-th nodes, i.e., the (𝑖−1)-th hop, v𝑖 is the
𝑁𝑖 × 1 independent and identically distributed (i.i.d.) additive
white Gaussian noise (AWGN) vector at the 𝑖th node, and
x𝑖−1 is the 𝑁𝑖−1 × 1 signal vector transmitted by the (𝑖− 1)-
th node. We assume that the noises are complex circularly
symmetric with zero mean and unit variance.

The input-output relationship at node 𝑖 is given by

x𝑖 = F𝑖y𝑖, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿 (3)

where F𝑖 is the 𝑁𝑖 × 𝑁𝑖 amplifying matrix at node 𝑖.
Combining (1)-(3), we obtain the received signal vector at
the destination node (the (𝐿+ 1)-th node) as

y𝐿+1 = H̄s+ v̄ (4)

where H̄ and v̄ are the equivalent MIMO channel matrix and
the noise vector, and given respectively by

H̄ = H𝐿F𝐿 ⋅ ⋅ ⋅H1F1 =

1⊗
𝑖=𝐿

(H𝑖F𝑖) (5)

v̄ = H𝐿F𝐿 ⋅ ⋅ ⋅H2F2v2 + ⋅ ⋅ ⋅+H𝐿F𝐿v𝐿 + v𝐿+1

=

𝐿∑
𝑙=2

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)v𝑙

)
+ v𝐿+1. (6)

Here for matrices A𝑖,
⊗𝑘

𝑖=𝑙(A𝑖) ≜ A𝑙 ⋅ ⋅ ⋅A𝑘.
We assume that without wasting transmission power at any

node, the number of source symbols at each transmission
satisfies 𝑁𝑏 ≤ min(𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝐿), where 𝑟𝑖 ≜ rank(H𝑖),
and rank(⋅) denotes the rank of a matrix. We also assume
that rank(H𝑖F𝑖) = rank(F𝑖) ≜ 𝜉𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, equal 𝑁𝑏.
The reason is that if 𝜉𝑖 < 𝑁𝑏, then the system can not support
𝑁𝑏 active symbol in each transmission. On the other hand, if
𝜉𝑖 > 𝑁𝑏, some transmission power must be wasted.

From (1), we know that the power of the signal transmitted
by the source node is tr(F1F

𝐻
1 ), where tr(⋅) denotes the trace

of a matrix. Based on (2) and (3), the power of the signal
transmitted by the relay node 𝑖, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿, is given by

tr
(
E
[
x𝑖x

𝐻
𝑖

])
=tr

(
F𝑖E

[
y𝑖y

𝐻
𝑖

]
F𝐻

𝑖

)
=tr

(
F𝑖

(
𝑖−1∑
𝑙=1

( 𝑙⊗
𝑘=𝑖−1

(H𝑘F𝑘)
𝑖−1⊗
𝑘=𝑙

(
F𝐻

𝑘 H𝐻
𝑘

))
+ I𝑁𝑖

)
F𝐻

𝑖

)
.

We assume that the source node has the channel state
information (CSI) knowledge of H1, the destination node
knows H̄, and the 𝑖th node, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿, knows the CSI
of its backward channel H𝑖−1 and its forward channel H𝑖. In
practice, the backward CSI can be obtained through standard
training methods. The forward CSI required at the 𝑖th node
(H𝑖) is exactly the backward CSI at the (𝑖 + 1)-th node,
and thus can be obtained by a feedback from the (𝑖 + 1)-
th node. For wireless relays, the fading is often relatively
slow whenever the mobility of the relays is relatively low, and
for static relays, the channel state information can be almost
constant. Thus, in this way, the necessary CSI can be obtained
at each node with a reasonably high precision.
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III. OPTIMAL SOURCE AND RELAY MATRICES

It has been shown in [2], [6] that many practical objectives
for MIMO systems such as the maximal mutual information
(MI) between s and y𝐿+1 can be represented as functions of
the main diagonal elements of the MMSE matrix. The MMSE
matrix is the error matrix of the linear MMSE estimates of
the elements of s using y𝐿+1. With a linear receiver at the
destination node, the estimated signal vector is

ŝ = W𝐻y𝐿+1 (7)

where W is the 𝑁𝐿+1 × 𝑁𝑏 weight matrix of the linear
receiver. The weight matrix of the linear MMSE receiver is
[2], [6]

W = (H̄H̄𝐻 +C𝑣)
−1H̄ (8)

where C𝑣 is the noise covariance matrix, and (⋅)−1 denotes
the matrix inversion. The MMSE matrix denoted as E({F𝑖}),
is given by [2], [6]

E({F𝑖}) =
(
I𝑁𝑏

+ H̄𝐻C−1
𝑣 H̄

)−1
(9)

where {F𝑖} ≜ {F𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿}. From (6) we have

C𝑣 =

𝐿∑
𝑙=2

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)

𝐿⊗
𝑖=𝑙

(F𝐻
𝑖 H𝐻

𝑖 )
)
+ I𝑁𝐿+1 . (10)

Substituting (5) and (10) into (9), we obtain

E({F𝑖}) =
[
I𝑁𝑏

+

𝐿⊗
𝑖=1

(F𝐻
𝑖 H𝐻

𝑖 )

(
𝐿∑

𝑙=2

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)

𝐿⊗
𝑖=𝑙

(F𝐻
𝑖 H𝐻

𝑖 )
)
+ I𝑁𝐿+1

)−1 1⊗
𝑖=𝐿

(H𝑖F𝑖)

⎤
⎦
−1

. (11)

The multi-hop linear non-regenerative MIMO relay design
problem can be summarized as

min
{F𝑖}

𝑞(d[E({F𝑖})]) (12)

s.t. tr
(
F1F

𝐻
1

) ≤ 𝑝1 (13)

tr

(
F𝑖

(
𝑖−1∑
𝑙=1

( 𝑙⊗
𝑘=𝑖−1

(H𝑘F𝑘)

𝑖−1⊗
𝑘=𝑙

(
F𝐻

𝑘 H𝐻
𝑘

))
+I𝑁𝑖

)
F𝐻

𝑖

)
≤ 𝑝𝑖, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿(14)

where 𝑞(⋅) stands for a unified objective function, for a
matrix A, d[A] is a column vector containing all main
diagonal elements of A, and 𝑝𝑖 > 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, is the
transmission power available at the 𝑖th node. Here (13) is the
power constraint at the source node, and (14) are the power
constraints at all relay nodes.

Before stating the key theorem on the solution of problem
(12)-(14), we introduce two important definitions from [3].

DEFINITION 1 [3, 1.A.1]: Consider any two real-valued 𝑁×
1 vectors x,y, let 𝑥[1] ≥ 𝑥[2] ≥ ⋅ ⋅ ⋅ ≥ 𝑥[𝑁 ], 𝑦[1] ≥ 𝑦[2] ≥
⋅ ⋅ ⋅ ≥ 𝑦[𝑁 ] denote the elements of x and y sorted in decreasing
order, respectively. Then we say that vector x is majorized by
vector y, denoted as x ≺ y, if

∑𝑛
𝑖=1 𝑥[𝑖] ≤ ∑𝑛

𝑖=1 𝑦[𝑖], for
𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁 − 1, and

∑𝑁
𝑖=1 𝑥[𝑖] =

∑𝑁
𝑖=1 𝑦[𝑖].

DEFINITION 2 [3, 3.A.1]: A real-valued function 𝑓 is called
Schur-convex if 𝑓(x) ≤ 𝑓(y) for x ≺ y, or called Schur-
concave if 𝑓(x) ≥ 𝑓(y) for x ≺ y.

Let us write the singular value decomposition (SVD) of H𝑖

as
H𝑖 = U𝑖Σ𝑖V

𝐻
𝑖 , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿 (15)

where the dimensions of U𝑖, Σ𝑖, V𝑖 are 𝑁𝑖+1×𝑁𝑖+1, 𝑁𝑖+1×
𝑁𝑖, 𝑁𝑖 ×𝑁𝑖, respectively. We assume that the main diagonal
elements of Σ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, are arranged in the increasing
order. The following theorem is a main result of this paper.

THEOREM 1: Assume that the following three conditions
hold: (1) 𝑁𝑏 ≤ min(𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝐿); (2) 𝑁𝑏 = rank(F𝑖), 𝑖 =
1, ⋅ ⋅ ⋅ , 𝐿; (3) 𝑞(d[E]) is an increasing function with respect
to each element of d[E]. Then for the linear non-regenerative
multi-hop MIMO relay design problem (12)-(14), if the ob-
jective function (12) with respect to d[E] is Schur-concave,
the optimal source and relay matrices F𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, are
given by

F1 = V1,1Λ1, F𝑖 = V𝑖,1Λ𝑖U
𝐻
𝑖−1,1, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿 (16)

where Λ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, are 𝑁𝑏 ×𝑁𝑏 diagonal matrices, and
U𝑖,1 and V𝑖,1 contain the rightmost 𝑁𝑏 vectors of U𝑖 and V𝑖,
respectively. And if the objective function (12) with respect
to d[E] is Schur-convex, the optimal F𝑖 are

F1 = V1,1Λ1U0, F𝑖 = V𝑖,1Λ𝑖U
𝐻
𝑖−1,1, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿

(17)
where U0 is an 𝑁𝑏 × 𝑁𝑏 unitary rotation matrix, such that
d[E({F𝑖})] has identical elements.

PROOF: See Appendix A. □
The condition 1 is motivated by the fact that under the

criterion of the maximal MI between source and destination,
the maximal number of independent data streams that can be
sent from source to destination for any given {F𝑖} is no more
than min(𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝐿). The condition 2 is motivated by the
fact that under the criterion of the maximal MI between source
and destination, conditions 1 and 2 are sufficient to allow 𝑁𝑏

independent data streams to be sent from source to destination.
The condition 3 is a natural choice for any practical purpose.

Theorem 1 generalizes the results obtained in [2] and [6].
Similar to the examples shown in [2], the Schur-concave
objective functions include for example the arithmetic mean of
the mean-squared errors (AMSE) of the MMSE estimates of
the elements of s using y𝐿+1, the negative of the MI between
s and y𝐿+1, and the negative of the geometric mean of the
signal to interference and noise ratio of y𝐿+1. And the Schur-
convex functions include for example the maximum of the
mean-squared errors of the MMSE estimates of the elements
of s using y𝐿+1. In the next two subsections, we discuss the
remaining design issues under the optimal structures of the
source matrix and the relay matrices given in Theorem 1.

A. MIMO Relay Design with Schur-Concave Objective Func-
tions

For Schur-concave objective functions, substituting (16) into
(5) and (10), we have

H̄ = U𝐿,1Dℎ (18)

C𝑣 = U𝐿,1D𝑐U
𝐻
𝐿,1 + I𝑁𝐿+1 (19)
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where Dℎ and D𝑐 are 𝑁𝑏 × 𝑁𝑏 diagonal matrices with the
𝑘th diagonal elements 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏, given by

[Dℎ]𝑘,𝑘 =

𝐿∏
𝑙=1

𝜆𝑙,𝑘𝜎𝑙,𝑘 [D𝑐]𝑘,𝑘 =

𝐿∑
𝑙=2

𝐿∏
𝑖=𝑙

𝜆2
𝑖,𝑘𝜎

2
𝑖,𝑘 .

Here 𝜆𝑖,𝑘 and 𝜎𝑖,𝑘 , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏, are the
𝑘th main diagonal elements of Λ𝑖 and Σ𝑖, respectively. Note
that in order to achieve the optimal performance, strong
subchannels of 𝜎𝑖,𝑘 in all hops should be paired together, while
the weak subchannels of 𝜎𝑖,𝑘 should be coupled together [6].
Substituting (18) and (19) back into (8), we obtain

W =
[
U𝐿,1(D

2
ℎ +D𝑐)U

𝐻
𝐿,1 + I𝑁𝐿+1

]−1
U𝐿,1Dℎ . (20)

From (4), (7), (20), we can write

ŝ = DℎU
𝐻
𝐿,1

[
U𝐿,1(D

2
ℎ +D𝑐)U

𝐻
𝐿,1 + I𝑁𝐿+1

]−1

×U𝐿,1Dℎs+W𝐻 v̄

≜ D𝑠s+ ṽ (21)

where D𝑠 is a diagonal matrix with

[D𝑠]𝑘,𝑘 =

∏𝐿
𝑙=1 𝜆

2
𝑙,𝑘𝜎

2
𝑙,𝑘∑𝐿

𝑙=1

∏𝐿
𝑖=𝑙 𝜆

2
𝑖,𝑘𝜎

2
𝑖,𝑘 + 1

, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 .

In (21), ṽ ≜ W𝐻 v̄ is the noise vector after the receiver
processing, and its covariance matrix is given by

C𝑣 = W𝐻C𝑣W

= DℎU
𝐻
𝐿,1

[
U𝐿,1(D

2
ℎ +D𝑐)U

𝐻
𝐿,1 + I𝑁𝐿+1

]−1

× (
U𝐿,1D𝑐U

𝐻
𝐿,1 + I𝑁𝐿+1

)
× [

U𝐿,1(D
2
ℎ +D𝑐)U

𝐻
𝐿,1 + I𝑁𝐿+1

]−1
U𝐿,1Dℎ

= Dℎ(D
2
ℎ +D𝑐 + I𝑁𝑏

)−1(D𝑐 + I𝑁𝑏
)

×(D2
ℎ +D𝑐 + I𝑁𝑏

)−1Dℎ

≜ D𝑣 (22)

where the matrix inversion lemma (A+BCD)−1 = A−1 −
A−1B(DA−1B + C−1)−1DA−1 is applied to obtain the
third equation from the second equation, and D𝑣 is a diagonal
matrix with

[D𝑣]𝑘,𝑘 =

∏𝐿
𝑙=1 𝜆

2
𝑙,𝑘𝜎

2
𝑙,𝑘

(∑𝐿
𝑙=2

∏𝐿
𝑖=𝑙 𝜆

2
𝑖,𝑘𝜎

2
𝑖,𝑘 + 1

)
(∑𝐿

𝑙=1

∏𝐿
𝑖=𝑙 𝜆

2
𝑖,𝑘𝜎

2
𝑖,𝑘 + 1

)2 ,

𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 .

From (21) and (22) we see that the optimal source, relay,
and destination matrices jointly diagonalize the 𝐿-hop MIMO
relay channel between s and ŝ, and the effective noise ṽ is
white. Substituting (16) back into (11), we find that E is
diagonal with

[E]𝑘,𝑘=

(
1 +

∏𝐿
𝑙=1 𝜆

2
𝑙,𝑘𝜎

2
𝑙,𝑘

1 +
∑𝐿

𝑙=2

∏𝐿
𝑖=𝑙 𝜆

2
𝑖,𝑘𝜎

2
𝑖,𝑘

)−1

, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 .

(23)

Using the optimal source and relay matrices (16), the trans-
mission power constraints (13)-(14) are equivalent to

𝑁𝑏∑
𝑘=1

𝜆2
1,𝑘 ≤ 𝑝1 (24)

𝑁𝑏∑
𝑘=1

𝜆2
𝑖,𝑘

⎛
⎝𝑖−1∑

𝑗=1

𝑖−1∏
𝑙=𝑗

𝜆2
𝑙,𝑘𝜎

2
𝑙,𝑘 + 1

⎞
⎠ ≤ 𝑝𝑖, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿 .(25)

To simplify notations, let us introduce the following variable
substitutions for 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏

𝑎𝑖,𝑘 ≜ 𝜎2
𝑖,𝑘, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿 (26)

𝑥1,𝑘 ≜ 𝜆2
1,𝑘 (27)

𝑥𝑖,𝑘 ≜ 𝜆2
𝑖,𝑘(𝑎𝑖−1,𝑘𝑥𝑖−1,𝑘 + 1), 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿 . (28)

Then we obtain
𝐿∏

𝑙=1

𝜆2
𝑙,𝑘𝜎

2
𝑙,𝑘 = 𝑎1,𝑘𝑥1,𝑘

𝐿∏
𝑖=2

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖−1,𝑘𝑥𝑖−1,𝑘
(29)

𝐿∑
𝑙=2

𝐿∏
𝑖=𝑙

𝜆2
𝑖,𝑘𝜎

2
𝑖,𝑘

=

𝐿∑
𝑙=2

𝐿∏
𝑖=𝑙

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖−1,𝑘𝑥𝑖−1,𝑘

=
𝐿∑

𝑙=2

𝐿∏
𝑖=𝑙

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖−1,𝑘𝑥𝑖−1,𝑘
+ 𝑎1,𝑘𝑥1,𝑘

×
𝐿∏

𝑖=2

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖−1,𝑘𝑥𝑖−1,𝑘
− 𝑎1,𝑘𝑥1,𝑘

𝐿∏
𝑖=2

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖−1,𝑘𝑥𝑖−1,𝑘

= 𝑎𝐿,𝑘𝑥𝐿,𝑘 − 𝑎1,𝑘𝑥1,𝑘

𝐿∏
𝑖=2

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖−1,𝑘𝑥𝑖−1,𝑘
. (30)

Substituting (29) and (30) back into (23) we have

[E]𝑘,𝑘 =

⎛
⎝1 +

𝑎1,𝑘𝑥1,𝑘

∏𝐿
𝑖=2

𝑎𝑖,𝑘𝑥𝑖,𝑘

1+𝑎𝑖−1,𝑘𝑥𝑖−1,𝑘

𝑎𝐿,𝑘𝑥𝐿,𝑘 − 𝑎1,𝑘𝑥1,𝑘

∏𝐿
𝑖=2

𝑎𝑖,𝑘𝑥𝑖,𝑘

1+𝑎𝑖−1,𝑘𝑥𝑖−1,𝑘

⎞
⎠
−1

= 1−
𝐿∏

𝑖=1

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖,𝑘𝑥𝑖,𝑘
, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 . (31)

Using (26)-(28), the power constraints (24), (25) can be
summarized as

𝑁𝑏∑
𝑘=1

𝑥𝑖,𝑘 ≤ 𝑝𝑖, 𝑥𝑖,𝑘 ≥ 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 .

(32)
Using (31) and (32), problem (12)-(14) is equivalently

written as

min
{𝑥𝑖,𝑘}

𝑞

({
1−

𝐿∏
𝑖=1

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖,𝑘𝑥𝑖,𝑘

})
(33)

s.t.

𝑁𝑏∑
𝑘=1

𝑥𝑖,𝑘 ≤ 𝑝𝑖, 𝑥𝑖,𝑘 ≥ 0,

𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 (34)

where we define
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{𝑥𝑖,𝑘} ≜ {𝑥𝑖,𝑘, 1 ≤ 𝑖 ≤ 𝐿, 1 ≤ 𝑘 ≤ 𝑁𝑏}{
1−

𝐿∏
𝑖=1

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖,𝑘𝑥𝑖,𝑘

}
≜

{
1−

𝐿∏
𝑖=1

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖,𝑘𝑥𝑖,𝑘
, 1 ≤ 𝑘 ≤ 𝑁𝑏

}
.

When 𝐿 = 1, as shown in [2], the problem of (33) and (34)
with respect to {𝑥𝑖,𝑘} is convex for most common objective
functions and adopts a water-filling type solution. However,
when 𝐿 = 2, as illustrated in [6], the problem of (33) and
(34) with respect to {𝑥𝑖,𝑘} is nonconvex. Obviously, the non-
convexity of the problem of (33) and (34) also holds for 𝐿 > 2.
Thus for 𝐿 ≥ 2, a globally optimal solution is difficult to
obtain especially when 𝐿 is large. However, the problem of
(33) and (34) has a conditional convexity, i.e., it is convex with
respect to {𝑥𝑖,𝑘} for a fixed 𝑖. Hence, a locally optimal solu-
tion of this problem can be obtained by using the alternating
algorithm as shown in [6], [13], [14]. This algorithm starts at
a random feasible {𝑥𝑖,𝑘} and updates {𝑥𝑖,𝑘} in an alternating
fashion. Each time we update 𝑥𝑖,𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏, by fixing
𝑥𝑗,𝑘, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝐿, 𝑗 ∕= 𝑖, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏. In particular, to
update 𝑥𝑖,𝑘 , 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏, we solve the following problem

min
𝑥𝑖,1,⋅⋅⋅ ,𝑥𝑖,𝑁𝑏

𝑞

({
1− 𝛽𝑖,𝑘𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖,𝑘𝑥𝑖,𝑘

})
(35)

s.t.

𝑁𝑏∑
𝑘=1

𝑥𝑖,𝑘 ≤ 𝑝𝑖, 𝑥𝑖,𝑘 ≥ 0, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 (36)

where

𝛽𝑖,𝑘 ≜
𝐿∏

𝑗=1,𝑗 ∕=𝑖

𝑎𝑗,𝑘𝑥𝑗,𝑘

1 + 𝑎𝑗,𝑘𝑥𝑗,𝑘
.

For most common 𝑞, the problem of (35) and (36) is convex
and has a water-filling type solution. Since the conditional
update of 𝑥𝑖,𝑘 , 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏, may either decrease or main-
tain but cannot increase the objective function (33), monotonic
convergence of {𝑥𝑖,𝑘} follows directly from this observation.
After the convergence of the alternating algorithm, 𝜆𝑖,𝑘 is
obtained from (26)-(28) as

𝜆1,𝑘 =
√
𝑥1,𝑘, 𝜆𝑖,𝑘 =

√
𝑥𝑖,𝑘/(𝜎2

𝑖−1,𝑘𝑥𝑖−1,𝑘 + 1),

𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿 .

Note that once a local optimum is reached, the updating
process will terminate. Therefore, it is not guaranteed that
the alternating algorithm will achieve the globally optimal
solution.

B. MIMO Relay Design with Schur-Convex Objective Func-
tions

For all Schur-convex objective functions, from (5) and (17)
we obtain

H̄ = U𝐿,1DℎU0 (37)

and C𝑣 is given by (19). Substituting (37) and (19) into (8),
we have

W =
[
U𝐿,1(D

2
ℎ +D𝑐)U

𝐻
𝐿,1 + I𝑁𝐿+1

]−1
U𝐿,1DℎU0 .

Therefore, ŝ is given as

ŝ = U𝐻
0 D𝑠U0s+U𝐻

0 ṽ . (38)

From (38) we find that for Schur-convex objective functions,
the equivalent channel between s and ŝ is diagonalized by the
source, relay, and receiving matrices after a rotation U0 of
the source matrix. Moreover, the effective noise U𝐻

0 ṽ is no
longer white, and its covariance matrix is given by U𝐻

0 C𝑣U0.
By substituting (17) back into (11), we obtain

[E]𝑘,𝑘 =
1

𝑁𝑏

𝑁𝑏∑
𝑗=1

(
1 +

∏𝐿
𝑙=1 𝜆

2
𝑙,𝑗𝜎

2
𝑙,𝑗

1 +
∑𝐿

𝑙=2

∏𝐿
𝑖=𝑙 𝜆

2
𝑖,𝑗𝜎

2
𝑖,𝑗

)−1

,

𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 . (39)

Substituting (29) and (30) into (39), we obtain

[E]𝑘,𝑘 =
1

𝑁𝑏

𝑁𝑏∑
𝑗=1

(
1−

𝐿∏
𝑖=1

𝑎𝑖,𝑗𝑥𝑖,𝑗

1 + 𝑎𝑖,𝑗𝑥𝑖,𝑗

)
, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 .

(40)
Interestingly, for all Schur-convex objectives, since the MMSE
matrix E has identical diagonal entries, we only need to
minimize tr(E), despite the specific form of the objective
function. From (40) we see that the relay optimization problem
is equivalent to

min
{𝑥𝑖,𝑘}

𝑁𝑏∑
𝑘=1

(
1−

𝐿∏
𝑖=1

𝑎𝑖,𝑘𝑥𝑖,𝑘

1 + 𝑎𝑖,𝑘𝑥𝑖,𝑘

)
(41)

s.t.

𝑁𝑏∑
𝑘=1

𝑥𝑖,𝑘 ≤ 𝑝𝑖, 𝑥𝑖,𝑘 ≥ 0,

𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 . (42)

Similar to Section III-A, the problem of (41) and (42) with
respect to {𝑥𝑖,𝑘} is conditional convex and hence can be
solved by alternatingly updating {𝑥𝑖,𝑘}.

IV. PERFORMANCE ANALYSIS

In this section, we conduct performance analysis of multi-
hop linear non-regenerative MIMO systems under some spe-
cial circumstances. From (31) and (40) we find that for both
Schur-concave and Schur-convex objective functions, [E]𝑘,𝑘
increases with 𝐿. This indicates that the system performance
degrades with increasing number of hops. This is due to the
linear non-regenerative strategy used at each relay node, where
noises at all relay nodes are amplified and superimposed at the
destination node. In particular, when 𝐿 → ∞, [E]𝑘,𝑘 → 1.
In such extreme case, the source signal can not be correctly
recovered at the destination node. We should note that when
the source-destination distance is very large, digital repeaters
should be deployed. In fact, a combination of digital repeaters
and the non-regenerative relays can provide a good tradeoff
between the end-to-end delay and the end-to-end error rate.
The more digital repeaters, the less end-to-end error rate. The
more non-regenerative relays, the less end-to-end delay.

The capacity of a two-hop amplify-and-forward MIMO re-
lay system with a large number of antennas is analyzed in [15].
For a multi-hop amplify-and-forward MIMO relay system, the
system capacity scaling is derived in [8] for 𝐿 → ∞. In
the following, we assume a finite 𝐿, and study the system
performance when each node has the same power budget
and the same asymptotically large number of antennas, i.e.,
𝑁𝑖 = 𝑁 , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿 + 1. When 𝑁 → ∞, the distribution
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of the square of the singular values of H𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, (i.e.,
the eigenvalues of H𝑖H

𝐻
𝑖 ) denoted as 𝜆2, does not depend

on 𝑖. In fact, 𝜆2 follows the quarter-circle law [16] with the
following probability density function

𝑓𝜆2(𝑎) =
1

2𝜋

√
4− 𝑎

𝑎
, 0 < 𝑎 ≤ 4 . (43)

Since 𝑎 is independent of 𝑖, the power allocated to each data
stream, denoted as 𝑥, is also independent of 𝑖. Therefore, for
Schur-concave objective functions, by using (31), the diagonal
elements of the MMSE matrix is given by

[E]𝑎 = 1− (
1 + 𝑎−1𝑥−1

)−𝐿
. (44)

While for Schur-convex objectives, we have

[E]𝑎 =

∫ 4

0

[
1− (

1 + 𝑎−1𝑥−1
)−𝐿

]
𝑓𝜆2(𝑎)𝑑𝑎 . (45)

For each Schur-concave objective function, using (43) and
(44), we can write the specific optimization problem. For ex-
ample, choosing the AMSE of the signal waveform estimation
as the criterion, we have

AMSE = 𝑁

∫ 4

0

[
1− (

1 + 𝑎−1𝑥−1
)−𝐿

]
𝑓𝜆2(𝑎)𝑑𝑎 .

Thus, the AMSE optimization problem can be formulated as

min
𝑥

∫ 4

0

[
1− (

1 + 𝑎−1𝑥−1
)−𝐿

]
𝑓𝜆2(𝑎)𝑑𝑎 (46)

s.t. 𝑁

∫ 4

0

𝑥𝑓𝜆2(𝑎)𝑑𝑎 ≤ 𝑃, 𝑥 ≥ 0 (47)

where (47) is the (same) power constraint at the source node
and each relay node, and 𝑃 denotes the transmission power
budget. Another commonly applied criterion in MIMO relay
design is the MI between the source and received signals,
which is

MI = −𝑁

∫ 4

0

log2

[
1− (

1 + 𝑎−1𝑥−1
)−𝐿

]
𝑓𝜆2(𝑎)𝑑𝑎 .

The corresponding optimization problem is given by

min
𝑥

∫ 4

0

log2

[
1− (

1 + 𝑎−1𝑥−1
)−𝐿

]
𝑓𝜆2(𝑎)𝑑𝑎 (48)

s.t. 𝑁

∫ 4

0

𝑥𝑓𝜆2(𝑎)𝑑𝑎 ≤ 𝑃, 𝑥 ≥ 0 . (49)

Both the problem of (46) and (47) and the problem of (48)
and (49) are convex and have water-filling type solutions. The
solutions can be obtained by the Lagrangian multiplier method
[17].

For all Schur-convex objective functions, based on (41)
and (45), the optimization problem is identical to the optimal
AMSE problem given by (46) and (47).

V. NUMERICAL EXAMPLES

To verify the validity of our asymptotic performance anal-
ysis, we carry out numerical simulations. In the simulations,
all nodes are equipped with 𝑁 antennas, and the number of
source symbols is 𝑁𝑏 = 𝑁 . The MIMO channel matrices
H𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, have i.i.d. Gaussian entries with zero mean

and normalized variance 1/𝑁 . We assume that all hops have
equal distance, and the propagation path-loss is included in
the channel matrices. The source node and all relay nodes
have the same transmission power 𝑃 . All simulation results
are averaged over 100 channel realizations.

In the first example, we consider a two-hop MIMO relay
system. Fig. 2 shows the normalized per-antenna MSE (AMSE
divided by 𝑁 ) versus 𝑃 for different 𝑁 . Here, AMSE is
selected as the objective function. Thus, the asymptotic results
are computed by solving the problem of (46) and (47). While
the simulation results are obtained by alternatingly solving
the problem of (35) and (36) for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, where 𝑞 is
the AMSE function. From Fig. 2 we see that the asymptotic
results agree with the simulation results. We also observe from
Fig. 2 that the normalized per-antenna MSE increases with
increasing number of antennas.

Fig. 3 displays the normalized per-antenna MI (MI di-
vided by 𝑁 ) versus 𝑃 , when the MI between the source
and destination signal is chosen as the design objective. We
compute the asymptotic results by solving the problem of
(48) and (49). The simulation results are obtained by solving
the problem of (35) and (36) with 𝑞 being the negative MI
function. Fig. 3 verifies the validity of our analysis. We find
that the normalized per-antenna MI decreases with the number
of antennas at each node. From Figs. 2 and 3 we also observe
that although the analysis is conducted under the assumption
of very large 𝑁 , the results are valid even for very small
number of antennas such as 𝑁 = 5.

In the second example, we fix the number of antennas at
each node to be 𝑁 = 10 and study the relationship of system
performance with respect to the number of hops. Fig. 4 shows
the normalized per-antenna MSE versus 𝑃 for different 𝐿.
While Fig. 5 displays the normalized per-antenna MI versus
𝑃 . Similar to Figs. 2 and 3, we see that the asymptotic results
agree with the simulation results. From Figs. 4 and 5 we
find that the system performance in terms of normalized per-
antenna MSE and normalized per-antenna MI degrades with
increasing number of hops.

From Figs. 2 and 4, we see that the normalized per-antenna
MSE obtained by the simulation is slightly higher than that
by the analysis for 𝐿 > 1. We also observe from Figs. 3 and
5 that for 𝐿 > 1 the normalized per-antenna MI obtained by
the simulation is slighter lower than that of the analysis. The
reason is that the alternating algorithm used in the simulation
only finds a locally optimal solution.

VI. CONCLUSIONS

In this paper, the previous results on the optimal source
and relay matrices for two-hop linear non-regenerative MIMO
relay systems have been generalized to multi-hop MIMO
relay systems. The structures of the optimal source and relay
matrices have been shown to diagonalize a multi-hop MIMO
relay system into a set of parallel scalar multi-hop relay
channels. Performance analysis has been conducted when each
node has the same power budget and the same asymptotically
large number of antennas. The validity of the asymptotic
results are verified by numerical simulations. Our results can
be straightforwardly generalized to multi-carrier multi-hop
linear non-regenerative MIMO relay systems.
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Fig. 2. Example 1: Normalized per-antenna MSE versus 𝑃 ; 𝐿 = 2.
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Fig. 3. Example 1: Normalized per-antenna MI versus 𝑃 ; 𝐿 = 2.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we need the following definitions and
lemmas from [3].

DEFINITION 3 [3, 1.A.2]: Consider any two real-valued 𝑁×
1 vectors x,y, let 𝑥[1] ≥ 𝑥[2] ≥ ⋅ ⋅ ⋅ ≥ 𝑥[𝑁 ], 𝑦[1] ≥ 𝑦[2] ≥
⋅ ⋅ ⋅ ≥ 𝑦[𝑁 ] denote the elements of x and y sorted in decreasing
order, respectively. Then we say that x is weakly submajorized
by y, denoted as x ≺w y, if

∑𝑛
𝑖=1 𝑥[𝑖] ≤

∑𝑛
𝑖=1 𝑦[𝑖], for 𝑛 =

1, ⋅ ⋅ ⋅ , 𝑁 .
DEFINITION 4 [3, 2.A.1]: An 𝑁 × 𝑁 matrix S is doubly

stochastic if [S]𝑖,𝑗 ≥ 0, 𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑁 ,
∑𝑁

𝑖=1[S]𝑖,𝑗 = 1, 𝑗 =

1, ⋅ ⋅ ⋅ , 𝑁 , and
∑𝑁

𝑗=1[S]𝑖,𝑗 = 1, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 .
LEMMA 1 [3, 2.B.2]: A necessary and sufficient condition

that x ≺ y is that there exists a doubly stochastic matrix S
such that x = Sy.

LEMMA 2 [3, 9.B.1]: For a Hermitian matrix A with the
vector of its main diagonal elements d[A] and the vector of
its eigenvalues 𝝀[A], it follows that d[A] ≺ 𝝀[A].

LEMMA 3 [3, 9.H.2]: For 𝑚 𝑁 × 𝑁 complex matrices
A1,A2, ⋅ ⋅ ⋅ ,A𝑚, let B =

⊗𝑚
𝑖=1 A𝑖, then 𝝈𝑏 ≺w (𝝈𝑎1 ⊙

𝝈𝑎2 ⊙ ⋅ ⋅ ⋅ ⊙ 𝝈𝑎𝑚), where 𝝈𝑏, and 𝝈𝑎𝑖 , 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚, denote
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Fig. 4. Example 2: Normalized per-antenna MSE versus 𝑃 ; 𝑁 = 10.
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Fig. 5. Example 2: Normalized per-antenna MI versus 𝑃 ; 𝑁 = 10.

𝑁 × 1 vectors containing the singular values of B and A𝑖

arranged in the same order, respectively, and ⊙ denotes the
Schur (element-wise) product of two vectors.

LEMMA 4 [3, 3.A.8]: A real-valued function 𝑓 satisfies
x ≺w y ⇒ 𝑓(x) ≤ 𝑓(y) if and only if 𝑓 is increasing with
respect to each variable and Schur-convex.

LEMMA 5 [3, 9.H.1.h]: For two 𝑁×𝑁 positive semidefinite
matrices A and B with eigenvalues 𝜆𝑎,𝑖 and 𝜆𝑏,𝑖, 𝑖 =
1, ⋅ ⋅ ⋅ , 𝑁 , arranged in the same order, respectively, it follows
that tr(AB) ≥ ∑𝑁

𝑖=1 𝜆𝑎,𝑖𝜆𝑏,𝑁+1−𝑖.
LEMMA 6 [3, p.7]: For an 𝑁 × 1 real-valued vector x,

let us define an 𝑁 × 1 vector x with identical elements of∑𝑁
𝑖=1 𝑥𝑖/𝑁 , there is x ≺ x.
LEMMA 7 [3, 9.B.2]: For any 𝑁 × 1 real-valued vector x,

there exists a real symmetric (and thus Hermitian) matrix A
with equal main diagonal elements and eigenvalues given by
x. Equivalently, there is a unitary matrix U0 such that A =
U𝐻

0 𝒟(x)U0. Here 𝒟(x) denotes a diagonal matrix taking x
as the main diagonal.

The following two lemmas are also required to prove
Theorem 1.

LEMMA 8: If 𝑞(x) is Schur-concave with respect to x, and
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y = 1− x, where 1 is a vector of all ones, then 𝑞(1− y) is
also Schur-concave with respect to y.

PROOF: Assume that x ≺ x1. Based on Lemma 1, we have

x ≺ x1 ⇔ x = Sx1. (50)

Since S is doubly stochastic, it follows from Definition 4 that
S1 = 1, and consequently,

y = 1−x = S1−Sx1 = S(1−x1) = Sy1 ⇔ y ≺ y1. (51)

Since 𝑞(x) is Schur-concave with respect to x, it follows from
Definition 2 that x ≺ x1 ⇒ 𝑞(x) ≥ 𝑞(x1). Moreover, from
(50) and (51) we have x ≺ x1 ⇔ y ≺ y1, hence y ≺ y1 ⇒
𝑞(1− y) ≥ 𝑞(1− y1). □

LEMMA 9: For any 𝑛× 𝑛 positive definite A, the solution
to the problem

min
F

tr(FAF𝐻) s.t. BF = C (52)

is F = B𝐻(BB𝐻)−1C, where the dimensions of F, B, and
C are 𝑚×𝑛, 𝑝×𝑚, and 𝑝×𝑛, respectively, and rank(B) =
𝑝 < 𝑚.

PROOF: The complete solution to the linear constraint in
(52) is

F = B𝐻(BB𝐻)−1C+
(
I𝑚 −B𝐻(BB𝐻)−1B

)
X (53)

where X is an arbitrary 𝑚×𝑛 matrix. Substituting (53) back
into the objective function of (52), and using the fact that
B(I𝑚 − B𝐻(BB𝐻)−1B) = 0𝑝×𝑚, where 0𝑝×𝑚 denotes a
𝑝×𝑚 matrix with all zero entries, we have

tr(FAF𝐻)

= tr
(
B𝐻(BB𝐻)−1CAC𝐻(BB𝐻)−1B

)
+ tr

((
I𝑚 −B𝐻

×(BB𝐻)−1B
)
XAX𝐻

(
I𝑚 −B𝐻(BB𝐻)−1B

))
. (54)

Since A is positive definite, (54) is minimized if and only if
X = 0𝑚×𝑛. Thus, we obtain F = B𝐻(BB𝐻)−1C. □

We start to prove Theorem 1 for Schur-concave objective
functions. Let us define

A1 = H1F1F
𝐻
1 H𝐻

1 (55)

A𝑖 = H𝑖F𝑖(A𝑖−1 + I𝑁𝑖)F
𝐻
𝑖 H𝐻

𝑖 , 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿 (56)

and write A𝑖 = U𝐴𝑖Λ𝐴𝑖U
𝐻
𝐴𝑖
, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, as the eigen-

decomposition of A𝑖, where Λ𝐴𝑖 is an 𝑁𝑏 × 𝑁𝑏 diagonal
matrix containing all nonzero eigenvalues of A𝑖 sorted in the
increasing order for all 𝑖, and U𝐴𝑖 is the associated 𝑁𝑖+1×𝑁𝑏

matrix of eigenvectors. From (55) and (56), we have

H1F1 = U𝐴1Λ
1
2

𝐴1
Q1 (57)

H𝑖F𝑖(A𝑖−1 + I𝑁𝑖)
1
2 = U𝐴𝑖Λ

1
2

𝐴𝑖
Q𝑖, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿 (58)

where Q1 is an 𝑁𝑏×𝑁𝑏 unitary matrix, Q𝑖 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿, are
𝑁𝑏 ×𝑁𝑖 semi-unitary matrices with Q𝑖Q

𝐻
𝑖 = I𝑁𝑏

. It will be
seen that the power constraints (13) and (14) are invariant to
Q𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿. We obtain from (58) that

H𝑖F𝑖 = U𝐴𝑖Λ
1
2

𝐴𝑖
Q𝑖(A𝑖−1 + I𝑁𝑖)

− 1
2 , 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿. (59)

Applying the matrix inversion lemma to (11), the MMSE
matrix E can be written as

E = I𝑁𝑏
−

𝐿⊗
𝑖=1

(F𝐻
𝑖 H𝐻

𝑖 )

(
𝐿∑

𝑙=1

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)

𝐿⊗
𝑖=𝑙

(F𝐻
𝑖 H𝐻

𝑖 )
)
+ I𝑁𝐿+1

)−1 1⊗
𝑖=𝐿

(H𝑖F𝑖) . (60)

Substituting (56), (57) and (59) to (60), we have

E = I𝑁𝑏 −Q𝐻
1 Λ

1
2
𝐴1

U𝐻
𝐴1

𝐿⊗
𝑖=2

(
(A𝑖−1 + I𝑁𝑖)

− 1
2

×Q𝐻
𝑖 Λ

1
2
𝐴𝑖

U𝐻
𝐴𝑖

)
(A𝐿 + I𝑁𝐿+1)

−1

2⊗
𝑖=𝐿

(
U𝐴𝑖Λ

1
2
𝐴𝑖

Q𝑖(A𝑖−1 + I𝑁𝑖)
− 1

2

)
U𝐴1Λ

1
2
𝐴1

Q1

= I𝑁𝑏−Q𝐻
1 Λ

1
2
𝐴1

U𝐻
𝐴1

𝐿⊗
𝑖=2

(
U𝐴𝑖−1(Λ𝐴𝑖−1+ I𝑁𝑏)

− 1
2U𝐻

𝐴𝑖−1

Q𝐻
𝑖 Λ

1
2
𝐴𝑖

U𝐻
𝐴𝑖

)
U𝐴𝐿(Λ𝐴𝐿 + I𝑁𝑏)

−1U𝐻
𝐴𝐿

2⊗
𝑖=𝐿

(
U𝐴𝑖Λ

1
2
𝐴𝑖

×Q𝑖U𝐴𝑖−1(Λ𝐴𝑖−1 + I𝑁𝑏)
− 1

2 U𝐻
𝐴𝑖−1

)
U𝐴1Λ

1
2
𝐴1

Q1 (61)

≜ I𝑁𝑏 −G .

Applying Lemmas 2 and 3 to G, we obtain

d[G]≺𝝀[G]≺wd[G̃] (62)

where G̃ is a diagonal matrix given by

G̃ ≜ Λ
1
2

𝐴1

𝐿⊗
𝑖=2

(
(Λ𝐴𝑖−1+ I𝑁𝑏

)−
1
2Λ

1
2

𝐴𝑖

)
(Λ𝐴𝐿+ I𝑁𝑏

)−1

2⊗
𝑖=𝐿

(
Λ

1
2

𝐴𝑖
(Λ𝐴𝑖−1+ I𝑁𝑏

)−
1
2

)
Λ

1
2

𝐴1

=

𝐿⊗
𝑖=1

(Λ𝐴𝑖(Λ𝐴𝑖 + I𝑁𝑏
)−1) .

Since 𝑞(d[E]) is Schur-concave and increasing with respect
to d[E], from Lemma 8 we find that 𝑞(d[I𝑁𝑏

− G]) is
Schur-concave and decreasing with respect to d[G]. Obvi-
ously, −𝑞(d[I𝑁𝑏

− G]) is Schur-convex and increasing with
respect to d[G]. Based on Lemma 4 and (62), we obtain
−𝑞(d[I𝑁𝑏

−G]) ≤ −𝑞(d[I𝑁𝑏
− G̃]), hence 𝑞(d[I𝑁𝑏

−G]) ≥
𝑞(d[I𝑁𝑏

− G̃]). From (61), we see that the minimum is
obtained at

Q1 = Φ, Q𝑖 = ΦU𝐻
𝐴𝑖−1

, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿
where Φ stands for an arbitrary 𝑁𝑏×𝑁𝑏 diagonal matrix with
unit-norm main diagonal elements, i.e., ∣[Φ]𝑖,𝑖∣ = 1, [Φ]𝑖,𝑗 =
0, 𝑖, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏, 𝑖 ∕= 𝑗. Without affecting min 𝑞(d[E]), we
choose Q1 = I𝑁𝑏

, and Q𝑖 = U𝐻
𝐴𝑖−1

, 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿.
Now we set out to consider the power constraints. First,

we introduce some notations: for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, F̂𝑖 ≜ V𝐻
𝑖 F𝑖,

U𝑖 ≜ [U𝑖,𝑟𝑖 ,U𝑖,𝑟𝑖 ], where U𝑖,𝑟𝑖 and U𝑖,𝑟𝑖 contain the left
singular vectors of H𝑖 associated with the zero and nonzero
singular values of H𝑖, respectively, Σ𝑖,𝑟𝑖 is a diagonal matrix
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containing the nonzero singular values of H𝑖, Σ𝑖,1 contains
the largest 𝑁𝑏 singular values of H𝑖 sorted in the same order
as the diagonal elements of Λ𝐴𝑖 . Substituting the SVD of H1

in (15) into (57) and left multiplying by U𝐻
1 on both sides,

we have[
0(𝑁2−𝑟1)×(𝑁1−𝑟1) 0(𝑁2−𝑟1)×𝑟1

0𝑟1×(𝑁1−𝑟1) Σ1,𝑟1

]
F̂1 = U𝐻

1 U𝐴1Λ
1
2

𝐴1
Q1 .

(63)
If 𝑁1 = 𝑁2 = 𝑟1, (63) holds if and only if

F̂1 = Σ−1
1,𝑟1

U𝐻
1,𝑟1U𝐴1Λ

1
2

𝐴1
Q1 . (64)

If 𝑁1 > 𝑁2 = 𝑟1, then (63) holds if and only if

[
0𝑟1×(𝑁1−𝑟1) Σ1,𝑟1

]
F̂1 = U𝐻

1,𝑟1U𝐴1Λ
1
2

𝐴1
Q1 . (65)

Finally, if 𝑁1 > 𝑟1, 𝑁2 > 𝑟1, (63) is true if and only if
U𝐻

1,𝑟1U𝐴1 = 0(𝑁2−𝑟1)×𝑁𝑏
and (65) holds. From (65), we see

that in the latter two cases, there are many solutions for F̂1.
We should choose F̂1 such that the transmission power at the
source node is minimized. Since tr(F1F

𝐻
1 ) = tr(F̂1F̂

𝐻
1 ), the

transmission power minimization problem is written as

min
F̂1

tr
(
F̂1F̂

𝐻
1

)
(66)

s.t.
[
0𝑟1×(𝑁1−𝑟1) Σ1,𝑟1

]
F̂1 = U𝐻

1,𝑟1U𝐴1Λ
1
2

𝐴1
Q1.(67)

From Lemma 9, the solution to the problem of (66) and (67)
is given by

F̂1 =
[
0𝑟1×(𝑁1−𝑟1) Σ−1

1,𝑟1

]𝑇
U𝐻

1,𝑟1U𝐴1Λ
1
2

𝐴1
Q1 . (68)

To determine U𝐴1 in (64) and (68), we substitute (64) and
(68) into the objective function of (66). Interestingly, both (64)
and (68) lead to the same transmission power, given by

tr
(
F1F

𝐻
1

)
= tr

(
Λ

1
2

𝐴1
U𝐻

𝐴1
U1,𝑟1Σ

−2
1,𝑟1

U𝐻
1,𝑟1U𝐴1Λ

1
2

𝐴1

)
.

(69)
We note that the transmission power (69) is invariant to
Q𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿. Using Lemma 5, we know that under
rank(F1) = 𝑁𝑏, (69) is minimized if and only if U𝐻

𝐴1
U1,𝑟1 =

[0𝑁𝑏×(𝑟1−𝑁𝑏),Φ]. The minimum of (69) is tr(Λ𝐴1Σ
−2
1,1).

Without loss of generality, we choose Φ = I𝑁𝑏
. Therefore, we

have U𝐴1 = U1,1, and together with Q1 = I𝑁𝑏
, we obtain

F1=V1

[
0𝑁𝑏×(𝑁1−𝑁𝑏),Σ

−1
1,1Λ

1
2

𝐴1

]𝑇
=V1,1Σ

−1
1,1Λ

1
2

𝐴1
.

We have now proved that the optimal structure of F1 is as in

(16) with Λ1 = Σ−1
1,1Λ

1
2

𝐴1
.

Now we consider the power constraints (14). Similar to
steps (63)-(68), for 𝑖 = 2, ⋅ ⋅ ⋅ , 𝐿, we have U𝐻

𝑖,𝑟𝑖U𝐴𝑖 =
0(𝑁𝑖+1−𝑟𝑖)×𝑁𝑏

when 𝑁𝑖+1 > 𝑟𝑖 and

F̂𝑖 = Σ−1
𝑖,𝑟𝑖

U𝐻
𝑖,𝑟𝑖U𝐴𝑖Λ

1
2

𝐴𝑖
Q𝑖(A𝑖−1 + I𝑁𝑖)

− 1
2 , 𝑟𝑖 = 𝑁𝑖

F̂𝑖 =
[
0𝑟𝑖×(𝑁𝑖−𝑟𝑖) Σ−1

𝑖,𝑟𝑖

]𝑇
U𝐻

𝑖,𝑟𝑖U𝐴𝑖Λ
1
2

𝐴𝑖

×Q𝑖(A𝑖−1 + I𝑁𝑖)
− 1

2 , 𝑟𝑖 < 𝑁𝑖

where we solved the following problem using Lemma 9

min
F̂𝑖

tr

(
F̂𝑖

(
𝑖−1∑
𝑙=1

( 𝑙⊗
𝑛=𝑖−1

(H𝑛F𝑛)

𝑖−1⊗
𝑛=𝑙

(
F𝐻

𝑛 H𝐻
𝑛

))
+ I𝑁𝑖

)
F̂𝐻

𝑖

)

s.t.
[
0𝑟𝑖×(𝑁𝑖−𝑟𝑖) Σ𝑖,𝑟𝑖

]
F̂𝑖

= U𝐻
𝑖,𝑟𝑖U𝐴𝑖Λ

1
2

𝐴𝑖
Q𝑖(A𝑖−1 + I𝑁𝑖)

− 1
2 .

The transmission power at the 𝑖th node is

tr
(
F𝑖(A𝑖−1 + I𝑁𝑖)F

𝐻
𝑖

)
= tr

(
Σ−1

𝑖,𝑟𝑖
U𝐻

𝑖,𝑟𝑖U𝐴𝑖Λ𝐴𝑖U
𝐻
𝐴𝑖
U𝑖,𝑟𝑖Σ

−1
𝑖,𝑟𝑖

)
. (70)

Obviously, (70) is also invariant to Q𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿. Similar
to (69), (70) is minimized by U𝐴𝑖 = U𝑖,1, and together with
Q𝑖 = U𝐻

𝐴𝑖−1
, we obtain

F𝑖 = V𝑖,1Σ
−1
𝑖,1Λ

1
2

𝐴𝑖
(Λ𝐴𝑖−1 + I𝑁𝑏

)−
1
2U𝐻

𝑖−1,1 .

Thus, the optimal structure of F𝑖 is given by (16) with Λ𝑖 =

Σ−1
𝑖,1Λ

1
2

𝐴𝑖
(Λ𝐴𝑖−1 + I𝑁𝑏

)−
1
2 . Therefore, we have now proved

the optimal structures of F𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝐿, for Schur-concave
objective functions.

The proof for the case of Schur-convex objective functions
is given as follows. Based on Definition 2 and Lemma 6,
the objective function (12) is minimized when E({F𝑖}) has
identical diagonal elements. Let us introduce the following
eigendecomposition

𝐿⊗
𝑖=1

(F𝐻
𝑖 H𝐻

𝑖 )

(
𝐿∑

𝑙=2

( 𝑙⊗
𝑖=𝐿

(H𝑖F𝑖)

𝐿⊗
𝑖=𝑙

(F𝐻
𝑖 H𝐻

𝑖 )
)
+ I𝑁𝐿+1

)−1

1⊗
𝑖=𝐿

(H𝑖F𝑖) = U𝐸Λ̃𝐸U
𝐻
𝐸

where the dimensions of U𝐸 and Λ̃𝐸 are both 𝑁𝑏 × 𝑁𝑏.
From (11), we have E({F𝑖}) = U𝐸Λ𝐸U

𝐻
𝐸 , where Λ𝐸 =

(I𝑁𝑏
+ Λ̃𝐸)

−1. Based on Lemma 7, we know that there is a
unitary U0 such that U𝐻

0 Λ𝐸U0 has identical main diagonal
elements. Therefore, for any given {F𝑖}, we can use F̃1 =
F1U𝐹 , where U𝐹 = U𝐸U0 to have an E with identical main
diagonal elements, and hence improve the performance. Since
U𝐹 is unitary, rotating F1 by U𝐹 does not affect tr(E({F𝑖}))
and the power constraints. Using such F̃1, we have[

E
(
F̃1,F2, ⋅ ⋅ ⋅ ,F𝐿

)]
𝑘,𝑘

=
1

𝑁𝑏
tr(E(F1,F2, ⋅ ⋅ ⋅ ,F𝐿)) ,

𝑘 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 . (71)

Matrix U0 can be any rotation matrix that satisfies ∣[U0]𝑖,𝑘∣=
∣[U0]𝑖,𝑙∣, ∀𝑖, 𝑘, 𝑙. When the dimensions are appropriate such as
a power of two, the discrete Fourier transform matrix can be
chosen for U0. While for general case, U0 can be computed
using the method developed in [18].

From (71), we see that {F𝑖} should be chosen to mini-
mize tr(E({F𝑖})). Since tr(E({F𝑖})) is a Schur-concave1

1In fact, tr(d[A]) is both Schur-convex and Schur-concave with respect
to d[A].
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and increasing function of d[E({F𝑖})], the previous results
for Schur-concave objective functions can be applied here.
Therefore, there are two steps in the optimal relay design
with Schur-convex objective functions. First, we compute the
optimal {F𝑖} according to (16) using tr(E) as the objective
function. After the first step, we obtain a diagonal E (i.e.,
U𝐸 = I𝑁𝑏

) with minimal tr(E). In the second step, F1

is rotated by U𝐹 = U0 such that the new E has identical
main diagonal elements. Therefore, for Schur-convex objective
functions, the optimal {F𝑖} are given by (17). □
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