
Cyber-Physical Systems Education:
Explorations and Dreams

Sanjit A. Seshia

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, USA

Abstract. The field of cyber-physical systems (CPS), as a well-defined intellec-
tual discipline, is entering its second decade. The past decade has seen several ex-
plorations in CPS education, accompanied by related research projects and tech-
nologies. This article reviews some of these explorations that the author has been
involved with, and tries to extrapolate these to “dreams” for what the future may
bring.

1 Prologue

In 2006, the term “cyber-physical systems” was coined by Helen Gill at the U.S. Na-
tional Science Foundation to capture an emerging discipline concerned with the inte-
grations of computation with physical processes. A nascent research community started
to emerge, building on the momentum cutting across fields such as embedded systems,
real-time systems, hybrid systems, control theory, sensor networks, and formal meth-
ods. Discussions began about developing curricula for training students interested in
working in the broad area of cyber-physical systems.

During the 2006-07 academic year, a small group of UC Berkeley faculty in the
Electrical Engineering and Computer Sciences (EECS) Department, including Edward
Lee, Claire Tomlin, and myself, met to discuss the creation of an undergraduate curricu-
lum in CPS. Berkeley had already been a pioneer in research and graduate education in
CPS for several years, but there were still no undergraduate courses focusing on CPS. A
major challenge was the breadth of topics needed to cover the area. A further challenge
was to achieve a balance between theoretical content and practical, lab-based course-
work. From the discussion, the basic contours of an undergraduate course emerged, and
over the next decade it developed into a broader “expedition” in CPS education.

A major expedition to explore the unknown is best undertaken by a team. This
has been true of some of the major expeditions in history, such as the Lewis and Clark
expedition, and it is true of expeditions in research and teaching. In my case, I have been
fortunate to undertake this expedition in CPS education with Edward Lee and several
others. It has comprised several smaller explorations along “trails” in CPS education.
This article is my attempt to report on these explorations, the results they obtained, and
what we learned from them, and to extrapolate them to “dreams” for the future of CPS
education.



2 Trail I: EECS 149

During the Spring 2008 semester, Edward Lee and I co-taught the first offering of In-
troduction to Embedded Systems, the undergraduate course in CPS we created at Berke-
ley [14].1 I will refer to this course by its number in the Berkeley course catalog, EECS
149. We limited enrollment and advertised the class as being for “advanced and adven-
turous” undergraduates. A small class of about 20 students showed up. Over the course
of the next 13 weeks, we explored a selection of topics in CPS together, blending theo-
retical topics with experimental work. It was a rewarding experience in many ways —
perhaps most satisfyingly, two of the students in that class, Jeff Jensen and Trung Tran,
went on to work closely with us on further developing the laboratory and online content
for the course.

There were a few key decisions we faced in designing a new undergraduate course
in CPS. At the time, we ended up making choices that just seemed natural to us. Ten
years on, I believe these choices have proved crucial in developing a durable and unique
CPS curriculum at Berkeley, one which is also starting to have a promising impact at
institutions around the world.
Diversity of Topics and Backgrounds: The field of CPS draws from several areas in
computer science, electrical engineering, and other engineering disciplines, including
computer architecture, embedded systems programming languages, software engineer-
ing, real-time systems, operating systems and networking, formal methods, algorithms,
theory of computation, control theory, signal processing, robotics, sensors and actua-
tors, and computer security. How do we integrate this bewildering diversity of areas
into a coherent whole?

One approach would be not to attempt such an integration. Instead, one could have a
collection of courses that together cover all the key areas in CPS. However, we felt that
this approach would have two major shortcomings. First, the reader can observe that the
collection of areas could essentially end up covering a whole undergraduate program in
electrical engineering and computer science! Second, in CPS there is a pressing need
for people who understand the intersection between the various areas. We believed that
the treatment of the subject of CPS would be best achieved by carefully selecting a
collection of topics from the various areas and then presenting a unified treatment that
emphasizes how they interact in the modeling, design, and analysis of CPS.

A related challenge was to deal with the diversity of backgrounds students bring to
a course in CPS. Over the years, we have had students from computer science, elec-
trical and computer engineering, mechanical engineering, civil engineering, and even
bioengineering. Presenting a unified treatment of the various topics in CPS helps miti-
gate this challenge somewhat, by reducing the dependence on any specific collection of
topics one might encounter in a specific engineering program.
Balancing Theory and Practice: Many courses on embedded systems focus on the
collection of technologies needed to get computers to interact properly with the physi-
cal world, including sensor calibration, interfacing with sensors and other input/output

1 At the time, the term “cyber-physical systems” was still in its infancy, so we decided to use
“embedded systems” instead since, at least at Berkeley, we believed that they were essentially
equivalent — two names for the same class of systems.



devices, programming in assembly or low-level languages, etc. Others focus more on
applications, such as building a robotic system such as an autonomous vehicle or an
Internet-of-Things (IoT) application. Still others focus entirely on theoretical topics,
such as models of computation for CPS, or formal modeling and verification. With
EECS 149, we decided very early on to blend theoretical topics with practical, lab-
based work. Further we decided to build some flexibility into the lab work, splitting
it into a 6-week structured lab sequence followed by a capstone design project whose
topic students could choose for themselves. In particular, from the very beginning, a
programmable, somewhat-customizable mobile robotic platform called the Cal Climber
(see Fig. 1)2 was chosen for the structured lab sequence, with the following assignment:

Design a controller to drive the Cal Climber. On level ground, your robot
should drive straight. When an obstacle is encountered, such as a cliff or an
object, your robot should navigate around the object and continue in its orig-
inal orientation. On an incline, your robot should navigate uphill, while still
avoiding obstacles. Use the accelerometer to detect an incline and as input to
a control algorithm that maintains uphill orientation.

Fig. 1. Cal Climber Laboratory Platform (early prototype).

This simple assignment allowed us to interleave basic conceptual and theoretical top-
ics with the lab sequence: for example, students learned about modeling and interfac-
ing with sensors and actuators in class as they interfaced to an accelerometer in the
lab; they learned about programming with interrupts in class as they worked with an
interrupt-driven controller in the lab, and they learned about modeling with state ma-
chines, composition, and hierarchy in class as they programmed their controller with
StateCharts in the lab. We have found this interleaved presentation to help students gain
an appreciation for theory in lab work and for motivating theoretical topics in class. We
have seen students continue making these connections in their capstone projects, with
very satisfactory learning outcomes.

A further aspect of balancing theory with practice is the emphasis in the course on
formal methods and model-based design. Formal methods is a field of computer sci-
ence and engineering concerned with the rigorous mathematical specification, design,

2 In the initial years, this platform was the iRobot Create, the programmable version of the
Roomba vacuum cleaner. Later, we moved to the very similar Kobuki platform.



and verification of computational systems [33, 1]. We decided early on to make formal
methods and model-based design a key component of the course. In part, this is due
to our research backgrounds involving extensive work on these topics. However, we
took this step with some trepidation — after all, it is known from earlier experiments
in undergraduate education that an emphasis on formal modeling and proof can be a bit
“dry” and difficult for students. However, our overall experience has been very promis-
ing. Students realized the value of formal modeling, e.g., in reducing the number of
design iterations needed to succeed in their capstone projects. This positive experience
has extended beyond the community of Berkeley students to include students in the on-
line course we offered a few years ago (see Sec. 4). Similarly, the integration of formal
methods with practical lab work forced us to prune down the subject to a core set of
formal methods topics that we found to be most relevant to an introductory course in
CPS.

A more detailed discussion of the philosophy underlying the course, especially on
the lab component and its integration with theoretical content, appears in [4, 19].

3 Trail II: The Lee & Seshia Textbook

By the fall of 2009, we had offered EECS 149 twice already. The course, as noted ear-
lier, was unique in its coverage of a broad set of topics and its integration of theory
and practical content. Edward Lee and I could not find a single book that could cover
all the content we wanted to teach. Therefore, we started to develop our own course
notes. Gradually the notes grew into something more coherent, and we decided to put
them together as a textbook. In 2010-11, this effort culminated in the publication of
the first edition of Introduction to Embedded Systems: A Cyber-Physical Systems Ap-
proach [16].

In earlier articles and the book’s preface [15, 19, 16, 17], we have discussed at length
the various design decisions made in writing the textbook, and how this book differs
from other CPS textbooks. Therefore, we discuss here aspects that have not been cov-
ered in depth elsewhere.
Definition of CPS: A textbook on cyber-physical systems must define what that class
of systems is. CPS have been informally described as integrations of computation with
physical processes. Some definitions emphasize the networked aspect of these systems.
Still others make distinctions between CPS and other terms such as the Internet of
Things (IoT), embedded systems, the Industrial Internet, Industry 4.0, etc.

We chose an inclusive approach, formulating the following definition:

A cyber-physical system (CPS) is an integration of computation with physical
processes whose behavior is defined by both cyber and physical parts of the
system.

This definition defines CPS as being about the intersection, not the union, of the phys-
ical and the cyber. It is not sufficient to separately understand the physical components
and the computational components; we must instead understand their interaction. Note
that we do not define the CPS as being networked or having other specific character-
istics. We believe that the terms CPS, embedded systems, IoT, Industry 4.0, etc. are



essentially equivalent, describing the same class of systems while emphasizing differ-
ent characteristics of those systems.
Emphasis on Models and Software: Mirroring the EECS 149 course, we decided to
focus the book on the interplay of software and hardware with the physical processes
with which they interact. Most specifically, we chose not to focus on the design of hard-
ware components of CPS. These aspects are clearly important in any actual CPS design.
However, with increasing commoditization of hardware, including processors, sensors,
and actuators, we believe that the major intellectual challenge in CPS lies in how we
can most effectively design algorithms, models and software to harness a combina-
tion of hardware, sensors, actuators, and networking components to achieve a design
objective. Moreover, industry trends (e.g., in automotive systems) clearly indicate an
explosive growth in the software in CPS – both in terms of opportunities and com-
plexity. For these reasons, our textbook places an emphasis on rigorous mathematical
models coupled with software design and implementation for the design of CPS. Such
modeling and programming must be informed by hardware, no doubt. To that end, we
present ways to effectively model relevant properties of hardware components so as to
use those properties in making higher-level design choices.

Fig. 2. Organization of the Lee & Seshia Textbook (2nd edition).

Organization: We made two key decisions in the organization of course content in the
textbook. First, we decided to split the book into three parts, focusing respectively on
Modeling, Design, and Analysis. Figure 2 gives the organization of the current edition



with the dependencies between chapters. The three parts are relatively independent of
each other and are meant to be read concurrently. For example, in EECS 149, we in-
terleave a discussion of programming with interrupts and threads (Part II on Design)
with one on modeling with interacting state machines (Part I on Modeling). This en-
ables students to see the connections between the more theoretical content on modeling
with the more applied content on design and implementation. Moreover, it has enabled
others to use the textbook for their own customized purposes — we are aware of more
applied classes focusing mainly on Part II, whereas more theoretical classes on formal
methods use portions of Parts I and III. Finally, we decided not to include details of
laboratory exercises in this textbook. A separate lab book, co-authored with Jeff Jensen
and in collaboration with National Instruments, was published online [5]. One reason
for this separation is the difficulty in replicating a lab setup across institutions. We have
found a far greater number of institutions using our textbook as compared to the lab
book, and this is in part due to the various hardware and space dependencies, as well as
support systems required to successfully replicate the lab content.
Publishing: We decided to try a publishing experiment with the first edition of this
book. Rather than going with a traditional, established publisher, we decided to use a
“print-on-demand” online publisher. This allowed us, amongst other things, to keep a
free PDF version online while also providing readers with the option of purchasing a
paper copy. Moreover, the paper copy was able to be sold at a much lower price that
we believed would be the case with traditional publishers. Six years on, we believe this
experiment made the right choices. As of this writing, our textbook has been adopted
at around 300 institutions in over 50 countries — some of these, we are fairly sure,
would not have been possible without the free PDF version being available online.
Additionally, we found that many readers do purchase a paper copy even though a free
PDF is available. Our most recent (second) edition is now published by MIT Press at
what appears to be an affordable price and with a PDF available online for free. Having
the PDF available online also made it easier for us to use the book in the online version
of EECS 149 on edX, since enrollees around the world could consult the version they
could most easily get their hands on.

4 Trail III: MOOCs and Exercise Generation

The advent of massive open online courses (MOOCs) [23] has promised to bring world-
class education to anyone with Internet access. Additionally, it has placed a renewed
focus on the development and use of computational aids for teaching and learning.
MOOCs present a range of problems to which the field of formal methods has much to
contribute. These include automatic grading, automated exercise generation, and vir-
tual laboratory environments. In automatic grading, a computer program verifies that a
candidate solution provided by a student is “correct”, i.e., that it meets certain instructor-
specified criteria (the specification). In addition, and particularly when the solution is
incorrect, the automatic grader (henceforth, auto-grader) should provide feedback to
the student as to where he/she went wrong. Automatic exercise generation is the process
of synthesizing problems (with associated solutions) that test students’ understanding of
course material, often starting from instructor-provided sample problems. Finally, for



courses involving laboratory assignments, a virtual laboratory (henceforth, lab) seeks
to provide the remote student with an experience similar to that provided in a real,
on-campus lab.

In 2011-12, we started to brainstorm about an online version of EECS 149, and what
technologies we could develop to aid in creating such an online course. We first looked
at the task of automatic exercise generation. The term “automatic” may seem to indicate
a goal of completely automating the process of creating problems and solutions. How-
ever, we felt that it would be unrealistic and also somewhat undesirable to completely
remove the instructor from the problem generation process, since this is a creative pro-
cess that requires the instructor’s input to emphasize the right concepts. Automation is
best employed in those aspects of problem generation that are tedious for an instructor.
Additionally, in the MOOC setting, generating customized problems for students is im-
possible without some degree of automation. Finally, creating many different versions
of a problem can help to reduce cheating by blind copying of solutions.

Examining problems from all three parts of the Lee and Seshia textbook [16],
Sadigh et al. [26] take a template-based approach to automatic problem generation.
Specifically, several existing exercises in the book are shown to conform to a template.
The template identifies common elements of these problems while representing the dif-
ferentiating elements as parameters or “holes”. In order to create a new problem, the
template essentially must be instantiated with new parameter values. However, it is of-
ten useful to create new problems that are “similar” in difficulty to existing hand-crafted
problems. To facilitate this, new problems are generated using a bounded number of mu-
tations to an existing problem, under suitable constraints and pruning to ensure well-
defined results. An instructor can then select results that look reasonable to him or her.

For brevity, we outline some of the main insights reported in [26] as they relate to the
application of formal methods. The first insight relates to the structure of exercises After
investigating the exercises from certain relevant chapters (Ch. 3,4,9,12,13) of Lee and
Seshia [16], we found that more than 60% of problems fit into the model-based category,
where the problem tests concepts involving relationships between models, properties
and traces. Figure 3 is an illustration of the three entities, and their characteristics. At
any point, given one or two of these entities, we can ask about instances of the unknown
entity. Table 1 groups exercises into different classes based on what is given and what
is to be found. Each group represents an interaction between models, properties and
traces. The first column shows the given entity, and the second column is the unknown
entity. The third column shows some of the variations of the same class of problem.

Table 2 states a solution technique for each problem category listed in Table 1. Note
that major topics investigated in formal methods such as model checking, specification
mining, and synthesis can be applied to various tasks in exercise generation. Moreover,
since textbook problems are typically smaller than those arising in industrial use, their
size is within the capacity of existing tools for synthesis and verification.

5 Trail IV: EECS 149.1x and CPSGrader

During 2012-13, we began a concerted effort to develop a MOOC version of EECS 149.
Berkeley had joined edX as a university partner, and a large campus effort was under-



Fig. 3. Models, Properties and Traces: Entities in exercises in Lee and Seshia textbook [16] (re-
produced from [26]).

Given Find Variations Exercise #
〈φ〉 〈M〉 (i)φ ∈ English

or LTL
(ii)use hybrid
systems for M
(iii)Modify
pre-existing M

3.1, 3.2,
3.3, 4.1,
4.2, 4.3,
4.4, 4.5,
4.6, 4.8,
9.4, 9.6,
13.2, 13.3

〈M〉 〈ψ〉 (i)reachable
trace
(ii)describe
output

3.3, 3.5, 4.2

〈M〉 〈φ〉 Models can be
given in code or
formal descrip-
tion

3.2, 12.3

〈M〉 & 〈ψ〉 〈ψ〉 Given input
trace → find
output trace

9.5

〈M〉 & 〈φ〉 〈ψ〉 Find counterex-
ample or wit-
ness trace

3.4, 4.3,
12.1

Table 1. Classification of Model-Based Problems in Lee and Seshia [16], First Edition, Version
1.06 (reproduced from [26])



Given Find Solution Technique
〈φ〉 〈M〉 Constrained Synthesis or Repair
〈M〉 〈ψ〉 Simulation of Model
〈M〉 〈φ〉 Specification Mining

〈M〉 & 〈ψ〉 〈ψ〉 Simulation with Guidance
〈M〉 & 〈φ〉 〈ψ〉 Model Checking

Table 2. Techniques to Find Solutions for Model-Based Problems (reproduced from [26])

way to engage with the emerging landscape on large-scale online education. However,
taking EECS 149 online was not going to be easy.

One the one hand, with the growing interest in CPS from academia and industry,
there was a clear demand for making educational resources in CPS more widely acces-
sible. Having materials from EECS 149 and the Lee-Seshia textbook available freely
online made it easier to offer a free MOOC to the broader community. On the other
hand, a major challenge was posed by the lab component of the course. Lab-based
courses that are not software-only, such as EECS 149, pose a particular technical chal-
lenge for MOOCs. A key component of learning in lab-based courses is working with
hardware, getting “one’s hands dirty.” It appears extremely difficult, if not impossible,
to provide that experience online. And yet, it is undeniably useful to provide a learning
experience that approximates the real lab as well as possible. Indeed, in industrial de-
sign one often prototypes a design in a simulated environment before building the real
artifact. Thus, we decided to build a virtual laboratory environment for EECS 149, and
blend that with suitable theoretical content to create the MOOC version.

Working with Edward Lee and Jeff Jensen, and a team at National Instruments, my
research group and I developed courseware and technologies for an online course in
CPS. In Spring 2013, we presented a paper sketching out our main ideas for a virtual
lab in CPS [6]. In 2013-14, we began an effort that culminated in two key contribu-
tions: EECS 149.1x [18], the online version of EECS 149 offered on edX in 2014, and
CPSGrader, an automatic grading and feedback system for virtual laboratory environ-
ments [9]. We describe both these efforts in more detail below.

5.1 CPSGrader

In an ideal world, we would provide an infrastructure where students can log in re-
motely to a computer which has been preconfigured with all development tools and
laboratory exercises and gives the students a view into how their solution is execut-
ing in the real lab setting; in fact, pilot projects exploring this approach have already
been undertaken (e.g., see [22]). However, in the MOOC setting, the large numbers of
students makes such a remotely-accessible physical lab expensive and impractical. A
virtual lab environment, driven by simulation of real-world environments, appears to be
the only solution at present.

To this end, we developed CPSGrader, which combines virtual lab software with
automatic grading and feedback for courses in the areas of cyber-physical systems and
robotics [10, 8, 9]. CPSGrader has been successfully used in both the on-campus In-
troduction to Embedded Systems at UC Berkeley [14] and its online counterpart on



edX [18]. Recall that in the lab component of this course, students program the Cal
Climber [5] robot (see Fig. 1) to perform certain navigation tasks like obstacle avoid-
ance and hill climbing. Students can prototype their controller to work within a simu-
lated environment based on the LabVIEW Robotics Environment Simulator by National
Instruments (see Figure 4 and 5).

Fig. 4. Cal Climber in the LabVIEW Robotics Environment Simulator.

The virtual lab dynamical model is a complex, physics-based one, which, due to its
complexity and dependence on third party components, we decided to treat as a black
box. CPSGrader employs simulation-based verification, arguably the main scalable for-
mal approach in this setting. Correctness and the presence of certain classes of mistakes
are both checked using test benches formalized in Signal Temporal Logic (STL) [21].
However, coming up with these STL properties can be tedious and error-prone, even
for instructors well-versed in formal methods. Therefore, in Juniwal et al. [10], we
showed how these temporal logic testers can be synthesized from examples. Our ap-
proach can be viewed as an instance of machine learning from student solutions that
have the fault (positive examples) and those that do not (negative examples). An active
learning framework has also been developed to ease the burden of labeling solutions
as positive or negative [8]. In machine learning terminology, this can be thought of as
the training phase. The resulting test bench then becomes the classifier that determines
whether a student solution is correct, and, if not, which fault is present. CPSGrader was



used successfully in the edX course EECS149.1x offered in May-June 2014 [18], an
experiment we describe in more detail in Sec. 5.2.

Fig. 5. Simulator with auto-grading functionality used in EECS 149.1x.

There are several interesting directions for future work, including developing quan-
titative methods for assigning partial credit, mining temporal logic testers to capture
new classes of student mistakes, and online monitoring of these testers to improve re-
sponsiveness.

5.2 EECS 149.1x

Over a 7-week period in May-June 2014, we offered EECS 149.1x: Cyber-Physical
Systems free to the public on the edX platform. To our knowledge, this was the first
MOOC covering a breadth of topics in CPS offered on any of the major platforms. We
simplified some of the course content from the material in EECS 149, since we could
not rely on students in the MOOC having the same pre-requisite background that UC
Berkeley students possess. The course included 49 lectures comprising nearly 11 hours
of video content. It also included 6 weekly lab assignments that somewhat mirrored
the 6-week structured lab sequence in EECS 149. The Cal Climber lab was turned
into an entirely online lab to be performed using the virtual lab software we created
— CyberSim and CPSGrader — described in the preceding section. In addition, we
had an optional “hardware track” for those students who were open to purchasing and
assembling the hardware components themselves. The theoretical course topics covered
in the lectures included inline quizzes but no separate homework assignments — the lab
sequence was integrated with the theoretical course content. We organized the lectures
into the following ten modules: Introduction to CPS; Memory Architectures; Interrupts;
Modeling Continuous Dynamics; Sensors and Actuators; Modeling Discrete Dynamics;



Extended and Hybrid Automata; Composition of State Machines; Hierarchical State
Machines, and Specification & Temporal Logic.

The impact in MOOCs can be difficult to quantify, but here are some numbers from
EECS149.1x. The course attracted a peak enrollment of 8767, of which 2213 ended
up submitting at least one lab assignment. Of these, the number who passed the course
was 342 (4% of peak enrollment). Around the 6th week of the course, we conducted
an anonymized survey of the students still engaged in the MOOC. This produced some
very interesting and encouraging data, which I summarize here:
• We seemed to attract a population of students who had already taken other MOOCs

– 54% of those who stayed until the 6th week had taken 3 or more MOOCs.
• Of those who had taken at least one other MOOC, over 80% of the students rated our

course as good or better than the one(s) they had previously taken.
• A majority of the students were new to model-based design with a language like Lab-

VIEW, but even so, 73% found it to be a useful experience to do the lab assignment
in two different languages, C and LabVIEW.

• 86% of the students rated CPSGrader as being useful in their lab assignments – an
encouraging sign for the use of such tools for personalized education.

• A small fraction of students did the optional hardware track. Of these, over 90%
found that if their solution passed CPSGrader in the virtual lab, it worked on the real
hardware! This statistic was a really encouraging piece of data for the CPSGrader
project. We had been using CyberSim in the on-campus lab for a couple of years, but
saw no such correlation. However, using CPSGrader seems to have pushed students
to debug the corner cases that also improved the reliability of their solution on the
real hardware.

• We polled the students on the lecture modules they liked most, both from the view-
point of relevance to lab assignments and from a theoretical standpoint. This poll
was motivated in part for us to learn whether a general, non-Berkeley student popu-
lation, including several students working in industry, would be receptive to the large
formal methods content in the MOOC. To our pleasant surprise, we found that the
modules on Hierarchical State Machines and Composition of State Machines were
in the top three topics found relevant to the lab, while the module on Formal Speci-
fication and Temporal Logic ranked in the top three theoretical topics. This provides
some real-world validation that relevance of and receptiveness to formal methods in
a general student population.

In summary, creating the online version of EECS 149 was a lot of fun, and a tremon-
dously rewarding experience. It is a first step towards creating a strong learning expe-
rience for “lab-based MOOCs” in science and engineering. The CPSGrader software is
available open source and is architected to work with any simulator. Moreover, its suc-
cess points the way to a broader application of formal methods for enhancing science
and engineering education.

6 Dreams for the Future

As I think about the future of CPS education, and of engineering education in general,
two sets of articles come to mind. The first is a pair of thought-provoking articles written



by Lee and Messerschmitt as the twentieth century drew to a close. One article discussed
the future of engineering education, focusing, in particular, on electrical and computer
engineering [12]. The other article presented an innovative viewpoint on what higher
education might look like in the year 2049 [13]. The other set of articles has to do
with the recent studies and opinions about the impact of automation and information
technology (IT) on jobs (e.g., [2, 31, 32]).

A few threads emerge. First, with rapid technological change, and increasing au-
tomation, the need for lifelong learning becomes ever more important. Second, humans
will increasingly need to collaborate with intelligent machines in their jobs. How should
we design engineering and CPS education for such a future?

I will approach this question from the viewpoint of leveraging the work described
in the preceding four sections.

The landscape for CPS education in the near future looks very exciting, with op-
portunities for further innovation. For inspiration, we can look to the emerging areas
for research and industrial practice in CPS. There are at least three such areas that
are not adequately covered by EECS 149 and the textbook: (i) networking and dis-
tributed CPS; (ii) human-CPS (CPS that work in concert with humans), and (iii) CPS
that make extensive use of machine learning. All three are active areas of research by
the CPS community, and are finding broad applications in the real world. For example,
the TerraSwarm research center has developed a number of innovations in the area of
networked, distributed CPS (see, e.g., [3, 11, 28]), and some of these ideas have had a
direct impact on the material in EECS 149. Similarly, the CPS community is starting
to bring the strong formal approach to modeling, design and analysis that underlies
EECS 149 to the design of human-CPS, including modeling human cognition, percep-
tion, situational awareness, and action (see, e.g., [29, 24, 20, 25, 28]). Additionally, even
as machine learning becomes more pervasive in CPS, recent advances in formal design
and analysis of learning-based CPS (e.g., [27, 30, 7]) point the way to teaching a prin-
cipled approach to designing such systems to students and practitioners. Currently, in
EECS 149, we cover these topics mainly through the capstone design projects. Over the
next decade, we see them making their way into the core curriculum, although much
research remains to be done.

Some institutions around the world are seeing rapid growth in the number of stu-
dents who want to take classes and major in computer science and related areas. CPS/IoT
is already starting to be one of these areas. These institutions are seeing pressure on
campus teaching resources due to burgeoning enrollments. Technologies for personal-
ized education can play a role in reducing this pressure while ensuring that instructor
attention is used more effectively. They can also play a role in broadening access to
CPS education.

It is much harder to predict what role CPS education can play to mitigate the im-
pact of automation and IT on jobs. It is clear that technology is only part of the solution
(e.g., see [32, 2]). Even so, technologies for personalized education, such as CPSGrader,
can help by providing students with personalized feedback on their work, even in on-
line courses. Virtual lab technologies can enable students to build up expertise in a
vocational topic which can then make them more attractive to prospective employers.
However, the experience with several MOOCs so far has shown that the students who



benefit the most are the ones who were most motivated and best prepared in the first
place. How can one ensure that students who need more help can benefit as well? For
this, we need more work to develop structures such as the virtual “village” discussed by
Lee and Messerschmitt [13], where technologies like CPSGrader are integrated with a
community of mentors and peers forming a support system for the students.

Acknowledgments

I thank the anonymous reviewers for their feedback. The work described in this arti-
cle was supported in part by the National Science Foundation, by a gift from National
Instruments, and by TerraSwarm, one of six centers of STARnet, a Semiconductor Re-
search Corporation program sponsored by MARCO and DARPA.

References

1. Edmund M Clarke and Jeannette M Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

2. Committee on Information Technology, Automation, and the U.S. Workforce. Informa-
tion technology and the U.S. workforce: Where are we and where do we go from here?
http://www.nap.edu/24649.

3. Edward A. Lee et al. The swarm at the edge of the cloud. IEEE Design & Test, 31(3):8–20,
2014.

4. Jeff C. Jensen, Edward A. Lee, and Sanjit A. Seshia. An introductory capstone design course
on embedded systems. In Proc. International Symposium on Circuits and Systems (ISCAS),
pages 1199–1202, May 2011.

5. Jeff C. Jensen, Edward A. Lee, and Sanjit A. Seshia. An Introductory Lab in Embedded and
Cyber-Physical Systems. LeeSeshia.org, Berkeley, CA, 2012.

6. Jeff C. Jensen, Edward A. Lee, and Sanjit A. Seshia. Virtualizing cyber-physical systems:
Bringing CPS to online education. In Proc. First Workshop on CPS Education (CPS-Ed),
April 2013.

7. Susmit Jha and Sanjit A. Seshia. A Theory of Formal Synthesis via Inductive Learning. Acta
Informatica, 2017.

8. Garvit Juniwal. CPSGrader: Auto-grading and feedback generation for cyber-physical sys-
tems education. Master’s thesis, EECS Department, University of California, Berkeley, Dec
2014.

9. Garvit Juniwal, Alexandre Donzé, Jeff C. Jensen, and Sanjit A. Seshia. CPSGrader website.
http://www.cpsgrader.org.

10. Garvit Juniwal, Alexandre Donzé, Jeff C. Jensen, and Sanjit A. Seshia. CPSGrader: Syn-
thesizing temporal logic testers for auto-grading an embedded systems laboratory. In Pro-
ceedings of the 14th International Conference on Embedded Software (EMSOFT), October
2014.

11. Elizabeth Latronico, Edward A Lee, Marten Lohstroh, Chris Shaver, Armin Wasicek, and
Matthew Weber. A vision of swarmlets. IEEE Internet Computing, 19(2):20–28, 2015.

12. Edward A. Lee and David G. Messerschmitt. Engineering and education for the future. IEEE
Computer, 31:77–85, 1998.

13. Edward A. Lee and David G. Messerschmitt. A highest education in the year 2049. Pro-
ceedings of the IEEE, 87(9):1685–1691, 1999.



14. Edward A. Lee and Sanjit A. Seshia. EECS 149 course website. http://chess.eecs.
berkeley.edu/eecs149.

15. Edward A. Lee and Sanjit A. Seshia. An introductory textbook on cyber-physical systems.
In Proc. Workshop on Embedded Systems Education (WESE), October 2010.

16. Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. LeeSeshia.org, Berkeley, CA, first edition, 2011.

17. Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. MIT Press, second edition, 2016.

18. Edward A. Lee, Sanjit A. Seshia, and Jeff C. Jensen. EECS149.1x Course
Website on edX. https://www.edx.org/course/uc-berkeleyx/
uc-berkeleyx-eecs149-1x-cyber-physical-1629.

19. Edward A. Lee, Sanjit A. Seshia, and Jeff C. Jensen. Teaching embedded systems the berke-
ley way. In Proceedings of the Workshop on Embedded and Cyber-Physical Systems Educa-
tion, WESE 2012, Tampere, Finland, October 12, 2012, page 1, 2012.

20. Wenchao Li, Dorsa Sadigh, S. Shankar Sastry, and Sanjit A. Seshia. Synthesis for human-in-
the-loop control systems. In Proceedings of the 20th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pages 470–484, April
2014.

21. Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In
FORMATS/FTRTFT, pages 152–166, 2004.

22. Massachusetts Institute of Technology (MIT). The iLab Project. https://wikis.mit.
edu/confluence/display/ILAB2/Home, Last accessed: February 2014.

23. Laura Pappano. The Year of the MOOC. http:
//www.nytimes.com/2012/11/04/education/edlife/
massive-open-online-courses-are-multiplying-at-a-rapid-pace.
html, November 2012.

24. Dorsa Sadigh. Safe and Interactive Autonomy: Control, Learning, and Verification. PhD
thesis, EECS Department, University of California, Berkeley, Aug 2017.

25. Dorsa Sadigh, Shankar Sastry, Sanjit A. Seshia, and Anca D. Dragan. Information gathering
actions over human internal state. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 66–73, October 2016.

26. Dorsa Sadigh, Sanjit A. Seshia, and Mona Gupta. Automating exercise generation: A step
towards meeting the MOOC challenge for embedded systems. In Proc. Workshop on Em-
bedded Systems Education (WESE), October 2012.

27. Sanjit A. Seshia. Combining induction, deduction, and structure for verification and synthe-
sis. Proceedings of the IEEE, 103(11):2036–2051, 2015.

28. Sanjit A. Seshia, Shiyan Hu, Wenchao Li, and Qi Zhu. Design automation of cyber-physical
systems: Challenges, advances, and opportunities. IEEE Trans. on CAD of Integrated Cir-
cuits and Systems, 36(9):1421–1434, 2017.

29. Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. Formal methods for semi-autonomous
driving. In Proceedings of the Design Automation Conference (DAC), pages 148:1–148:5,
June 2015.

30. Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. Towards Verified Artificial Intelli-
gence. ArXiv e-prints, July 2016.

31. Moshe Y. Vardi. Humans, machines, and the future of work. In Ada Lovelace Symposium
2015 - Celebrating 200 Years of a Computer Visionary, Ada Lovelace Symposium 2015,
Oxford, UK, December 10, 2015, page 2, 2015.

32. Moshe Y. Vardi. The moral imperative of artificial intelligence. Commun. ACM, 59(5):5,
2016.

33. Jeannette M Wing. A specifier’s introduction to formal methods. IEEE Computer, 23(9):8–
24, September 1990.


