UCLA Electronic Theses and Dissertations

Title

Integrating developmental processes with leaf structure and function to clarify mechanisms of environmental adaptation of leaves

Permalink

https://escholarship.org/uc/item/3nn63627

Author

Baird, Alec Stephen
Publication Date
2023
Supplemental Material
https://escholarship.org/uc/item/3nn63627\#supplemental
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA

Los Angeles

Integrating developmental processes with leaf structure and function to clarify mechanisms of environmental adaptation of leaves

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by

Alec Baird

© Copyright by
Alec Baird

ABSTRACT OF THE DISSERTATION

Integrating developmental processes with leaf structure and function to clarify mechanisms of environmental adaptation of leaves
by

Alec Baird
Doctor of Philosophy in Biology
University of California, Los Angeles, 2023
Professor Lawren Sack, Chair

Leaf structure and function is important in driving ecosystem fluxes, tolerance of environmental stressors, species distributions and climate change responses, with applications for agricultural breeding and engineering. Yet, the interface of leaf hydraulic structure and function with the spatial and temporal aspects of developmental processes has largely been unexplored across species. Such a pursuit has the power to provide deep insight into the drivers and constraints on the evolution of physiological adaptation. In this dissertation, I leverage developmental processes to gain insight into how diverse hydraulic mechanisms arise, how developmental constraints influence environmental adaptation, how allometric relationships among cell and tissue anatomy and leaf size arise, and how leaf economics are linked with leaf expansion processes. For three of these chapters, I focus on diverse grasses, and demonstrate that grass leaf size is critical trait for climate adaptation globally, due to developmental constraints between leaf growth and venation,
C_{3} and C_{4} grasses evolved some similar but also differential leaf cell, tissue and morphological allometries, and C_{3} and C_{4} grasses evolved contrasting hydraulic adaptations that underlie their differential climate adaptation. For two chapters, I focus on diverse eudicot species, and show the developmental bases for leaf trichome and stomatal densities for trichomous species and how their developmental processes allow for positive coordination across species, and the developmental determinants underlying leaf size and their integration with the leaf economics spectrum. This work highlights the importance of incorporating developmental processes to better understand the evolutionary ecology of leaf structure and function, and will provide critical avenues for predicting responses to climate change and applications for agriculture.

The dissertation of Alec Baird is approved.
Lachezar Atanasov Nikolov
Van Maurice Savage
Felipe Zapata Hoyos
Lawren Sack, Committee Chair

University of California, Los Angeles
2023

Table of Contents

ABSTRACT OF THE DISSERTATION ii
List of Tables ix
List of Boxes xvii
List of Figures xviiii
Acknowledgements xxvi
Vita xxxi
Chapter 1: Premise of the Dissertation 1
References 6
Chapter 2: Developmental and biophysical determinants of grass leaf size worldwide 8
Abstract 8
Introduction 8
Results 8
Figures 9
Table. 10
Box. 11
Discussion 12
References 13
Materials and Methods 14
Supplementary Materials 20
Chapter 3: Allometries of cell and tissue anatomy and photosynthetic rate across leaves of C_{3} and
C_{4} grasses 37
Abstract 37
Introduction 38
Material and Methods 42
Results 49
Discussion 52
Tables 60
Figures 64
Appendix 3.1 74
Supplementary Materials 82
References 94
Chapter 4: Leaf hydraulic design of C_{3} and C_{4} grasses 104
Abstract 104
Introduction 105
Materials and Methods 107
Results and Discussion 127
Table 137
Box 138
Figures 141
Supplementary Materials 146
References 167
Chapter 5: Disentangling the developmental associations of leaf trichome and stomatal densities across diverse angiosperm species 178
Abstract 178
Introduction 180
Materials and Methods 183
Results 188
Discussion 192
Tables 198
Figures 201
Supplementary Materials 207
References 210
Chapter 6: Integrating leaf expansion kinematics into the leaf economics spectrum: a meta- analysis across species 221
Abstract 221
Introduction 223
Materials and Methods 228
Results 233
Discussion 235
Tables 241
Figures. 244
Supplementary Materials 251
References 258
Chapter 7: Conclusions and Future Directions 268
References 273

List of Tables

Chapter 2

Abstract

Table 2.1 Parameters for the scaling of vein diameters and VLA with mature leaf dimensions.10

Table S2.1. Published studies of the relationship of grass leaf size to climate or hydrological
variables. 31

Table S2.2. Database for globally distributed grass species, with phylogenetic statistics testing for differences between photosynthetic types... 31

Table S2.3. Experimental data for $27 \mathrm{C}_{3}$ and C_{4} grass species grown in a greenhouse common garden and measured for the scaling of vein traits with leaf size.32

Table S2.4. Published studies for eudicotyledons on the scaling of vein traits and leaf size (a)-(c), and on the contribution of vein traits to hydraulic and photosynthetic performance and its maintenance under cold or dry conditions, (d)-(g)32

Table S2.5. Grass species from which the synthetic grass developmental model was derived, based on previously published data and literature reviews.32

Table S2.6. Expectations for the slopes of leaf size-scaling relationships across species derived from the synthetic developmental model, and, alternatively, from geometric
scaling.. 33

Table S2.7. Statistics and parameters describing the relationships of grass leaf traits with climate variables

Table S2.8. Analyses of the relationship of grass traits with climate variables for species of globally distributed grasses, including multiple regression, hierarchical partitioning, and quantile regression

Table S2.9. Testing hypotheses for the advantages of small leaf size in gas exchange (photosynthetic rate, transpiration rate and leaf water use efficiency) under cold and/or dry climates, including for mitigating short warm and wet growing periods.

Table S2.10. Parameters for the scaling of vein traits with leaf dimensions across 27
C_{3} and C_{4} grass species grown in a greenhouse common garden ($n=11$ and 16 respectively) $\ldots .35$

Table S2.11. Scaling of xylem conduit diameter with vein and leaf dimensions leaf dimensions across $27 \mathrm{C}_{3}$ and C_{4} grass species grown in a greenhouse common garden ($n=11$ and 16 respectively).

Table S2.12. Data for $13 \mathrm{C}_{3}$ grasses from the global plant trait network (GLOPNET) database and extracted for testing assumptions of photosynthetic rate and climate

Chapter 3

Table 3.1 Glossary of terminology.. 60

Table 3.2 Framework of hypotheses tested in this study, rationale for hypotheses, traits measured and if the hypothesis was supported. See Table 3.1 for definitions of terminology

Table 3.3 Explanations for allometries of grass leaf cells that differed from expectations based on geometric scaling.

Table S3.1 Species of grasses (Poaceae) included in the study, subfamily, tribe, $\mathrm{C}_{3} / \mathrm{C}_{4}$ photosynthetic pathway, $\mathrm{BEP} / \mathrm{PACMAD}$ clade, $3 \mathrm{~L} / 4 \mathrm{~L}$ i.e., three or four longitudinal vein orders, C_{4} subtype, seed source, accession number, seed treatment for germination, terrestrial/aquatic, sun/shade, mean and \pm standard errors of anatomical and morphological traits measured......... 82

Table S3.2. Parameters and statistics from parametric and nonparametric phylogenetic analyses of variance between C_{3} and C_{4} species for traits used in this study, and nonphylogenetic analysis of variance testing the influence of species identity versus individual replicate on species' trait values... 82

Table S3.3 Parameters and statistics for allometries of cell areas across grass leaf tissues. The variables tested, statistical method used, expected scaling exponent b, r - and p values, scaling exponent b with 95% confidence intervals and the scaling coefficient a are provided, for log transformed data.

Table S3.4. Parameters and statistics for allometries of vascular cell areas across grass leaf vein orders. The variables tested, statistical method used, expected b, r - and p values, and the scaling exponent b with 95% confidence intervals and the scaling coefficient a are provided, for log-transformed data.83

Table S3.5. Parameters and statistics for allometries of cell areas with leaf and plant dimensions. The variables tested, statistical method used, expected scaling exponent b, r - and p-values, and the scaling exponent b with 95% confidence intervals and the scaling coefficient a are provided, for log-transformed data.83

Table S3.6. Parameters and statistics for allometries of cell areas with leaf functional traits. The variables tested, statistical method used, r - and p-values, and the scaling exponent b with 95% confidence intervals and the scaling coefficient a are provided, for log-transformed data.

Chapter 4

Table 4.1 Variables quantified to resolve the paradoxes of C_{4} grass ecology and vasculature.

Table S4.1. Published studies for grasses on the relationships of photosynthetic rate, stomatal conductance, leaf hydraulic conductance and leaf hydraulic anatomical traits.

Table S4.2. Species of grasses (Poaceae) included in the common garden study, subfamily, tribe, $\mathrm{C}_{3} / \mathrm{C}_{4}$ photosynthetic pathway, C_{4} subtype, seed source, accession number, seed treatment for germination, terrestrial/aquatic, sun/shade, and means of anatomical and morphological traits measured and climate data, and statistics from phylogenetic analysis of variance below trait means

Table S4.3. Hydraulic, photosynthetic and anatomical data for 328 grass species from published studies and used to test relationships of leaf gas exchange and hydraulics across species, and to test average differences between C_{3} and C_{4} species

Table S4.4. Statistics and parameters for associations of leaf hydraulic traits with leaf hydraulic, photosynthetic and anatomical traits across all species, terrestrial species only, C_{3} species only, C_{3} terrestrial species only and C_{4} species only

Table S4.5. Statistics and parameters for associations of leaf xylem hydraulic Conductance per vein order with leaf hydraulic anatomy across all species

Table S4.6. Statistics and parameters for coordination or trade-offs of leaf structural traits across all species.

Table S4.7. Statistics and parameters for associations of leaf photosynthetic traits with leaf hydraulic and anatomical traits across all species, terrestrial species only, C_{3} species only, C_{3} terrestrial species only and C_{4} species only.. 148

Table S4.8. Correlation matrices for trait-trait relationships for the compiled grass database 148

Table S4.9. Statistics and parameters for associations of climate with leaf hydraulic, photosynthetic and anatomical traits across all species, terrestrial species only, C_{3} species only, C_{3} terrestrial species only and C_{4} species only. 148

Chapter 5

Table 5.1. Definitions of anatomical and developmental traits influencing leaf trichome density $\left(D_{\mathrm{t}}\right)$. 198

Table 5.2. Published studies showing variation in the association of leaf trichome and stomatal densities within and across species.

Table S5.1. Species of diverse California angiosperm species included in the study, site(s) sampled, site latitude and longitude, site vegetation type, family, trichome morphology, trichome glandular/non-glandular, measurements able to quantify per surface and used for analyses, mean and \pm standard errors of leaf epidermal traits measured.
Table S5.2. The intrinsic sensitivity of leaf abaxial trichome density $\left(D_{\mathrm{t}}\right)$ to

Table S5.3. The intrinsic sensitivity of leaf abaxial stomatal density $\left(D_{\mathrm{s}}\right)$ to developmental parameters: $i_{\mathrm{s}}, i_{\mathrm{t}}, t, s$ and e.207
Table S5.4. The intrinsic sensitivity of leaf adaxial trichome density $\left(D_{\mathrm{t}}\right)$ to developmental parameters: i_{s}, i_{t}, t, s and e. 208
Table S5.5. The intrinsic sensitivity of leaf adaxial stomatal density $\left(D_{\mathrm{s}}\right)$ to developmental parameters: $i_{\mathrm{s}}, i_{\mathrm{t}}, t, s$ and e. 208

Table S6.6. The realized sensitivity of leaf trichome density $\left(D_{\mathrm{t}}\right)$ and leaf stomatal density $\left(D_{\mathrm{s}}\right)$ to developmental parameters: $i_{\mathrm{s}}, i_{\mathrm{t}}, t, s$ and e.209

Chapter 6

Table 6.1. Definitions of developmental variables and leaf traits involved in the link between leaf size and the leaf economic spectrum (LES).241

Table 6.2. Bivariate relationships between leaf expansion parameters with leaf area and mass-based leaf economics traits.242

Table S6.1. Species included in the study, the reference from which leaf expansion with time, or final leaf expansion and leaf expansion duration were extracted, leaf expansion traits, and leaf economics traits extracted from the TRY global plant trait database 251

Table S6.2. Leaf expansion with time data extracted from published studies.

Table S6.3. Causal partitioning of leaf area $(L A)$ to developmental traits: primordium size $\left(L A_{\mathrm{p}}\right)$ and growth (G), and of (G) partitioned by leaf expansion rate (R) and duration (T_{99}), or, non-hierarchical partitioning of $L A$, partitioned by $L A_{\mathrm{p}}, R$ and T_{99}.

Table S6.4. Correlation matrix of the associations between leaf expansion traits.

List of Boxes

Chapter 2

Box 2.1. Synthetic model of vein development in grass leaves.. 11

Box Figure 2.1. Synthetic model for grass leaf ontogeny that predicts developmental
based scaling of vein traits with final leaf size across species.. 11

Chapter 4

Box 4.1. Leaf hydraulic anatomy and physiology of C_{3} and C_{4} grasses..................................... 138

List of Figures

Chapter 2

Figure 2.1. Relationship of grass leaf size, traits and climatic distribution of species worldwide

Figure 2.2. The scaling of vein traits with leaf dimensions for 27 species of grass grown in a common garden12

Figure S2.1. Time-calibrated phylogenetic tree for 1752 worldwide grass species and for 27 grass species grown in a greenhouse common garden.

Figure S2.2. Worldwide relationships of grass leaf and plant dimensions with the native climate of species, the global distribution of grass leaf size, and the scaling of grass leaf and plant dimensions21

Figure S2.3. Worldwide association of grass leaf size with the native climate of the species in 3 D , and binned by the $1 / 3^{\text {rd }}$ lowest, middle and highest MAT or MAP in 2D 22

Figure S2.4. Quantile regression analyses of worldwide associations of grass leaf traits with the native climate of species23

Figure S2.5. Worldwide associations of grass leaf and plant dimensions with the native climate of species for species with leaf width $<8.16 \mathrm{~cm}$ or $<4.47 \mathrm{~cm}$ (below the modelled threshold for damage owing to night-time chilling or overheating) and modelled leaf temperature difference from air temperature for amphistomatous grass leaves under different air temperatures.24

Figure S2.6. Worldwide scaling of grass $V L A$ and vein diameter with leaf size and aridity of the native climate of the species, and of vein xylem conduit diameter with vein diameter.

Figure S2.7. Scaling of leaf vein projected area, vein surface area and vein volume of given vein orders with leaf dimensions across 27 grass species grown experimentally.27

Figure S2.8. Partitioning of the contributions of given vein orders of the venation architecture of C_{3} and C_{4} grasses, with minor veins accounting for the differences in VLA

Figure S2.9. Associations between light-saturated leaf photosynthetic rate and native climate and vein traits for terrestrial C_{3} species, and the scaling of VLA of transverse fifth-order veins with major VLA in $27 \mathrm{C}_{3}$ and C_{4} grasses grown experimentally.

Figure S2.10. Estimating leaf size from venation traits that can be measured on small samples or fragments of grass leaves.. 30

Chapter 3

Figure 3.1. Grass leaf development... 64

Figure 3.2. Phylogenetic tree used to account for the influence of species relatedness on scaling relationships, and species distribution maps... 66

Figure 3.3. Grass cell size allometries and anatomy... 67

Figure 3.4. Allometries of xylem cells within and across vein orders.

Figure 3.5. Allometries of leaf morphological dimensions with leaf cell size
\qquad as building blocks.

Figure 3.6. Allometries of leaf morphological and plant dimensions with leaf cell size for hydraulic design. 71

Figure 3.7. Allometries of mass-based photosynthetic rate with leaf cell size.

Figure 3.A1. The relationship between generalized developmental allometries arising from geometry (black lines for different species) relating the areas of
cell type y with cell type x, and evolutionary allometries across the mature leaves of different species (red dotted lines through red points)... 81

Figure S3.1. Phylogenetic trees used to account for the influence of species relatedness on scaling relationships and species distribution maps.85

Figure S3.2. Anatomical transverse sections for $11 \mathrm{C}_{3}$ grass species

\qquad included in the study.86

Figure S3.3. Anatomical transverse sections for $16 \mathrm{C}_{4}$ grass species included in the study

Figure S3.4. Scaling of vein sheath cells across vein orders across 27
grass species grown experimentally... 89

Figure S3.5. Scaling of vein xylem cell sizes with sheath cell types within leaf longitudinal vein orders across 27 grass species grown experimentally. 91

Figure S3.6. Scaling of leaf and plant morphological traits with leaf cell sizes across 27 grass species grown experimentally... 92

Figure S3.7. Scaling of leaf functional traits with leaf cell sizes across 27
grass species grown experimentally.

Chapter 4

Figure. 4.1. Conceptual diagram depicting linkages of leaf anatomy and leaf hydraulics, leaf hydraulics and leaf gas exchange, and their coordinated influence that scales to influence leaf drought tolerance and adaptation to climatic aridity

Figure 4.2. Differences and contrasting coordination in hydraulic and photosynthetic physiology for C_{3} and C_{4} grasses143

Figure 4.3. Contrasting physiological adaptation to aridity in C_{3} and C_{4} grasses...................... 145

Figure S4.1. Phylogenetic tree and biogeographic distributions of 27 grass species grown in a common garden and sampled for hydraulic and anatomical traits.

Figure S4.2. Counteracting the influence of higher vein length per area in C_{4} grasses.

Figure S4.3. Partitioning of the leaf hydraulic resistance and leaf xylem conductance across vein orders. 153

Figure S4.4. Determinants of leaf hydraulic conductance ($K_{\text {leaf }}$) and leaf outside-xylem hydraulic conductance (K_{ox}), for 27 grasses, grown in a
common garden 154
Figure S4.5. Potential drivers of leaf outside-xylem hydraulic conductance 155
Figure S4.6. Partitioning of the total surface area, projected area and volume ofleaf vein sheaths and leaf vein xylem, and volume for C_{3} and C_{4} grassspecies and by vein order156
Figure S4.7. Determinants of leaf xylem hydraulic conductance $\left(K_{\mathrm{x}}\right)$ 157
Figure S4.8. Coordination of leaf photosynthetic rate with leaf hydraulic anatomy. 159Figure S4.9. Results of simulation modeling of the hydraulic-stomatal-photosyntheticsystem of C_{3} and C_{4} grasses160
Figure S4.10. Results of simulation modeling of the hydraulic-stomatal-photosyntheticsystem of C_{3} and C_{4} grasses, showing the increasing photosynthetic advantageof C_{4} grasses at higher temperature $\left(35^{\circ} \mathrm{C}\right.$, by contrast with $25^{\circ} \mathrm{C}$ in Figure S 4.9$)$,in well-watered conditions as well as drought, due to the importance ofhydraulic hyper-efficiency in C_{4} grasses162

Figure S4.11. Results of leaf physiological coordination across grasses, compiled from published studies (Tables S4.3 and S4.8).164

Figure S4.12. Contrasting coordination of hydraulics and gas exchange traits for $27 \mathrm{C}_{3}$ and C_{4} grasses, grown in a common garden... 165

Figure S4.13. Relationships of leaf physiological traits with mean annual temperature for 27 grasses, grown in a common garden.

Chapter 5

Figure 5.1. The developmental sequence of leaf trichome and stomata formation, and diversity of leaf trichomes of California species.. 201

Figure 5.2. Validating the developmental basis for leaf trichome density and analyzing the contributions of anatomical and developmental traits to leaf trichome density for diverse California species

Figure 5.3. The intrinsic sensitivity of leaf trichome and stomatal densities to underlying developmental parameters... 204

Figure 5.4. Contributions of anatomical and developmental traits to leaf trichome density for diverse California species. 205

Figure 5.5. Testing the association of leaf trichome density $\left(D_{\mathrm{t}}\right)$ with stomatal density $\left(D_{\mathrm{s}}\right)$, and trichome initiation rates $\left(i_{\mathrm{t}}\right)$ with stomatal initiation rates $\left(i_{\mathrm{s}}\right)$ across diverse California species206

Chapter 6

Figure 6.1. Schematics of leaf expansion with time and the influence of developmental traits on LES traits, and leaf expansion growth with time for 38 diverse species from published studies.244

Figure 6.2. Causal determinants of maximum leaf size $\left(L A_{\mathrm{m}}\right)$, trade-offs in leaf expansion developmental traits, and coordination of leaf expansion developmental
traits with area- and mass-based photosynthetic rate... 247

Figure 6.3. Integration of leaf expansion kinematics with the leaf economic spectrum

Figure S6.1. Comparison of leaf expansion rates (R)

Figure S6.2. Covariation in leaf economics traits for the species in dataset 2 253

Figure S6.3. Correlations of the drivers of mature leaf size $\left(L A_{\mathrm{m}}\right)$ across species. 254

Figure S6.4. Additional support for the critical role of primordium size $\left(L A_{\mathrm{p}}\right)$ on final leaf size $\left(L A_{\mathrm{m}}\right)$ 255

Figure S6.5. Integration of leaf economic spectrum (LES) traits with leaf expansion
\qquad growth (G). 256

Acknowledgements

First and foremost, I thank my mentor, Dr. Lawren Sack, for his continual support and wisdom, for pushing me to keep asking questions and to grow as a scientist, and for always having confidence in my work and capabilities. I certainly would not have been able to complete all that is within this dissertation without his continual advice, discussion and support. I am also grateful to have had a mentor that has incredible enthusiasm for plant science and the natural world as this has allowed me to be integrative with my work and pursue novel questions. From Lawren's mentoring, I feel a tremendous amount of growth not just as a scientist, but as a friend, colleague and collaborator. I am grateful for the relationship we have built throughout my time at UCLA and I am happy to continue on knowing I will have a mentor that will always support me.

I thank my committee members: Lachezar Nikolov, Van Savage and Felipé Zapata for providing guidance, suggestions and support. Thank you for your enthusiasm with my work and for helping me grow.

I thank my mentors outside of UCLA, Drs. Elizabeth Van Volkenburgh, Janneke HilleRisLambers, Leander Anderegg, Melissa Lacey and Steve Kroiss for their time, guidance and support as I entered the field of plant science as an undergraduate. I am thankful that they championed my integrative thinking and pushed me to pursue more than I ever thought possible. Thank you for welcoming me into your lives like family. The many gatherings at many of your homes and the lab outings/trips will always have a place in my heart and I hope to instill a similar feeling to students within my own lab one day.

I thank the many members of the Sack lab, past and present. First, I am thankful to Marvin Browne, for our chats about plant growth and function, for your inspiring individuality, and for pursuing our PhDs together. I will always remember your humor and great capabilities as
a scientist, and I hope we can work together in the future. To Marissa Ochoa, I am thankful for the support you have provided both as a friend and scientists. I am so thankful for your humor and chillness, and also for watching Arya when I am away! To Leila Fletcher, I am thankful for your friendship as you have helped me through hard times, and your empathy is inspiring. I admire your quirkiness and individuality. To Camila Medeiros, I am thankful for the friendship we have forged over the years. We are similar in so many ways. Your work and willingness as a scientist are always inspiring to me. To Christian Henry, I am thankful for your welcoming friendship and our chats about our collections of house plants. To Anna Ongjoco, your humor and originality are inspiring! To Nidhi Vinod, thank you for your continual enthusiasm in plants and life in general! To Santiago Trueba, thank you for being an incredibly welcoming desk buddy when I first arrived. I will always remember your thoughtfulness. Jessica Smith, thank you for your enthusiasm to help and for your friendship. I am grateful that you care deeply about the wellbeing of me and everyone else in the lab. Lastly, I am grateful to the numerous undergraduates that have worked with me over the years: Thomas Condon, Jason Zhao, Sachin Reddi, Julia Bowers, John Liang, Michelle Hii, Josh Matsuda, Kirthana Pisipati, Benjamin Simon, Caroline Pohl and Silva Tagaryen.

I am thankful to the many collaborators that helped make the work in this dissertation possible, including: Thomas Buckley, Pascal-Antoine Christin, Erika Edwards, Congcong Liu, Zeqing Ma, Colin Osborne, Christine Scoffoni, Samuel Taylor and Teera Watcharamongkol.

I am also thankful to my friends and colleagues at Adaptive Symbiotic Technologies, and especially to Rusty Rodriguez and Regina Redman as your work and mentorship are inspiring. I am thankful for your welcoming me into your company as a research scientist.

I am indebted to my mother, who has provided for me my whole life and always supported my endeavors. Thank you for allowing me to grow and thrive in my own way. Your work-ethic and adventurous nature have always been so inspiring and I am happy to have inherited those traits. Thank you for your continual unconditional love and for always instilling in me that I can achieve what I want through hard work. To my sister Lindsay, thank you for your love and support.

I thank my little girl Arya, for bringing joy to my life in my hardest time. I have learned so much from taking care of you these past three years and I am excited to explore more of the world together. I love you so much. I am thankful to my best friend Nick Cutlip, for being the brother I never had but always wanted. You are inspiring, thoughtful and too smart for your own good. Thank you for your unconditional love. To my best friend Gigi Debortoli, thank you for your love and support for these past two decades. You have helped through so many hard times and I look forward to growing old with you!

Chapter Two is a reprint of:

Baird AS, Taylor SH, Pasquet-Kok J, Vuong C, Zhang Y, Watcharamongkol T, Scoffoni
C, Edwards EJ, Christin P-A, Osborne CP, Sack L. 2021. Developmental and biophysical determinants of grass leaf size worldwide. Nature 592: 242-247. doi:10.1038/s41586-021-03370-0. Author contribution statement: A.S.B., S.H.T., C.P.O. and L.S. conceptualized the project. A.S.B., S.H.T., J.P-K., C.V., Y.Z., T.W., C.S., E.J.E., and PA. C collected data. A.S.B., S.H.T., J.P-K., C.V., Y.Z., T.W., C.S., P-A.C and L.S. performed the analysis of data. All authors reviewed and revised the manuscript.

Chapter Three is from:

Baird AS, Taylor SH, Reddi S, Pasquet-Kok J, Vuong C, Zhang Y, Watcharamongkol T, John GP, Scoffoni C, Osborne CP, Sack L. (in revision at Plant, Cell \& Environment). Allometries of cell and tissue anatomy and photosynthetic rate across leaves of C_{3} and C_{4} grasses. Author contribution statement: A.S.B., S.H.T., C.P.O. and L.S. conceptualized the project. A.S.B., S.H.T., S.R., J.P-K., C.V., and Y.Z. collected data. A.S.B., S.H.T., and L.S. performed the analysis of data. All authors reviewed and revised the manuscript. Chapter Four is from:

Baird AS, Taylor SH, Pasquet-Kok J, Vuong C, Zhang Y, Watcharamongkol T, Cochard H, Scoffoni C, Edwards EJ, Osborne CP, Sack L. (in prepapration for submission to Science). Leaf hydraulic design of C_{3} and C_{4} grasses. Author contribution statement: A.S.B., S.H.T., C.P.O. and L.S. conceptualized the project. A.S.B., S.H.T., J.P-K., C.V., Y.Z., C.S. collected data. A.S.B., S.H.T., H.C., and L.S. performed the analysis of data. All authors reviewed and revised the manuscript.

Chapter Five is from:

Baird AS, Medeiros CD, Bowers J, Hii Michelle, Liang J, Matsuda J, Pisipati K, Pohl C, Simon B, Tagaryan S, Buckley TN, Sack L. (in preparation for submission to American Journal of Botany). Disentangling the developmental associations of leaf trichome and stomatal densities across diverse angiosperm species. Author contribution statement: A.S.B., C.D.M., T.N.B. and L.S. conceptualized the project. A.S.B., C.D.M., J.B., M.H., J.L., J.M., K.P., C.P., B.S., S.T. collected data. A.S.B., T.N.B. and L.S. performed the analysis of data. All authors reviewed and revised the manuscript.

Chapter Six if from:

Baird AS, Ma Z, Buckley TN, Sack L. (in preparation for submission to Nature Plants). Integrating leaf expansion kinematics into the leaf economic spectrum: a meta-analysis across species. Author contribution statement: A.S.B. and L.S. conceptualized the project. A.S.B. and L.S. collected data. A.S.B., T.N.B. and L.S. performed the analysis of data. All authors reviewed and revised the manuscript.

Funding: This work was supported by the Vavra fellowship and research grants, the UCLA Edwin W. Pauley Fellowship, the UCLA Dissertation Year Fellowship, the National Science Foundation (grants IOS-\#1457279, 1951244, 2017949 to L. Sack, and 1943583 to C. Scoffoni), the Natural Environment Research Council (grants NE/DO13062/1 and NE/T000759/1 to C.P. Osborne), a Royal Society University Research Fellowship (grant URF\R\180022 to P-A. Christin), the La Kretz Center Graduate Research Grants (to C. Medeiros), UCNRS Stunt Ranch Reserve Research Grants (to C. Medeiros), the ESA Forrest Shreve Award (to C. Medeiros), and the Brazilian National Research Council (grant \#202813/2014-2 to C. Medeiros).

Vita

Professional Preparation

2016
B.S. in Biology (Plant), minor in French (University of Washington)

Publications

Baird AS, Taylor SH, Pasquet-Kok J, Vuong C, Zhang Y, Watcharamongkol T, Scoffoni C, Edwards EJ, Christin P-A, Osborne C, Sack L. (2021) Developmental and biophysical determinants of grass leaf size worldwide. Nature. 592, 242-247
doi: https://dx.doi.org/10.1038/s41586-021-03370-0
Liu C, Li Y, Zhang J, Baird AS, He N. (2020) Optimal community assembly related to leaf economic-hydraulic-anatomical traits. Frontiers in Plant Science. 11 doi: https://doi.org/10.3389/fpls.2020.00341

Rodriguez R, Baird AS, Cho S, Gray Z, Groover E, Harto R, Hsieh M, Malmberg K, Manglona R, Mercer M, Nasman N, Nicklason T, Rienstra M, Van Inwegen A, VanHooser A, Redman R. (2019) Mitigating climate impacts on crop production via symbiosis, in Endophyte

Biotechnology: potential for agriculture and pharmacology, pp. 59-67. Cabi. doi: https:doi.org/ 10.1079/9781786399427.0059

Rodriguez R, Baird AS, Batson A, Cho S, Gray Z, Harto R, Hsieh M, Malmberg K, Manglona R, Mercer M, Nasman N, Nicklason T, Rienstra M, Van Inwegen A, VanHooser A, Redman R (2019) Programming plants for climate resilience through symbiogenics, in Seed Endophytes, pp. 127 - 137. Verma, S., White, Jr J. Springer, Cham. doi: https://doi.org/10.1007/978-3-030-10504-4_7

Selected Awards, Grants \& Honors

2022 Conference travel award (\$1,500), Dept. of Ecology \$ Evolutionary Biology, UCLA
2022 Dissertation year fellowship (3 quarters funding), The Graduate Division, UCLA
2022 Excellence in research, PhD Candidate, Life Sciences, UCLA (\$500)
2021 Conference award (\$200), Dept. of Ecology \& Evolutionary Biology, UCLA
$20211^{\text {st }}$ Place best graduate research poster (\$250 amazon gift card), Dept. of Ecology \& Evolutionary Biology, UCLA
2021 Quarter fellowship (\$7,500 + fees/tuition), Dept. of Ecology \& Evolutionary Biology, UCLA
2020 Conference award (\$200), Dept. of Ecology \& Evolutionary Biology, UCLA
2020 Research award (\$400), Dept. of Ecology \& Evolutionary Biology, UCLA
2019 Quarter fellowship (\$7,000 + fees/tuition), Dept. of Ecology \& Evolutionary Biology, UCLA
2018 Conference travel grant $(\$ 1,000)$, The Graduate Division, UCLA
2019 Conference travel award $(\$ 1,200)$, Dept. of Ecology \& Evolutionary Biology, UCLA
2019 Research award (\$2,000), Dept. of Ecology \& Evolutionary Biology, UCLA
2019 Honorable mention, National Science Foundation Graduate Research Fellowship
2018 Conference travel award (\$500), Dept. of Ecology \& Evolutionary Biology, UCLA
$20182^{\text {nd }}$ Place best research poster (\$150), Dept. of Ecology \& Evolutionary Biology, UCLA 2017 University fellowship (\$3,000), The Graduate Division, UCLA
2017 Edwin W. Pauley fellowship (\$30,000), College of Letters and Science, UCLA

Selected presentations

Baird AS, Taylor SH, Pasquet-Kok J, Vuong C, Zhang T, Watcharamongkol T, Scoffoni C, Edwards EJ, Osborne CP, Sack L. The hydraulic adaptation of grasses with contrasting photosynthetic pathways. Contributed Poster Presentation June 2022: Gordon Research Conference: Multiscale Plant Vascular Biology, Sunday River, Maine

Baird AS, Medeiros C, Buckley T, Sack L. Developmental basis of leaf trichome density. Contributed Poster Presentation, May 2021: Department of Ecology and Evolutionary Biology Research Symposium, UCLA, CA, U.S.

Baird AS. Integrating leaf development, structure and physiology to unravel insights and mechanisms of eco-evolutionary adaptation of leaves. Invited Guest Lecture, February 2021: California State University Los Angeles (CSULA) Biol 4300: Fundamental Research in Plant Ecological Physiology.

Baird AS, Taylor SH, Pasquet-Kok J, Vuong C, Zhang T, Watcharamongkol T, Scoffoni C, Edwards EJ, Christin P-A, Osborne CP, Sack L. Developmental scaling of venation architecture in grasses underlies worldwide leaf size distribution. Contributed Oral Presentation, May 2019: UCLA Department of Ecology and Evolution Biology: EcoEvo Pub, UCLA, CA, U.S., August 2019: American Society of Plant Biologists: Plant Biology 2019, San Jose, CA, U.S., January 2020: UCLA Plant Biology Seminar Series

Activities

2021 Podcast Interviewee, Agriculture, GMOs and Plant physiology
(https://anchor.fm/dragonfruit/episodes/Alec-Baird-Agriculture--GMOs--and-Plant-Physiologyepuo14)
Past and Society Member, British Ecological Society (BES), Society of Plant Signaling Present and Behavior (PSB), Cactus and Succulent Society of America (CSSA), Ecological Society of America (ESA), American Society of Plant Biologists (ASPB), Union of Concerned Scientists (UCS)
Past and Peer Reviewer, 15 publications reviewed total, Annals of Botany (1), AoB Present Plants (1), Ecography (1), Ecology and Evolution (1), Ecology Letters (1) Frontiers in Plant Science (1), Journal of Plant Ecology (1), Journal of Plant Physiology (1), Nature Scientific Reports (1), New Phytologist (4), Plant Biology (1), Plant Ecology (1), ScienceAsia (1)
Past and Mentor to UCLA undergraduate researchers, Julia Bowers (2022 - 2023),
Present John Liang (2022-2023), Josh Matsuda (2022-2023), Kirthana Pisipati (2022 - 2023), Benjamin Simon (2022 - 2023), Caroline Pohl (2022), Silva Tagaryen (2022), Sachin Reddi (2019 - 2021), Jason Zhao (2018 - 2019), Thomas Condon (2018-2019)

Chapter 1: Premise of the Dissertation

The global diversity of the characteristics of the leaf, the primary photosynthetic organ, highlights its importance in plant adaptation and ecosystem function (Wright et al., 2004, 2017; Sack \& Scoffoni 2013). A universal trade-off exists in leaves of terrestrial plants that underlies the evolution of leaf functional diversity: for carbon dioxide to be exchanged from the atmosphere to the sites of photosynthesis in the leaf, water must be transpired in the opposite direction from the leaf to the atmosphere (Sack \& Holbrook, 2006). Such a trade-off has led to the evolution of diverse leaf vascular architecture that drives variation in the capacity for leaves to maintain hydration and stomatal opening as water is continually transpired, thereby influencing leaf photosynthetic function, stress tolerance and plant productivity (Sack \& Holbrook, 2006; Sack \& Scoffoni, 2013). This theory is the basis of leaf hydraulics, a relatively novel sub-discipline that has seen exponential growth in the last decade within plant physiology that has expanded our knowledge of regulation of leaf photosynthesis, and leaf tolerance and survival of stressful conditions (Sack \& Holbrook, 2006; Sack \& Scoffoni, 2013).

Plant hydraulics extends a classical approach to plant physiological investigations, emphasizing the identification of the mechanistic linkages between structure and function, utilization of mathematical equations to understand physiological processes, and focusing on how structure-function linkages impact physiological transport and growth (Sinclair \& Purcell, 2005; Nobel 2020). Indeed, structural-functional linkages are remarkably important because they allow for a direct mechanistic understanding of the structural consequences on physiological transport, function, and tolerance of environmental stressors, thus elevating our understanding of the adaptive consequences of variation in structure and function across species (Sack \& Scoffoni,
2013). Such an approach has largely been neglected within plant physiology, relative to molecular processes, given the increasing technological advancements enabling a greater understanding of biochemistry and the genes underlying phenotypes and processes, and particularly within model species (Sinclair \& Purcell, 2005). Yet, new concepts and synergies of structure-function research, in particular that related to hydraulics, has led to a surge in the field even as its findings become more important to predict and potentially mitigate climate change responses to vegetation.

One new source of synergy in plant structure-function research is the role of development, and particularly the conserved developmental programs that can provide tremendous insight into the constraints of adaptive trait diversification (Sack et al., 2012; John, Scoffoni \& Sack, 2013; Cardoso, Randall, Jordan \& McAdam, 2018). Linking physiology with the spatial and temporal aspects of development has the power to address unanswered questions in plant biology, i.e. because linking structure and physiological function addresses "why" plants vary in performance and tolerance, and the developmental processes can address "how" such variation arises, due to the influence of development on structure and composition.

Although the structural and compositional components of leaves are of key importance in driving variability in hydraulic transport across eudicotyledonous species, such physiological hydraulic adaptations, and their developmental drivers, have remained largely unexplored in monocotyledonous species, the other dominant lineage within flowering plants, which includes the grasses (Sack \& Scoffoni, 2013). Extending this theory, as well as identifying other leaf level adaptations within lineages such as the grasses will elucidate their function with respect to climate adaptation. This exploration can provide implications and applications in ecology, agriculture and paleobiology as the grass family includes 12,000 species that dominate $>40 \%$ of
the earth's terrestrial surface, contribute 33% of terrestrial primary productivity and from which the bulk of crops are derived (Beer et al., 2010; Soreng et al., 2017). Further, 41% of grass species function via the C_{4} photosynthetic pathway which evolved 18 independent times within the Poaceae (Sage, Christin \& Edwards, 2011). The artificial incorporation of this highly productive photosynthetic pathway into species exhibiting C_{3} photosynthesis is a goal for ecology and agriculture, as C_{4} species have elevated yields and stress tolerance (Langdale, 2011). Grass leaves show immense diversity in morphological and functional variation, with distinctive linearized leaves with parallel veins. Thus, the grasses provide an independent system to resolve both the generality and the adaptive basis for the association of leaf traits and climate.

My dissertation research integrates approaches to the developmental, anatomical and compositional basis of mechanistic hydraulic adaptation across species. In Chapter 2 I utilized many separate datasets to explore global adaptation of leaf size and climate in the grasses (Poaceae), and the mechanisms underlying such patterns, through a detailed study of grass leaf biophysics, development, anatomy and morphology. This work established that grass species with smaller leaves dominate both cold and dry climates globally, constraints imposed by a common leaf developmental program result in smaller grass leaves having vein traits that provide tolerance to cold and dry climates, thus explaining the global grass leaf size and climate patterns. I used biophysical modeling to assess whether thermal advantages associated with small leaves would provide further explanation for such patterns which showed that smaller leaves achieve higher photosynthetic rates in both cold or dry conditions, and under warm and moist conditions, thus also contributing to climate adaptation. Lastly, I provided a new method to estimate grass leaf size based on grass leaf fragments that improves reconstructions of grass evolutionary history and paleo-analyses. In Chapter 3 I established allometric relationships, that
is, the constrained associations of the dimensions and physical properties of leaves and their developmental drivers, for the grasses, using experimental data for 27 common garden grown grass species. I show that grass leaf cells exhibit distinct development and functional modules that drive differential allometries, such that across species: 1) photosynthetic and epidermal cell sizes scale together, though independent of vascular cells, 2) vascular cell sizes scale across vein orders, 3) thicker leaves have larger photosynthetic and epidermal cells, longer leaves have smaller photosynthetic cells but larger vascular cells, wider leaves have larger photosynthetic, epidermal, and bundle sheath cells, and taller plants have larger vascular conduits and 4) allometries of cell size converge to maximize photosynthetic function. This was the first study to test leaf allometric relationships for grass leaves, and emphasizes the leaf design rules driven by developmental coordination that constrains leaf structure and function. In Chapter 4 I established the anatomical basis for leaf water transport of C_{3} and C_{4} photosynthesis in the grasses, as well as resolving a paradox of grass leaf physiology, using experimental data for 27 common garden grown grass species and modeling. I show that C_{3} grasses conform similarly to C_{3} eudicots with tight coordination of leaf hydraulics and gas exchange, and gas exchange and climate. The higher minor vein density of C_{4} plants does not elevate their capacity for leaf hydraulic flow, as the major veins constitute the bulk of flow, and because pathways outside the xylem principally determine hydraulic flow for the grasses. Lastly, I show that C_{4} grasses evolved higher rates of leaf hydraulic supply to demand (i.e. hyper-efficient water transport), which enables the higher photosynthetic rates of C_{4} grasses compared to C_{3} grasses, in both moist and drying soils, but leads to decoupling of C_{4} gas exchange from aridity. This is the first study to establish the differential role of leaf hydraulics for C_{3} and C_{4} grasses, and highlights the importance of leaf hydraulic design in grass leaf physiology.

In Chapter 5 I disentangled the developmental drivers of leaf trichome density, and its association with stomatal density across diverse species by deriving mathematical expressions of trichome density and stomatal density as functions of their underlying anatomical variables more proximal to development, testing the validity of the expressions, examining the sensitivity of trichome and stomatal densities to underlying variables. I show that positive coordination in leaf trichome and stomatal densities arises because they have similar developmental determinants, which contrasts with their proposed trade-off in model species. This study highlights the power of analyzing a functional trait in terms of its underlying traits, clarifying the evolutionary mechanisms of functional diversity and coordination, and potentially targeting specific traits for agricultural breeding. In Chapter 6 I performed a meta-analysis and collected data for leaf area with time for developing leaves to examine the developmental determinants of leaf size across diverse eudicot species and their potential coordination with the leaf economics spectrum. I show that maximum leaf size variation arises from variation in the maximum growth rate, and not by expansion duration, and that the developmental processes underlying leaf size are tightly linked with leaf economics traits across species.

Overall, by integrating developmental processes with leaf structure and function my dissertation work clarifies the evolutionary adaptation of leaf functional diversity for C_{3} and C_{4} grasses and diverse eudicots. Such work highlights the importance of developmental constraints to physiological adaptation across different taxonomic scales.

References

1. Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C. Rödenbeck, et al. 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329: 834-838.
2. Cardoso, A. A., J. M. Randall, G. J. Jordan, and S. A. M. McAdam. 2018. Extended differentiation of veins and stomata is essential for the expansion of large leaves in Rheum rhabarbarum. American Journal of Botany 105: 1967-1974.
3. John, G. P., C. Scoffoni, and L. Sack. 2013. Allometry of cells and tissues within leaves. American Journal of Botany 100: 1936-1948.
4. Langdale, J. A. 2011. C4 cycles: past, present, and future research on C_{4} photosynthesis. The Plant Cell 23: 3879-3892.
5. Nobel, P. S. 2020. Physicochemical and environmental plant physiology. 5th ed. Academic Press, San Diego, CA.
6. Sack, L., and N. M. Holbrook. 2006. Leaf Hydraulics. Annual Review of Plant Biology 57: 361-381.
7. Sack, L., and C. Scoffoni. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198: 983-1000.
8. Sack, L., C. Scoffoni, A. D. McKown, K. Frole, M. Rawls, J. C. Havran, H. Tran, and T. Tran. 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3: 837.
9. Sage, R. F., P.-A. Christin, and E. J. Edwards. 2011. The C4 plant lineages of planet Earth. Journal of Experimental Botany 62: 3155-3169.
10. Sinclair, T. R., and L. C. Purcell. 2005. Is a physiological perspective relevant in a 'genocentric' age?*. Journal of Experimental Botany 56: 2777-2782.
11. Soreng, R. J., P. M. Peterson, K. Romaschenko, G. Davidse, J. K. Teisher, L. G. Clark, P. Barberá, et al. 2017. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. Journal of Systematics and Evolution 55: 259-290.
12. Wright, I.J., N. Dong, V. Maire, I.C. Prentice, M. Westoby, S. Díaz, et al. 2017. Global climatic drivers of leaf size. Science 357: 917-921.
13. Wright, I.J., P.B. Reich, M. Westoby, D.D. Ackerly, Z. Baruch, F. Bongers, et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.

Article

Developmental and biophysical determinants of grass leaf size worldwide

https://dol.org/10.1038/s41586-021-03370-0

Recelved: 11 October 2019
Accepted: 18 February 2021
Published online: 24 March 2021
Check for updates

Abstract

Alec S. Baird ${ }^{14}$, Samuel H. Taylor ${ }^{23}$, Jessica Pasquet-Kok', Christine Vuong', Yu Zhang ${ }^{1}$ Teera Watcharamongkol ${ }^{3 / 4}$, Christine Scoffoni ${ }^{15}$, Erika J. Edwards ${ }^{6}$, Pascal-Antoine Christin ${ }^{3}$, Colin P. Osborne ${ }^{3}$ \& Lawren Sack ${ }^{120}$

One of the most notable ecological trends-described morethan 2,300 years ago by Theophrastus-Is the association of small leaves with dry and cold climates, which has recently been recognized for eudicotyledonous plants at a global scale ${ }^{1-3}$. For eudicotyledons, this pattern has been attributed to the fact that small leaves have a thinner boundary layer that helps to avoid extreme leaf temperatures ${ }^{4}$ and their leaf development results In veln tralts that improve water transport under cold or dry climates ${ }^{5,6}$. However, the global distribution of leaf size and its adaptive basis have not been tested inthe grasses, which represent a diverse lineage that is distinct in leaf morphology and that contributes 33\% of terrestrial primary productivity (Including the bulk of crop production $)^{7}$. Here we demonstrate that grasses have shorter and narrower leaves under colder and drler climates worldwide. We show that small grass leaves have thermal advantages and vein development that contrast with those of eudicotyledons, but that also explain the abundance of small leaves In cold and dry climates. The worldwide distribution of leaf size in grasses exemplifies how blophysical and developmental processes result in convergenceacross major lineages in adaptation to climate globally, and highlights the Importance of leaf size and venation architecture for grass performance in past, present and future ecosystems.

Thegrasses (Poaceae), which originated at least 55 million years ago ${ }^{\text {* }}$ comprise about 11,500 species in 750 genera ${ }^{9}$ and dominate up to 43% of the land surface of the Earth ${ }^{7}$ (Fig. 1). Smallleaves have previously been linked with arid climates in specific grasslineages and communities (see Supplementary Table 1 for a summary of the relevant publications). A worldwide climatic association could be an important influence onthe distributions of grass species and their tolerance of climate change, as well as on crop breeding. We tested relationships of leaf size with climate across 1,752 grass species from 373 genera in aglobal database, and for 27 diverse and globally distributed species in a commongarden (Extended Data Fig. 1, Supplementary Tables 2,3).
We also tested for an adaptive basis for the association of grass leaf size with climate (Fig. 1). Because smaller leaves couple more tightly with air temperature (owing to their thinner boundary layer), small-leafed eudicotyledons avoid damage from night-time chilling and daytime overheating; smaller leaves may also achieve a higher photosynthetic rate and water-use efficiency, and compensate for shortergrowing periods ${ }^{400-12}$. We evaluated these potential advantages for small-leafed grasses using energy balance modelling.
Smaller leaves may also develop vein traits that confer stress tolerances. Intypicaleudicotyledons the large ('major') veins are patterned before the bulk of leaf expansion ${ }^{5}$; leaves that expand less have narrower major veins and xylem conduits, and major veins that are more closely spaced, which results in a higher vein length per leaf area (VLA)
of their major veins ${ }^{\text {s.6 }}$. Across eudicotyledons, major vein traits scale allometrically with mature leaf size: trait $=a \times$ leaf area ${ }^{b}$ (in which a is a scaling coefficient and b isthescaling exponent $)^{13}$. The major vein traits in small leaves of eudicotyledons can providegreater water transport and lower vulnerability to freezing and dehydration ${ }^{6}$ (Fig.1a, Supplementary Table 4). However, grass leaves arehighly distinct fromthose of eudicotyledons, far smaller on average, and characterized by parallel longitudinal veins connected bytransverse veins ${ }^{14}$. To determine vein scaling and its adaptive consequences for small leaves in grasses, we synthesized a model of leaf development for C_{3} and C_{4} grasses (Table1, Box 1).

Developmental scaling of grass venation

Our synthetic model of leaf development in grasses (Box 1) is conserved across grass species, and therefore scaling predictions can be derived for species that vary in leaf size (Supplementary Tables 5,6). Some of these scaling relationships arise intrinsically from the sequence of development: for example, major VLA is lower in wider leaves, as their major veins are spaced further apart. In the model, VLA for first-order veins declines geometrically as the inverse of leaf width, whereas the VLA for second-order veins declines less steeply than geometrically (because the formation of more second-order veins partially counteracts their greater spacing). Other scaling trends are not intrinsic,

Fig. 1|Relationship of grass leaf size,traits and climatic distri bution of species worldwide. a, Links between small leaf size and traits, adaptation to cold and dry climates, and biogeography, as established for eudicotyledons (Supplementary Table 4) and hypothe sized for grasses. Small leaves have thin boundary layers (BL), develop lower major vein diameters $\left(\mathrm{VD}_{\text {napor }}\right)$ and have higher major VLA (VLA maxec), which provide advantages in cold or dry climates (Supplementary Table 4). Large leaves would be disadvantaged in such climates (relative to warm and moist climates). \mathbf{b}, Grass leaf area averaged per country in the global database (across-species mean of leaf area for 21 to 547 species per country; grey denotes that <20 species are represented). c, Grass leaf area in relation to the aridity index (a low index reflects a drierclimate). Each point represents a species ($n-912 \mathrm{C}_{3}$ and $840 \mathrm{C}_{4}$ species). Contour lines and colours represent the 2D kernel density of points. d, The association of VLA mapr with leaf area across grass species ($n-600$ species). Statistics represent the fits for $\log (y)=\log (a)+b \log (x)$ from ordinary least squares in c, d. $P=2.3 \times 10^{-27}$ (c), $1.6 \times 10^{-109}(\mathrm{~d})$ (both two-tailed).
but are instead 'enabled' by the developmental program ${ }^{15}$. The diameters of first- and second-order veins are expected to scale positively with leaf length and area, because a greater rate or duration of leaf lengthexpansion enables a greater growth of vein diameters.Similarly, a positive scaling of the diameters of first- and second-order vein xylem conduits with vein diameter is enabled by the greater vein expansion in larger leaves.

Minor veins differ from major veins in their predicted scaling with leaf size across species. As minor veins are initiated at the tip of the developing leaf, greater lengthexpansion provides morespace and time for initiating additionalminor veins. Minor VLA therefore scalespositively with final leaf length. However, as minor veins are initiated later during leaf-width expansion and their diameter growth and spacing is more limited than that of major veins, their veintraits are independent of final width. The positive scaling of minor VLA with leaf length, and its decoupling from leaf width, would result in weak scaling of minor VLA with leaf area. Total VLA (that is, summing major and minor veins) is decoupled from leaf area, owing to the negative scaling of major VLA with leaf width and the positive scaling of minor VLA with leaf length. Additional scaling predictions arise from the relationships of
vein diameters and lengths with leaf size (Supplementary Table 6). As with the diameters of major veins, the major vein surface area, vein projected area and vein volume per unit leaf area (VSA, VPA and VVA, respectively) scale positively with leaf length and-similar to major VLA-negatively with leaf width. These counteracting trends lead to predictions that VSA, VPA and VVA are decoupled from leaf area.
Our developmental model predicts that grass species with smaller leaf dimensions will develop vein traits that confer stress tolerance; these traits include narrower major veins and higher major VLA, VSA, VPA and VVA, which contributeto water transport efficiency and alower vulnerability to cold and drought ${ }^{5.6}$ (Fig.1a, Supplementary Table4). By contrast, large grass leaves can attain high minor and total VLA, VSA, VPA and VVA independently of leaf size, which enables high transport efficiency for competition in sunny, moist climates. The model also predicts that C_{3} and C_{4} species will converge in their vein scaling. C_{4} grasses have a higher total VLA, providing a large vein bundle-sheath compartment for concentrating CO_{2} to enable high rates of photosynthetic assimilation ${ }^{15-17}$. We hypothesized that the high total VLA of C_{4} grasses arises from minor VLA, and is therefore independent of leaf area.
To test these predictions, we compared the measured scaling relationships of 27 grass species in a commongarden against null expectations from the developmental model and against geometric scaling ${ }^{\text {s/3 }}$ (Extended Data Fig. 1,Supplementary Table3), and assessed whether developmental scaling would confer small leaves with potential climatic advantages.

Relationship of leaf size with climate

Globally, grasses vary by morethan 625 -fold, 275 -fold and 160,000 -fold in leaf length, width and area, respectively ${ }^{s, 18}$, and smaller leaves are associated with cooler and drier climates (Fig.1b, c,Supplementary Tables $1,2,7$). We found that, across species, leaf length, width and area were interrelated and that all of these were positively correlated with mean annual temperature, mean annual precipitation and the aridity index (forleaf area, $r=0.24-0.31, P<0.001$; phylogenetic $r=0.08-0.17$, P<0.001) (Fig. 1c, Extended Data Fig. 2, Supplementary Table 7). We found similar relationships with growing season temperature, growing season precipitation and growing season length (Supplementary Table 7). The climatic associations of smaller leaves were independent of plant stature, and statistically similar for C_{3} and C_{4} species (Supplementary Tables 7,8). The size of grass leaves was associated interactively with climatic temperature and precipitation, whether considered annually or for the growing season (Extended Data Fig. 3, Supplementary Table 8). The climatic distribution of grass leaf size arises at least in part from the exclusion of large-leafed species from dry and cold climates (Extended Data Fig. 4, Supplementary Table 8).

Thermal benefits of small leaf size

We tested three hypotheses for the thermal advantages of small grass leaves in cold and dry climates using heuristic energy-budget modelling ${ }^{19,20}$. First, small leaves may avoid chilling or overheating damage (a mechanism that explains the global biogeographical trend in eudicotyledon leaf size ${ }^{3}$). However, 98% of grass species in the global database had leaves smaller than the modelled width thresholds for such damage (8.16 and 4.47 cm for chilling and overheating, respectively ${ }^{3}$) and among these species leaf size remained associated with climate (Extended Data Fig. 5), which indicates that this mechanism cannot explain theglobaltrend. Second, small leaves-whichare better coupled with air temperature-may achieve a higher light-saturated photosynthetic rate or leaf water-use efficiency under cold or dry climates ${ }^{20}$ (Extended Data Fig. 5, Supplementary Table 9). These benefits were supported by model simulations (especially at slower wind speeds): in comparisons between the 5 th and 95 th percentile of leaf sizesin our

Article

Table 1| Parameters for the scaling of vein dlameters and VLA with mature leaf dimensions

Trait and vein order*		Scaling with leaf length				Scaling with leaf width				Scaling with leaf area			
		$\begin{gathered} \text { Expected } \\ b \end{gathered}$	$r(P)$	a	$\begin{gathered} b(95 \% \\ \left.C^{1}\right) \end{gathered}$	Expected b	$r(P)$	a	b(95\% Cl)	Expected b	$r(P)$	a	$\begin{gathered} \text { b(95\% } \\ \text { CI) } \end{gathered}$
$\mathrm{VD}^{\text {e }}$	$1^{0 d}$	$0<b<1 ; e^{*}$	0.61 (0.0007)	-1.64	0.368 (0.267, 0.508)	$b=0^{+}$	0.25 (0.21)			$\begin{aligned} & 0<b<0.5 ; \\ & e^{*} \end{aligned}$	$\begin{aligned} & 0.71 \\ & \left(3.0 \times 10^{-5}\right) \end{aligned}$	-1.52	0.319 (0.24, 0.424)
	$2^{\text {od }}$	$0<b<1 ; e^{*}$	$\begin{aligned} & 0.76 \\ & \left(3.9 \times 10^{-6}\right) \end{aligned}$	-1.69	0.363 (0.279, 0.473)	$b=0^{\circ}$	0.003 (0.99)			$\begin{aligned} & 0<b<0.5 ; \\ & e^{*} \end{aligned}$	$\begin{aligned} & 0.65 \\ & (0.0003) \end{aligned}$	-1.58	0.32 (0.224, 0.44)
VLA ${ }^{\text {f }}$	108	$b=0^{+}$	0.36 (0.065)			$b=-1.0 ; ~ P$	$-1.0\left(1.2 \times 10^{-34}\right)$	0.009	$\begin{aligned} & -1.01 \\ & (-1.03, \\ & -0.99) \\ & \hline \end{aligned}$	$b=-0.5 ;$	$\begin{aligned} & -0.61 \\ & \left(7.0 \times 10^{-4}\right) \end{aligned}$	0.943	
	$2^{\text {ac }}$	$b=0^{*}$	0.36 (0.062)			$\begin{aligned} & -1.0 \leq b<0 \\ & i \end{aligned}$	$-0.82\left(1.4 \times 10^{-7}\right)$	0.951	$\begin{aligned} & -0.616 \\ & (-0.769, \\ & -0.462) \end{aligned}$	$\begin{aligned} & -0.5 \leq b<0 \\ & r \end{aligned}$	$\begin{aligned} & -0.46 \\ & (0.017) \end{aligned}$	1.51	
	Total major ${ }^{2}$	$b=0$	0.37 (0.058)			-1sb<0; i^{*}	$\begin{aligned} & -0.87 \\ & \left(3.6 \times 10^{-9}\right) \end{aligned}$	0.999	$\begin{aligned} & -0.67 \\ & (-0.805 \\ & -0.534) \\ & \hline \end{aligned}$	$-0.5 \leq b<0$	$\begin{aligned} & -0.49 \\ & (0.0090) \end{aligned}$	1.61	-0.346 $(-0.589$, $-0.104)$
	$3^{\text {ch }}$	$0<b<1 ; e$	0.34 (0.085)			$b=0^{\circ}$	-0.29 (0.137)			$0<b<0.5 ; \theta$	0.02 (0.94)		
	$4^{\text {ch }}$	$0<b<1 ; e$	0.3(0.51)			$b=0^{*}$	-0.13(0.774)			$0<b<0.5 ; \theta$	0.02 (0.97)		
	$5^{\text {ch }}$	$b=0^{\circ}$	-0.33(0.095)			$b=0$	$0.57(0.0020)$	0.858	0.273 (0.138, 0.408)	$b=0^{\circ}$	0.32 (0.10)		
	Total minor ${ }^{\text {h }}$	$0<b<1 ; e^{*}$	0.56 (0.0023)	1.13	0.664 (0.489, 1.05)	$b=0$	-0.36(0.068)			$0<b<0.5 ; e$	0.20 (0.33)		
	Overalltotal ${ }^{\text {h }}$	$0<b<1 ; e^{*}$	0.57 (0.0018)	1.27	0.619 (0.425, 0.878)	$-1 \leq b<0 ; i^{*}$	-0.56(0.0025)	1.75	$\begin{aligned} & -0.317 \\ & (-0.496, \\ & -0.138) \end{aligned}$	$b=0^{\circ}$	0.01(0.95)		

4° to 5° denote first-tofifth-order veina.
${ }^{4} \mathrm{a}$, confidence intervol.
${ }^{9}$ VD, vein dismeter (in mm)
${ }^{\text {dSmaller}}$ leaves are predicted to have amaller major vein diameters, which tend to contain narrower xylem ocnduits (providingtolerance of embolism in odd and dry olimates). "The b values predicted from the developmental model are supported in the experimental data (that is, the scaling relasionship soross species is either absent when expeoted, or sigrificant, and the predicted b value is within the 85% confidence intervals of the obeerved b value)
'VLA in crn of vein per cm^{2} of leaf area.
${ }^{\text {asmaller leaves are predioted to heve higher major VLA, which oontributes to high maximum hydraulic and photoeynthetio function (potentially mitigating a short growing period, }}$ and additionolly reducing vilnerability to hydraulio decline in dry conditiona).
${ }^{h}$ Minor and total VLA are predicted to be decoupled from finalleof size. As these contribute to high maximum hydraulio and photosynthetio function, this independence enables potential adaptation to high resource conditions in both small and large leaves.
Paremeters are shown acroes 27 grasa apecies ($n=11 \mathrm{C}_{3}$ and $16 \mathrm{C}_{\iota}$ gresa apecies) grown in a common garden. Tolerance of oold or cry climates can be conferred by these vein traits (armong others, suoh as VSA, VPA and VVA (Supplementary Table 10X, as they influence hydralio capsoity and safety, and vasouler cost(Supplernentary Table 4). Expectations for these sorces-apeciee scaling relationships were derived from a developmental model that predicts the allornetrio slope b in the equation $\log (t r a i t)=\log (a)+b \log ($ mature leaf length, width or area), owing to intrinsic (i) and enabling (e) effeots (Supplerrentary Table 6). Expeotations from the alternative, geometrio scoling model were also derived and teested (Supplementary Tables 6,10). Allometria equations were fitted using two-tailed phylogenetio reduced major axis(PRMA) or phylogenetio generalized losstequares for the scaling of vein diameter and VLA, reapectively. yielding r velues and P values, as well as perameters a and b (including 95% confidence intervals for b velues).
global database, the smaller leaves had 9-27\% higher light-saturated photosynthetic rates and/or water-use efficiencies under cold or dry climates (Supplementary Table 9). Third, smaller leaves may mitigate the short daily and/or seasonal growth period that is associated with cold and dry regions with a higher light-saturated photosynthetic rate under warm and moist conditions ${ }^{4}$. This benefit was supported by our simulations (which also showed that smaller leaves had higher transpiration rates) (Supplementary Table 9).

Developmental scaling of grass venation

Developmental vein scaling resultsin astrong association between vein traits and grass leaf size. As predicted, at a global scale, smaller-leafed species had higher major VLA ($r=-0.84$ to $-0.75, P<0.001$) (Fig. 1d, Extended Data Fig.6). For the 27 grass species that were grown in our common garden, developmental scaling was supported over the null hypothesis of geometric scaling for numerous vein traits (91 versus 27 of the 111 scaling predictions; $P<0.001$, proportion test) (Table1, Fig. 2, Extended Data Figs. 6, 7,Supplementary Tables 10,11). The diameters
of first-order and second-order veinsscaled positively with leaf length and area ($b=0.32-0.37, r=0.61-0.76, P<0.001$) (Fig.2, Extended Data Fig. 6), and the diameters of xylem conduits scaled with their vein diameters ($b=1.3-1.5, r=0.48-0.65, P<0.05-0.001$) (Extended Data Fig.6). The VLA of the first-order vein decreased geometrically with increasing leaf width and area ($b=-1.0$ and -0.56 , and $r=-1.00$ and -0.61 , respectively, $P<0.001$), whereas the VLA of second-order veins decreased less steeply ($b=-0.62$ and -0.31 , and $r=-0.82$ and -0.46 , respectively, $P<0.05$) (Fig. 2, Extended Data Fig.6), and themajor and total VLA scaled negatively with leaf width $(b=-0.67$ and -0.32 , and $r=-0.87$ and -0.56 , respectively, $P<0.01$). The diameters of minor veins were independent of leaf length, width and area. The trends of the VLA of third-order and fourth-order veinswith leaf length were not significant, but their sum (the total minor VLA) scaled positively with leaf length ($b=0.35-0.36, r=0.56-0.57, P<0.01$) andwas independent of leaf width and area. The VSA, VPA and VVA also scaled positively with leaflength, and negatively with leaf width (withthe exception of the VVA of third-order veins), and all were independent of leaf area (Extended Data Fig. 7). We found trends for the fifth-order veins not anticipated

Box 1

Synthetic model of vein development in grass leaves

This model is based on published data for 20 species of grass (Supplementary Tables, 5, 6), and shows how traits that are advantageous under cold and dry climates develop in small leaves. The development of leaves in grasses includes five phases that are based on developmental zones.

Formation and expansion of the primordium (phase \mathbf{P}) 'Founder cells' in the periphery of the shoot apical meristem generate the leaf primordium. Cell divisions drive the growth of a hood-like structure, in which the central first-order vein (midvein) and the large second-order veins are initiated early and extend acropetally, which enables their prolonged diameter growth (Box 1 Fig. a, c, e). After this, discrete spatial growth zones develop at the leaf base and drive leaf expansion laterally and longitudinally.

Formation of the celldivision zone (phase D)

The basal cell division zone expands slightly, driving minimal growth (Box 1 Fig. a, b). The first- and parallel second-order vein (major veins) complete their patterning basipetally along the leaf blade and increase in diameter (Box 1 Fig. C, e). Meanwhile, beginning at the lamina tip, C_{3} species form a single order of small parallel longitudinal minor veins (that is, third-order veins) as do most C_{4} species (which we refer to as $\mathrm{C}_{4 \cdot 3}$ species). Some
C_{4} species of the subfamily Panicoideae additionally form smaller parallel fourth-order veins (which we refer to as $\mathrm{C}_{4-4 \mathrm{~L}}$ species ${ }^{15}$) (Box1Fig. c).

Division zone, and formation of the expansion zone (phase D-E) Cells from the division zone transition to a distinct, distal expansion zone. In the expansion zone, cell expansion in width and length spaces apart the first- and second-order veins, resulting in the declines in their VLA (Box 1 Fig. a, b, d). Additional third-order veins (and in some species, fourth-order veins) continue to initiate at the leaf tip between major vein orders and extend basipetally (Box 1 Fig. c-e). The transverse fifth-order veins form last, connecting the longitudinal veins.

Division zone, expansion zone and maturationzone (phase D-E-M) Cells from the expansion zone mature distally to generate the maturation zone, which increases in size as cells move through the developmental zones (Box 1 Fig. a). The xylem, phloem and bundle sheath of the veins mature.

All of the leaf is in the maturation zone (phase M)
Leaf development is complete, and all cells are differentiated and expanded (Box 1 Fig. a, b).

Box1Fig. |Synthetic model forgrassleafontogeny that predicts developmentally based scaling of veintraits with final leaf size across species. Processes are plotted against developmental phases: phases Pand D refer to the formation of the leaf primordiumand the cell division zone (DZ) at the base of the leaf, respectively; phases D-E and D-E-Mdescribe additions of the expansion zone (EZ) and the maturation zone (MZ), respectively; and
phase M denotes the maturation of the whole leafblade. a, Leaf expansion and the formation of zones. \mathbf{b}, Increases in leaf length, width and area. c, Patterning of leaf vein orders from first-order veins to fifth-order transverse veins for C_{3} and C_{4} species, some C_{4} species develop fourth-order longitudinal veins (C_{4-12} species), whereas C_{3} species and C_{4-31} species do not. d, e, Increases in VLA (d) and vein diameter (e) for each vein order.

Article

by the developmental model, being positive scaling of their VLA, VSA and VPA with leaf width ($r=0.46-0.57, P<0.05$).
C_{3} and C_{4} grasses converged in vein scaling (Fig. 2, Extended Data Fig. 8, Supplementary Table 3). C_{4} species had more numerous, narrower third-order veins with higher VLA, VSA and VPA, and 7 out of $16 \mathrm{C}_{4}$ species had fourth-order veins; this resulted in the C_{4} species having, on average, almost double the total VLA of the C_{3} species. The C_{4} species also had narrower fifth-order veins with lower VSA, VPA and VVA ($P=0.001-0.05$).

Hydraulic benefits of small leaf size

Across the 27 grass species that we grew experimentally, a number of key vein traits were related to the native climates of the species. Small leaf size and higher major VLA, VSA, VPA and VVA were associated with lower mean annual and growing season precipitation, a lower aridity index and a shorter growing season (Supplementary Table 7). Furthermore, our tests supported assumptions based on the published literature (which is collated inSupplementary Table 4) that C_{3} grasses adapted to colder or drier climates have higher light-saturated photosynthetic rates in moist soil, which are associated with their major vein traits (Extended Data Fig. 9)
Developmental scaling contributesmechanistically to climate adaptationglobally. Vein scaling can explainthe absenceofleaves larger than $51.4 \mathrm{~cm}^{2}$ in areas in which the mean annual temperatures are below $0^{\circ} \mathrm{C}$ (Extended Data Fig.5), as the midrib conduits of leaves larger than this would be wider than $35 \mu \mathrm{~m}$ (Extended Data Fig.6) and thus vulnerable to freeze-thaw embolism ${ }^{2}$. Additionally, the narrow xylem conduits of small leaves resist embolism during drought, and their higher major VLA provides a high capacity flow around blockages, which further reduces hydraulic vulnerability to dehydration ${ }^{62-25}$ (Supplementary Table 4). The higher major VLA of smaller leaves also contributes to mitigating the shorter growing periods that are associated with colder, drier climates ${ }^{11,12}$ by providing higher hydraulic conductance, which enables the maintenance of open stomata for higher photosynthetic rates despite the higher transpiration loads expected from their thinner boundary layer ${ }^{626}$ (Extended Data Fig. 9).

Discussion

The worldwide association of small leaf size ingrasses with cold and arid climates arises from millions of years of grass migration and evolution, from the tropicsto colder, drier climates and from forest understoreys to open grasslands ${ }^{s}$ (Supplementary Table 1). The biophysical and developmental advantages of small leaves can explain this pattern. The thinner boundary layer of small grass leaves confers a moderately higher photosynthetic rate and water-use efficiency in cold and dry climates, and can partially mitigate shortergrowing days and seasons (especially under the very low wind speeds that areexpected for closed, dense stands) ${ }^{27-30}$. The higher major VLA and narrower xylem conduits of these smaller leaves directly contribute to cold and drought tolerance. The strong climatic association of leaf size and vein traits indicates their substantial importance to plant adaptation against a background of other features-including leaf hairs, leaf rolling and mesophyll desiccation tolerance, and (beyond leaves) annual versus perennial life history, stem and root hydraulic adaptation, and root morphology-that help plants to cope with climatic pressures ${ }^{31-33}$.

Developmentally based vein scaling relationships held strongly across diverse grass species-even including those species (such as bamboos) that possess a pseudopetiole. These relationships may also apply to nongrass species fromother families withinthe Poales. Developmental vein scaling relationships in grass leaves are distinct from, though analogous to, those of typical eudicotyledon leaves (Figs. 1, 2, Box 1). In eudicotyledons (as expected from their diffuse lamina growth), major vein traits scale negatively with final leaf area (Supplementary

Fig. 2 | The scaling of veintraits with le af dimensions for 27 species of grass grownina commongarden. $n-11 \mathrm{C}_{3}$ (shown as white points) and $16 \mathrm{C}_{4}$ (shown as grey points) grass species.a-d, Relationship of vein diameters with leaf length. e-h, Relationship of VLA with leaf width. Ina, e, relationships are shown forfirst-order veins, in \mathbf{b}, \mathbf{f}, for second-orderveins; in \mathbf{c}, \mathbf{g}, for third-order veins (inset panels show fourth-order veins for the species that possessthem); and in $\mathbf{d , h}$, fifth-order transverse veins. Each point represents the mean value of a species. PRMA or phylogenetic generalized least square regressions were fitted for $\log ($ vein diameter orVLA $)-\log (a)+b \log (l e a f ~ l e n g t h ~ o r ~ w i d t h), ~$ respectively. Parameters and the goodness of fit are given in Table1, Supplementary Table $10 .{ }^{*} P<0.01, * P<0.001 . P=0.0007(a), 3.9 \times 10^{-6}$ (b), $1.2 \times 10^{-34}(\mathrm{e}), 1.4 \times 10^{-5}(\mathrm{f})$ and 0.0020 (h) (all two-tailed). Significant trends are plotted with PRMA. Supplementary Table 3 gives the s.e. for species trait values.

Table 4), whereas in grasses vein traits scale more directly with length or width (Table 1, Fig. 2, Box 1). However, for both grasses and eudicotyledons, total VLA-which is a key determinant of hydraulic capacity and photosynthetic rate ${ }^{6}$-was independent of final leaf area. This lack of constraint on total VLA would enable grass diversification in leaf size across environments, as for eudicotyledons ${ }^{5,26,34}$: large-leafed grasses, despite their low major VLA, can achieve sufficient hydraulic capacity with their minor vein length to occupy wet, sunny habitats ${ }^{6,34,35}$. The decoupling of total VLA fromleaf size also enables C_{4} species to achieve, on average, a higher VLA than that of C_{3} species, irrespective of leaf size (Fig. 2, Box 1). Unlike in eudicotyledons ${ }^{5}$, larger leaves ingrasses did not have a higher VVA (which contributes substantially to the cost of leaf construction ${ }^{36}$); this indicates that there is less restriction on the evolution of grass leaf size in resource-rich environments, in which larger leaves may confer advantages in light-use efficiency and by shading other species ${ }^{3738}$. Although the common developmental program across grass species explains many vein scaling relationships, these relationships mayalso arise from selection on the basis of function. In longer leaves, larger-diameter veinsmay provide necessary structural and hydraulic support ${ }^{639}$ In wider leaves, more numerous fifth-order transverse veins may reinforce the grass leaves against bending ${ }^{40}$ and provide hydraulic pathwaysthat mitigate their lower major VLA ${ }^{6}$.Similarly, the greater diameters offifth-order veins in C_{3} species than in C_{4} species may compensate for their lower minor VLA (Fig.2).
The relationships among grass leaf size, vein traits and climate have diverse potential applications. In eudicotyledons, these traits
are frequently included for estimating the adaptation of species to climate ${ }^{6}$, an approach that can now be extended to grasses. For grasses (as shown for eudicotyledons ${ }^{5 / 1}$), vein scaling can enable the reconstruction of leaf size from fossilized leaf fragments, toimprove palaeoclimate reconstructions (Extended Data Fig. 10). Anticipating future climate change, leaf size and vein traits represent key targets for the design of grass crops, which are central to food and biofuel security ${ }^{12,43}$. A current grand challenge is the engineering of C_{4} metabolism into C_{3} crops such as rice ${ }^{43}$, and introducing a higher total VLA has been targeted as a promising step ${ }^{44,45}$. Global trends indicate that C_{4} species with narrow leaves and high major VLA would be especially advantaged under the increased temperature and irregular precipitation that are expected for grasslands in scenarios of global climate change ${ }^{25,46,47}$.

Onlinecontent

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available athttps://doi.org/10.1038/s41586-021-03370-0.

1. Hort, A. Enquiry into Planta, Vol. I, by Theophrastus (Harvard Univ. Presa, 1948).

Peppe, D. J. et al. Seresitivity of leaf size and shope toclimate: globel patterna and paleoclimatio applicationa. New Phytol. 190, 724-739 (2011).
3. Wright, II 1 et al. Global olimatio drivers of leof size. Soience 357, 917-921 (2017) Gates, D. M. Tranepiration and leef terrperakure. Annu. Rev. Plant Physiol. 19, 211-238 (1968).
5. Sack, L. et al. Developmentally basod scaling of leaf venation architecture explaina global eodogical patterna. Nat. Commun. 3, 837 (2012).
6. Sack, L. \& Sooffoni, C. Leef venakion: structure, function, development, evolution eoology and spplications in the peat, present and future. New Phytol. 198, 983-1000 (2013).
7. Beer, C. et aL. Terrestrial groes carbon dioxide uptake: global distribution and oovariation with climate. Science 329, 834-838 (2010).
Gallaher, T. I et al. Leaf sheppe and size track habitos traneitions acrose forest-grasoland bounderies in the grass family (Poscese). Evolution 73, 927-946 (2019).
Q. Screng, R. J. et al. A worldwide phylogenetic olengification of the Poacese (Graminesa) II: an update and a comperison of two 2015 alasaifications. 1 Syst. Evel. 55, 259-290 (2017).
10. Schuepp, P. H. Tandey review na. 59 leaf boundarylayera. Now Phytol. 125, 477-507 (1983).
11. Criana, G.H. \& Solbrig, Q T. Acoat-inoome model of leaves and roots with special reference to arid and serriarid aresas. Am. Nat. $111,677-690(1977)$.
12. Körner, C. Plant adaptation to cold dimatea. F1OOORes. 5, 2789 (2016).
13. Nklos, K. \& Plant Allometry: The Sceling of Form and Prooess(Univ. Chicogo Press, 1994).
13. Nklas, K. I Plant Allometry: The Sceling ofform and Process (Univ. Chicogo Presa, 1994),
14. Nelson, T. \& Dengler, N. Leef vasculer pattern formation. Plart Cell 9, 1121-1135 (1997).
14. Nelson, T. \& Denglet, N. Lear vascular pattern formation. Plart Cell $9,1121-1135$ (19931
15. Christin P. A. et al. Anstomical enablers and the evolution of C_{4} photosynthesia in grasees. Proc. Natt Acad. Sci. USA 110, 1381-1386 (2013)
16. Ueno, O., Kaweno, Y. Wakayama, M. \& Takeds, T. Loof vasoular gyatems in C_{3} and C_{4} grasses: a two-dimernsional andysyis. Ann Bot. 97, 611-621(2006)
17. Sage, R. F. The evolution of C, photosyntheria. New Phytol. 161, 341-370 (2004)
18. Clayton, W. D. Vorconteova, M. S., Harman, K. T.\& Williamson, H. GressBess-The Online Worid Grass Flora http;//wwwkew. org/daka/grasesesthitrol (2006)
19. Parkhurat, D. F.\& Loucka, O. L. Optimal leaf size in relation to ervirconment. I. Ecol. 60 , 505-537(1972).
20. Okzjima, Y., Taneda, H., Noguchi, K. \& Teranhima, I. Optimum leaf size precioted by a novel leaf energy balance model incorporating dependencies of photoeynthesis on light and temperature. Ecol. Res. 27, 333-346 (2O12)
21. Devis, S. D, Sperry, J. S. \& Hacke, U G. The relationehip between xylem conduit diameter and cenitation cosused by freezing. Am. 1. Bot. 86, 1367-1372 (1999)
22. Blackman, C. 1, Brodribb, T. J. \& Jordan, G. J. Lesf hydraulio vulnerability is related to conduit dimensions and drought resistance sorcess a diverse range of woody angiosperms. New Phytol. 188, 1113-1123 (2010).
23. Sooffoni C., Raws, M., MaKown, A, Cochard H. \& Sack, L. Deoline of leaf hydraulic conductance with dehydration: relationship toleaf aize end venation architecture. Plant Physiol. 156, 832-843 (2011).
24. Sooffoni C. et al. Leaf vein xylem conduit diarneter influences susoeptibility to ernbolism and hydraulio deoline. New Phytol. 213, 1076-1092 (2017).
25. Craine, J.M. et el. Global diveraity of drought toleranoe and greadand alimate-chenge resilience. Nat. Clim. Chang. 3, 63-67 (2013)
2. Sooffoni C. et al. Hydraulio basis for the evolution of photoeynthetio productivity. Nat. Plents 2, 16072 (2016).
27. Jones, H. G. Plants and Miaroolimate: A Quantitotive Approsoh to Ervironmental Plent Physiology 3rd edn (Cambridge Univ. Press, 2014),
28
30. Meinzer, F.C. \& Grantz, D. A. Stomatal oontro of transpirdi
sugaroane canopy. Plent Coll Erviron. $12,635-642$ (1999),
Liu H. et al. Life history is a key factor explaining funotions
ubrot il 1567-1580 (2019)
32. Fort, F., Jounny, C. \& Cruz, P. Root and leaf functional trait relations in Poacese speoien Implications of differing resource-acquisition strategies. A. Plant Eod. 6, 211-219 (2013).
33. HollowayPhillipa M. M. \& Brodribb, T. J.Contrasking hydraulio regulation in olosely related formge grasoes: implications for plant water use. Funct. Plant Biol. 38, 594-605 (2011)
34. Brodribb, T. J. Feild, T. S. \& Sack, L. Viewing leaf atructure and evolution from a hycraulic perspective. Funct. Plant Biol. 37, 489-498 (2010).
Linsore, E. T. Further notes on a feekure of leof and air temperatures. Archiv Metearol. Geophys. Bioklimatol. B 15, 422-436 (1967).
36. John, G. P. et ad. The anatomical and compositional basis of leaf mass per ares. Eool. Lett. 20, 412-425 (2017).
Givnish, T. J. Comparative studies of leaf form: msesaing the relative roles of selective pressures and phylogenetio constrainta. New Phytol. 106, 131-160 (1987).
38. Luak, C. H., Grierson, E. R. P.\& Laughin, D.C. Lerge leaves in warn, moizt environments confer an advantaga in seeding light interception efficienoy. New Phytol. 223, 1319-1327 confer
(2019).
39. Aced. Soi U. et al. Plant height and lyd
40. Nklos, K. 1 A mechanicol perapeotive on foliage leaf form and function. New Phytal. 143, 19-31(1990).
41. Merkhofer, L. et al. Resolving Australien analogs for an Eccene Patagonien poleorainforest using leof eize and floristics. Am. J. Bot. 102, 1160-1173 (2015).
42. Somerville, C. The billion-ton biofuels vision. Science 312, 1277(2006)
43. Sedelnikova, O. V., Hughes, T. E. \& Langdale, J. A. Underatanding the genetio basis of C_{4} kranz anatomy with a view to engineering C_{2} arops. Annu. Rev. Genet. 52, 249-270 (2018).
44. Soge, R. F. 8 Thu X. G. Exploiting the engine of C_{a} photorynthesis. 1 . Exp Bot. 62 , 2989-3000 (2011).
45. Feldman, A.B. et d. Increasing leaf vein density via rrutagenesis in rice resulta in an enhenced rate of photooynthesis, emaller cell sizes and can reduce interveinal mescphyll cellnumber. Front. Plant Sai. 8, 1883 (2017).
46. Edwarda, E. J. et el. The origins of C_{a} graselends integrating evolutionary and ecooystern Edwarda, E. J. et a . The crigins of C_{3} gra
soience. Science $328,597-591(2010)$
47. Linder, H. P., Lehmarn, C. E. R. Archibold S., Oebome, C. P. \& Richardson, D. M. Global grass (Posceses) auscess underpinned by traits facilitating oolorization, persistence and grass (Poscese) evocoss underpinned by traits facilitating oolorization, P
habitat transformation. Aiol. Rev. Camb. Philos. Soc. $93,1125-1144$ (2018).

Publisher's note Springer Nature remaina neutral with regard to juriscictional clsims in published mape and institutional affliations.
© The Author($($), under exclusive licence to Springer Nature Limited 2021

Article

Methods

Nostatistical methods wereused to predetermine sample size. Investigatorswerenot blindedto allocation during experiments and outcome assessment.

Testing for the linkage of leaf size and vein traits with climate

 across grass species worldwideWeextracted data fromthe Kew Royal Botanic Garden Grassbase, which was compiled from a combination of floristic accounts and publications ${ }^{18}$. We extracted all available data for maximum leaf length, maximum leaf width, maximum second-order vein number and maximum culmheight data, which included values for up to 1,752 species depending on the trait (that is, up to $912 \mathrm{C}_{3}$ and $840 \mathrm{C}_{4}$ species from 373 genera) ${ }^{18}$. We calculated leaf area by multiplying maximum leaf length by maximum leaf width. We divided the maximum leaf length and maximum second-order vein number, respectively, by maximum leaf width to determine the VLA of first- and second-order veins, and summed these to calculate the major VLA, resulting in values for 616 species for these traits. To test associations of leaf morphological and venation traits with the native climates of the species, we extracted geographical records from the Global Biodiversity Information Facility web portal (http://www.gbif.org). The names of species were checked against the Kewgrass synonymy database ${ }^{18}$ via the software package Taxonome ${ }^{48}$ and The Plant List (http://www.theplantlist.org) using the package Taxostand in R^{\ominus}. We discarded records if these were duplicates, the names were not recognized in any databases, the country did not match the coordinates, the coordinates contained fewer than three decimals or species had fewer than five occurrences. For each location, values for mean annual temperature (MAT), mean annual precipitation(MAP) and mean monthly temperature and precipitation were extracted from WorldClim 25 -arcminute resolution ${ }^{50}$; values for the aridity index ${ }^{51}$ were from CRUTS4.01 01^{52}. We also estimated growing season variables, considering growing season months as those with mean temperature $\geq 4^{\circ} \mathrm{C}$ and precipitation $\geq 2 \times$ the mean monthly temperature; growing season length was calculated as the number of months that fulfilled these criteria, growing seasontemperaturewas calculated by averaging the mean temperatures of these months, and growing season precipitation was calculated by summing their mean precipitation ${ }^{53}$. Climate variables were averaged from all given locations for each species. We focused on the relationships of traits with meanclimate variables based on the hypothesis that, if gene flow occurs among populations of a given species across its native range, then the mean phenotypic trait values of this species will be related to their mean climate variables ${ }^{54}$.

Construction of a synthetic model for grass leaf development, and derivation of allometric predictionsbased on developmental and geometric scaling
To determine whether leaf development constrains specific veintraits in smaller leaves, we formulated a synthetic grass leaf developmental modeland derived expectationsforthe relationship of vein traits with final leaf dimensions across species (Box 1, Supplementary Tables 5 , 6). To construct this model, we conducted searches for previously published studies that included developmental data and/or images of grass leaf development using the keywords 'grass leaf development', 'grass vein development','grass histogenesis', 'grass morphogenesis', 'Poaceae,', 'leaf ontogeny', 'leaf histology', 'leaf growth',' 'leaf anatomy', 'vascular development' and 'vasculature development' in the Web of Science database and Google Scholar searchengine, resulting in a compilation of 61 studies of 20 grass species ${ }^{1455-14}$. From these studies, we extractedthe key steps in leaf and vein development that weregeneral across species into a synthetic model. Then, giventhe spatial andtemporal constraints arising from development according to this model, we derived expectations for the scaling across species of vein traits with mature leaf size. For instance, theVLA of first-order veins declines
geometrically with final leaf width ($1^{\circ} \mathrm{VLA}=1$ /leaf width) as veins are separated by greater numbers of cell divisions and/or by larger cells. By contrast, the VLA of second-order veins declines less steeply than geometrically with final leaf width, as wider leaves may formgreater numbers of second-order veins (though these will be spaced further apart by subsequent leaf expansion); Box 1 andSupplementary Table 6 provide additional derivations.
Further, as a nullhypothesis against which to test developmentally based scaling predictions, we derived expectationsfor the relationships of vein traits to leaf dimensions on the basis of geometric scaling ${ }^{513}$. Geometric scaling represents the relationships expected among the dimensions of an object given increases in size, while maintaining constant proportions and composition. Thus, dimensions such as length (L), area (A) and volume (V) would be inter-related as $A \propto L^{2}$ and $V \propto L^{3}$. Predictions can then be derived for any other traits on the basis of their dimensions. For instance, given geometric scaling, VLA would be expected to scale with leaf width as VLA \propto LW ${ }^{-1}$, because VLA (as a linear dimension divided by an area (that is, L / A)) would be related to $L / L^{2}=L^{-1}$, whereas $L W$ would scale directly with L. In total, we compared 111 predictions derived from the developmental model to respective predictions from geometric scaling. These 111 predictions included the scaling relationships of five vein diameters (that is, for each of five vein orders) versus three leaf dimensions (that is, leaf length, width and area), amounting to 15 predictions, plus the scaling relationships for VLA, VSA, VPA and VVA for each of the five vein orders, for the major veins, minor veins, and the total vein systems, versus the three leaf dimensions (amounting to $4 \times 8 \times 3=96$ predictions). The developmental model predictionsfor relationships generally differed strongly from those of geometric scaling (that is, 75% of predictions differed), although-for afew relationships, such as that of the VLA of first-order veinswith final leaf size-the expectations from developmental scaling and geometric scaling were the same. Overall, developmental scaling predicted that 51 vein traits would scale with leaf size and 60 traits would be independent of leaf dimensions, whereas geometric scaling predicted 63 and 48 , respectively (Supplementary Tables 6,10).

Plant material

Totest vein scaling relationships, wegrewgrasses of 27 diverse species in a commongardento reducetheenvironmentallyinduced plasticitythat would occur in wild plants in their native ranges (Extended Data Fig. 2, Supplementary Table3). Although experimental species were selected to encompass large phylogenetic and functional variation (including $11 \mathrm{C}_{3}$ species and $16 \mathrm{C}_{4}$ species that represented 11 independent C_{4} origins), the species necessarily included a only subset of the phylogenetic distribution of the 1,752 species in the database analyses of global trait-climate relationships. Seeds were acquired from seed banks and commercial sources (Supplementary Table 3). Beforegermination, seeds weresurfacesterilized with $10 \% \mathrm{NaClO}$ and 0.1% Triton X -100 detergent, rinsed three times with sterile water and finally sown on plates of 0.8% agar sealed withMicroporesurgical tape(3M). Seedsweregerminated in chambersmaintained at $26^{\circ} \mathrm{C}$, under moderate-intensity cool white fluorescentlighting with a 12 -h photoperiod. When roots were $2-3 \mathrm{~cm}$ long, seedlingsweretransplantedto 3.6 -Ipotswith potting soil (1:1:1.5:1.5:3 of coarse vermiculite:perlite:washed plaster sand:sandy loam:peatmoss).

Plantsweregrownat the UCLA Plant Growth Center (minimum, mean and maximum daily values for temperature, 20.1,23.4 and $34.0^{\circ} \mathrm{C}$; for relative humidity, 28,50 and 65%; and mean and maximum photosynthetically active radiation during daylight period, 107 and $1,988 \mu \mathrm{~mol}$ photons $\mathrm{m}^{-2} \mathrm{~s}^{-1}$ (HOBO Micro Station with Smart Sensors, Onset)), arranged in 6 randomized blocks spread over 3 benches, with 1 individual per species per block and 2 blocks per bench ($n=6$,except $n=4$ for Alloteropsis semialata). Plants were irrigated daily with water containing fertilizer (200-250 ppm of 20:20:20 N:P:K, Scotts Peters Professional water soluble fertilizer,Everris International B.V.).All species were grown until flowering to confirm the identities of the species.

Sample anatomical preparation
Leaves were collected when plants had numerous mature leaves, after 2.5-7 months of growth, depending on species (given variation in growth rates). Leaves from each of 6 individuals per species were fixed and stored in FAAsolution (37% formaldehyde-glacial acidic acid, 95\% ethanol in deionized water). Transversesections were made for one leaf from each of three individuals. Rectangular samples were cut from the centre of leaves half way along the length of the blade and gradually infiltrated under vacuum with low viscosity acrylic resin for one week (L. R. White; London Resin), and set in resin in gelatin capsules to dry at $55^{\circ} \mathrm{Covernight} .\mathrm{Transverse} \mathrm{cross-sections} \mathrm{of} 1 \mu \mathrm{~m}$ inthickness were prepared using glass knives (LKB7800 KnifeMaker, LKB Produkter) in a rotary microtome (Leica Ultracut E, Reichert-Jung), placed on slides, and stained with 0.01% toluidine blue in 1% sodium borate (\mathbf{w} / v). Slides were imaged with a light microscope using $5 \times, 20 \times$ and $40 \times$ objectives (Leica Lietz DMRB; Leica Microsystems) and a camera with imaging software (SPOT Imaging Solution, Diagnostic Instruments). Additionally, one leaf from each of three individuals was usedtoprepare chemically cleared leaf sections to visualize veins. Square sections of $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ were cut from the centre of the leaf at the widest point, cleared with $5 \% \mathrm{NaOH}$ in ethanol, stained with safranin and counterstained with fast-green ${ }^{115}$. Sections were mounted with water in transparency film (CG5000;3M Visual Systems Division) and scanned (flatbed scanner; Canon Scan Lide 90; 1,200 dots per inch), and further imaged with a light microscope using $5 \times$ and $10 \times$ objectives.

Quantification of leaf dimensions and vein traits

The leaf dimensions tested were leaf width, leaf length and leaf area, with leaf width and leaf length measured at the widest and long. est regions of the leaf, respectively. Leaf area was calculated as leaf length \times leaf width ${ }^{116-118}$. Estimates of leaf area from length and width can be improved by multiplying by a constant correction factor, which has been proposed as $0.7-0.9$ for grasses ${ }^{16-118}$; however, as there is no standard value we did not apply such a correction factor. Applying a constant correction factor would have no influence on correlations or regression fits or their statistical significance for trait-climate relationships. Further, applying a constant correction factor would not influence the tests of scaling of vein traits with leaf area, which focused on power-law scaling exponents; multiplying estimates of leaf area by a constant would result only in a change to the power-law scaling intercept, and not the exponent. Thus, applying a correction factor to leaf area or not would have no influence on any of the findings of our study.

We measured and analysed cross-sections of one leaf for each of three individuals per species, toquantify yhe diameters and numbers of veins in the transverse plane for all vein orders (excluding fifth-order veins, which generally were not visible in transverse sections and for which we used the chemically cleared and stained leaf sections). Vein orders were established for each species on the basis of vein size, presence or absence of enlarged metaxylem and presence or absence of fibroustissue above or below the vein ${ }^{19120}$. The first-order vein (midvein) wasthe large central vein containing the largest metaxylem and fibroustissue, and the second-order veins were the 'large' veins that were substantially smaller than the midvein and of similar structure. We identified the minor veins as the smaller veins (that is, the third-order 'intermediate' and fourth-order 'small' veins, and perpendicular fifth-order transverse veins) ${ }^{120}$. Notably, fourth-order veins occur only inNADP-MEC ${ }_{4}$ grasses of the subfamily Panicoideae (7out of the 16 of the C_{4} specieswegrew) ${ }^{15}$, and can be distinguished on the basis of their smaller overall size than third-order veins and their absence of sclerenchyma strands. For the species Lasiacis sorghoidea, second-order veins were too few to be counted in our prepared transverse sections, and we established vein orders and quantified associated traits using the chemically cleared and stained leaves.

For each vein order, VLA was quantified as the vein number per leaf width (per cm or per mm), which is equivalent to VLA (same units), assuming an approximately rectangular leaf. Cross-sectional vein diameters (VD) were measured excluding the bundle and mestome sheath cell layers, and averaging horizontal and vertical axes. Cross-sectional diameters were measured for all xylem conduits in each vein order by considering the lumen cross-sections as ellipses and averaging the major and minor axes. We categorized two metaxylem types within major veins on the basis of their highly distinct sizes (that is, large and small metaxylem), and one metaxylem type for minor veins (that is, small metaxylem). We focused on the large metaxylem conduits within major veins in calculating average conduit diameter values, as these would contribute the bulk of maximum flow ${ }^{12,122}$. For L. sorghoidea, as second-order veins were too few to be counted from our prepared transverse sections, we could not quantify the conduits within these veins and thus analyses of second-order vein conduit dimensions excluded this species.
For all vein orders, we estimated VSA, VPA and VVA as VSA $=$ VLA \times $\pi \times V D ; V P A=V L A \times V D$; and VVA $=V L A \times \pi \times(V D / 2)^{2}$.

Determining vein allometries and testing against predictions

 from developmental and geometric scalingWe determined trait scaling relationships by fitting lines to log. transformed data. The relationship of each vein trait (y) to a given leaf dimension (x) was considered as an allometric power law: $y=a x^{0}$, $\log (y)=\log (a)+b \log (x)$, in which b is the scaling exponent.
Wetestedthese relationships against the predictions from developmentally based scaling derived from the syntheticleaf developmental model (as described in 'Construction of a synthetic model for grass leaf development, and derivation of allometric predictions based on developmental and geometricscaling' (Table1,Box1,Supplementary Table6). A scaling relationship was considered to be consistent with a prediction if its 95% confidence intervals included the predicted slope. Wetested whether agreater proportion of predictions were explained by developmental scaling than by geometric scaling using a proportion test (Minitab 16).

Testing assumptions for the linkages of photosynthetic rate

 with climate and vein traitsFor the grass species grown experimentally, light-saturated rates of photosynthesis were measured for plants in moist soil, enabling a test of the assumptionsthat C_{3} grass species from arid or cold environments have high photosynthetic rates, and that photosynthetic rate would be related to VLA and VSA. Light-saturated rates of photosynthesis were measured from 17 February 2010 to 28 June 2010, between09:00 h and 15:00 h, ona matureleaf on each plant for 6 plants per species. Measurements were taken of steady-state net light-saturated photosynthetic rate per leaf area ($<2 \%$ change over six minutes) using a LI-6400 XT portable photosynthesis system (U-COR). Conditions within the leaf chamberwereset to $25^{\circ} \mathrm{C}$, with reference $\mathrm{CO}_{2} 400 \mathrm{ppm}$, photosynthetic photon flux density $2,000 \mu \mathrm{molm} \mathrm{m}^{-2} \mathrm{~s}^{-1}$, and relative humidity $60-80 \%$, resulting in vapour pressure deficits of $0.80-1.6 \mathrm{kPa}$. Measurements weremade on 1 or 2 leaves fromeach of 4-6 plants (except L sorghoidea for which 3 leaves from each of 2 plants were used).
Inaddition, wetested for stronger general support of the relationships of photosynthetic rate with climate variables by combining our data for $8 \mathrm{C}_{3}$ terrestrial species with data for 13 Northern Hemispheretemperate terrestrial C_{3} grass species from the Global Plant Trait Network (GLOPNET) database ${ }^{123}$, for which photosynthesis, latitude and longitude data for their field site were available (Supplementary Table 12). We extracted the climate variables MAT,MAP and monthly temperature and precipitation to calculate growing season length (methods of calculation are described in 'Testing for the linkage of leaf size and vein traits with climate acrossgrass species worldwide'), on the basis of the latitude and longitude from which each species was measured.

Article

Phylogenetic reconstruction

A phylogenetic hypothesis for the 27 experimentally grown species considered in this studywasinferred fromthreemarkers from the chloroplast genome (rbcL, $n d h F$ and $t m K m a t K$), available for the exact same accessions in published datasets ${ }^{14,125}$. Each marker was aligned individually using MUSCLE ${ }^{126}$, and the alignments were manually refined. The total dataset was 6,179 -bp long. The program BEAST ${ }^{127}$ was used to obtain a time-calibrated phylogeny under a relaxed clock model with uncorrelated evolutionary rates that follow a log-normal distribution. The substitution model was set to ageneral time reversible model with a gamma-shape parameter and a proportion of invariants. The root of the tree (split of BOP and PACMAD clades) was forced to follow a normal distribution with a mean of 51.2 million years ago (Ma) and a standard deviation of 0.0001 Ma , on the basis of previousestimates ${ }^{128}$. The addition of phytolith fossilswould alter the absolute ages estimated by molecular dating ${ }^{\text {n9 }}$, but the relative ages would remain unchanged and the comparative analyses consequently would be unaffected. Two parallel analyseswere run for $10,000,000$ generations, sampling a tree every 1,000 generations.Median ages acrossthe 18,000 trees samples of a burn-in period of $1,000,000$ generations were mapped on the maximum credibility tree. The burn-in period was largely sufficient for the analysis to reach stability, as verified with the program Tracer (http://beast.community/tracer).
Using the RLanguage and Environment version $3.4 .1^{130}$ with the ape R package ${ }^{173}$ a phylogenetic hypothesis for 1,752 of the Grassbasespecies was extracted from a published phylogeny available through Dryad ${ }^{132}$. The source phylogeny assessed relationships among 3,595 species using a set of 14 subtrees using various genetic datasets in combination with three core plastid markers $r b c L, n d h F$ and $m a t K$, with dating based on macrofossil evidence ${ }^{9}$.

Testing trait-climate associations

Totest trait-climate associations, wequantified the strength of correlations using Pearson's r rather than fitting specific predictive regression equations with R^{2} values. For trait-climate associations, we calculated both ahistorical correlations and relationships accounting for phylogenetic relatedness (phylogenetic generalized least squares (PGLS) or PRMA, as described in 'Comparative analyses'). Although the phylogenetic analyses more robustly test our evolutionary hypotheses, the ahistorical Pearson's r values better resolve the strengths of existing relationships across species-especially when trends arise from variation amonggroups that split in evolution deep in the phylogeny ${ }^{133}$. In both types of analysis, the r values provide a conservative estimate of trait-climate relationships. As in previous biogeographical traitclimate analyses ${ }^{13,135}$, we related the average trait values of a species from a database or experimental measurements to modelled native climates on the basis of natural occurrences; relationships would be stronger iftraits and climate were matched for individual plants ${ }^{136}$.Additionally, the modelled native climates do not account for variation in temperature, irradiance and water availability (owing to microclimates associated with topography and canopy cover, or soilcharacteristics) to which species would be adapted in the field; accounting for this variation would probably improve the strength of trait-climate relationships ${ }^{136}$.Overall, global associations of traitswith climate thatwere supported by substantial, statistically significant ahistorical r values indicate robust, biologically important relationships, and significant phylogenetic correlations additionally indicate support for the evolutionary hypotheses ${ }^{18713 s}$.
We implemented several further analyses to resolve the associations of traits with climate in the worldwide grass trait database. We conducted phylogenetic multiple regression to test for significant interactive effects of temperature and precipitation on leaf traits. Models including MAT and MAP (or growing season temperature and growing season precipitation) alone or in combination, and including
an interaction, werecompared using the A kaike information criterion ${ }^{139}$. Before phylogenetic multiple regression analyses, MAP values were divided by 50 to achieve a similar scale of values as those for MAT, and growing season precipitation values were divided by 100 to achieve a similar scale of values as for growing season temperature. Plant traits, MAP and MAT were then log-transformed, and MAT and MAP (and growing season temperature and growing season precipitation) were centred by subtracting the meanto render coefficients of main effects and interaction terms biologically interpretable ${ }^{10}$.

The parametric correlation and regressionstatistics calculated in this study are subject to assumptions (that is, the independence of observations, andthe normal distribution and homoscedasticity of residuals) ${ }^{141}$. Evolutionary nonindependence among species was adjusted for using phylogenetic statistics ${ }^{133}$. To check that the assumptions of normality and heteroscedasticity did not influence statistical significance of univariate analyses, we checked for significance of Spearman's rank correlations, which arenot subject to these assumptions, and confirmed as significant ($P<0.05$) the relationships presented in the Article. For the multiple regression of leaf area versusMAT andMAP in the 1,752 -species global database, the 29 species with MAT $<0^{\circ} \mathrm{C}$ resulted in a left-skew of log-transformed MAT and a notable heteroscedasticity of residuals (Supplementary Fig. 1). To confirm that this skew did not influence the findings of the multiple regressions, we repeated the analysis excluding the 29 species, which alleviatedthe skew and heteroscedasticity (Supplementary Fig.2);the keyfinding of themultiple regressionanalysis (that is, the interactive effect of MAT and MAP) was unaffected (Supplementary Table8). Notably, the multiple regression analysisofleaf areaversusgrowingseasontemperature and growingseason precipitationalso confirmed the trend, with greater normality and homoscedasticity of residuals, both when including all 1,752 species and when excluding the 29 species with MAT $<0^{\circ} \mathrm{C}$ (Supplementary Tables 7,8 ,Supplementary Figs. 3,4).
We conducted hierarchical partitioning analyses onlog-transformed datato resolve the independent statistical associations of leaf size with individual climate variables ${ }^{142}$. Finally, wedistinguished whether traitclimate correlations can be partially explained owing to 'triangular relationships' (that is, when data are missing in one or more corners of the plot, an analysisthat can provide special insights) ${ }^{133} 34$. For example, a positive trait-climate correlation would arise at least in part from a triangular relationship if high trait values are few or absent at lower values of the climate variable, or if low trait values are few or absent at high values of the climate variable. To test for the presence of triangular relationships, we implemented quantile regression analyses, determining regression slopes fitted through the 5\%,50\% and 95\% quantiles of log-transformed data ${ }^{155-147}$. A triangular relationship was supported when the regressions through the 95% and 5% quantiles differed according to t-tests.

Comparative analyses

Comparative phylogenetic statistical analyses accounting for the effects of phylogenetic covariance on trait-climate and trait-trait relationshipswere conductedusingthe R Language and Environment version 3.4.1 ${ }^{130}$.
Regression coefficients were estimated using PGLS and/or PRMA, in each case basing the phylogenetic correction on Pagel's $\lambda^{14 s, 49}$ estimated by maximum likelihood ${ }^{150}$. For PGLS, corPagel ${ }^{151}$ was used in combination with gls ${ }^{150}$ and optimized ${ }^{131}$ to establish maximum likelihood estimates of λ in the 0-1 range; for PRMA, phyl.RMA ${ }^{51}$ was used. Confidence intervals for b estimated using PRMA were determined following previous work ${ }^{152}$:

$$
\pm 6(\sqrt{B+1} \pm \sqrt{B}) \text {, in which } B=\frac{1-r^{2}}{N-2} f_{1-\alpha, 1, n-2}
$$

in which \hat{b} is the fitted value for $b ; r$ is a correlation coefficient, for which we used a phylogenetically corrected estimate based on the
variance-covariance matrix output by phyl.RMA; n is the number of pairs of observations; and $f_{1-\alpha, \pi-2}$ is the critical value from the f distribution.
Differences in species-level trait means between C_{3} and C_{4} species were tested using a phylogenetically corrected analysis of variance (ANOVA), both parametric (based on PGLS) and nonparametric ${ }^{153}$ using the phyloANOVA R package ${ }^{151}$.

The effect of phylogenetic corrections was evaluated by comparing PGLS or PRMA with Pagel's λ estimated by maximum likelihood, to equivalent models in which Pagel's λ was set to 0 . When using Pagel's λ, to assess normality and homoscedasticity assumptions we first extracted phylogenetic residuals. For PGLS, the function 'residuals' was used to extract normalized residuals; for PRMA, a custom code derived from an original provided by R. P. Freckleton was used to produce an equivalent transformation of raw residuals obtained from phyl.RMA. Normality was tested using Anderson Darling tests ${ }^{154}$ and heteroscedasticity using Bartlett's test ${ }^{130}$.Additionally, PGLS wasused to estimate Pagel's λ for phylogenetic residuals, which should be 0 .
The PGLS and PRMA approaches used to test for scaling relationships of vein traits with leaf dimensions and to estimate the slopes of linearized power law relationships are phylogenetic approaches equivalent to ordinary least squares and reduced major axis regressions, respectively. The decision of which of the two to use depended onthe specific relationship tested. The least squares approach is preferable in cases when a dependent γ variable is related to an independent X variable, specifically when (1) there is much less error (that is, natural variation and/or measurement error) in X than Y and/or when (2) conceptually, Y is causally determined by or to be predicted from X, but never X from $Y^{1 s 5156}$. By contrast, the reduced major axis approach is preferable in cases in which (1) X and Y have similar error and/or in which (2) X or Y are codetermined, or their relationship arises from an underlying functional coordination or either could reasonably be predicted using the other; this approach is typically used in studies of allometric scaling relationships among functional traits or organ dimensions ${ }^{155156}$. An exception to the use of reduced major axis for allometry is whentesting whether the allometric slope of a relationship is consistent with an expected slope that was derived algebraically from other equations, as only least-squares slopes are robust to algebraic manipulation ${ }^{\text {156 }}$. For example, PGLS would be selected over PRMA to test an expectation for the scaling slope of VSA with leaf length that was derived algebraically by multiplying the expected scaling slopes of VLA and VD with leaf length, given that VSA is determined from VLA and VD (as described in'Quantification of leaf dimensions and vein traits'). Further, although the least squares approach is appropriate for testing relationships of a dependent versus an independent trait, the reduced major axis approach can be preferable for illustrating the relationship in aplot, as it captures more closely the central trend among two variables with high and/or similar error ${ }^{155156}$.

Thus, we selected PGLS or PRMA for thetested relationships according to which was most appropriategiven the above principles; the application of any single approach globally would not affect the findings of the study, but would reducethe accuracy of the specific slopeestimates. We used PRMA to test relationships of traits with climate variables, as the magnitude of variation in modelled climate variables globally was similar to that for species means for leaf traits. We also used PRMA for testing scaling relationships of vein diameters with leaf length and width, and of xylem conduit diameters with vein diameters, given the preference of this approach for testing allometric relationships, and the similar error in the X and Y variables. Weused PGLS fortesting relationships of VLA, VSA, VPA and VVA with leaf dimensions, given the higher variability in the veintraits than leaf dimensions arising owing totheir determination from one or more vein traits as well as leaf dimensions (for example, VLA = vein number/leaf width). Further, PGLS was most appropriate for testing allometric slopes for the relationships of vein traits to leaf area, because the expectations for these slopes from the
developmental model were derived algebraically from expected slopes of veintraits in relation to leaf length and leafwidth ${ }^{155}$. Finally, we used PRMA in all figure plots to most clearly illustrate the central trends accounting for phylogeny ${ }^{155156}$.
Finally, we evaluated whether the scaling of vein traits with leaf dimensions differed between C_{3} and C_{4} species. C_{3} and C_{4} species were considered to differ significantly in trait-trait or trait-climate associations if significant relationships were found independently for both groups, and if there was no overlap in scaling slope 95% confidence intervals using the selected regression approach (PGLS or PRMA).

Modelling the effects of leaf energy budget and testing

 hypotheses for the benefits of smaller leaves under different climatesWe considered three hypotheses for the advantage of small leaf sizes in cold or dry climates on the basis of their thinner boundary layer.Smaller leaves have been hypothesized to (1) experience less damage under extreme temperatures (that is, chilling on colds nights and overheating onhot days) ${ }^{3,157 / 188}$, (2) maintain higher rates of photosynthesis and/or higher leaf water-use efficiency in cold and/or dry conditions ${ }^{1920}$ and (3) achieve higher gas exchange in favourable, warm and wet climates ${ }^{4}$, which would provide an advantage in mitigating the shorter diurnal and/or seasonal growing periods of cold or dry climates.

Totest hypothesis (1) (that is, that small grassleaves are typical in cold ordry climates globally because they avoid extreme temperatures), we calculated the minimum threshold of leaf size for chilling or overheating. Weused the $100 \cdot \mathrm{~cm}^{2}$ leaf size threshold for damage by night-time chilling and $30 \mathrm{~cm}^{2}$ for damage by daytime overheating (that is, the lowest thresholds that were modelled for eudicotyledons globally, given in figure 3 of ref. ${ }^{3}$). These leaf size thresholds for eudicotyledons were derived from estimated damage thresholds based on the 'characteristic dimension' of the leaf (d) (that is, the diameter of the largest circle that can be delimited within a leaf) of 8.16 cm and 4.47 cm , according to equation (4) in the supplementary information of ref. ${ }^{3}\left(\mathrm{LA}=1.5 d^{2}\right)$. Thus, we used thesethreshold values toexclude species withleaf width $>8.16 \mathrm{~cm}$ and $>4.47 \mathrm{~cm}$, and then tested whether the observed trends of leaf dimensions with MAT and MAP globally remained. Significant trends for this restricted species set would indicatethat thresholds for leaf damage under extreme temperatures cannot explain trends for grasses with leaves smaller than those thresholds. By testing trends against these very low thresholds, we provided a very conservative test to establish that avoidance of extreme temperatures would not explain the global climatic distribution of grass leaf size.

To test hypotheses (2) and (3), we used heuristic leaf energy balance modelling to simulate the consequences forgas exchange of leaf sizes varying in size ${ }^{199}$. Using the Tealeaves R package ${ }^{199}$, given inputs of leaf width, wind speed, stomatal conductance and air temperature, we simulated boundary layer conductance, leaftemperature and transpiration rate. To represent the bulk of the global range of grass leaf size, we focused on comparing the global 5th and 95 th quantiles of leaf width (0.1 cm and 2.7 cm). We simulated leaves in wet and dry conditions by setting stomatal conductance values at $0.4 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ and $0.2 \mathrm{~mol} \mathrm{~m}^{-2}$ s^{-1}, respectively ${ }^{160}$; our tests showedthat selecting other values would yield similar qualitative results. To represent warm and cold climates we simulated gas exchange under air temperatures of 315 K and 280 K $\left(41.85^{\circ} \mathrm{C}\right.$ and $6.85^{\circ} \mathrm{C}$, respectively) ${ }^{161}$. All other physical and environmental inputs were maintained constant at typical values ${ }^{192}$. We used theoutput values of leaf temperature and boundary layer conductance to simulate C_{3} photosynthetic rate for leaves of different widthsusing the Farquhar model ${ }^{562,33}$. Wetested these effects at the two wind speeds, $0.1 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$. Finally, we tested simulations for both amphistomatous and hypostomatousleaves, and we present results for amphistomatous leaves given that most grasses are amphistomatous ${ }^{164}$. To test for the potential benefit of smaller leaves, we calculated the ratios of photosynthetic rate, transpiration and leaf water-use efficiency for

Article

a small relative to large leaf; values >1 indicate an advantage for the small leaf in cold or dry conditions. Totest for the potential benefit of smaller leaves in mitigating a shorter period with favourable climate, we calculated the ratios of photosynthetic rate, transpiration and leaf water-use efficiency underwarm and wet conditions for a small versus a large leaf; again, values >1 reflect a small leaf advantage.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability

All data are available in the Article and its Supplementary Information. Leaftrait data for the 1,752 grass specieswas provided by the published Kew Grassbase Database (http://www.kew.org/data/grassbase/). Climate data for species were extracted from WorldClim 25 -arc minute resolution (https://www.worldclim.org/) and from CRU TS4.01 01 (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/) on the basis of thegeographical recordsfor each species (http://www.gbif.org). Photosynthetic trait data and field locations were extracted forthe $13 C_{3}$ grass species for which this was available in GLOPNET (http://bio.mq.edu. $\mathrm{au} /$-iwright/glopian.htm). Source data are provided with this paper.

Code availability

Custom-written R code is available on GitHub (https://github.com/ smuel-tylor/grass-leaf-size-).
49. Kluyver, T. A. \& Oebome, C. P. Taxonorne: a software packoge for linking biological spesies data. Ecol. Evel. 3, 1262-1265 (2013).
49. Cayuela, L., Granzow-de la Cerda, I., Albuquerqua, F.S. \& Golicher, D. J. TAXONSTAND: an Lo speoies names standardisation in vegetation dakabases. Methods Eock Evol. 3, 1078-1083 (2012)
50. Fick, S. E. \& Hifmens, R. J. WorldClim 2: new 1 km special resolution olimate surfaces for global land areasa. int. Λ Climatol. 37, 4302-4315 (2017).
Cherlet, M. H. C., Reynolds, J., Hill J., Sommer, S. \& von Maltitz, G. World Atties of Desertification 3 rd edn (Publication Office of the Europeen Union, 2018)
52. Harris, I., lones, P. D, Oaborn T. 1 \& Lister, D. H. Updated high-resolution grids of fmonthly dimatio abservations - the CRU TS3.10 detaset. Int. 1 Climatol. 34, 623-642 (2014).
53. Leab, J, R, et al Characterizing geogrephy and dimate. Mol. Eool. 21, 5512-5529 (2012). Sexton, J. P., Mclntyre, P. I, Angert, A. L. \& Fice, K. J. Evolut Sexton, J. P., Mcintyre, P. A, Angert, A. L. \& Fice, K . Evolution and ecology of apecien Dengler N. G, Dengler R. E. \& Hettoreley P. W. Differing
Dengler, N. G., De in (Krarz) shest . pattern in developing leaves of the C_{4} grass Arundinelle hirta. Irt. I Plart Sci. 158, 1-12 pattern
(1997).
57. Ikenberry, G-1 J. Developmentel Vegetative Morphology of Avena sativa. PhD thesia, Iowa State Uhiv. (1969).
58. Kaufman P. B. \& Brook, T. G in Oat Scienoe and Technology (eds Marehall, H. G. \& Sorrella, M. E.) 53-T/ (Americon Society of Agronomy, 1992)
59. Hitch, P. A \& Sharman B. C. Initistion of procambial stranda in leaf primordia of Dactydie glomerata Las an example of a temperate herbage greas. Ann. Bot. 32, 153-164 (1968).
60 . Davidson, J.L. \& Mthorpe, F. L. Leaf growth in Dactylis glomerata following defoliation. Ann. Bot. 30, 173-184 (1986)
Volenec, J.J. \& Nelson, C. J.Cell dynamics in leaf meristems of contrasting tall fescue genotypes. Crop Soi. 21, 381-385 (1981).
Macadarn, J. W. \& Nelson, C. J. Specific leaf weight in zones of cell division, elongation and maturation in tall fescue loaf blades. Ann Bot. 59, 369-376 (1987)
63. Mos Adam, J. W., Volenec, J. \& \& Nelson C. I Effectu of nitrogen on mesophyll cell division and epidermal cell elongotion in tall feacue leof bladea. Plant Physiad. 89, 549-556 (1969).
64. Skinner, R. H. \& Nelcon, C. J. Elongation of the grass leaf and its relationehip to the phydlochron. Crop Sai. 35, 4-10 (1996).
65. Skinner, R. H. \& Nelson, C. J. Epidermal cell division and the ccordination of leaf and tiller development. Ann. Bot. 74, 9-15 (1994).
66. Maurice, 1., Gastal, F. \& Durand, J. L. Generation of form and asocciated masa doposition during leof developrnent in grasses: a kinemexio approsch for non-eteedy growth. Ann Bot. 80, 673-683(1997).
67. Durand, J. L., Schaufele, R. \& Gastal, F. Grass leaf elongation rate es a function of developmental stage end temperature: morphological andyesis and modelling. Arn. Bot. 83, 577-588 (1999).
68. Martre, P. Durand, J. L. \& Cooherd, H. Changes in axial hycrauliocoonductivity along elongsting leaf bladas in relation to xylem moturation in tall fesoua. New Phytol. 146 235-247 (2000).
69. Martre, P. \& Durand, \& L. Quantitative andysis of vesculature in the leaves of Festuca arundinacee (Posceae): Implications for axial water trensport. Int. I. Plant Sai. 162, 755-766 (2001)
70. Gallegher, J. N. Field studies of cersal leas growth 1. Initiation and exparesion in relation to temperature and ontogeny. 1 Exp. Bot. 30, 625-636(1979).9.
103. Muller, B. et al. Association of specifice expansins with growth in maize leaves is maintained under ervironmental, genetio, and developmental ecurces of variation. Plant Physiol. 143, 278-290 (2007).
104. Johneton, R, Leiboff, S. \& Scenlon, M. J. Ontogeny of the sheathingleaf base in maize (Zea mays). New Phytol. 205, 306-315 (2015).
105. Ben-HajSSalah H. \& Tardeu, F. Temperature affects expansion rate of maize leaves without chenge in spatisk distribution of cell length - andyesis of the ccordination between cell division and cell experneion. Plant Physiol. 109, 861-870 (1995).
106. Tardieu, F., Reymond, M. Hernard, P., Granier, C. \& Muller, B. Spatial distributions of expension rate, coll division rate and cell size in maize leaves: a synthesis of the effects of scil water status, evaporative demand and temperature. 1 Exp. Bot. 51, 1505-1514 (2000)
107. Runiona, A et al. Modeling and visulizasion of loaf venation patterna. ACM Trans Graphio. 24, 702-711(2005).
108. Scarpella, E. \& Meijer, A. H. Pattern formation in the vascular eyatern of monocot and dicot plant species. New Phytol. 164, 209-242 (2004).
100. Baskin, T. I. Aninctropic expansion of the plant cell well. Annu. Rev. Cell. Dev. 21, 203-222 (2005).
110. Fujta, H. \& Mochizuki: A. The crigin of the diversity of leaf venation pettern. Dev. Dyn. 235, 2710-2721 (2006)
11. Grarier, C. \& Terdizu, F. Multi-acele phenotyping of leaf expansion in response to envirorrmental changes: the whole is more than the sum of parta. Plant Cell Erviron. 32, 1175-1184 (2009).
112. Scarpella, E., Berkoulas, M. \& Taiantia, M. Control of leaf and vein develcpment by auxin. Cold Spring Herb. Perspeot. Biol. 2, a001511(2010).
113. Gáxquez, A. \& Beemster, G.T.S. What determines organ size differences between apecies? A meta-analymis of the celluler basis. New Phytol. 215, 299-308 (2017).
Scarpella, E. The logio of plant vasoular patterning. Polarity, continuity and pleaticity in the formation of the veins and of their networks. Curr. Opin Genat Dev. 45, 34-43 (2017). Berlyn, G. P. M. J. P. Botanicel Microteorrnique and Cytochomistry (lowa State Univ. Presa, 1976).
116. Kemp, C. D. Methods of estimating leaf area of grasses from linear messurements. Ann Bct. 24, 491-499 (1960).
17. Stickler, F.C., Wearden, S. \& Pauli A. W. Leof area deterrrination in grain sorghum Agronory 53, 187-188 (1961).
118. Shi, P. et al. Leaf area-length allometry and its implications in leaf shape evolution. Trees 33, 1073-1085 (2019)
118. Ellis, R. P. A procedure for standardizing oorrperative leaf enatomy in the Posceos. I. The lesf blade as viewed in traneversessoction. Bothalia 12, 65-109 (1976).
120. Evert, R.F. Esau's Plart Anstomy: Meriatema, Cells, and Tissues of the Plart Body: Their Struature, Funotion, and Development (John Wiex 2006).
121. Neufeld, H. S. et al. Genctypio variablity in winerability of leaf xylem to cavitation in water-atressed and well-irrigated sugaroane. Plant Phyaicl. 100, 1020-1028 (1992).
Tyree, M. T., Zirmernann, M. H. \& Zimmermarn, M. H. Xylem Structure and the Ascent of Sap 2nd ech (Springer, 2002).
123. Wright, 1.1 et al. The worldwide leaf economios spectrum. Neture 428, 821-827(2004)

Grass Phylogery Working Group II. New grass phylogeny resolves deep evolutioner relationships and disoovers C_{4} origina. Now Phy tol. 193, 304-312 (2012).
125. Taylor, S. H. et al. Photoaynthetio pathway and ecological adeptation explain atornatal trait dversity amongot grasses. New Phytol. 193, 387-396 (2012).
126. Edgar, R.C. MUSCLE: multiple sequence alignment with high scoursoy and high throughput. Nucleio Acids Res 32, 1792-1797 (2004)
127. Drummond A. 1 \& Rerrbaut, A. BEAST: Beyesien evolutionary anabysis byesrmpling trees. BMC Evol. Biol. 7, 214 (2007)
Christin. P. A. et al. Molecular dating evolutionary rates, and the age of the greoses. Syast. Biol. 63, 153-165 (2014).
129. Prosed, V.et al. Late Cretaceous crigin of the rice tribe provides evidence for early diversification in Pcocose. Net. Commun. 2.480 (2011).
130. RCore Tearn R: A Language and Environment for Statiatioal Computing. http://www.R-project/org/ (R Foundation for Statisticol Corrputing 2019).
131. Paradis, E. \& Schliep, K ape 5.0: an ervironment for modern phylogenetica and evolutionary and yees in R. Aioinformatios $35,526-528$ (2019).
132. Spriggs, E. L. Christin, P.A. \& Edwards, E. J. Data from: C_{4} photoegnthesis promoted spesies diversification during the Miocene graselend expsnsion httpe://doiorg/10.5061/ dryod.74b5d (2015).
133. Felsenstein, J. Ph ylogenies and the comparative method. Am. Nat. 125, 1-15 (T985)
134. Schmerler, S. B. et al. Evolution of leof form correlates with tropicol temperate traneitione in Viburrum (Adoxscese). Proo. R. Soc. B. 279, 3905-3913(2012). Fletoher, L. R. et Q . Evolution of leof estructure and drough
136. Bramer, I. et al. in Next Gereration Aicmaritoring: Part 1 (Advances in Ecologival Research, volume 58) (eds. Bchan, D. A. et d.) 101-161 (Acosdemic, 2018).
137. Zanne, A. E. et al. Three keyn to the radistion of angioaperms into freezing envircnmenta Nature 506, 89-92 (2014)
139. Watcharamongkol, T., Christin, P. A \& Oabome, C. P.C.C C photoeynthesis evolved in warm olimates but promoted rrigration to coder ones. Eool. Lett. 21, 378-393 (2018) Burnham, K.P. \& Anderson D. R. Model Selection and Multimodel Inference 2nd edn (Springer, 2002)
140 Gelman, A. \& Hill, J. Date Analywis Uaing Regression and Multievel/Hierarahicel Models (Cambridge Unin. Preas, 2006).
141. Feraway J. J. Linear Modele with R (Chaprnan \& Holl 2009)
142. Murray, K. \& Conner, M. M. Methods to quantify variable importance: implications for the Murray, K. \& Conner, M. M. Mathods to quantify variabie inport).
143. Weatoby, M. \& Wright, I. J. Land-plent eoology on the basis of functional traits. Trends Eool. Evol. 21, 261-268 (2006).
144. Grubb, P. 1 Trade-offs in interspecific comparisors in plant ecology and how plente overoome proposed constrsints. Plent Ecol. Divers. 9, 3-33 (2016).
445. Cade, B. S. \& Nocn, B. R. A gentie introduction to quantile regresaion for eoologista. Front Eool. Erviron. 1, 412-420 (2003).
146. Grubb, P. I, Coomes, D. A \& Metcolfe, D. J. Comment on "A brief Listory of seed size", Saienos 310, 783 (2005).
44. Moles, A. T. et al. Global potterns in plant height. L. Eool. 97, 923-932 (2009).
148. Pagel, M. Ifeering the histcricol pattems of biclogical evolution. Nature 401, 877-884 (1999).
49. Freckleton, R. P., Hervey, P. H. \& Pogel, M. Phylogenetio analyais and comparative data a test and review of evidence. Am. Nat. 160, 712-726 (2002).
150. Pinheira, 1 et α. nimee linear and nonlinear mixed effect modela. R package veraion 3.1-140, httpo://CRAN.R-projoctorg/packoge=rlme (2019).
151. Revell, L. J. phytcola: an R package for phylogenetic comparative bislogy (and other things), Methods Eool. Evol. 3, 217-223 (2012).
152. Warton D. L., Wright, I. J, Foleter, D. S. \& Westoby, M. Bivariate Ine-fitting methods for allometry. Biol. Rev. Camb. Philos. Soc. 11, 259-291(2006).
153. Garland, I., Dickerman, A. W., Jaris, C. M. \& Jones, J. A. Phylogenetio anabyeis of covarisnce by ocrrputersimulation. Syst. Biol. 42, 265-292 (1993).
154. Groes, J. \& Ligges, U. nortest testr for normality. R packageversion $1.0-4$, https:/// cran.r-projeot.org/peckage=nortest (2015).
155. Poorter, H. \& Sack, L. Fitfalle and posesibilities in the enalysis of biomase allocation patterna in planta. Front. Plant Soi.3, 259 (2012)
156. Smith, R. J. Use and misuse of the reduced major axis for line-fitting. Am. I. Phys. Anthropol. 140, 476-496 (2009)
157. Gatea, D. M. Energy, planta, and eoology. Ecology 46, 1-13 (1965).
158. Lusk, C. H. et al. Froek and leaf-aize gradients in forestas global patterns and experimental evidence. Now Phytol. 219, 565-573 (2018).
159. Muir, C. D. tedeaves: an R package for modelling leaf temperature using energy budgets. AcB Plents $11, \mathrm{plz054}$ (2019).
160 . Taylor, S. H. et al. Eocphyyiological traitu in C_{2} and C_{4} grassess a phylogenetically controlled screening experiment. New Phytol. 185, 790-791 (2010).
161. Huang M. et al. Air temperature optima of vegetation productivity acorces glabel biomes Nat. Ecol. Evol. 3, 772-779 (2019).
162. Farquhs, G. D., von Caemmerer, S. \& Berry J. A. A bicohemical model of photosynthetic CO_{2} assimilation in leaves of C_{2} qpecies. Plante 149, 78-90 (1980).
163. Bernaochi, C. 1, Pimentel, C. \& Long, S. P. In viwo temperature response functions of parameters requ
164. Muir, C. D. Making pore choiceas repeated regime chifts in stomesal ratio. Proo. R Soc. B. 282, 1-9 (2012).
165. Bummitt, R. K. World Geographicel Soheme for Recording Plant Distributions (Hunt Institute for Botanioal Documentation, 2001).

Acknowtedgements We thank T. Cheng, W. Deng, A.C. Diener, A. Kocner, M. MoMsster,

 C. Muir, S. Moehrefi, A J. Patel, A. Saygri and M. S. Voronteova for logistical asaistance. Funding was providad by the US Nations/ Science Foundation (grants 1457279, 1961244 and 2017949) the Naturol Ervirorment Research Counceil (grants NE/DO13062/1 and NE/T000759/1) and a Royal Society Uriversity Researoh Fellowship (grant URF

180022).Author contributions The projeot was conoeptudized by A.S.R. S.H.T., C.P.O. and L.S. A.S.B, S.H.T., J.P.K., C.V., YZ., TW., CS., E.J.E., P.-A.C., C.P.Q. and L.S. performed data ouration, and reviewed and odited the manusoript. A.S.B., S.H.T., J.P.-K., C.V., YZ., T.W., C.S. P.-A.C. and L.S. undertook formal analysees. C.P.O. and L.S acquired funding. A.S.B. S.H.T, J.P.-K, T.W., C.S., E.IE., P.-A.C, C.P.O. and L.S. performed the inveatigations. A.S.B., S.H.T., J.P.-K., T.W., C.S., E.IE, P.-A.C., C.P.O. and L.S developed the methodology. A.S.B., S.H.T, J.P.-K, C.P.O. and L.S. actriniztered the project. A.S.B., S.H.T., J.P. K., TW., C.S, E.J.E., P.A.C., C.P.O. and L.S. providad resources. A.S.B, S.H.T., TW. and P.-A.C. wrote the software. A.S.B., S.H.T., J.P.-K., C.P.O. and L.S aupervined the proieot A. S.B S. HT, C.PO, and LS validated the data, A SB S S. . T, TW, CV, and P.A.C. provided the datavisualization. AS.B, S.H.T. and L.S. wrote theoriginal draft.

Competing interests The authors deolare no competing interests.

[^0]
Article

Extended Data Fig. 1|Time-calibrated phylogenetictrees for 1,752

worldwide grass species and for 27 grass species grown in a greenhouse commongarden. a, Phylogeny for 1,752 species, trimmed from a previous publication ${ }^{132}$, used for analyses of global scaling of leaf size with climate. C_{3} and C_{4} species are in black and red, respectively ($n-840$ and $n=912$,
respectively). b, Phylogeny for 27 species used for analyses of leaf vein scaling (black branches, $11 \mathrm{C}_{3}$ grasses, red branches, $16 \mathrm{C}_{4}$ grasses), emphasizing the inclusion of 11 independent C_{4} origins.c, d, Map of the distributions of the $11 \mathrm{C}_{3}$ species (c) and $16 \mathrm{C}_{4}$ species (d).

Extended Data Fig. 2 |Worldwiderelationships of grassleaf and plant dimensions with the native climate of species, the global distribution of grass leaf size, and the scaling of grass leaf and plant dimensions. $\mathbf{a}-\mathbf{I}$, Relationship of leaf length (a-c), leaf width (d-f), leaf area (le af width \times leaf length) (g-i) and culm height ($\mathrm{j}-\mathrm{I}$) with MAT, MAP and the aridity index (AI). m-0, Average acrossspecies of leaf area foreach country in the global data base (International Working Group on Taxonomic Databases for Plant Sciences, TDWG level-3 spatial units ${ }^{35}$), including countries for which >20 species occur in the global database (21-547 species for each country; grey for countries with <20 species represented); that is, mean leaf area (m), median leaf area (\mathbf{n}) and leaf area for the largestleafed species (o). p-u, The scaling of leaf area with leaf length (\mathbf{p}) and leaf width (\mathbf{q}), leaf area with culm height (\mathbf{r}), culm heightwith leaf

Mean leaf area $\left(\mathrm{cm}^{2}\right)$

Leaf area of largest
leated species (cm²)
$4008031200+1000$
length (s) and leaf width (t), and leaf width with leaf length (u). Leaf trait and climate data are provided inSupplementary Table $2 . n-1,752$ globally distributed grass species in a-i, p,q, u, and 1,729 inj-I, r-t. Corresponding regression coefficients for ahistorical analyses of relationships in a-1: 0.14 , $0.17,0.14,0.26,0.34,0.28,0.24,0.31,0.26,0.24,0.29$ and 0.3 . Two-tailed PRMA regressionswere fitted for $\log ($ trait) $=\log (a)+b \log ($ trait) in a-l,p-u. $\cdots * P<0.001, * P<0.01 . P=0.0099$ (a), 7.8×10^{-9} (b), $4.2 \times 10^{-\circ}$ (c), 0.004 (d) $1.8 \times 10^{-5}(\mathrm{e}), 2.4 \times 10^{-11}(\mathrm{f}), 0.0014$ (g) $, 2.9 \times 10^{-4}(\mathrm{l}), 2.2 \times 10^{-11}(\mathrm{I}), 1.7 \times 10^{-6}$ (J), $4.0 \times 10^{-7}(\mathrm{k}), 1.1 \times 10^{-5}(\mathrm{I})$, about $0(\mathrm{p})$, about $0(\mathrm{q}), 3.17 \times 10^{-29}(\mathrm{r}), 1.92 \times 10^{-205}$ (s), $7.92 \times 10^{-105}(\mathbf{t}), 2.7 \times 10^{-56}(\mathrm{u}) . \mathrm{C}_{3}$ and C_{4} species are shown in red and blue, respectively.

Article

Extended Data Fig. 3 |Worldwide association of grass leaf sizewith the native climate of the species in 3D, and binned by 1/3rd lowest, niddle and highest MAT orMAP in 2D. a-d, Leaf area versus climate variables (that is, \boldsymbol{x}-MAT and \boldsymbol{y}-MAP) (a, c); horizontal axes are flipped(that is, leaf area versus x-MAP and y-MAT) in b, d. e-p, Relationship of leaf length (e-g), leaf width ($\mathbf{h}-\mathbf{j}$), leaf area ($\mathbf{k}-\mathbf{m}$) and culm height ($\mathbf{n}-\mathbf{p}$) to MAP. $\boldsymbol{n}-584$ globally distributed grass species in e-m, and 576 in n-p. q-z, aa,bb,Relationships of leaf length $(\mathbf{q}-\mathrm{s})$, leaf width $(\mathbf{t}-\mathrm{v})$, leaf area ($\mathbf{w}-\mathbf{y}$) and culm height $(\mathbf{z}, \mathbf{a a}, \mathrm{bb})$ with MAT. $\boldsymbol{n - 5 8 4}$ globally distributed grass species in $\mathbf{e}-\mathbf{m}, \mathbf{q - y}$, and 576 forn-p,z, aa, bb. In a, b, data for all species in the global database ($n-1,752$) are presented; in

c,d, 29 species withMAT $<0^{\circ} \mathrm{C}$ are excluded, for a clearer view of the bulk of the species. Projected grey shadows in a-drepresent the bivariate relationships. Parameters from multiple regression analysis are presented in Supplementary Table 8. Two-tailedordinary least square regressionswere fitted for $\log ($ trait $)-\log (a)+b \log$ (climatevariable) in e-z, aa, bb. ${ }^{* * P}<0.001, * P<0.01$. $P=8.1 \times 10^{-5}(\mathrm{e}), 2.2 \times 10^{-5}(\mathrm{f}), 0.0002(\mathrm{~g}), 0.0094(\mathrm{~h}), 8.4 \times 10^{-2 \mathrm{si}}(\mathrm{i}), 1.7 \times 10^{-1 \mathrm{a}}$ (J), $0.0002(\mathrm{k}), 1.1 \times 10^{-20}$ (I) $, 1.8 \times 10^{-15}(\mathrm{~m}), 0.0028$ (n), $4.7 \times 10^{-22}(\mathrm{o}), 2.2 \times 10^{-20}$ (p), $0.0106(\mathbf{q}), 2.9 \times 10^{-6}(\mathbf{r}), 7.0 \times 10^{-5}(\mathbf{t}), 6.7 \times 10^{-5}(\mathbf{u}), 1.5 \times 10^{-15}(\mathbf{v}), 0.0001$ (w), $7.9 \times 10^{-4}(\mathrm{x}), 2.6 \times 10^{-11}(\mathrm{y}), 1.3 \times 10^{-5}(\mathrm{z}), 1.7 \times 10^{-9}(\mathrm{aa}), 8.5 \times 10^{-10}(\mathrm{bb}) . \mathrm{C}$, and C_{4} species are shown in red and blue, respectively.

Article

 (${ }^{\circ} \mathrm{C}$)

Extended Data Fig.5|See next page for caption.

Extended Data Fig.5| Worldwide associations of grassleaf and plant dinensions with the native climate of species for species with leaf width $<8.16 \mathbf{c m o r}<4.47 \mathrm{~cm}$ (below the modelled threshold for danage owing to night-time chilling or over heating) and modelled leaf temperature difference from air temperature for amiphistomatous grass leaves under different airtemperatures. a-h, Relationship of leaf length (a, b), leaf width (c,d), leaf area (\mathbf{e}, f) and culm height (g, h) to MAT andMAP for species with leaf width $<8.16 \mathrm{~cm}$. $\mathbf{i}-\mathbf{p}$, Relationships of leaf length ($\mathbf{I}, \mathrm{J})$, leaf width (\mathbf{k}, I), leaf area (\mathbf{m}, \mathbf{n}) and culm height (\mathbf{o}, \mathbf{p}) to MAT and MAP forspecies with leaf width <4.47 cm. $\boldsymbol{n - 1 , 7 4 8}$ globally distributed grass species for a-f, 1,725 for g, h, 1,716 fori-nand 1,694 for $\mathbf{0}, \mathbf{p} . \mathbf{q - z}, \mathbf{a a}, \mathbf{b} \mathbf{b}$, Simulationswere run with stomatal
conductance $\left(\mathrm{molm} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right) 0.1(\mathbf{q}-\mathbf{t}), 0.2(\mathbf{u}-\mathbf{x})$ and $0.4(\mathbf{y}, \mathrm{z}, \mathbf{a a}, \mathbf{b} \mathbf{b})$, and wind speed (ms^{-1}), at $0.1(\mathrm{q}, \mathbf{u}, \mathbf{y}), 0.5(\mathbf{r}, \mathrm{v}, \mathrm{z}), 1(\mathrm{~s}, \mathrm{w}, \mathrm{aa})$ and $2(\mathrm{t}, \mathrm{x}, \mathrm{bb})$, with leaf width (cm) of $0.04,0.1,0.5,0.9,1.5,2.7$ and 11 shown as increasing darker blue lines. Nodifference in leaf temperature from air temperature linein red. Two-tailed ordinary leastsquare regressions were fitted for $\log ($ trait $)-\log (a)+b$ \log (climate variable) in a-p. ${ }^{* * *} P<0.001,{ }^{* *} P<0.01,{ }^{*} P<0.05 . P-2.1 \times 10^{-4}$ (a) , 6.2×10^{-13} (b), 4.7×10^{-23} (c), 6.2×10^{-43} (d), 2.0×10^{-24} (e), 6.8×10^{-40} (f), $1.9 \times 10^{-24}(\mathrm{~g}), 1.3 \times 10^{-3 \mathrm{~s}}(\mathrm{~h}), 2.4 \times 10^{-7}(\mathrm{I}), 7.4 \times 10^{-14}(\mathrm{j}), 1.0 \times 10^{-26}(\mathrm{k}), 3.4 \times 10^{-30}$ (I), $5.4 \times 10^{-22}(\mathrm{~m}), 9.8 \times 10^{-31}(\mathrm{n}), 4.4 \times 10^{-22}(\mathrm{o}), 3.8 \times 10^{-29}(\mathrm{p}) . \mathrm{C}_{3}$ and C_{4} species are shown in red and blue, respectively.

Article

Extended DataFig.6|Worldwide scaling of grass VLA and vein diamete with leaf size and aridity of the native climate of the species, and of vein xylemconduit diameter with veindiameter. a-d, Relationship of major VLA to leaf width (a, c), leaf area (b,d) and the aridity index (e) (in which lower values correspondtogreater climatic aridity).f-q,Relationship of vein diameters to leaflength ($\mathbf{f}, \mathbf{i}, \mathbf{I}, \mathbf{o}$), leaf width ($\mathbf{g}, \mathbf{J}, \mathbf{m}, \mathbf{p}$) and leaf area ($\mathbf{h}, \mathbf{k}, \mathbf{n}, \mathbf{q}$). $\mathbf{r}-\mathbf{z}, \mathbf{a a}, \mathbf{b} \mathbf{b}, \mathbf{c c}$, Relationship of VLA to leaf length ($\mathbf{r}, \mathbf{u}, \mathbf{x}, \mathbf{a a}$), leaf width ($\mathbf{s}, \mathbf{v}, \mathbf{y}, \mathbf{b} \mathbf{b}$) and leaf area ($\mathbf{t}, \mathbf{w}, \mathbf{z}, \mathbf{c c}$). dd, ee, ff, gg, Relationships of vein xylem conduit diameters with vein diameter of first-order veins (dd), second-order veins(ee), third-order veins (ff) and fourth-order veins (gg). $n=616$ species in $\mathbf{a}, 600$ in $\mathbf{b}, 170$ inc, 166 ind, 21 ine, 27 inf-z, aa, bb, cc, dd, ee, ff and 7 ingg. Two-tailed ordinary least square regressions, PGLS or PRMA regressions were fitted for $\log ($ trait $)=\log (a)$ $+b \log ($ trait or climate variable) in a and b, c and d or e, respectively. PRMA or

PGLS regre ssions were fitted for $\log ($ vein diameter or VLA $)=\log (a)+b \log (\operatorname{leaf}$ length, width or leaf area) in \mathbf{f}-qand $\mathbf{r}-\mathbf{z}$, aa, bb, cc, respectively. PRMA regressions were fitted for \log (xylem conduit diameter) $-\log (a)+b \log ($ vein diameter) in dd, ee, ff, gg. ${ }^{*} P<0.05,{ }^{* *} P<0.01,{ }^{* *} P<0.001 . P=9.4 \times 10^{-200}$ (a), 1.6×10^{-139} (b), 7.0×10^{-46} (c), 1.0×10^{-31} (d), 0.0051 (e), 0.0007 (f), 3.0×10^{-5} (h), 3.9×10^{-6} (i), 0.0003 (k), $1.2 \times 10^{-34}(\mathrm{~s}), 7.0 \times 10^{-4}(\mathrm{t}), 1.4 \times 10^{-7}(\mathrm{v}), 0.0167$ (w), 0.0020 (bb), 0.0110 (dd) and 0.0004 (ee). Line parameters for $\mathbf{f - z}$, aa, bb,ccaregiven in Table 1, Supplementary Table 10; line parameters for dd, ee,ff, gg are given in Supplementary Table 11. Significant relationships are plotted with PRMA to illustrate the central trends (Methods). Cs and C 4 species are shown in white and grey, respectively. The s.e. for species trait values are given in Supplementary Table 3.

ExtendedDataFig.7|Scaling ofleafvein projected area, veinsurface area and vein volume of given vein orders with leaf dimensions across 27 grass species grown experimentally. $a-1$, Relationship of VPA to leaf length
($\mathbf{a}, \mathbf{d}, \mathbf{g}, \mathbf{j}$), leaf width ($\mathbf{b}, \mathbf{e}, \mathbf{h}, \mathbf{k}$) and leaf area ($\mathbf{c}, \mathbf{f}, \mathbf{I}, \mathbf{I}$). $\mathbf{m}-\mathbf{x}$, Relationship of VSA
to leaf length ($\mathbf{m}, \mathbf{p}, \mathbf{s}, \mathbf{v}$), leaf width ($\mathbf{n}, \mathbf{q}, \mathbf{t}, \mathbf{w}$) and leaf area ($\mathbf{0}, \mathbf{r}, \mathbf{u}, \mathbf{x}$). $\mathbf{y}, \mathbf{z}, \mathbf{a a}, \mathbf{b} \mathbf{b}$, $\mathbf{c c}, \mathbf{d d}$, ee, ff, gg, II, Relationship ofVVA to leaf length ($\mathbf{y}, \mathbf{b b}$, ee, $\mathbf{h h}$), leaf width ($\mathbf{z}, \mathbf{c c}, \mathbf{f f}, \mathrm{II}$) and leaf area (aa, dd, gg.J). Two-tailed PGLS regressionswere fitted for $\log (V P A, V S A$ or VVA $)-\log (a)+b \log (l e a f l e n g t h$, width or area) and drawn
when significant. ${ }^{*} P<0.05, * P<0.01,{ }^{* *} P<0.001$; line parameters are given in Supplementary Table $10 . P=0.0011$ (a), 1.2×10^{-12} (b), 0.0011 (d), 7.0×10^{-s} (e), $0.0335(\mathrm{~g}), 0.0161(\mathrm{~h}), 0.0167(\mathrm{k}), 0.0011(\mathrm{~m}), 1.2 \times 10^{-12}(\mathrm{n}), 0.0011$ (p), $7.0 \times 10^{-5}(\mathbf{q}), 0.0335(\mathrm{~s}), 0.0161(\mathrm{t}), 0.0167(\mathrm{w}), 8.2 \times 10^{-6}(\mathrm{y}), 5.4 \times 10^{-\mathrm{s}}$ (z), 5.2×10^{-5} (bb), 0.0037 (cc), 0.0093 (ff). Significant trends are plotted with PRMA to illustrate the central trends (Methods). The s.e.forspecies traitvalues are given in Supplementary Table 3. C_{3} and C_{4} species are in white and grey, respectively.

Article

Extended Data Fig. $8 \mid$ Partitioning of the contributions of givenvein orders of the venationarchitecture of C_{3} and C_{4} grasses, with minor veins accounting for the differences in VLA. a, Triticum ae stivum, a C_{3} species. b, Aristida ternipes, a C_{4} species without four th-order veins ($\mathrm{C}_{4-\mathrm{s}}$) (thatis, third-order veins are the highest longitudinalvein order). c,Paspalum dilatum, ${ }_{a} C_{4}$ species with fourth-order veins (C_{4-4}) (thatis, fourth-order veins are the
highestlongitudinal vein order). d, VLA ($\left(\mathrm{cm}\right.$ per cm^{2}) distribution across vein orders for each type ($C_{3} n-11, C_{4-31}-9, C_{4-42}-7$).e-h, VLA (e), VSA (f), VPA (g) and VVA (h) distribution across vein orders for each type $\left(C_{3}, n-11 ; C_{4}, n-16\right)$. Statistical comparisons by phylogenetic ANOVA are given in Supplementary Table 3.

Extended Data Fig. 9 |Associations between Iight-saturated leaf photosynthetic rate and native climate and vein traits for terrestrial C_{3} species, and the scaling of VLA of transverse fifth-order veins with major VLA in $27 \mathrm{C}_{3}$ and C_{4} grass species grownexperimentally. a-c, Relationship of area-based light-saturated photosynthetic rate ($A_{\text {mea }}$) measured with photosynthesis systems andMAT (a), MAP (b) and growing season length (GSL) (c). d-f, Relationship oflight-saturated photosynthetic rate per area and

 eight terrestrial C_{3} grasses (from this study) grown in a greenhouse common garden related to the mean climate of their native distribution, supporting the assumption of a higher photosynthetic rate in colder and drier climates with shorter growingseasons. Open points represent 13 Northern Hemisphere temperateterrestrial C_{s} grass specie sfrom the global plant trait network (GLOPNET ${ }^{1 x}$) measured in the field, as related to the mean climate at their field site. Blacklines represent the significant trend through all the points in a, c, which-given the disparate data sources combined here (and the consideration of field site rather than native range climate for the GLOPNET species) -provides strong support for the generality of the relationships of
$A_{\text {mea }}$ to MAT and growing season length. Notably, these are conservative tests of the relationships of photosynthetic rate with native climate, as mea surements of $A_{\text {ama }}$ that use the photosynthesissystem chamber do not include the effect of the boundary layer conductance (which is made very high and invariant) ${ }^{27}$. Under natural conditions (and especially under slow wind speeds), smaller leaves would have a boundary layer conductance higher than that of larger leaves (as shown in the simulation in Extended Data Fig. 5), andthus-under natural conditions that included the effects of boundary layer-a stronger trend would be expected for small-leafed species in colder and drier climate sto have higher photosynthetic rates than larger-leafed species of warm, moist climates. Two-tailed ordinary leastsquare regressions or PRMA were fitted for $\log ($ trait $)=\log (a)+b \log ($ trait or climatevariable $)$ in a-e and f, respectively. ${ }^{*} P<0.05,{ }^{* *} P<0.01,{ }^{*} P=0.04$ in a one-tailed test of the hypothesized positive correlation. $P=0.0301$ (red line in a), 0.0071 (black line in a), 0.0183 (b), 0.0474 (red line in c), 0.0021 (black line inc), 0.0794 (d), 0.0138 (e), 0.0061 (f). Error bars represent s.e. in a-e. The s.e. for species traitvalues in fare given in Supplementary Table 3. C_{3} and C_{4} species are show n in white and grey, respectively, ine.

Article

Extended Data Fig. $10 \mid$ Estimating leaf size from venationtraits that can be measuredon small samples or fragments of grass leaves. a,b, Leaf area (a) and leaf width (b) predicted from VLA of second-order veins. $n-600$ and 616 species in a and b, respectively (Grassbase dataset, Supplementary Table 2). The relationships were fitted with two-tailed ordinary least square
regressions. These relationships enable the determination of intact leaf size from fragments that include at least two second-order veins (including fragmentary fossil remains). The 95% confidence intervals are in blue and 95% prediction intervals in red. ${ }^{* *} P<0.001 . P=1.4 \times 10^{-127}(\mathrm{a}), 7.6 \times 10^{-22 J}$ (b).

Supplementary Materials

Supplementary Data Captions (see attached Excel Workbook)

Table S2.1. Published studies of the relationship of grass leaf size to climate or hydrological variables. Previous studies focused on specific lineages, communities or biogeographic ranges, limited in scope relative to this study of worldwide trends. For each study, I report the number of species and genera of grasses tested, and the significant correlations of leaf traits and climate variables (key provided below the Table), and the range of leaf trait values tested. " \approx " signifies approximate values as data were extracted from published figures.

Table S2.2. Database for globally distributed grass species, with phylogenetic statistics testing for differences between photosynthetic types. We present for each species the photosynthetic type $\left(\mathrm{C}_{3}\right.$ or $\left.\mathrm{C}_{4}\right)$, mean climate variables for the native range, and (a) leaf dimensions for 1752 species and (b) leaf vein trait values for 616 species from the RGB Kew: GrassBase. Statistics from parametric and non parametric phylogenetic analysis of variance comparing C_{3} and C_{4} traits are presented below for table (a). For the data in table (b) these tests were omitted given the far greater representation of C_{3} species in this smaller dataset (ratio of C_{4} to C_{3} species $=17: 593$). The global diversity of grass leaf size would be yet greater if it included the species with the largest leafed species (i.e., bamboos Chusquea spectabilis and C. nobili, data not available); their inclusion would have further strengthened the global trends, given their distribution in warm, wet climates. Significance: ${ }^{*} P<0.05,{ }^{* *} P<0.01,{ }^{* * *} P<0.001$.

Table S2.3. Experimental data for $27 \mathrm{C}_{3}$ and C_{4} grass species grown in a greenhouse common garden and measured for the scaling of vein traits with leaf size. We present grass subfamily and tribe (Soreng et al., 2017), photosynthetic type (C_{3} or C_{4}) and C_{4} subtype, seed source, accession number, seed treatment for germination, habitat preference (terrestrial/aquatic), climate data for species' native ranges, mean values for measured traits (with key below the table), and calculated statistics (in rows below). Cells with NA signify that the given species did not possess a trait or that data were not available. Notably, the three shade adapted species, associated with forest/woodland habitats, have some of the widest leaves and lowest values for major vein lengths per area across the species.

Table S2.4. Published studies for eudicotyledons on the scaling of vein traits and leaf size (a)-(c), and on the contribution of vein traits to hydraulic and photosynthetic performance and its maintenance under cold or dry conditions, (d)-(g). For each study, we report the species numbers and taxonomic information; growing conditions; and confirmation of trends supported across species, as presented in the study or by our analyses of their data, i.e., those supporting the arrows linking small leaf size to vein traits, and traits to tolerance of cold and dry conditions in Figure 2.1. Legend is provided below Table. References ordered from largest and most diverse species sampling to smallest and least diverse sampling.

Table S2.5. Grass species from which the synthetic grass developmental model was derived, based on previously published data and literature reviews.

Table S2.6. Expectations for the slopes of leaf size-scaling relationships across species derived from the synthetic developmental model, and, alternatively, from geometric scaling. Expectations are provided for b in $\log (y)=\log (a)+b \log (x)$, where y is a vein trait, and x is a mature leaf dimension. Predicted scaling relationships are designated as "intrinsic" or "enabling" (e or i, respectively) (see Box 2.1).

Table S2.7. Statistics and parameters describing the relationships of grass leaf traits with climate variables. We present, for each trait and climate variable (see key below), the statistical method (ordinary least squares, OLS; standard major axis, SMA; or phylogenetic reduced major axis, PRMA; all two-tailed), r - and p-values, a - and b-values from the equation $\log ($ (trait $)=\log$ (a) $+b \log$ (climate variable) for (a) 1752 and 1729 species from RGBKew: GrassBase for leaf traits and culm height, respectively (b) 27 species grown in a common garden at UCLA . r - and p values are provided for each test, and a - and b-values provided when significant at $* P<0.05,{ }^{* *} P$ $<0.01, * * * P<0.001$.

Table S2.8. Analyses of the relationship of grass traits with climate variables for species of globally distributed grasses, including multiple regression, hierarchical partitioning, and quantile regression. (a) - (d) Multiple regression analysis of the relationships of leaf size dimensions and culm height with climate (see legend below) considering single and multiple climate variables, with interactions, for (a) and (c) 1752 species and (b) and (d) 1723 species, i.e. excluding species with MAT $<0^{\circ} \mathrm{C}$; statistical method, model parameter coefficients and intercepts and AIC values are provided for each model; (e) Hierarchical partitioning analysis of the relationship of leaf dimensions and culm height with climate variables, resolving the
independent effects of individual climate variables; the total R^{2}, independent \% contribution, and actual R^{2} for each variable, joint R^{2} contribution, and total R^{2} contribution are provided; (f) Quantile regression analysis of the relationship of leaf dimensions with given climate variables, for 5% and 95% quantiles; b-values (i.e., the model slope) are provided for associations tested across all data, and $5 \%, 50 \%$ and 95% quantiles, and P-value for significance of the test for different slopes between the 5% and 95% quantiles. Significance: ${ }^{*} P<0.05,{ }^{* *} P<0.01{ }^{* * *} P<$ 0.001 .

Table S2.9. Testing hypotheses for the advantages of small leaf size in gas exchange (photosynthetic rate, transpiration rate and leaf water use efficiency) under cold and/or dry climates, including for mitigating short warm and wet growing periods. In our simulations we estimated leaf temperatures, rates of transpiration per leaf area (E) and boundary layer conductance from inputs of leaf width values $(0.04,0.1,0.5,0.875,1.5,2.7$ and 11 cm$)$, at low and moderately high wind speeds (0.1 and $2 \mathrm{~m} / \mathrm{s}$), and across a range of air temperatures $\left(1.85,6.85,11.85,16.85,21.85,26.85,31.85,36.85,41.85,46.85,51.85^{\circ} \mathrm{C}\right)$ for amphistomatous leaves, using the R package Tealeaves, using constants for other physical and environmental inputs (see Table 1 of Muir (2019)). We simulated both wet and dry conditions by halving stomatal conductance from the C_{3} input value (from 0.4 to $0.2 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$). We then used the boundary layer conductance and leaf temperature to estimate C_{3} leaf photosynthetic rate (A) using the Farquhar model (Farquhar, von Caemmerer \& Berry 1980), including temperature responses of Farquhar parameters (Bernacchi, Pimentel \& Long 2003). We calculated leaf water use efficiency as A / E. We then tested hypotheses for the advantage of small leaves relative to large leaves, considering leaf widths of 0.1 and 2.7 cm , the 5% to 95% quantile of the global
database, under cold and/or dry climates, or under moist and warm climates (thus considering the ability to mitigate short moist and warm growing periods). In the comparisons below, we consider cold and warm temperatures of respectively 6.85 and $41.85^{\circ} \mathrm{C}$, and wet and dry climates represented by g_{s} of 0.4 and $0.2 \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. Data simulated for hyperstomatous leaves under the same conditions for each trait and compared to amphistomatous values were highly similar $\left(R^{2}=0.71-0.99\right)$. Simulations that confirmed hypotheses for the advantages of small relative to large leaves under cold or dry climates are bold-faced. Comparisons of small relative to large leaves using other specific simulated conditions resulted in qualitatively similar conclusions.

Table S2.10. Parameters for the scaling of vein traits with leaf dimensions across $27 \mathrm{C}_{3}$ and C_{4} grass species grown in a greenhouse common garden ($\boldsymbol{n}=11$ and 16 respectively). Results are presented for vein diameters; and vein lengths, surface areas, projected areas, and vein volumes per unit leaf area for each vein order. Predictions were derived from the developmental model for the allometric slope of each relationship across species, i.e., the variable b in the equation $\log ($ trait $)=\log (a)+b \log$ (leaf dimension for mature leaves) (Table S2.6); Allometric equations were fitted using two-tailed phylogenetic reduced major axis (PRMA) or phylogenetic generalized least squares (PGLS) for the scaling of vein diameter or vein length per area, respectively, and r - and p-values are provided for each test, and parameters parameters a and b are provided including 95% confidence intervals (CIs) for b-values (see Methods). Bold type indicates that the b-values predicted from the developmental model were supported by the experimental data, i.e., the scaling relationship across species was significant, and the predicted b-value was within the 95% CIs for the observed b-value. Significance: ${ }^{*} P<0.05,{ }^{* *} P<0.01$,
${ }^{* * *} P<0.001$. Intrinsic versus enabling scaling: i or e, respectively (see Box 2.1). NS: Not significant. The scaling of major and minor vein traits with leaf dimensions were consistent with developmentally based predictions in 91/111 cases compared to geometric scaling, which was supported for $27 / 111$ cases; these proportions differed at $P<0.001$ (proportion test).

Table S2.11. Scaling of xylem conduit diameter with vein and leaf dimensions leaf dimensions across $27 C_{3}$ and C_{4} grass species grown in a greenhouse common garden ($n=11$ and 16 respectively). We present the parameters for the fitted lines for two-tailed tests of \log (conduit diameter) $=\log (a)+b \log$ (vein diameter or leaf length $)$. Key for vein traits provided below. Columns include the line-fitting method used (two-tailed), r - and p-values, and parameters a - and b - are provided including 95% confidence intervals (CIs) for b-values when significant at $* P<0.05,{ }^{* *} P<0.01, * * * P<0.001$.

Table S2.12. Data for $13 \mathrm{C}_{3}$ grasses from the global plant trait network (GLOPNET) database and extracted for testing assumptions of photosynthetic rate and climate. We present climate data for the latitude and longitude where the species was measured, and lightsaturated photosynthetic rate.

Chapter 3: Allometries of cell and tissue anatomy and photosynthetic rate across leaves of C_{3} and C_{4} grasses

Abstract

Allometric relationships among the dimensions of leaves and their cells hold across diverse eudicotyledons, but have remained untested in the leaves of grasses. We hypothesized that geometric (proportional) allometries of cell sizes across tissues and of leaf dimensions would arise due to the coordination of cell development and that of cell functions such as water, nutrient and energy transport, and that cell sizes across tissues would be associated with light-saturated photosynthetic rate. We tested predictions across 27 globally distributed C_{3} and C_{4} grass species grown in a common garden. We found positive relationships among average cell sizes within and across tissues, and of cell sizes with leaf dimensions. Grass leaf anatomical allometries were similar to those of eudicots, with exceptions consistent with the fewer cell layers and narrower form of grass leaves, and the specialized roles of epidermis and bundle sheath in storage and leaf movement. Across species, mean cell sizes in each tissue were associated with light-saturated photosynthetic rate per leaf mass, supporting the functional coordination of cell sizes. These findings highlight the generality of evolutionary allometries within the grass lineage and their interlinkage with coordinated development and function.

Introduction

Relationships among the quantitative properties of cells, organs and organisms, i.e., allometries, provide insights into evolution, development and function (Huxley, 1932; Niklas, 1994; Meinzer, James, Goldstein \& Woodruff, 2003; Sperry, Hacke \& Wheeler, 2005; Sack et al., 2012; John, Scoffoni \& Sack, 2013; Smith \& Sperry, 2014; Zhong, Cerabolini, Castro-Díez, Puyravaud \& Cornelissen, 2020; Baird et al., 2021). Across diverse eudicotyledons, cell sizes in the leaf epidermis and mesophyll are positively correlated, but independent from xylem cell sizes; further, cell dimensions increase with leaf thickness (John et al., 2013). Such allometries would arise from coordinated development during leaf expansion, and may be reinforced by selection as coordination in cell sizes leads to efficient transport of water, nutrients and sugars between cells of different types (Cadart \& Heald, 2022). Further, allometric analyses of cell properties provide important insights into physiological functions, including rates of exchange of carbon and water, and environmental stress tolerance (Meinzer, James, Goldstein \& Woodruff, 2003; Sperry, Hacke \& Wheeler, 2005; Brodribb, Jordan \& Carpenter, 2013; Smith \& Sperry, 2014; Olson et al., 2018; Nobel, 2020; Zhong, Cerabolini, Castro-Díez, Puyravaud \& Cornelissen, 2020).

Leaf anatomical allometries have not been tested for grasses, a family (Poaceae) of 12,000 species diverse in morphology (Table S3.1), that dominates 43% of the terrestrial surface, and accounts for the majority of crop production (Beer et al., 2010; McSteen \& Kellogg, 2022). The optimization of grass anatomy is part of Grand Challenge efforts to improve the physiology of stress tolerance and productivity, including the engineering of novel C_{4} crops from C_{3} precursors (Lowry et al., 2019; Ermakova, Danila, Furbank \& von Caemmerer, 2020; Eckardt et al., 2023). Grasses differ from typical eudicotyledons in leaf development and form. Grass leaves arise from an intercalary meristem, in which cells file through distinct zones of division, expansion and
differentiation at the leaf base (Table 3.1; Figure 3.1; Skinner \& Nelson, 1994; Fournier et al., 2005; Evert, 2006) resulting in linearized forms with parallel longitudinal veins connected by transverse veins (Ellis, 1976; Evert, 2006). Like eudicots, grasses possess a parenchymatous bundle sheath surrounding all veins, derived from dividing lamina cells, yet grass leaves typically also possess a mestome sheath interior to the vein bundle sheath, which is derived from procambium precursors, like the xylem and phloem (Dengler, Dengler \& Hattersley, 1985; Evert, 2006). Further, 41% of grasses have C_{4} photosynthesis, and these possess specialized "Kranz" anatomy, including higher vein length per area, enlarged sheath cells, and much more extensive plasmodesmata connecting mesophyll with sheath cells, relative to C_{3} grasses (Dengler et al., 1985; Sage, 2004; Christin et al., 2013; Danila, Quick, White, Furbank \& von Caemmerer, 2016), all of which contribute to their C_{4} syndrome that confers higher rates of CO_{2} uptake and tolerance to aridity and extreme temperatures (Sage, 2004; Watcharamongkol, Christin \& Osborne, 2018).

Across species, I hypothesized a framework of inter-related anatomical allometries ("scaling relationships") of the form

$$
\mathrm{y}=a \mathrm{x}^{b} \quad \text { or } \log \mathrm{y}=\log a+b \log \mathrm{x}, \quad \text { eqn } 3.1
$$

where y and x are dimensions, and a and b the allometric intercept and slope (Table 3.2). First, I hypothesized allometries among cell dimensions due to proportional development, and, additionally, due to cell size coordination for integrated function (Table 3.2; Granier \& Tardieu, 1998; Van Volkenburgh, 1999; Brodribb et al., 2013; Cadart \& Heald, 2022; see Appendix, "Relationship of leaf developmental and evolutionary allometries, and insights into development and function"). Second, I hypothesized that leaf dimensions would be related to those of their constituent cells (Table 3.2; John et al., 2013). Third, I hypothesized that xylem cell areas would increase with leaf size and plant height, such that xylem water transport capacity would at least in
part compensate for the longer transport pathlengths in longer leaves of taller grasses (Table 3.2; Olson et al., 2018; Baird et al., 2021). Fourth, I hypothesized that grasses would show similar leaf anatomical scaling as eudicots, with exceptions arising from their different leaf morphology (Table 3.2; Appendix). I expected that grasses would differ from eudicots in some leaf allometries, given their fewer cell layers, highly elongated shape and specialized roles of the epidermis and bundle sheath, including high shrinkage and expansion capacity allowing for leaf movements (including rolling), and/or water storage enabling buffering of low-resource availability. I thus expected grasses to differ from eudicots in allometries for cell cross-sectional areas of epidermis and bundle sheath vs. overall leaf dimensions. Lastly, I hypothesized that across grass species, light-saturated photosynthetic rate per leaf mass ($A_{\text {mass }}$) would scale positively with cell sizes in multiple tissues due to the integrated impact of cell size on leaf structure and function (Table 3.2). $A_{\text {mass }}$ is equivalent to light-saturated photosynthetic rate per leaf area $\left(A_{\text {area }}\right) /$ leaf mass per area (LMA) (Sack et al., 2013). Given that leaves with large cells would tend to be thicker (John et al., 2013, 2017), I hypothesized they would have higher $A_{\text {area }}$, as previously found in studies of grasses and eudicotyledonous species (Wilson \& Cooper, 1967; Charles-Edwards, Charles-Edwards \& Sant, 1974; Koike, 1988; Garnier, Salager, Laurent \& Sonié, 1999), and that they would be wider, with lower major vein length per area (Baird et al., 2021), contributing to a lower LMA (John et al., 2017). Further, larger xylem drive higher hydraulic supply which would enable higher $A_{\text {area }}$ and would also be reflected in a high $A_{\text {mass }}$. A parallel coordination of $A_{\text {mass }}$ with cell sizes in multiple tissues, including photosynthetic mesophyll and xylem transport tissue, would further support our first hypothesis of functional coordination of cell sizes throughout the leaf for metabolism and transport.

For the majority of relationships among cell and leaf dimensions, I expected that proportional development would result in geometric allometries, which would be reinforced by selection for coordinated and integrated function. Thus, areas (A) would scale together isometrically as $\mathrm{A} \propto \mathrm{A}^{1}$ and with lengths (L) as $\mathrm{L} \propto \mathrm{A}^{1 / 2}$ (Table 3.1; Appendix; Niklas, 1994; Sack et al., 2012; John et al., 2013; Baird et al., 2021). I expected divergences from geometric scaling, i.e., decoupling of proportional development, for certain functionally specialized tissues (Table 3.3). Thus, relative to other cell types, I expected disproportional increases in cell size for the upper epidermis, reflecting a greater investment in supporting functions including large specialized bulliform cells that provide water storage and enable leaf rolling (Ellis, 1976; Evert, 2006). Further, I expected divergence from geometric scaling for allometries among xylem cell types that would be coordinated for optimal hydraulic design; for the major and minor vein systems to maintain matched transport efficiency across leaves of different size, the size of type I xylem conduits (which occur only in major veins) would increase disproportionately relative to type II xylem (which occur in both major and minor veins) to compensate for the declining density of major veins that are spaced out further in larger leaves (Baird et al., 2021). I expected leaf dimensions to increase disproportionately with cell cross-sectional areas, as dimensions also depend on the additional role of cell number, which in larger leaves increases disproportionately relative to cell areas (Gázquez \& Beemster, 2017; John et al., 2017). I expected leaf length and culm height would increase disproportionately relative to vein xylem cell sizes; increases in xylem cell size that would mitigate of impacts of increasing path length need not be proportionate, because hydraulic conductance through xylem increases as the radius to the fourth power (Sack \& Scoffoni, 2013). Finally, I expected that C_{3} and C_{4} grasses would differ in allometries, with more generalized across all cell types across C_{3} species. because specialized C_{4} cell functions associated
with Kranz anatomy and carbon concentrating mechanism, including higher densities of plasmodesmata (Danila et al., 2016), may disrupt cell size-function relationships. I expected that for C_{4} species, selection for enlarged sheath cells (Christin et al., 2013) would decouple the cell cross-sectional areas of bundle and mestome sheaths, mesophyll and xylem.

To test this framework of hypothesized general relationships, I used a common garden, glasshouse experiment to measure leaf anatomy and photosynthetic rate in a phylogenetically structured sample of 27 grass species.

Material and Methods

Study species and sampling

I selected 27 grass species to represent high functional and phylogenetic diversity, encompassing $11 \mathrm{C}_{4}$ origins ($16 \mathrm{C}_{4}$ species; $11 \mathrm{C}_{3}$ species), and including terrestrial and aquatic species and important crops (Figure 3.2; Figures S3.1-S3.3; Table S3.1). Plants were grown in a common garden to minimize environmentally-driven plasticity. The individuals sampled for anatomical measurements in this study (see "Anatomical sample preparation and measurements") were the same individuals and leaves sampled for leaf venation traits in a previous publication (Baird et al., 2021).

Seeds were acquired from seed banks and commercial sources (Table S3.1), and prior to germination were surface-sterilized with $10 \% \mathrm{NaClO}$ and 0.1% Triton $\mathrm{X}-100$ detergent, rinsed with sterile water, and sown on plates of 0.8% agar sealed with Micropore surgical tape (3M, St. Paul, MN). Seeds were germinated in chambers maintained at $26^{\circ} \mathrm{C}$, under moderate intensity cool white fluorescent lighting with a 12 -hour photoperiod. When roots ranged from 2-3 cm long, seedlings were transplanted to 3.6 L pots with potting soil (1:1:1.5:1.5:3 of coarse vermiculite:
perlite: washed plater sand: sandy loam: peat moss). Plants were grown in a common garden at the UCLA Plant Growth Center (minimum, mean and maximum daily values for temperature: 20.1, 23.4 and $34.0{ }^{\circ} \mathrm{C}$; for relative humidity: 28, 50 and 65%; and mean and maximum photosynthetically active radiation during daylight period: 107 and 1988μ mol photons $\mathrm{m}^{-2} \mathrm{~s}^{-1}$; HOBO Micro Station with Smart Sensors; Onset, Bourne, MA). To reduce the impacts of variation in light and temperature on plant growth and traits, plants were arranged in six randomized blocks across three benches, with one individual per species per block ($n=6$ except Alloteropsis semialata, $n=4$) and two blocks per bench. Plants were irrigated daily with water containing fertilizer (200-250 ppm of 20:20:20 N:P:K; Scotts Peters Professional water soluble fertilizer; Everris International B.V., Geldermalsen, The Netherlands). I grew all 27 species in potting soil, including the three species classified as aquatic (Oryza sativa, Phragmites australis, Sacciolepis africana), to maximize similarities in growth conditions across species; as in previous studies these aquatic grasses grew to maturity under non-aquatic conditions (Clevering, 1999; Kato \& Okami, 2010). All species were grown until flowering to verify species identities.

Anatomical sample preparation and measurements

For three individuals per species that possessed many mature leaves, one leaf was fixed and stored, and $1 \mu \mathrm{~m}$ thick transverse cross sections were prepared, stained, and imaged by light microscopy (Nobel, Zaragoza \& Smith, 1975; Nobel, 1976; John et al., 2013; Fletcher et al., 2018) (Leica Leitz DMRB; Leica Microsystems with SPOT Imaging Solution camera; Diagnostic Instruments, Sterling Heights, Michigan USA). Leaves were fixed and stored in FAA solution (37\% formaldehyde-glacial acidic acid-95\% ethanol in deionized water). Central rectangular samples were cut from each leaf halfway along the length of the blade and gradually infiltrated under
vacuum with low viscosity acrylic resin (L.R. White; London Resin Co., UK). Infiltrated samples were set in resin in gelatin capsules to dry at $55^{\circ} \mathrm{C}$ overnight. Transverse cross sections of $1 \mu \mathrm{~m}$ thickness and of varying width (species dependent) were prepared using glass knives (LKB 7800 KnifeMaker;LKB Produkter; Bromma, Sweden) in a rotary microtome (Leica Ultracut E, Reichert-Jung California, USA), placed on slides and stained with 0.01% toluidine blue in 1% sodium borate $(\mathrm{w} / \mathrm{v})$. Slides were then imaged at $5 \times, 20 \times$, and $40 \times$ objective using a light microscope (Leica Lietz DMRB; Leica Microsystems) and camera with imaging software (SPOT Imaging Solution; Diagnostic Instruments, Sterling Heights, Michigan USA).

I quantified leaf thickness and cell cross-sectional areas of the mesophyll, upper and lower epidermis, parenchymatous bundle and mestome sheaths and xylem using the program ImageJ (Nobel et al., 1975; Nobel, 1976; John et al., 2013; Fletcher et al., 2018) (ImageJ version 1.42q; National Institutes of Health, Bethesda, Maryland, USA). Cell cross-sectional area was used as an index of cell size (Nobel, 2020), which would reflect cell volumes in the case of mesophyll cells, which are symmetrical in shape, but not for epidermal, vascular sheath and xylem cells, which differ in shape between transverse and paradermal planes (Nobel et al., 1975; Nobel, 1976). Measurements of cells of the mesophyll and the lower and upper epidermis were replicated three times for each cross section. In the middle of the left, center and right thirds of the cross section, mesophyll cells were selected for determination of cell area and, given their irregular shapes, were traced. I measured leaf thickness three times at the left, center and right thirds of the cross section that excluded leaf furrows (Table 3.1; Ellis, 1976). Epidermal cells were similarly selected, but their areas were determined as the area of an ellipse, area $=\pi \times a \times$ b, where a and b are the radii of the major and minor axes, i.e., the lengths and widths of the
cells. Dimensions of parenchymatous bundle and mestome sheath cells and xylem conduits were quantified for each specific vein order, and their areas determined as for epidermal cells. Cells were measured for vein xylem and parenchymatous bundle and mestome sheaths in the major veins, i.e., the 1° "midvein" and 2° "large" veins, and in the minor veins, i.e., the 3° "intermediate" veins, and, for the species that possessed them, the 4° "small" veins; these 4° "small" veins occur in one C4 clade (the NADP-ME of Panicodeae), represented by seven species in this study, for which the mestome sheath functions for carbon reduction and is the only vein sheath, excluding Alloteropsis semialata which possesses 4° veins, and has both sheaths (Dengler et al., 1985). To reduce biases in calculating average xylem cell sizes, I differentiated two metaxylem conduit types within the major veins, which is consistent with previous studies noting that these conduit types are clearly developmentally and functionally distinct (Russell \& Evert, 1985; Dannenhoffer, Ebert Jr. \& Evert, 1990). The major veins contain large "type I xylem" conduits, and both major and minor veins contain the distinctively smaller "type II xylem" conduits (Baird et al., 2021). For each vein order, I selected one small, one medium and one large parenchymatous bundle sheath cell (same for mestome sheath cells), and determined their average area, and I quantified all xylem cell areas within each vein order, and averaged these for type I and for type II xylem. I also calculated average parenchymatous bundle and mestome sheath and type I and II xylem cell areas across all vein orders. I did not quantify second-order vein or sheath traits for the species Lasiacis sorghoidea, as I lacked high magnification images that included their very widely spaced second-order veins. I did not quantify phloem cell dimensions due to the inability to competently distinguish sieve cells from parenchyma in the images.

I also utilized published values for maximum leaf length and width, and leaf area as their product, and published values for culm height data as a measure of plant height, to test relationships with leaf and plant morphology with cross-sectional cell areas (Clayton, Vorontsova, Harman \& Williamson, 2006; Baird et al., 2021). The product of maximum length and width overestimates leaf area for grasses; however no standard correction value exists for grasses (Kemp, 1960; Stickler et al., 1961; Shi et al., 2019). Considering the diverse set of leaf shapes included in our experiment, and noting that a correction factor is unlikely to impact differences on the \log scales used to establish correlation coefficients, scaling exponents and their statistical significance, I did not apply a correction factor and our estimates of leaf area should be taken as approximate. I utilized published data for major vein length per leaf area ($V L A_{\text {major }}$; Baird et al., 2021) to test relationships of cell cross-sectional areas with $V L A_{\text {major }}$.

Quantification of leaf gas exchange

Leaf gas exchange data for the eight C_{3} terrestrial grasses was previously published (Baird et al., 2021). For all 27 grass species, including the eight C_{3} terrestrial grasses, I measured light-saturated rates of gas exchange from 17 Feb to 28 June 2010, between 0900 and 1500 each day, for a mature leaf on each plant for six plants per species. I measured steady state gas exchange ($<2 \%$ change over 6 minutes) using a LI-6400XT portable photosynthesis system (LI-COR, Lincoln, Nebraska, USA). The leaf chamber was maintained at $25^{\circ} \mathrm{C}$, with reference $\mathrm{CO}_{2} 400 \mathrm{ppm}$, and PPFD 2000 $\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$, which was assumed to be saturating irradiance for these species (Taylor et al., 2010). The ranges of relative humidity and vapor pressure deficit (VPD) were respectively $60-80 \%$ and $0.80-1.6 \mathrm{kPa}$ (overall mean 1.1 kPa). Measurements were made for 1-2 leaves from each of 6 plants (except from 5, 4 and 7 plants for A. purpurea, A. semialata and P. australis respectively, and for

3 leaves from each of two plants for L. sorghoidea); overall, 5-9 leaves (mean of 6) were measured per species. Leaf-area normalized values were determined for net photosynthetic rate per leaf area ($A_{\text {area }}$). Leaves were harvested, scanned for leaf area (Canon Scan Lide 90, Canon USA, Lake Success, NY), dried at $70^{\circ} \mathrm{C}$ for at least 48 h and weighed to determine the leaf dry mass per unit area (LMA). Net CO_{2} assimilation rate per unit leaf dry mass ($A_{\text {mass }}$) values were determined as $A_{\text {area }} /$ LMA.

Data analysis

Before testing cross-species relationships, I evaluated whether species differed meaningfully in mean trait values, using a nonphylogenetic analysis of variance (ANOVA) on all traits, and tested for the influence of species identity, such that residual error was associated with replicate individuals of a species, enabling estimation of the percent of variation in each trait arising across species relative to that arising among individuals of the same species (Table S3.2).

Using a published phylogeny, I tested trait-trait relationships across all species and within particular groups: C_{3} grasses; C_{4} grasses; C_{3} terrestrial, i.e., removing the C_{3} aquatic species (which were in several cases outliers); and $\mathrm{C}_{4}+\mathrm{C}_{3}$ terrestrial (Figure 3.2; Baird et al., 2021). For comprehensiveness, I tested relationships among cell sizes for the seven tissue types (i.e., 21 pairwise combinations). For vein type I and II xylem, and parenchymatous bundle and mestome sheath cells, relationships were tested within each vein order (six pairwise combinations each for 1° and 2° veins; three for 3° veins, lacking type I xylem; and 1 for 4° veins, lacking type I xylem and parenchymatous bundle sheath $=16$ combinations). Analyses were performed using the R Language and Environment, modifying published code with phylogenetic functions (Baird et al., 2021). I fitted lines to log-transformed data, the typical approach in allometric analyses (Niklas,

1994; Warton, Wright, Falster \& Westoby, 2006; Poorter \& Sack, 2012; Baird et al., 2021). I used the phytools package (Revell, 2012) to fit phylogenetic reduced major axes regressions (PRMA) for the majority of scaling relationships. Because only seven species had fourth order veins, I used non-phylogenetic standard major axis (SMA; a synonym of reduced major axis, i.e., RMA; Warton et al., 2006) regression to evaluate scaling of fourth order vein cell area traits with other cell areas (Niklas, 1994; Warton et al., 2006; Poorter \& Sack, 2012; Baird et al., 2021).

Typically, allometric relationships arise as two-parameter power laws with zero intercepts when considered with untransformed data (eqn 1). As is typical of allometric studies, I considered a slope to be consistent with geometric scaling when its 95% confidence interval included the test value (Poorter \& Sack, 2012; Baird et al., 2021). I tested for differences in trait means between C_{3} and C_{4} species using a phylogenetically corrected analysis of variance, both parametric and nonparametric (Garland, Dickerman, Janis \& Jones, 1993; Revell, 2012).

For several relationships in our study, data were inconsistent with a power-law, because they had a clear nonzero intercept. In these cases, linear relationships fitted well:

$$
\mathrm{y}=b \mathrm{x}+a, \quad \text { eqn } 2
$$

where y and x are dimensions, and a and b are the intercept and slope. When y and x have the same dimensionality (i.e., two areas, or two lengths), a positive linear relationship would support geometric (proportional) scaling, given the smallness of the b-value. Thus, when hypothesized relationships were not significant as power law relationships, I tested linear regressions, and report these when significant; this was the case for the scaling of the parenchymatous bundle sheath and the lower epidermis, and, for C_{3} species only, the scaling of the mestome sheath and the upper epidermis (Figure 3.3).

I utilized a trimmed phylogeny to test relationships with the parenchymatous bundle sheath, which was possessed by only 21 of the grass species (Figure S3.1; i.e., all C_{3} and C_{4} species with three longitudinal vein orders). Finally, analyses including second order vein or sheath traits excluded the species Lasiacis sorghoidea, and trimmed phylogenies excluding this species were also implemented.

Results

Diversity in grass leaf cell and tissue anatomy

Grass species varied strongly in the mean cell cross-sectional areas of all tissues, from fourfold for type II xylem conduits to 17 -fold for parenchymatous bundle sheath cells, and in leaf dimensions, from threefold for thickness to 24 -fold for leaf width (Table S3.1). On average, 76% of trait variation was explained by differences among species rather than among individuals in each species (ANOVA; Table S3.2, Figures S3.2-S3.3). C4 species had larger cell areas on average than C_{3} for the upper epidermis, mestome sheath, and 3° vein xylem (phylogenetic ANOVAs; Table S3.2).

Anatomical allometries of cell sizes across tissues

I found allometries among cell sizes across tissues for fifteen of the twenty-one pairwise combinations of tissues, i.e., the lower and upper epidermis, mesophyll, parenchymatous bundle and mestome sheaths, and type I and type II xylem (phylogenetic reduced major axis; Figure 3). The allometries between epidermises, for epidermises vs. mesophyll, for parenchymatous bundle sheath vs. mesophyll, between xylem types, and for xylem vs. mestome sheath were significant
across all species. However, several relationships involving xylem, epidermises and vein sheaths, were significant only for the terrestrial grasses or the terrestrial C_{3} grasses (Figure 3.3; Figure S3.5, Tables S3.3-S3.4). Xylem cell sizes were statistically independent of those in mesophyll and epidermises. Within vein orders, significant relationships arose for fourteen of the sixteen allometries, i.e., among parenchymatous bundle and mestome sheaths and type I and II xylem (Figure 3.4 and S3.4-S3.5; Table S3.4).

Cell size allometries were geometric for ten of the fifteen significant across-tissue relationships and for eight of the fourteen significant within-vein relationships $(b=1)$. Nongeometric allometries across-tissues were those of mesophyll vs. upper epidermis, mesophyll vs. parenchymatous bundle sheath, type I vs type II xylem, parenchymatous bundle sheath vs. mestome sheath and parenchymatous bundle sheath vs. type II xylem. Non-geometric relationships within-veins were those of type I vs. type II xylem, mestome sheath vs. type I xylem, and parenchymatous bundle sheath vs. type II xylem (all within the 1° vein), and mestome sheath vs parenchymatous bundle sheath (within the $1^{\circ}, 2^{\circ}$, and 3° veins; Tables S3.3-S3.4).

Allometries among cell, leaf and plant dimensions

Across species, leaf dimensions and plant height were positively related to leaf cell sizes in all tissues (Figure 3.5-3.6; Table S3.5; Figure S3.6). Thus, leaf thickness was allometrically linked with cell areas in the mesophyll and epidermises; leaf width was allometrically linked with cell areas in the mesophyll, parenchymatous bundle sheath and type I xylem (Figure 3.5); and leaf area was allometrically linked with cell area in the lower epidermis. Further, leaf length, leaf area and plant size (culm height) were allometrically linked with cell areas in the type I and II xylem; leaf length and leaf area with cell areas in the mestome sheath; and culm height with cell areas of the
parenchymatous bundle sheath (Figure 3.6). The majority of allometries held across all species, but several relationships involving the epidermises and vein tissues were significant only for the terrestrial grasses or the terrestrial C_{3} grasses (Figures 3.5-3.6). The allometries of leaf thickness vs cell areas were geometric, whereas the majority of the relationships of leaf width, leaf length, leaf area and culm height vs cell areas were greater than geometric (Figures 3.5-3.6; Table S3.5).

Contrasting anatomical allometries of grasses and eudicots

Grasses showed similar allometries between cell sizes for lower epidermis vs. upper epidermis and the parenchymatous bundle sheath as previously found for diverse eudicots (Figure 3.2; John et al., 2013) However, grasses differed from eudicots for allometries between cell sizes for the mesophyll vs. the parenchymatous bundle sheath ($b<1$ for grasses; $b=1$ for eudicots), and for mesophyll vs. epidermises ($b<1$ and $b=1$ with the lower and upper epidermis respectively in grasses; $b>1$ for both in eudicots; Figure 3.3), and for leaf thickness vs. cell areas of the upper epidermis ($b=0.5$ for grasses; $b>0.5$ for eudicots; Figure 3.5).

Coordination of allometries and functional traits

Across species, cell sizes were associated with mass-based light-saturated photosynthetic rates ($A_{\text {mass }}$) and its determinants, the area-based light-saturated photosynthetic rate $\left(A_{\text {area }}\right)$ and the leaf mass per area $(L M A)$. Cell sizes were also associated with the major vein length per area ($V L A_{\text {major }}$) (Figure 3.7; Figure S3.7; Table S3.6). $A_{\text {mass }}$ was generally positively coordinated with the mean cross-sectional areas of cells in all tissues; however, the association with mesophyll cell size was significant only for C_{4} species, and marginally nonsignificant for C_{3} species alone or for all species pooled (Table S3.6). Compared with the majority of C_{3} grasses included in this study C_{4} grasses
achieved higher $A_{\text {mass }}$ for a given mesophyll cell size (Figure 3.7). C_{4} species had significantly higher $A_{\text {area, }}$ and the similar investment in $L M A$ between C_{3} and C_{4} species resulted in C_{4} species also having higher $A_{\text {mass }}$ (Table S3.2). $A_{\text {area }}$ was correlated with fewer cell cross-sectional areas than $A_{\text {mass }}$, showing significant associations with those of the upper epidermis (terrestrial species only), mestome sheath, and type I and II xylem (Figure S3.7). $L M A$ was negatively related to the cross-sectional areas of the mesophyll, bundle sheath, and lower epidermis across all species, and additionally to cell areas in the upper epidermis when considering only C_{4} species, but was not linked with cell areas in the mestome sheath and xylem. Finally, $V L A_{\text {major }}$ was negatively related to the cross-sectional areas of just the mesophyll and bundle sheath (Figure S3.7).

Discussion

Allometries across the morphological and anatomical diversity of C_{3} and C_{4} grass leaves suggest conserved developmental processes and functional coordination of cell sizes and organ and plant dimensions, with implications for leaf and plant design and function (Figures 3.3-3.7).

Allometries of cell sizes: patterns across tissues, and contrasts between C_{3} and C_{4} grasses

While Kranz anatomy of C_{4} species meant that C_{3} and C_{4} species differed strongly in their anatomy, many allometries were conserved across the two photosynthetic types (Figures 3.3-3.7; Table 3.2). Across-species allometries between cell areas within and among tissues would emerge from conserved coordinated cell expansion within organs (Granier \& Tardieu, 1998; Van Volkenburgh, 1999), reinforced by selection for proportional cell sizes (and possibly cell numbers) that would facilitate coordination of metabolic and transport functions within and across tissues (Brodribb et al., 2013; John et al., 2013; Cadart \& Heald, 2022). Generally, cell area allometries
occurred among cells derived from the same developmental precursors (Table 3.1). Thus, I found cell size allometries for cells arising from lamina precursor cells, including epidermises, mesophyll and the parenchymatous bundle sheath (Figure 3.3). Separately, I found independent cell size allometries for cells arising from the procambium, including xylem and mestome sheath (Figure 3.3).

I note that our study did not include a focus on phloem cells, which also arise from procambium precursors. Elucidating potential allometries of phloem with other cell types and whole plant design remains an urgent avenue for future research linking sugar transport with leaf and whole plant function (Hölttä, Kurppa \& Nikinmaa, 2013; Ronellenfitsch et al., 2015).

Beyond the allometries that could be explained by shared developmental precursor cells, I found that C_{3} species showed more generalized scaling of cell areas across tissues than C_{4} species (Figure 3.3 and S3.4-S3.5; Table 3.2). For C_{3} species, I found allometries between cells that arose from different precursors, i.e., cells of mestome sheath vs. mesophyll, epidermis and parenchymatous bundle sheath, and xylem vs. parenchymatous bundle sheath cells (Figure 3.3). Allometries among cells arising from different developmental precursors in C_{3} species suggest selection for coordination of metabolism and transport (Brodribb et al., 2013). In the C_{4} species, the independence of cell sizes of the parenchymatous bundle sheath from xylem, and mestome sheath from mesophyll, is consistent with the additional constraints imposed by their Kranz anatomy, including the necessity for large sheath cells, irrespective of mesophyll cell sizes (Christin et al., 2013). The large C_{4} sheath cells, with specialized metabolism and transport, have much more extensive plasmodesmatal connections with the mesophyll than sheath cells of C_{3} species, which presumably act as an alternative to coordination of cell size and interfacing cell
surface areas for transport function (Christin et al., 2013; Danila et al., 2016; Cadart \& Heald, 2022).

I found several allometries that occurred only among terrestrial grasses, including the relationships of cell sizes in the parenchymatous bundle sheath vs. upper and lower epidermises. Overall, the aquatic species had consistently smaller epidermal cells than terrestrial grasses, potentially reflecting their generally less pronounced water storage and potentially a lower requirement for large bulliform cells that enables leaves to roll and thereby better avoid overheating and dehydrating under dry conditions (Ellis, 1976; Evert, 2006).

Allometries among cell, leaf and plant dimensions: cells as building blocks and hydraulic

design

I found strong allometries between leaf dimensions and the sizes of their constituent cells (Figure 3.5; Table 3.2). Cell sizes (in addition to cell numbers) may make especially important contributions to leaf dimensions especially given the low airspace porosity of grass leaves (Figures S3.2-S3.3; Gázquez \& Beemster, 2017). Thus, thicker grass leaves are associated with larger cells in the mesophyll and epidermises, and wider leaves with larger mesophyll and parenchymatous bundle sheath cells (Figures 3.5 and S3.6). Notably, the scaling of leaf width with the cell sizes in the mesophyll and the parenchymatous bundle sheath provides an anatomical mechanism for the global relationship of lower $V L A_{\text {major }}$ in wider grass leaves (Baird et al., 2021). The major veins are patterned early by the procambium and thus greater mesophyll and parenchymatous bundle sheath cell expansion would space major veins further apart in wider leaves (Baird et al., 2021), a pattern supported by the negative relationship of $V L A_{\text {major }}$ with cell sizes in those tissues (Figure S3.7). Thus, the allometric linkages of cell size and leaf dimensions enables stress tolerance traits to be
selected across levels of organization as smaller cells and narrower leaves, both linked with higher vein densities, would contribute to tolerance of drought (Cutler, Rains \& Loomis, 1977; Baird et al., 2021).

I found strong allometries of xylem cell sizes with leaf length, leaf area and plant height (Figure 3.6; Table 3.2). These relationships are consistent with selection of larger xylem cells for greater biomechanical support, and hydraulic capacity to mitigate both the greater pathlength in longer leaves and the potentially higher evaporative loads in larger plants. Indeed, these trends are consistent with global trends for the scaling of plant height with xylem conduit sizes in the stems of taller plants, including trees (Figure 3.5; Sack et al., 2013; Olson et al., 2018; Baird et al., 2021). Likewise, the larger parenchymatous bundle sheath cells in leaves of taller grasses may provide greater storage and outside-xylem hydraulic conductance that would contribute to mitigating the hydraulic stresses associated with both larger plant size and greater exposure and thus, higher evaporative demand (Figure 3.5; Buckley, John, Scoffoni \& Sack, 2015).

Geometric scaling was typical for the allometric relationships of cell sizes across grass species. Geometric scaling is consistent with both proportional cell expansion, and coordination of cell sizes for matched flows of water, nutrients and sugars (Granier \& Tardieu, 1998; Van Volkenburgh, 1999; Brodribb et al., 2013; John et al., 2013; Cadart \& Heald, 2022). The cases in which specific allometries departed from geometric scaling could be explained based on specific developmental causes and functional benefits for the disproportionate size of one cell type over another (Table 3.3). For example, the greater increase in cell sizes in the parenchymatous bundle sheath and upper epidermis relative to the mesophyll $(b>1)$ is consistent with a disproportionate investment in support functions including water storage in epidermises, and bundle sheath (Griffiths, Weller, Toy \& Dennis, 2013) and for epidermal bulliform cells influencing mechanical
protection and leaf rolling during dehydration (Ellis, 1976; Evert, 2006) which would protect leaves with larger mesophyll cells (Figure 3.3). Further, the less-than-geometric scaling in the cell size of type II relative to type I xylem $(b<1)$ is consistent with the optimization of vascular system design, as type I xylem are present only in major vein orders, which decline in vein length per area in wider leaves (Figure 3.3; Table 3.3; Baird et al., 2021). Thus, a disproportionate increase in type I relative to type II xylem cell size would compensate at least in part for the effect of declining vein length per area of major veins on vein transport efficiency and also provide greater mechanical rigidity (Table 3.3). Several of the allometries of leaf and plant dimensions with cell areas exhibited greater-than-geometric scaling, which would arise for several reasons. First, the greater than geometric scaling of leaf width with the cell areas of mesophyll and the parenchymatous bundle sheath $(b>0.5)$ is consistent with wider leaves being determined by greater cell numbers even more than by larger cells, with a particular role of the larger diameter veins in wider leaves (Figure 3.5; Table 3.3; Pantin, Simonneau \& Muller, 2012; Gázquez \& Beemster, 2017; John et al., 2017). This contrasts with the geometric scaling of leaf thickness with the cell areas of mesophyll and the epidermises, which indicates a greater role for cell size than cell number in driving thickness differences. Further, the greater-than-geometric scaling of leaf length, leaf area and culm height with xylem cell areas ($b>0.5$ for leaf length and culm height, $b>1$ for leaf area) is consistent with optimization of the vascular system design, as hydraulic conductance through xylem conduits increases as a function of the radius to the fourth power, so xylem would not need to increase proportionally in size to counteract the impact of increasing path length in longer leaves and taller grass shoots (Nobel 2020).

Contrasting leaf allometries align with key morphological divergences between grasses and

eudicots

Grasses and eudicots were similar in several anatomical allometries, including geometric scaling of cell areas of the epidermises, and of the lower epidermis vs. the parenchymatous bundle sheath, consistent with coordinated development and function (Figure 3.3, 3.5-3.6; Table 3.2). However, several trends differed for grasses. The scaling of xylem cell sizes with leaf dimensions in grasses, not observed for eudicots, is consistent with the specific importance of cell sizes for biomechanical support and axial hydraulic transport in longer grass leaves (Figure 3.6). The less than geometric scaling of cell areas of mesophyll vs. upper epidermis in grasses, but geometric scaling in eudicots, is consistent with many grass leaves investing in large bulliform cells for storage and leaf rolling movements, a specialization typically not observed in eudicots (Figure 3.1; Table 3.3). The geometric scaling of leaf thickness vs. cell area of the upper epidermis in grasses, but greater than geometric scaling in eudicots, indicates coordinated contribution of cell size to leaf thickness in grasses and a greater contribution of cell layers to thickness in eudicots. This is consistent with eudicot leaves having many palisade layers and the lower proportion of airspace in grass leaves relative to eudicots (Figure 3.5, Figures S3.2-S3.3). While these differences between grasses and eudicots are consistent with their contrasting structure, sampling additional diversity will improve our ability to generalize; for example, I do not know whether the trends I report here for grasses are generalizable more broadly to monocots. Similarly, it may be possible to resolve similar allometries in some eudicot lineages, depending on taxonomic scale.

Allometric scaling of photosynthetic rate with cell size in grasses

Across grass species, light-saturated photosynthetic rate was strongly related to cell sizes. Our data provide a novel resolution of the relationship across grass species of $A_{\text {mass }}$ with coordinated changes in cell cross-sectional size across the mesophyll, epidermises, parenchymatous bundle sheath, mestome sheath, and type I and II xylem (Figure 3.7; Table 3.2). That photosynthetic rate coordinates with cell size across cell types indicates that the separate allometries between procambium and nonprocambium derived cell types converge to maximize photosynthetic function (Figure 3.7; Figure S3.7).

Notably, light-saturated photosynthetic rate can be limited by many factors (Niinemets, Díaz-Espejo, Flexas, Galmés \& Warren, 2009; Salvi, Smith, Adams, McCulloh \& Givnish, 2021), and $A_{\text {mass }}$ in particular is influenced by structural relative to photosynthetic allocation. Leaves with high $A_{\text {mass }}$ allocate more mass to photosynthetic structure relative to structural components that increase leaf longevity (Wright et al., 2004); thus, a higher $A_{\text {mass }}$ can arise from a higher $A_{\text {area }}$ and/or lower $L M A$ (Sack et al., 2013). I expected that smaller-celled leaves would have higher $A_{\text {mass }}$, not due to direct causality but from several structural effects. First, larger cells, and particularly larger cells in the mesophyll (Figure 3.5), were associated with thicker leaves, as found for eudicots (John et al., 2013, 2017) and would correspond to a higher number of chloroplasts (Ellis \& Leech, 1985) and a higher concentration of photosynthetic machinery per leaf area (Koike, 1988; Garnier et al., 1999) and thus, a higher $A_{\text {area }}$ (Niinemets, 1999). Second, I expected that small cells would be related to higher $L M A$ through a higher concentration of cell wall material per leaf area (John et al., 2017), and, as $A_{\text {mass }}=A_{\text {area }} L M A$, this higher $L M A$ would correspond to a lower $A_{\text {mass }}$ for small-celled species. Indeed, I found that higher $L M A$ was related to smaller cell size in several tissues, including the mesophyll, epidermises and parenchymatous
bundle sheath (Figure S3.7). Third, $V L A_{\text {major }}$ may also contribute substantially to higher $L M A$ (Sack et al., 2013; John et al., 2017), and small mesophyll and bundle sheath cells were associated with more closely-spaced veins and thus higher $V L A_{\text {major }}$. While a higher $V L A_{\text {major }}$ is implicated in hydraulic function and contributes to higher $A_{\text {area }}$ in grasses (Baird et al., 2021), across species, the contribution of high $V L A_{\text {major }}$ to a higher $L M A$ in small-celled species would contribute to a low $A_{\text {mass }}$ in small-celled species, and higher $A_{\text {mass }}$ in large-celled species. Finally, the association of higher $A_{\text {area }}$ with larger type I and type II xylem conduits (Figure S3.7) is consistent with these larger conduits providing greater hydraulic supply that enables greater stomatal opening and higher photosynthetic gas exchange (Sack \& Scoffoni, 2013). Thus, the association between $A_{\text {mass }}$ and cell sizes in all tissues are consistent with multiple expected impacts of cell size on $A_{\text {area }}$ and/or $L M A$ (Figure S3.7). The possibility that cell size is a relatively simple predictor of mass normalized photosynthetic productivity in grasses is a finding with potential applications both in understanding the ecology of diverse grass species and for improving crop productivity.

Tables

Table 3.1. Glossary of terminology related to allometry, leaf anatomy and grass

development.

Term	Definition
Allometry	Study of size related properties, i.e. dimensions, mass, and/or metabolic processes and consequences for biological function (Huxley, 1932; Niklas, 1994).
Bulliform cell	Specialized enlarged upper epidermal cells that regulate leaf rolling and unrolling via changes in cell turgor (Ellis, 1976; Evert, 2006).
C_{4} photosynthesis	Photosynthesis that occurs through compartmentalizing and concentrating CO_{2} at sites of carbon reduction within bundle sheath, leading to elevated rates of carbon accumulation and minimized photorespiratory losses (Dengler et al., 1985; Sage, 2004; Christin et al., 2013).
Cell size	The cross-sectional area of the specified cell type.
Culm height	The height of the central grass shoot, typically quantified after flowering, and preceded by shoot elongation (Clayton et al., 2006; Evert, 2006).
Epidermal cell	Cells that form the outer layer of the plant, i.e. upper and lower surface of leaves, regulating gas exchange and providing protection of internal cells (Evert, 2006).
Furrow	The intercostal zone between vascular bundles that is often much thinner than the leaf section where vascular bundles and mesophyll occur (Ellis, 1976, e.g. Figure S3.3).
Geometric scaling	Proportional changes in dimensional size across species, individuals or organs; indicated by $b=1$ (i.e., isometry) for relationships among dimensions of the same scale, i.e., for lengths with lengths or areas with area, and $b=0.5$ for relationships of areas with lengths (Huxley, 1932; Niklas, 1994; John et al., 2013).
Intercalary meristem	The growing region at the base of grass leaves, where cells divide, expand and differentiate; surrounded by the grass sheath (Skinner \& Nelson, 1994; Fournier et al., 2005; Evert, 2006).
Kranz anatomy	Specialized conformation of leaf cells and tissues, with mesophyll cells arranged closely to parenchymatous bundle sheath, facilitating CO_{2} concentration from mesophyll to bundle sheath, and CO_{2} assimilation in bundle sheath (Dengler et al., 1985; Sage, 2004; Christin et al., 2013).
Mesophyll cell	Cells that contain chloroplasts and generate sugars via photosynthesis (Evert, 2006).
Mestome sheath cell	Inner layer of thick-walled cells that surround vascular bundles, interior to the bundle sheath in most grasses, and is the only sheath in some C_{4} grasses, i.e. location for carbon reduction; hypothesized to function for regulating water, sugar and hormonal transport in C_{3} and C_{4} grasses with both sheaths. Arises from procambium (Dengler et al., 1985; Evert, 2006).
Parenchymatous bundle sheath cell	Outer layer of thin-walled parenchymatous cells that surrounds vascular bundles and functions for water and nutrient storage, and regulating water, sugar and hormonal transport; in C4 plants, location of carbon reduction (Dengler et al., 1985; Evert, 2006; Griffiths et al., 2013).
Plasmodesmata	Channels connecting plasma membranes of adjacent cells that function for symplastic transport, i.e. exchange of cytoplasmic materials, including proteins and sugars (Evert, 2006; Danila et al., 2016).
Precursor cell	Undifferentiated but often identifiable cells distinct in properties that indicate their mature cell type, e.g. procambium (Evert, 2006)
Procambium	Precursor cells to vascular cell types, i.e. xylem, phloem and mestome cells, during leaf development, distinct in cytoplasm density, degree of vacuolation and cell elongation (Dengler et al., 1985; Nelson \& Dengler, 1997; Evert, 2006).
Type I xylem cell	Enlarged xylem present in major vein orders; much larger but less numerous than type II xylem. Arises from procambium (Nelson \& Dengler, 1997; Fournier et al., 2005; Baird et al., 2021).
Type II xylem cell	Smaller xylem present in all vein orders; much smaller but more numerous than type I. Arises from procambium (Nelson \& Dengler, 1997; Evert, 2006; Baird et al., 2021).

Table 3.2. Framework of hypotheses tested in this study, rationale for hypotheses, traits
measured and if the hypothesis was supported. See Table 3.1 for definitions of terminology.

	ypothesis	Rationale	Relationships measured (y vs. x)	$\begin{gathered} \text { Hypothesi } \\ \text { s } \\ \text { supported } \\ \hline \end{gathered}$
1.	Positive allometries among cell cross-sectional areas	Cells may have proportional development, reinforced by integrated function by cell size coordination.	The cross-sectional areas of: Epidermises vs. mesophyll; Epidermises vs. parenchymatous bundle sheath; Epidermises vs. mestome sheath; Epidermises vs. type I xylem; Epidermises vs. type II xylem; Mesophyll vs. parenchymatous bundle sheath; Mesophyll vs. mestome sheath; Mesophyll vs. type I xylem; Mesophyll vs. type II xylem; Parenchymatous bundle sheath vs. mestome sheath; Parenchymatous bundle sheath vs. type I xylem; Parenchymatous bundle sheath vs. type II xylem; Mestome sheath vs. type I xylem; Mestome sheath vs. type II xylem; Type I vs. type II xylem.	yes
2.	Positive allometries of leaf dimensions and the cell cross-sectional areas of constituent cells	Cells are building blocks of dimensions of the whole organ, particularly that of leaf thickness and width.	Leaf thickness and leaf width vs. the cross-sectional areas of epidermises; Leaf thickness and leaf width vs. the cross-sectional area of mesophyll; Leaf thickness and leaf width vs. the cross-sectional area of parenchymatous bundle sheath; Leaf thickness and leaf width vs. the cross-sectional area of mestome sheath; Leaf thickness and leaf width vs. the cross-sectional area of type I xylem; Leaf thickness and leaf width vs. the cross-sectional area of type II xylem.	yes
3.	Positive allometries of leaf size and plant height with crosssectional areas of procambium derived cell types	Longer leaves and taller plants would require larger xylem for optimal hydraulic design/delivery. Mestome sheath cells may also show scaling, from being derived from the procambium.	Leaf length, leaf area and culm height vs. the crosssectional area of mestome sheath; Leaf length, leaf area and culm height vs. the crosssectional area of type I xylem; Leaf length, leaf area and culm height vs. the crosssectional area of type II xylem.	yes
4.	Grasses would show similar leaf anatomical scaling as eudicots, with exceptions arising from their different leaf morphology	In grasses, the fewer cell layers, highly elongated leaf blade and specialized roles of bundle sheath and bulliform epidermal cells drives different allometries	Leaf length, leaf area and culm height vs. the crosssectional areas of epidermises; Leaf length, leaf area and culm height vs. the crosssectional area of mesophyll; Leaf length, leaf area and culm height vs. the crosssectional area of parenchymatous bundle sheath.	yes
5.	Positive allometries of light-saturated photosynthetic rate per leaf mass ($A_{\text {mass }}$) and cell cross-sectional areas	Allometries of cell dimensions in hypothesis one would arise from the coordination of cell function (transport, metabolism and/or photosynthesis)	$A_{\text {mass }}$ vs. the cross-sectional areas of epidermises; $A_{\text {mass }}$ vs. the cross-sectional area of mesophyll; $A_{\text {mass }}$ vs. the cross-sectional area of parenchymatous bundle sheath; $A_{\text {mass }}$ vs. the cross-sectional area of mestome sheath; $A_{\text {mass }}$ vs. the cross-sectional area of type I xylem; $A_{\text {mass }}$ vs. the cross-sectional area of type II xylem.	yes

Table 3.3. Explanations for allometries of grass leaf cells that differed from expectations based on geometric scaling. Expectations for b may depart from geometric scaling when 1) developmental processes for cells differ in the timing or rates of growth as would apply to scaling with type II xylem or mestome sheath which both form relatively late in the sequence of leaf and vein development, and leads to disproportionate scaling of non-procambium derived tissue with mestome sheath cells in C_{3} species, and of type II xylem and bundle sheath in C_{3} species, and of type II xylem with type I xylem across all species, 2) due to selection on function of a specific tissue, as would apply to the scaling with the upper epidermis or bundle sheath, which would increase in size greater than mesophyll, leading to greater storage and support in upper epidermis and bundle sheath and departed scaling of mesophyll vs. upper epidermis, mesophyll vs. bundle sheath, 3) due to constraints imposed by coordinated optimal vascular design, as would apply to the disproportionate scaling of type II xylem with type I xylem, as type II xylem occur only in major veins, and thus need to increase in size to compensate for the declining density of major veins and 4) for relations of cell areas and whole leaf dimensions, as different cell types differ in number, which would impact the contribution of one cell type scaling with a whole leaf dimension. ${ }^{\mathrm{a}}=$ Our analysis of data from (John et al., 2013).

Allometry	y vs. x relationship	Allometric slope b observed	Explanation for expected slope \boldsymbol{b}
1. Scaling of cell areas within and across tissues§	mesophyll vs. upper epidermis	<1	Disproportionately large increase of upper epidermis required for storage and support relative to increase of mesophyll cell size
	mesophyll vs. bundle sheath	<1	Disproportionately large increase of bundle sheath required for storage and support relative to mesophyll cell size
	type II xylem vs. type I xylem	<1	For the major and minor vein systems to maintain matched transport efficiency across leaves of different size, type I xylem conduit sizes must increase disproportionately relative to type II xylem to compensate for the declining vein density of major veins.
	type II xylem vs. mestome sheath	> 1	Shorter development time for mestome sheath cells than type I xylem would result in diminishing scaling as mestome sheath cells form relatively late in the sequence of leaf and vein development.
	mestome sheath vs. bundle sheath	<1	Longer development time for bundle sheath than mestome sheath enables departed scaling, as mestome sheath cells forms relatively late in the sequence of leaf and vein development, reinforced by functional coordination of sheath sizes, to match radial transport capacity through both sheaths.
	type II xylem vs. bundle sheath	<1	Longer development time for bundle sheath than type II xylem enables departed scaling, as type II xylem forms relatively late in the sequence of leaf and vein development, reinforced by functional coordination, to match radial transport capacity out of the xylem with axial (longitudinal) transport capacity.
	mestome sheath vs. upper epidermis	> 1	Longer development time for mesophyll than mestome sheath enables disproportionate scaling, as mestome sheath forms relatively late in the sequence of leaf and vein development, reinforced by functional coordination of sheath and epidermal cell sizes, to match transport capacity with demand.
	mestome sheath vs. lower epidermis	>1	"
2. Scaling of leaf and plant	leaf width vs. mesophyll	>0.5	Cell size in a given tissue is one of a series of contributors to whole leaf dimensions, including also numbers of cells or cell layers, and cells of other tissues.
dimensions with nonxylem cell	leaf width vs. bundle sheath	>0.5	"
areas	culm height vs. bundle sheath	> 0.5	Less than proportionate increases of bundle sheath cell size relative to culm height (and thus disproportionate increases in culm height relative to bundle sheath) would be sufficient to limit path length constraints to flow, as the bulk of path length is through xylem.
3. Scaling of leaf and plant dimensions with xylem cell areas	leaf length vs. type I xylem	>0.5	Less than proportionate increases of xylem cell size relative to organ length or plant size (and thus disproportionate increases in organ length and plant size relative to xylem) would be sufficient to limit path length constraints to flow, as flow rate through xylem increases as the radius to the fourth power, and thus would not need to increase proportionally.
	leaf length vs. type II xylem	>0.5	" *
	culm height vs. type I xylem	> 0.5	"
	culm height vs. type II xylem	> 0.5	
Eudicot scaling ${ }^{\text {a }}$ 4. Similar scaling of grasses and eudicots, except for those of mesophyll vs. upper epidermis	mesophyll vs. upper epidermis	<1	Scaling would be lower in grasses due to disproportionately large increase of upper epidermis required for mechanical support, storage and leaf movements relative to increase of mesophyll cell size

Figures

Figure 3.1. Grass leaf development. (A) In grasses, leaf expansion is restricted to distinct developmental zones driven by the generation of the leaf primordium via the apical meristem. Although growth initially begins via the apical meristem, leaf growth becomes restricted to the intercalary meristem at the base of the growing leaf in which cells proliferate in the division zone (DZ), expand laterally and longitudinally in the expansion zone (EZ), and complete their differentiation in the maturation zone (MZ). Thus, growth occurs as cells continuously proliferate in the DZ and then expand in the EZ. (B) Laminar, or projected viewpoint, and transverse visualizations of the different growing zones of a typical C_{3} grass, with epidermal cells in the laminar column, and all cell types depicted in the transverse column, with procambium cells shown in orange and yellow (mestome cells shown in orange) and non procambium cells shown in light green. Bundle sheath precursors are the cells surrounding the orange mestome sheath cells. The intercalary meristem is typically covered by the grass sheath,
and thus protected, but this was omitted from panel (A) so as to illustrate the location of the intercalary meristem with respect to the shoot apical meristem. Panel (A) was originally published in Baird et al., 2021 and modified to include a visualization of the two grass shoot meristems for this study, and panel (B) was created based on findings from (Dengler et al., 1985; Skinner \& Nelson, 1994; Van Volkenburgh, 1999; Fournier et al., 2005; Evert, 2006; Granier \& Tardieu, 2009; Baird et al., 2021).

Figure 3.2. Phylogenetic tree used to account for the influence of species relatedness on scaling relationships, and species distribution maps. (A) All 27 grass species included in the study. Distributions of $(\mathbf{B}) 11 \mathrm{C}_{3}$ grass species and $(\mathbf{C}) 16 \mathrm{C}_{3}$ grass species. Blue branches in (\mathbf{A}) indicate a C_{4} evolution, including 11 total independent evolutions.

Figure 3.3. Grass cell size allometries and anatomy. (A) - (U) Allometries across tissues of grass leaves. (v) Schematic of C_{3} grass cross-sectional anatomy. Green and brown labels in (V) represent cells derived from non-procambium and procambium precursor cells, respectively (unmeasured cells in purple). Each point is one species, $n=11 \mathrm{C}_{3}$ (eight terrestrial, three aquatics) and $n=16 \mathrm{C}_{4}$ species. Fitted lines are phylogenetic reduced major axis (PRMA) regressions with statistics on the right and in Table S3.3. Line colors indicate that the relationship was significant across a specific set of grasses, with black lines across all species, red lines across C_{3} species, and segmented lines across the terrestrial species either across all
grasses or only C_{3} grasses. b-values are presented for grasses and eudicots; italics indicate departure from geometric scaling. See Table 3.1 for cell type definitions. ${ }^{*} p<0.05,{ }^{* *} p<0.01$, *** $p<0.001$.

Figure 3.4. Allometries of xylem cells within and across vein orders. Each point is one species, including $n=11 \mathrm{C}_{3}$ (eight terrestrial) and $n=16 \mathrm{C}_{4}$ species. Allometries for $4^{\circ} \mathrm{xylem}$ with cell types of other vein orders were not significant and are omitted (see Table S3.4). Lines were fit with phylogenetic reduced major axis regressions ($P R M A$) and statistics and parameters are found in Table S3.4. Italics indicate departure from geometric scaling. See Table 3.1 for cell type definitions. ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$.

Figure 3.5. Allometries of leaf morphological dimensions with leaf cell size as building
blocks. (A) - (P) Allometries of leaf with leaf cell areas within tissues of grass leaves. Each point is one species, $n=11 \mathrm{C}_{3}$ (eight terrestrial in red, three aquatic in grey) and $n=16 \mathrm{C}_{4}$ species in blue. Fitted lines are phylogenetic reduced major axis (PRMA) regressions with statistics above each panel and in Table S3.5. Line colors indicate that the relationship was significant across a specific set of grasses, with black lines across all species, red lines across C_{3} species, and segmented lines across the terrestrial species either across all grasses or only C_{3} grasses. b-values are presented for grasses and eudicots for comparisons with leaf thickness and bolded when significantly different; italics indicate departure from geometric scaling. See Figure 3.3 and Table 3.1 for cell type definitions. ${ }^{*} p<0.05,{ }^{* *} p<0.01$.

Figure 3.6. Allometries of leaf morphological and plant dimensions with leaf cell size for
hydraulic design. (A) - (P) Allometries of leaf and plant dimensions with leaf cell areas within tissues of grass leaves. Each point is one species, $n=11 \mathrm{C}_{3}$ (eight terrestrial in red, three aquatic in grey) and $n=16 \mathrm{C}_{4}$ species in blue. Fitted lines are phylogenetic reduced major axis (PRMA) regressions with statistics above each panel and in Table S3.5. Line colors indicate that the relationship was significant across a specific set of grasses, with black lines across all species, red lines across C_{3} species, and segmented lines across the terrestrial species either across all
grasses or only C_{3} grasses. b-values are presented for grasses and eudicots for comparisons with leaf thickness and bolded when significantly different; italics indicate departure from geometric scaling. See Figure 3.3 and Table 3.1 for cell type definitions. ${ }^{*} p<0.05$, ${ }^{* *} p<0.01,{ }^{* * *} p<$ 0.001.

Figure 3.7. Allometries of mass-based photosynthetic rate with leaf cell size. (A) - (G) Allometries of light-saturated mass-based leaf photosynthetic rate with leaf cell areas within tissues of grass leaves. Each point is one species, $n=11 \mathrm{C}_{3}$ (eight terrestrial in red, three aquatic in grey) and $n=16 \mathrm{C}_{4}$ species in blue. Fitted lines are phylogenetic reduced major axis (PRMA) regressions with statistics above each panel and in Table S3.6. Line colors indicate that the relationship was significant across a specific set of grasses, with black lines across all species and the blue line in (A) across only C_{4} species. See Figure 3.3 and Table 3.1 for cell type definitions. ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$.

Appendix 3.1

Relationship of leaf developmental and evolutionary allometries, and insights into development

 and functionOur study focuses on allometric relationships for leaf cell sizes in mature leaves across grass species. Here I describe how these relationships would arise from, and provide insights into the underlying developmental processes within given leaves, as well as adaptation of the integrated phenotype for function across different species. I here provide a brief theoretical synthesis of (1) the linkage between allometries that emerge among cells within given growing leaves (intraspecific "developmental allometries" ; MacAdam, Volenec \& Nelson, 1989; Allard, Nelson \& Pallardy, 1991; Rademacher \& Nelson, 2001; Taneda \& Terashima, 2012) and the allometries that hold across mature leaves of different species (interspecific "evolutionary allometries"; Sack et al., 2012; John, Scoffoni \& Sack, 2013; Baird et al., 2021), and (2) how the allometric slopes can provide information on developmental processes and selection.

1. The relationship of leaf developmental and evolutionary allometries

The pervasiveness of allometric relationships documented across taxonomic and biological scales highlights their importance for organismal function and the constraints they impose on evolution (Poorter \& Sack, 2012; Pélabon et al., 2014). Theory to explain allometries, their slopes, and their inter-relationships across scales have identified two types of "origin", i.e., in the development of the organism and its organs (Pearsall, 1927; Huxley, 1932; Niklas, 1994; John et al., 2013; Baird et al., 2021); or in functional optimization of mature phenotypes based on, e.g., structural, biomechanical, metabolic or transport principles (Murray, 1926; LaBarbera, 1990; Niklas, 1994; West, Brown \& Enquist, 1997; Pélabon et al., 2014). Here I draw on this background to synthesize
theory for how the development of cells within and across leaf tissues would determine cell size allometries observed across the mature leaves of different species. Further, I describe how selection would be expected to reinforce or modify these allometries.

Of the numerous types of allometries that can be described across scales of taxonomy, space and time, three in particular have been commonly measured to explain and predict the relationships between structural variables (Gould, 1966; Pélabon et al., 2014; Neiro, 2020). "Ontogenetic" or "developmental" allometries are relationships of traits of a given individual across different developmental stages. "Static" allometries are relationships of traits within a species for individuals at the same developmental stage (e.g., at maturity), in other words, the association of traits that coincide with size variation within a species. "Interspecific evolutionary" allometries are relationships of traits across species, for individuals considered at the same developmental stage (e.g., at maturity). In general, one type of allometry would not necessarily be expected to correspond to another type; a developmental allometry of two traits for a given species may differ in slope and intercept from a static allometry of the two traits across individuals of that species, or the evolutionary allometry across related species (Gould, 1966; Neiro, 2020). Here, I focus on developmental and evolutionary allometries, i.e., relationships within given individuals and across species, and do not focus on the static allometries that would be intermediary in scale, across individuals (of the same or different genotypes) of given species. In our study I average cell sizes for given species across individuals, given insufficient replication to analyze variation in allometries across individuals. Notably, static allometries are a critical avenue for future research, especially, for example, in crop improvement and design of new cultivars, and for plant adaptation (Feldman et al., 2017; Vasseur, Violle, Enquist \& Vile, 2023).

It is clearly intuitive that when development processes are conserved across species, as for grass leaves, there is potential for evolutionary allometries to reflect underlying developmental allometries (Hepworth, Caine, Harrison, Sloan \& Gray, 2018; Baird et al., 2021). Given that a leaf expands as an organized whole, cells of tissues X and Y that originate from the same precursor cell type would have similar average initiation and maturation times (Gázquez \& Beemster, 2017). Further, cells increase proportionally in size due to similar average rates of expansion (Niklas 1994; Gázquez \& Beemster, 2017; Baird et al., 2021). Consequently, geometric scaling would arise between cell sizes in developing leaves, where cell lengths (L), areas (A) or volumes (V) would scale together as $A \propto A^{1}, L \propto A^{1 / 2}$, and $A \propto V^{2 / 3}$ (Sack et al., 2012; John et al., 2013; Baird et al., 2021). On the other hand, for cells that originate from the same or different precursors, and differ in initiation or maturation times or expansion rates, the developmental allometry may depart from geometric. For example, xylem and mestome sheath cells arise from the vein procambium, a dividing tissue that differentiates from lamina cells even after many of those cells have already begun expanding (Sachs, 1975; Nelson \& Dengler, 1997; Figure 3.1) and thus xylem or mestome cell sizes may not increase with mesophyll cell sizes strictly proportionally, and thus the allometric slope may differ from the geometric expectation of $b=1$.

An evolutionary allometry between two traits, for a group of related species, can be considered a consequence of the developmental allometries that hold between the two traits in the development of individuals of the species. For example, if a set of species all show the same developmental scaling of cell sizes in tissues X and Y , then, at leaf maturity, the across-species evolutionary allometry will have the same slope and intercept as the developmental allometry (Figure 3.A1A). However, even given a developmental allometry with a common slope (such as expected from geometric scaling), species may differ in the ratio of the sizes of cells Y relative to

X throughout development, for example due to cell Y having a greater initial size than X , and thereby have parallel developmental allometries with different intercepts (Figure 3.A1B-E). In this case, the evolutionary allometry may differ in slope from the developmental allometry (Gould 1966). If the species vary minimally in their developmental allometries, then the evolutionary slope should be similar to that of the developmental allometry (Figure 3.A1B). On the other hand, if species show great variation in developmental allometries, there would arise different trends for the evolutionary allometry, depending on how intercepts and slopes of the relationships for given species correspond to their final mature cell size. For example, if slopes are similar and intercepts are independent of mature cell size, there may be no significant evolutionary trend (Figure 3.A1C). However, if the intercepts are greater in species with larger mature cells then the evolutionary allometry will have a higher slope than the developmental allometry (Figure 3.A1D), and if the intercepts are lower in species with larger mature cells, then the evolutionary allometry will have a lower slope than the developmental allometry (Figure 3.A1E). Further, if species differ in the slopes of their developmental allometries, this too would influence the strength and parameters of the evolutionary allometry across species.

2. How the allometric slopes can provide information on developmental processes and selection

According to this theory, in many cases in which generalized underlying developmental allometries exist, evolutionary allometries may provide insights into developmental and functional coordination of cell sizes. Thus, when evolutionary allometries are geometric, this would likely reflect a generalized geometric developmental allometry across species, with conservative variation in the intercept, independent of cell size. This geometric scaling across mature leaves of different species that arises from development may further be reinforced for functional adaptation,
for example, when cells would be matched in volume or surface area for coordinated rates of metabolism or transport (Noblin et al., 2008; Marshall et al., 2012; Nobel, 2020). Thus, geometric allometries would arise due to conserved development constraints across species, especially in the case for cell types with similar precursors, and may also arise and/or be reinforced by selection for functional coordinated transport across tissues of different types.

On the other hand, especially in cases in which cells arise from different precursor tissues, or due to selection for specialized function, developmental allometries and evolutionary allometries may depart from geometric scaling. Indeed, the allometric scaling slope b for traits y and x is equivalent to the ratio of the relative growth rates of y and x (Huxley, 1932). Thus, for example, a slope b greater than expected from geometric scaling would arise for the cells of tissue y versus tissue x , if y cells have a greater mean relative expansion rate than x cells. A slope b less than expected from geometric scaling, i.e., a lower increase in the size of y than x cells, should arise if x cells have a greater mean relative expansion rate than y cells. The evolutionary allometry may show a lesser or a stronger difference in b from geometric expectation than the developmental allometry, depending on the variation in species' developmental allometries (as shown in Figure 3.A1), especially when species are selected for adaptive divergence in function. As species evolve differences in cell size, the ratios of cell sizes in different tissues may shift disproportionally with increasing cell sizes. This is analogous to a sapling growing into a tree, and investing more strongly in its trunk than its foliage, such that the mass of the trunk increases disproportionately to mass of foliage ($b>1$; Poorter et al., 2012). Within a developing leaf, if cells of tissue y provide a support or storage function (analogous to the trunk) that requires disproportionate investment relative to cells of tissue x analogous to the foliage); a disproportional scaling (i.e., greater in slope) of the size of cells y to x would arise (Figure 3.A1d). Indeed, I found that grass epidermal cells increase
disproportionally in size relative to mesophyll cells across species, consistent with larger-celled species adaptating a disproportionately greater investment in upper epidermal cells in storage and, by shrinking with dehydration, enabling leaf rolling (Evert, 2006). In a contrasting scenario, if tissues y and x both contribute to a higher level dimension or function (z), then the relationship of z to the size of y or x cells will show a slope of $b<1$ (Figure 3.A1e); this might occur, for example, for the relationship of leaf thickness to the size of mesophyll or epidermal cells, as greater numbers of cell layers (i.e., cell numbers in vertical profile) also contribute to leaf thickness. Notably, a b of zero (i.e., y independent of x) may arise if the cells of tissue y and x did not increase together, i.e., if they had separate windows of growth.

Additionally, specialized scaling of vascular tissues for functional optimization would be selected across the leaf blade. Thus, nongeometric scaling of cell sizes would arise between xylem cells of different vein orders, and between xylem cells and other leaf cells, based on optimal transport in branching and distribution systems (McCulloh, Sperry \& Adler, 2003; Price, Knox \& Brodribb, 2013). Indeed, one may hypothesize that disproportionate scaling should arise between xylem conduit diameters across vein orders in mature leaves, to optimize transport via a matched hydraulic conductance across vein orders. For example, the major vein orders contain type I and type II xylem, whereas 3° and higher vein orders only have type II xylem, which are an order of magnitude smaller in cell area (Table S3.1), Across leaves of grass species, the major vein diameters, conduit sizes and conduit numbers tend to increase with leaf size, but major vein density decreases in larger leaves as veins are spaced further apart, and minor vein sizes and density are unrelated to leaf width (Baird et al., 2021). Thus, one may hypothesize that for the major and minor vein systems to maintain a matched transport efficiency across leaves of different sizes, type I xylem conduit sizes would increase disproportionately relative to type II xylem to compensate for
the declining vein density of major veins. This hypothesis based on optimizing vein function would thus provide an explanation for the scaling of type II xylem with type I xylem across vein orders with $b<1$.

Notably, in those cases when evolutionary allometries are not found among cells within a given organ, it would follow that cell size ratios are highly variable across species, independently of cell size. This $b=0$ situation may be expected when considering cell types arising from different precursors, which can be selected for size independently. Examples include xylem cells arising from the vein procambium, which can achieve sizes independent of those of mesophyll cells arising from non-procambium lamina cells; or stomata, which arise from epidermal meristemoid cells, which originate at different times in leaf development (Torii, 2021). Additionally, the independence of cell sizes across tissues within a leaf would be expected when their functions are not directly linked-or, even if they are linked, when their quantitative association is in relation to a higher level dimension or trait. For example, stomatal size is developmentally independent of mesophyll cell size, based on a guard cell development process that is highly specialized relative to other epidermal and leaf cells (Torii, 2021), and, while stomatal and mesophyll cells have a coordinated function in photosynthetic gas exchange, the linkage would be related to higher level traits mediated by other properties. Thus, mesophyll cell surface area per leaf area (a function of cell size, but also of number of cell layers and arrangement) may be related to stomatal conductance (a function of stomatal size, but also of stomatal density; Sack \& Buckley, 2016)

Figure 3.A1. The relationship between generalized developmental allometries arising from geometry (black lines for different species) relating the areas of cell type y with cell type x, and evolutionary allometries across the mature leaves of different species (red dotted lines through red points). Different scenarios visualized: (A) negligible differences across species in the intercept (representing the size ratio of cell y to cell x throughout development); (B) conservative, or (C-E) large differences across species in the intercept, that is (C) unrelated to mature leaf cell size or where differences across species in the intercept (representing the size ratio of cell y to cell x) is (D) greater or (E) smaller in species with larger mature cells. In cases (\mathbf{A}) and (B) the evolutionary allometry would have similar slope to the generalized developmental allometry; in case (C), there would be no significant evolutionary allometry, and in cases (D) and (E) the evolutionary allometry would differ in slope from the generalized developmental allometry.

Supplementary Materials

Supplementary Data Captions (see attached Excel Workbook)

Table S3.1. Species of grasses (Poaceae) included in the study, subfamily, tribe, $\mathrm{C}_{3} / \mathrm{C}_{\mathbf{4}}$ photosynthetic pathway, BEP/PACMAD clade, 3L/4L i.e., three or four longitudinal vein orders, C_{4} subtype, seed source, accession number, seed treatment for germination, terrestrial/aquatic, sun/shade, mean and \pm standard errors of anatomical and morphological traits measured. Traits left blank for a given species indicates that this species did not have this trait, e.g. did not have bundle sheath and only had the inner sheath, and did not have the 4° vein. Traits with NA for a given species indicates that I did not ascertain quantifiable data for these species, e.g. 2° vein traits for Lasiacis sorghoidea.

Table S3.2. Parameters and statistics from parametric and nonparametric phylogenetic analyses of variance between C_{3} and C_{4} species for traits used in this study, and nonphylogenetic analysis of variance testing the influence of species identity versus individual replicate on species' trait values.

Table S3.3. Parameters and statistics for allometries of cell areas across grass leaf tissues. The variables tested, statistical method used, expected scaling exponent $\boldsymbol{b}, \boldsymbol{r}$ - and \boldsymbol{p} - values, scaling exponent \boldsymbol{b} with $\mathbf{9 5 \%}$ confidence intervals and the scaling coefficient \boldsymbol{a} are provided, for log transformed data. Tests are provided considering the following groups: 1) all 27 grass species, 2) 24 terrestrial grass species, 3) $11 \mathrm{C}_{3}$ grass species, 4) eight terrestrial C_{3} grasses and 5) $16 \mathrm{C}_{4}$ grass species (all terrestrial). Significant relationships were considered when $p<0.05$,
and all parameters for a given test are bolded for these. Note: 21 of the 27 species have bundle sheath. Thus, relationships tested that include the bundle sheath are fitted across these 21 species, 18 species for terrestrial grasses, all 11 for the C_{3} grasses, all 8 for terrestrial C_{3} grasses and 10 for C_{4} grasses. \dagger Cell areas for xylem and bundle and/or mestome sheath cells averaged across vein orders. Italicized b-values indicate significant departure from geometric scaling.

Table S3.4. Parameters and statistics for allometries of vascular cell areas across grass leaf vein orders. The variables tested, statistical method used, expected b, r - and p-values, and the scaling exponent b with 95% confidence intervals and the scaling coefficient a are provided, for log-transformed data. Relationships were considered significant when $p<0.05$, and all parameters given in bold face. Note: 21 of the 27 species have bundle sheath. Thus, relationships tested that include the bundle sheath were fitted across these 21 species. The phylogenetic method implemented was phylogenetic reduced major axis (PRMA). Tests including traits from the 4° small vein implemented non phylogenetic reduced major axis (SMA) as only seven species have this vein order. Italicized b-values indicate significant departure from geometric scaling.

Table S3.5. Parameters and statistics for allometries of cell areas with leaf and plant

 dimensions. The variables tested, statistical method used, expected scaling exponent b, r - and p values, and the scaling exponent b with 95% confidence intervals and the scaling coefficient a are provided, for log-transformed data. Relationships were considered significant when $p<0.05$, and all parameters given in bold face. Note: 21 of the 27 species have bundle sheath. Thus, relationships tested that include the bundle sheath are fitted across these 21 species. Thephylogenetic method implemented was phylogenetic reduced major axis (PRMA). \dagger Cell areas for xylem and bundle and/or mestome sheath cells averaged across vein orders. Italicized b values indicate significant departure from geometric scaling.

Table S3.6. Parameters and statistics for allometries of cell areas with leaf functional traits.
The variables tested, statistical method used, r - and p-values, and the scaling exponent b with 95% confidence intervals and the scaling coefficient a are provided, for log-transformed data. Relationships were considered significant when $p<0.05$, and all parameters given in bold face. Note: 21 of the 27 species have bundle sheath. Thus, relationships tested that include the bundle sheath are fitted across these 21 species. The phylogenetic method implemented was phylogenetic reduced major axis (PRMA). \dagger Cell areas for xylem and bundle and/or mestome sheath cells averaged across vein orders.

Supplementary Figures

Figure S3.1. Phylogenetic trees used to account for the influence of species relatedness on scaling relationships and species distribution maps. (A) All 27 grass species included in the study. (B) 21 grass species that have bundle sheath cells, and used for analyses of tests including bundle sheath traits. (C) $11 \mathrm{C}_{3}$ species. (D) $16 \mathrm{C}_{4}$ species. Distributions of (E) $11 \mathrm{C}_{3}$ grass species and (F) $16 \mathrm{C}_{3}$ grass species, previously published in Baird et al., (2021). Blue branches in
(A) indicate a C_{4} evolution, including 11 independent evolutions.

Figure S3.2. Anatomical transverse sections for $11 \mathrm{C}_{3}$ grass species included in the study.
Images were selected to include one 2° large and one 3° intermediate vein. (A) Chasmanthium latifolium, (B) Danthonia californica, (C) Danthonia decumbens, (D) Ehrharta calycina, (E) Lasiacis sorghoidea, (F) Nassella viridula, (G) Oplismenus hirtellus, (H) Oryza sativa, (I)

Phragmites australis, (J) Sacciolepis africana, (K) Triticum aestivum.

Figure S3.3. Anatomical transverse sections for $16 \mathrm{C}_{4}$ grass species included in the study.
Images were selected to include one 2° large and one 3° intermediate vein (i.e. $\mathrm{C}_{4-3 \mathrm{~L}}$) for (A), (D), (E), (F), (H), (L), (M), (N) and (P), or 4° vein (i.e. $\mathrm{C}_{4-4 \mathrm{~L}}$) for (B), (C), (F), (I), (J), (K) and (O). (A) Alloteropsis cimicina (B) Alloteropsis semialata, (C) Andropogon gerardii, (D) Aristida purpurea, (E) Aristida ternipes, (F) Cenchrus setaceus (G) Chloris elata, (H) Chloris gayana,
(I) Digitaria ciliaris, (J) Digitaria eriantha, (K) Echnichloa crus-galli, (L) Eragrostis cilianensis, (M) Eriachne aristidea, (N) Panicum virgatum, (O) Paspalum dilatatum, (P) Stipagrostis zeyheri.

Figure S3.4. Scaling of vein sheath cells across vein orders across 27 grass species grown experimentally Scaling of bundle sheath cells across vein orders, of mestome sheath cells across vein orders, and of the procambial derived mestome sheath with the ground tissue derived bundle sheath across vein orders for C_{3} grasses. Each point is one species, $n=11 \mathrm{C}_{3}$ (eight terrestrial in red, three aquatic in grey) and $n=16 \mathrm{C}_{4}$ species in blue. Panels $(\mathbf{P}),(\mathbf{R})$ and (\mathbf{T}) include only the species Alloteropsis semialata as this was the only species with the 4° vein but has both bundle and mestome sheaths. Lines were fit with phylogenetic reduced major axis regressions (PRMA)
and statistics and parameters are found in Table S3.4. Line colors indicate that the relationship was significant across a specific set of grasses, with black lines across all species and red lines across C_{3} species. The line in panel (\mathbf{U}) was fitted with standard major axis (SMA) as there were not >7 species for a phylogenetic reduced major axis (PRMA) test. ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p$ <0.001.

Figure S3.5. Scaling of vein xylem cell sizes with sheath cell types within leaf longitudinal vein orders across 27 grass species grown experimentally. Scaling of mestome sheath cells and xylem within vein orders and of the bundle sheath with xylem within vein orders for C_{3} grasses. Each point is one species, $n=11 \mathrm{C}_{3}$ (eight terrestrial in red, three aquatic in grey) and n $=16 \mathrm{C}_{4}$ species in blue. Lines were fit with phylogenetic reduced major axis regressions (PRMA) and statistics and parameters are found in Table S3.4. Line colors indicate that the relationship was significant across a specific set of grasses, with black lines across all species and red lines across C_{3} species. ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$.

Figure S3.6. Scaling of leaf and plant morphological traits with leaf cell sizes across 27
grass species grown experimentally. Each point is one species, $n=11 \mathrm{C}_{3}$ (eight terrestrial in red, three aquatic in grey) and $n=16 \mathrm{C}_{4}$ species in blue. Lines were fit with phylogenetic reduced major axis regressions (PRMA) and statistics and parameters are found in Table S3.5.

Line colors indicate that the relationship was significant across a specific set of grasses, with black lines across all species, red lines across C_{3} species, and segmented lines across the terrestrial species either across all grasses or only C_{3} grasses, and blue lines across the C_{4} species only. ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$.

Figure S3.7. Scaling of leaf functional traits with leaf cell sizes across $\mathbf{2 7}$ grass species
grown experimentally. Each point is one species, $n=11 \mathrm{C}_{3}$ (eight terrestrial in red, three aquatic in grey) and $n=16 \mathrm{C}_{4}$ species in blue. Lines were fit with phylogenetic reduced major axis regressions (PRMA) and statistics and parameters are found in Table S3.6. Line colors indicate that the relationship was significant across a specific set of grasses, with black lines across all species, segmented lines across the terrestrial species across all grasses, and blue lines across the C_{4} species only. ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$.

References

1. Allard, G., C. J. Nelson, and S. G. Pallardy. 1991. Shade Effects on Growth of Tall Fescue: I. Leaf Anatomy and Dry Matter Partitioning. Crop Science 31.
2. Baird, A. S., S. H. Taylor, J. Pasquet-Kok, C. Vuong, Y. Zhang, T. Watcharamongkol, C. Scoffoni, et al. 2021. Developmental and biophysical determinants of grass leaf size worldwide. Nature 592: 242-247.
3. Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C. Rödenbeck, et al. 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329: 834-838.
4. Brodribb, T. J., G. J. Jordan, and R. J. Carpenter. 2013. Unified changes in cell size permit coordinated leaf evolution. New Phytologist 199: 559-570.
5. Buckley, T. N., G. P. John, C. Scoffoni, and L. Sack. 2015. How Does Leaf Anatomy Influence Water Transport outside the Xylem? Plant Physiology 168: 1616-1635.
6. Cadart, C., and R. Heald. 2022. Scaling of biosynthesis and metabolism with cell size. Molecular Biology of the Cell 33: pe5.
7. Charles-Edwards, D. A., J. Charles-Edwards, and F. I. Sant. 1974. Leaf Photosynthetic Activity in Six Temperate Grass Varieties Grown in Contrasting Light and Temperature Environments. Journal of Experimental Botany 25: 715-724.
8. Christin, P.-A., C. P. Osborne, D. S. Chatelet, J. T. Columbus, G. Besnard, T. R. Hodkinson, L. M. Garrison, et al. 2013. Anatomical enablers and the evolution of C_{4} photosynthesis in grasses. Proceedings of the National Academy of Sciences 110: 13811386.
9. Clayton, W., M. Vorontsova, K. Harman, and H. Williamson. 2006. RBG Kew: GrassBase - The Online World Grass Flora. Website http://www.kew.org/data/grassesdb.html.
10. Clevering, O. A. 1999. Between- and within-population differences in Phragmites australis. Oecologia 121: 447-457.
11. Cutler, J. M., D. W. Rains, and R. S. Loomis. 1977. The Importance of Cell Size in the Water Relations of Plants. Physiologia Plantarum 40: 255-260.
12. Danila, F. R., W. P. Quick, R. G. White, R. T. Furbank, and S. von Caemmerer. 2016. The Metabolite Pathway between Bundle Sheath and Mesophyll: Quantification of Plasmodesmata in Leaves of C_{3} and C_{4} Monocots. The Plant Cell 28: 1461-1471.
13. Dannenhoffer, J. M., W. Ebert Jr., and R. F. Evert. 1990. Leaf Vasculature in Barley, Hordeum Vulgare (poaceae). American Journal of Botany 77: 636-652.
14. Dengler, N. G., R. E. Dengler, and P. W. Hattersley. 1985. Differing Ontogenetic Origins of PCR ('Kranz') Sheaths in Leaf Blades of C C_{4} Grasses (Poaceae). American Journal of Botany 72: 284-302.
15. Eckardt, N. A., E. A. Ainsworth, R. N. Bahuguna, M. R. Broadley, W. Busch, N. C. Carpita, G. Castrillo, et al. 2023. Climate change challenges, plant science solutions. The Plant Cell 35: 24-66.
16. Ellis, J. R., and R. M. Leech. 1985. Cell size and chloroplast size in relation to chloroplast replication in light-grown wheat leaves. Planta 165: 120-125.
17. Ellis, R. P. 1976. A procedure for standardizing comparative leaf anatomy in the Poaceae. I. The leaf-blade as viewed in transverse section. Bothalia 12: 65-109.
18. Ermakova, M., F. R. Danila, R. T. Furbank, and S. von Caemmerer. 2020. On the road to C_{4} rice: advances and perspectives. The Plant Journal 101: 940-950.
19. Evert, R. F. 2006. Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. 3rd ed. John Wiley.
20. Feldman, A. B., H. Leung, M. Baraoidan, A. Elmido-Mabilangan, I. Canicosa, W. P. Quick, J. Sheehy, and E. H. Murchie. 2017. Increasing Leaf Vein Density via Mutagenesis in Rice Results in an Enhanced Rate of Photosynthesis, Smaller Cell Sizes and Can Reduce Interveinal Mesophyll Cell Number. Frontiers in Plant Science 8.
21. Fletcher, L. R., H. Cui, H. Callahan, C. Scoffoni, G. P. John, M. K. Bartlett, D. O. Burge, and L. Sack. 2018. Evolution of leaf structure and drought tolerance in species of Californian Ceanothus. American Journal of Botany 105: 1672-1687.
22. Fournier, C., J. L. Durand, S. Ljutovac, R. Schäufele, F. Gastal, and B. Andrieu. 2005. A functional-structural model of elongation of the grass leaf and its relationships with the phyllochron. New Phytologist 166: 881-894.
23. Garland, T., Jr., A. W. Dickerman, C. M. Janis, and J. A. Jones. 1993. Phylogenetic Analysis of Covariance by Computer Simulation. Systematic Biology 42: 265-292.
24. Garnier, E., J.-L. Salager, G. Laurent, and L. Sonié. 1999. Relationships between photosynthesis, nitrogen and leaf structure in 14 grass species and their dependence on the basis of expression. The New Phytologist 143: 119-129.
25. Gázquez, A., and G. T. S. Beemster. 2017. What determines organ size differences between species? A meta-analysis of the cellular basis. New Phytologist 215: 299-308.
26. Gould, S. J. 1966. Allometry and Size in Ontogeny and Phylogeny. Biological Reviews 41: 587-638.
27. Granier, C., and F. Tardieu. 2009. Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts. Plant, Cell \& Environment 32: 1175-1184.
28. Granier, C., and F. Tardieu. 1998. Spatial and Temporal Analyses of Expansion and Cell Cycle in Sunflower Leaves 1: A Common Pattern of Development for All Zones of a Leaf and Different Leaves of a Plant. Plant Physiology 116: 991-1001.
29. Griffiths, H., G. Weller, L. F. M. Toy, and R. J. Dennis. 2013. You're so vein: bundle sheath physiology, phylogeny and evolution in C_{3} and C_{4} plants. Plant, Cell \& Environment 36: 249-261.
30. Hepworth, C., R. S. Caine, E. L. Harrison, J. Sloan, and J. E. Gray. 2018. Stomatal development: focusing on the grasses. Current Opinion in Plant Biology 41: 1-7.
31. Hölttä, T., M. Kurppa, and E. Nikinmaa. 2013. Scaling of xylem and phloem transport capacity and resource usage with tree size. Frontiers in Plant Science 4.
32. Huxley, J. S. 1932. Problems of relative growth. John Hopkins University Press, Baltimore, Maryland, USA.
33. John, G. P., C. Scoffoni, T. N. Buckley, R. Villar, H. Poorter, and L. Sack. 2017. The anatomical and compositional basis of leaf mass per area. Ecology Letters 20: 412-425.
34. John, G. P., C. Scoffoni, and L. Sack. 2013. Allometry of cells and tissues within leaves. American Journal of Botany 100: 1936-1948.
35. Kato, Y., and M. Okami. 2010. Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobic and flooded conditions. Field Crops Research 117: 9-17.
36. Kemp, C. D. 1960. Methods of Estimating the Leaf Area of Grasses from Linear Measurements. Annals of Botany 24: 491-499.
37. Koike, T. 1988. Leaf Structure and Photosynthetic Performance as Related to the Forest Succession of Deciduous Broad-Leaved Trees1. Plant Species Biology 3: 77-87.
38. LaBarbera, M. 1990. Principles of Design of Fluid Transport Systems in Zoology. Science 249: 992-1000.
39. Lowry, D. B., J. T. Lovell, L. Zhang, J. Bonnette, P. A. Fay, R. B. Mitchell, J. LloydReilley, et al. 2019. QTL \times environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proceedings of the National Academy of Sciences 116: 12933-12941.
40. MacAdam, J. W., J. J. Volenec, and C. J. Nelson. 1989. Effects of Nitrogen on Mesophyll Cell Division and Epidermal Cell Elongation in Tall Fescue Leaf Blades 1. Plant Physiology 89: 549-556.
41. Marshall, W. F., K. D. Young, M. Swaffer, E. Wood, P. Nurse, A. Kimura, J. Frankel, et al. 2012. What determines cell size? BMC Biology 10: 101.
42. McCulloh, K. A., J. S. Sperry, and F. R. Adler. 2003. Water transport in plants obeys Murray's law. Nature 421: 939-942.
43. McSteen, P., and E. A. Kellogg. 2022. Molecular, cellular, and developmental foundations of grass diversity. Science 377: 599-602.
44. Meinzer, F. C., S. A. James, G. Goldstein, and D. Woodruff. 2003. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant, Cell \& Environment 26: 1147-1155.
45. Murray, C. D. 1926. The Physiological Principle of Minimum Work. Proceedings of the National Academy of Sciences 12: 207-214.
46. Neiro, J. S. 2020. Ontogenetic and static allometry of hind femur length in the cricket Gryllus bimaculatus (Orthoptera: Gryllidae) with implications for evo-devo of morphological scaling. 2020.03.01.972141.
47. Nelson, T., and N. Dengler. 1997. Leaf Vascular Pattern Formation. The Plant Cell 9: 1121-1135.
48. Niinemets, U. 1999. Research Review: Components of Leaf Dry Mass Per AreaThickness and Density-Alter Leaf Photosynthetic Capacity in Reverse Directions in Woody Plants. The New Phytologist 144: 35-47.
49. Niinemets, Ü., A. Díaz-Espejo, J. Flexas, J. Galmés, and C. R. Warren. 2009. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. Journal of Experimental Botany 60: 2249-2270.
50. Niklas, K. J. 1994. Plant Allometry. University of Chicago Press, Chicago, Illinois.
51. Nobel, P. S. 1976. Photosynthetic Rates of Sun versus Shade Leaves of Hyptis emoryi Torr. 1. Plant Physiology 58: 218-223.
52. Nobel, P. S. 2020. Physicochemical and environmental plant physiology. 5th ed. Academic Press, San Diego, CA.
53. Nobel, P. S., L. J. Zaragoza, and W. K. Smith. 1975. Relation between Mesophyll Surface Area, Photosynthetic Rate, and Illumination Level during Development for Leaves of Plectranthus parviflorus Henckel 1. Plant Physiology 55: 1067-1070.
54. Noblin, X., L. Mahadevan, I. A. Coomaraswamy, D. A. Weitz, N. M. Holbrook, and M. A. Zwieniecki. 2008. Optimal vein density in artificial and real leaves. Proceedings of the National Academy of Sciences 105: 9140-9144.
55. Olson, M. E., D. Soriano, J. A. Rosell, T. Anfodillo, M. J. Donoghue, E. J. Edwards, C. León-Gómez, et al. 2018. Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences 115: 7551-7556.
56. Pantin, F., T. Simonneau, and B. Muller. 2012. Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytologist 196: 349-366.
57. Pearsall, W. H. 1927. Growth Studies: VI. On the Relative Sizes of Growing Plant Organs. Annals of Botany os-41: 549-556.
58. Pélabon, C., C. Firmat, G. H. Bolstad, K. L. Voje, D. Houle, J. Cassara, A. L. Rouzic, and T. F. Hansen. 2014. Evolution of morphological allometry. Annals of the New York Academy of Sciences 1320: 58-75.
59. Poorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot, and L. Mommer. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193: 30-50.
60. Poorter, H., and L. Sack. 2012. Pitfalls and Possibilities in the Analysis of Biomass Allocation Patterns in Plants. Frontiers in Plant Science 3.
61. Price, C. A., S.-J. C. Knox, and T. J. Brodribb. 2013. The Influence of Branch Order on Optimal Leaf Vein Geometries: Murray's Law and Area Preserving Branching. PLOS ONE 8: e85420.
62. Rademacher, I. F., and C. J. Nelson. 2001. Nitrogen Effects on Leaf Anatomy within the Intercalary Meristems of Tall Fescue Leaf Blades. Annals of Botany 88: 893-903.
63. Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.
64. Ronellenfitsch, H., J. Liesche, K. H. Jensen, N. M. Holbrook, A. Schulz, and E. Katifori. 2015. Scaling of phloem structure and optimality of photoassimilate transport in conifer needles. Proceedings of the Royal Society B: Biological Sciences 282: 20141863.
65. Russell, S. H., and R. F. Evert. 1985. Leaf vasculature in Zea mays L. Planta 164: 448458.
66. Sachs, T. 1975. The Control of the Differentiation of Vascular Networks. Annals of Botany 39: 197-204.
67. Sack, L., and T. N. Buckley. 2016. The Developmental Basis of Stomatal Density and Flux. Plant Physiology 171: 2358-2363.
68. Sack, L., and C. Scoffoni. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198: 983-1000.
69. Sack, L., C. Scoffoni, G. P. John, H. Poorter, C. M. Mason, R. Mendez-Alonzo, and L. A. Donovan. 2013. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany 64: 4053-4080.
70. Sack, L., C. Scoffoni, A. D. McKown, K. Frole, M. Rawls, J. C. Havran, H. Tran, and T. Tran. 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3: 837.
71. Sage, R. F. 2004. The evolution of C4 photosynthesis. New Phytologist 161: 341-370.
72. Salvi, A. M., D. D. Smith, M. A. Adams, K. A. McCulloh, and T. J. Givnish. 2021. Mesophyll photosynthetic sensitivity to leaf water potential in Eucalyptus: a new
dimension of plant adaptation to native moisture supply. New Phytologist 230: 18441855.
73. Shi, P., M. Liu, D. A. Ratkowsky, J. Gielis, J. Su, X. Yu, P. Wang, et al. 2019. Leaf arealength allometry and its implications in leaf shape evolution. Trees 33: 1073-1085.
74. Skinner, R. H., and C. J. Nelson. 1994. Epidermal cell division and the coordination of leaf and tiller development. Annals of Botany 74: 9-16.
75. Smith, D. D., and J. S. Sperry. 2014. Coordination between water transport capacity, biomass growth, metabolic scaling and species stature in co-occurring shrub and tree species. Plant, Cell \& Environment 37: 2679-2690.
76. Sperry, J. S., U. G. Hacke, and J. K. Wheeler. 2005. Comparative analysis of end wall resistivity in xylem conduits. Plant, Cell \& Environment 28: 456-465.
77. Stickler, F. C., S. Wearden, and A. W. Pauli. 1961. Leaf Area Determination in Grain Sorghum1. Agronomy Journal 53: 187-188.
78. Taneda, H., and I. Terashima. 2012. Co-ordinated development of the leaf midrib xylem with the lamina in Nicotiana tabacum. Annals of Botany 110: 35-45.
79. Taylor, S. H., S. P. Hulme, M. Rees, B. S. Ripley, F. Ian Woodward, and C. P. Osborne. 2010. Ecophysiological traits in C_{3} and C_{4} grasses: a phylogenetically controlled screening experiment. New Phytologist 185: 780-791.
80. Torii, K. U. 2021. Stomatal development in the context of epidermal tissues. Annals of Botany 128: 137-148.
81. VanVolkenburgh, E. 1999. Leaf expansion - an integrating plant behaviour. Plant, Cell \& Environment 22: 1463-1473.
82. Vasseur, F., C. Violle, B. J. Enquist, and D. Vile. 2023. Genetic variability and plasticity of plant allometry. Functional Ecology n/a.
83. Warton, D. I., I. J. Wright, D. S. Falster, and M. Westoby. 2006. Bivariate line-fitting methods for allometry. Biological Reviews 81: 259-291.
84. Watcharamongkol, T., P.-A. Christin, and C. P. Osborne. 2018. C4 photosynthesis evolved in warm climates but promoted migration to cooler ones. Ecology Letters 21: 376-383.
85. West, G. B., J. H. Brown, and B. J. Enquist. 1997. A General Model for the Origin of Allometric Scaling Laws in Biology. Science 276: 122-126.
86. Wilson, D., and J. P. Cooper. 1967. Assimilation of Lolium in Relation to Leaf Mesophyll. Nature 214: 989-992.
87. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821827.
88. Zhong, M., B. E. L. Cerabolini, P. Castro-Díez, J.-P. Puyravaud, and J. H. C. Cornelissen. 2020. Allometric co-variation of xylem and stomata across diverse woody seedlings. Plant, Cell \& Environment 43: 2301-2310.

Chapter 4: Leaf hydraulic design of C_{3} and C_{4} grasses

Abstract

The exceptional global distribution and productivity of grasses arises from their diversity, with C_{4} species dominating hotter and drier environments with higher photosynthetic rate (A) and higher water use efficiency than C_{3} species. A long-standing paradox is the apparent surplus in water transport capacity of C_{4} species, given their higher leaf vein density $\left(D_{\mathrm{v}}\right)$ and lower stomatal conductance $\left(g_{\mathrm{s}}\right)$. Here I clarify C_{3} and C_{4} grass leaf hydraulic design using experimental data, a compiled database, evolutionary analyses and physiological modeling. Despite their higher $D_{\mathrm{v}}, \mathrm{C}_{4}$ species have similar hydraulic conductance inside and outside the xylem to C_{3} species, and their higher water transport capacity relative to g_{s} provides a hydraulic hyper-efficiency necessary for their photosynthetic advantage, and representing a key target for novel crop design.

Introduction

The grass family (Poaceae) includes 12,000 species from 800 genera that dominate and contribute $31-43 \%$ and 33% of the earth's terrestrial surface, respectively, and from which 70% of all crops are derived (Molecular, cellular, and developmental foundations of grass diversity; Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate). The C_{4} photosynthetic pathway in grasses is of key importance and a model for repeated emergence of a key innovation (Sage, 2004; Gowik \& Westhoff, 2011; Marazzi et al., 2012), evolving >20 times in grasses such that $>40 \%$ of extant species are C_{4} (Sage, Christin \& Edwards, 2011). C_{4} photosynthesis maximizes carbon fixation particularly under hotter, drier conditions and low CO_{2} by concentrating CO_{2} at rubisco in the bundle sheath around the leaf veins, minimizing photorespiratory losses and enabling reduced stomatal conductance and higher water-use efficiency (WUE) (Sage 2004). Projected shifts in vegetation under climate change depend crucially on the relative success of C_{4} versus C_{3} photosynthetic species (Higgins \& Scheiter, 2012). In addition, key agricultural crops provide enormous yields due to their C_{4} photosynthesis, and a global initiative is underway to engineer novel C_{4} crops (e.g., C_{4} rice) (Gowik \& Westhoff, 2011; Langdale, 2011). However, the hydraulic design of leaves is understudied in grasses, though recognized as critical in determining plant productivity in response to climate (Maherali, Pockman \& Jackson, 2004; Blackman, Brodribb \& Jordan, 2012; Sack \& Scoffoni, 2013; Baird et al., 2021).

Generally across angiosperms, leaves are a hydraulic bottleneck (Sack \& Holbrook 2006). Water flows through leaves via the vein network, and then diffuses across the bundle sheath and mesophyll to the sites of evaporation. and hydraulic conductance ($K_{\text {leaf }}$). Thus, $K_{\text {leaf }}$ is determined by vein xylem traits such as conduit diameters and numbers, venation density (D_{v}, i.e. vein length
per leaf area) and vein sheath properties such as sheath perimeter (Figure 1), which influence the conductance of pathways inside $\left(K_{\mathrm{x}}\right)$ and outside the xylem (K_{ox}):

$$
\begin{equation*}
K_{\text {leaf }}=\left(K_{\mathrm{x}}^{-1}+K_{\mathrm{ox}}^{-1}\right)^{-1} \tag{1}
\end{equation*}
$$

A high $K_{\text {leaf }}$ is necessary for a high stomatal conductance $\left(g_{s}\right)$ and light-saturated photosynthetic rate per unit leaf area ($A_{\text {area }}$) (Sack \& Holbrook, 2006; Sack \& Scoffoni, 2013) (Table 4.1). C_{3} eudicotyledons and grasses exhibit coordination of hydraulics and gas exchange, i.e., $K_{\text {leaf, }} g_{\mathrm{s}}$, photosynthetic rate $\left(A_{\text {area }}\right)$ and higher D_{v} (Brodribb, Feild \& Sack, 2010; Sack \& Scoffoni, 2013; Zhou, Akçay, Edwards \& Helliker, 2021; Baird et al., 2021). In turn, a higher $K_{\text {leaf }}$ relative to g_{s} and $A_{\text {area }}$ can confer sustained leaf water potential and a higher $A_{\text {area }}$ relative to g_{s} can confer greater leaf water-use efficiency (Scoffoni et al., 2016). All of these can confer drought avoidance capacity, by which species can adapt to arid climates, by mitigating the shorter growing season with more rapid growth in the wet season.

Yet, C_{4} grasses may depart from this hydraulic design framework that is general for C_{3} species. First, C_{4} species possess a specialized "Kranz" anatomy that includes higher D_{v} (Ueno, Kawano, Wakayama \& Takeda, 2006; Liu et al., 2019; Baird et al., 2021; Pan et al., 2022) and enlarged sheath cells in which carbon is concentrated around chloroplasts (Christin et al., 2013) (Box 1), and which allows for a lower g_{s} and higher operating $\Psi_{\text {leaf. }}$. Consequently, C_{4} species may not require a high $K_{\text {leaf }}$ to enable rapid rates of gas exchange (Zhou, Akçay \& Helliker, 2020; Zhou et al., 2021). Indeed, in C_{4} eudicots, hydraulic conductance was lower than for closely related C_{3} species (Kocacinar \& Sage 2003, 2004). Further, studies of specific sets of phylogenetically and functionally diverse C_{4} grass species and across sorghum varieties showed higher D_{v} increased with $A_{\text {area }}$ (Pathare, Sonawane, Koteyeva \& Cousins, 2020; Pan et al., 2022), or decoupling or negative relationship of $K_{\text {leaf }}$ and $A_{\text {area }}$ (Ocheltree, Nippert \& Prasad, 2016; Pathare et al., 2020;

Zhou et al., 2021) (Table S4.1). The differential coordination of hydraulic, stomatal and photosynthetic traits in C_{3} and C_{4} species would contribute fundamentally to their contrasting adaptation across environments and to efforts to design climate-forward varieties or novel C_{4} plants. I tested hypotheses for the differential physiological design of C_{4} relative to C_{3} grasses for $11 \mathrm{C}_{3}$ and $16 \mathrm{C}_{4}$ grass species grown in a common garden, native to diverse habitats and including major crops, and representing 11 independent C_{4} origins and C_{3} sister clades (Figure S4.1, Table S4.2). I also provide additional evidence for differences between C_{3} and C_{4} species, and coordination of physiological traits using a larger compiled meta base, including our data and grass data from 35 previously published studies for 328 species (Table S4.3).

Materials and Methods

Plant Material

Plants were grown in a common garden design at the UCLA Plant Growth Center to reduce environmentally-driven plasticity that would occurs across species' distributions in the wild. 27 species were selected to capture large functional and phylogenetic diversity, including 10 and 16 C_{3} and C_{4} species, respectively, representing 11 independent C_{4} origins (Table S4.2). Seeds were acquired from seed banks and commercial sources (Table S4.2), and prior to germination were surface-sterilized with $10 \% \mathrm{NaClO}$ and 0.1% Triton $\mathrm{X}-100$ detergent, rinsed three times with sterile water, and sown on plates of 0.8% agar sealed with Micropore surgical tape (3M, St. Paul, $\mathrm{MN})$. Seeds were germinated in chambers maintained at $26^{\circ} \mathrm{C}$, under moderate intensity cool white fluorescent lighting with a 12 hour photoperiod. When roots ranged from 2-3 cm long, seedlings were transplanted to 3.6 L pots with potting soil (1:1:1.5:1.5:3 of coarse vermiculite: perlite: washed plater sand: sandy loam: peat moss).

Plants were grown at the UCLA Plant Growth Center (minimum, mean and maximum daily values for temperature: $20.1,23.4$ and $34.0^{\circ} \mathrm{C}$; for relative humidity: 28,50 and 65%; and mean and maximum photosynthetically active radiation during daylight period: 107 and 1988 $\mu \mathrm{mol}$ photons $\mathrm{m}^{-2} \mathrm{~s}^{-1}$; HOBO Micro Station with Smart Sensors; Onset, Bourne, MA). Plants were arranged in six randomized blocks spread over three benches, with one individual per species per block ($\mathrm{n}=6$ except: Alloteropsis semialata, $\mathrm{n}=4$) and two blocks per bench. Plants were irrigated daily with water containing fertilizer (200-250 ppm of 20:20:20 N:P:K; Scotts Peters Professional water soluble fertilizer; Everris International B.V., Geldermalsen, The Netherlands).

Sample anatomical preparation

Following the establishment of at least 3-4 mature leaves, one leaf from each of three individuals per species was fixed and stored in FAA solution (37\% formaldehyde-glacial acidic acid-95\% ethanol in deionized water. At the center of the leaf, rectangular samples were cut and under vacuum over the duration of one week, gradually infiltrated with low viscosity acrylic resin (L.R. White; London Resin Co., UK). Infiltrated samples were then set in resin in gelatin capsules to dry at 55 C overnight. From these samples, transverse cross sections of 1 um thickness and of varying width (species dependent) were then prepared using glass knives (LKB 7800 KnifeMaker;LKB Produkter; Bromma, Sweden) in a rotary microtome (Leica Ultracut E, Reichert-Jung California, USA), placed on slides and stained with 0.01% toluidine blue in 1% sodium borate $(\mathrm{w} / \mathrm{v})$. Slides were then imaged with a $5 \times, 20 \times$, and $40 \times$ objective using a light microscope (Leica Lietz DMRB; Leica Microsystems) and camera with imaging software (SPOT Imaging Solution; Diagnostic Instruments, Sterling Heights, Michigan USA).

Quantification of leaf hydraulic traits

I measured the leaf hydraulic conductance ($K_{\text {leaf }}$) between 9 Feb and 25 June 2010 using the steadystate evaporative flux method (EFM) (Sack \& Scoffoni, 2012). Measurements were typically made for 2-3 leaves per plant from 6 plants, resulting in 6-18 leaves per species. Stems were cut from the plant with a fresh razor blade under water in the growth center, placed in a polythene bag (Whirl-Pak; Nasco, Fort Atkinson, WI, USA), and transported to the lab for measurement. Individual grass leaves were wrapped in parafilm around a plastic rod of appropriate diameter (318 mm ; McMasterCarr, Elmhurst, IL), re-cut with a fresh razor blade under distilled water and rapidly connected to tubing with a compression fitting (Omnifit A2227 bore adaptor; Omnifit, Cambridge, UK and 18 mm diameter compression coupling Dynamax, Houstin, TX). The tubing contained distilled water that was degassed for at least 8 h with a vacuum pump (GAST Manufacturing, Inc, Michigan, USA), and refiltered $0.2 \mu \mathrm{~m}$; Syringe filter, Cole-Parmer, Vernon Hills, IL) and connected the leaf to a cylinder of water on a balance (Mettler Toledo, XS205 DualRange, $\pm 0.01 / 0.1 \mathrm{mg}$), which logged data every 30 s to a computer for the calculation of flow rate into the petiole (E). Leaves were held adaxial surface upwards using a wood frame strung with fishing line, which held the leaf horizontal and immobile above a large box fan (Lakewood Engineering \& Manufacturing Company, Chicago, Illinois, USA). Leaves were illuminated by a light source (model 738281000 W, "UV filter"; Sears, Roebuck, Hoffman Estates, Illinois, USA) suspended above a Pyrex glass container (Corning Incorporated, Corning, New York, USA) filled with water above the leaf producing $>1000 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{PAR}$ at the leaf surface. The leaf temperature was maintained between $23-28^{\circ} \mathrm{C}$ during the experiment. Leaves were allowed to transpire on the fan apparatus for at least 30 min , until the flow rate stabilized with a coefficient of variation $<5 \%$ for at least 5 min . A 30 min period was chosen to ensure that leaves had sufficient
time to acclimate to light, which previous studies have shown to enhance $K_{\text {leaf }}$ by several-fold for certain species (Sack, Melcher, Zwieniecki \& Holbrook, 2002; Tyree, Nardini, Salleo, Sack \& El Omari, 2005; Cochard et al., 2007; Scoffoni, Pou, Aasamaa \& Sack, 2008). When flow rate was very low ($<8 \mu \mathrm{~g} \mathrm{~s}^{-1}$) and did not stabilize with that criterion, the measurement was continued until a running average of the last ten flow measurements stabilized with a coefficient of variation $<5 \%$. Additionally, flow rate was plotted against time to ensure stability. Measurements were discontinued if the flow suddenly changed, either due to leakage in the system or apparent blockage by particles or air bubbles. Leaf temperature was recorded with a thermocouple thermometer (Cole-Parmer Instrument Company, Vernon Hills, Illinois, USA) and the final 5 min of flow rate were averaged. The leaf was quickly removed from the tubing, the cut end dabbed dry, and the leaf sealed into a Whirlpak bag, which had been exhaled into. Following at least 20 min equilibration, the final leaf water potential $\left(\Psi_{f}\right)$ was measured using a pressure chamber (Plant Moisture Stress, Model 1000, Albany, Oregon, USA). To correct for changes in $K_{\text {leaf }}$ induced by the temperature dependence of water viscosity, $K_{\text {leaf }}$ values were standardized to $25^{\circ} \mathrm{C}$ (Weast 1974; Sack, Cowan, Jaikumar \& Holbrook 2003). Measurements were made for 2-3 leaves per plant for each of 6 plants (except 9 plants for A. ternipes, 4 plants for A. semialata, and for L. sorghoidea 5 and 8 leaves were measured from two plants); overall 6-18 leaves per species were measured. We removed outliers for each species using Dixon's outlier test (Sokal \& Rohlf, 1995); up to $0-3$ outliers for 14 of the 28 species; data for 6-18 leaves remained, 12 on average. The values for $K_{\text {leaf }}$ with and without removing outliers were highly correlated across species ($r=0.96$; $P<0.001$), and all the findings of the study were robust to whether or not outliers were maintained in the dataset.

I initially determined $K_{\text {leaf }}$ in three ways. First, I averaged all $K_{\text {leaf }}$ measurements for each species. Second, I fitted a line for $K_{\text {leaf }}$ versus $\Psi_{\text {leaf }}$ and used the y-intercept as an index of maximum $K_{\text {leaf }}\left(\right.$ Brodribb, Feild \& Jordan, 2007). Third, I used the fitted line to predict $K_{\text {leaf }}$ for a $\Psi_{\text {leaf }}$ corresponding to the species mean determined experimentally under glasshouse conditions. Across species, $K_{\text {leaf }}$ values quantified using the three methods were inter-correlated (r_{s} and $r_{\mathrm{p}}=0.63$ $0.95)$; data are presented for the mean $K_{\text {leaf. }}$.

To estimate hydraulic vulnerability for each species, I fitted lines for $K_{\text {leaf }}$ versus leaf water potential ($\Psi_{\text {leaf }}$) during the EFM measurement (using SMATR) (Warton, Duursma, Falster \& Taskinen, 2012). I note that species may show variation in the shape of vulnerability curves but that for numerous species including grasses, a straight line approximates the decline at high leaf water potentials (Pasquet-Kok, Creese \& Sack, 2010; Holloway-Phillips \& Brodribb, 2011; Scoffoni, McKown, Rawls \& Sack, 2012). I estimated an index of leaf hydraulic vulnerability for each species, the $\Psi_{\text {leaf }}$ at 50% loss of $K_{\text {leaf }}\left(P_{50}\right)$ as the $\Psi_{\text {leaf }}$ at which $K_{\text {leaf }}$ had declined to half of the y-intercept value, for the 23 species where a linear regression fitted the data $\left(R^{2}=0.40-0.88 ; P\right.$ <0.001 to 0.019).

I determined hydraulic supply relative to demand in gas exchange with the ratio of leaf hydraulic conductance relative to stomatal conductance ($K_{\text {leaf }} / g_{\mathrm{s}}$).

Using K_{x} determined based on anatomical measurements (see section Quantification of vein, xylem and bundle sheath anatomical traits below), I determined $K_{\text {ox }}$ by re-arranging equation (1):

$$
K_{o x}=\left(\frac{1}{K_{\text {Leaf }}}-\frac{1}{K_{x}}\right)^{-1}
$$

Quantification of leaf gas exchange

I measured light-saturated rates of gas exchange from 17 Feb to 28 June 2010, between 0900 and 1500 each day, for a mature leaf on each plant for six plants per species. I measured steady state gas exchange ($<2 \%$ change over 6 minutes) using a LI-6400 XT portable photosynthesis system (LI-COR, Lincoln, Nebraska, USA). The leaf chamber was maintained at $25^{\circ} \mathrm{C}$, with reference $\mathrm{CO}_{2} 400 \mathrm{ppm}$, and PPFD $2000 \mu \mathrm{~mol} \mathrm{~m}{ }^{-2} \mathrm{~s}^{-1}$, which was assumed to be saturating irradiance for these species ${ }^{19}$. The relative humidity was $60-80 \%$, leading to vapor pressure deficits (VPD) of $0.80-1.6 \mathrm{kPa}$ (overall mean 1.1 kPa). Measurements were made for 1-2 leaves from each of 6 plants (except from 5 plants for A. purpurea, 4 plants for A. semialata, 7 plants for P. australis, and for L. sorghoidea 3 leaves from each of two plants). Overall, 5-9 leaves per species were measured, with 6 on average. Leaf-area normalized values were determined for stomatal conductance $\left(g_{\mathrm{s}}\right)$ and net photosynthetic rate per leaf area ($A_{\text {area }}$). The ratio of intercellular to ambient $\mathrm{CO}_{2}\left(C_{\mathrm{i}} / C_{\mathrm{a}}\right)$ was also estimated, since it is negatively related to water use efficiency. Leaves were harvested, scanned for leaf area (Canon Scan Lide 90, Canon USA, Lake Success, NY), dried at $70^{\circ} \mathrm{C}$ for at least 48 h and weighed to determine the leaf dry mass per unit area (LMA) and net CO_{2} assimilation rate per unit leaf dry mass ($A_{\text {mass }}$).

Quantification of vein, xylem and bundle sheath anatomical traits

To quantify anatomical traits, I measured and analyzed cross sections of one leaf for each of three individuals per species. Leaf venation traits such as vein density $\left(D_{\mathrm{v}}\right)$ and vein diameter $(V D)$ and leaf size traits, were included in a previous study (Baird et al., 2021)

Images of transverse sections measured with a $5 \times$ objective were utilized to quantify the densities of all vein orders except 5° transverse veins as these were not visible in transverse
sections. Vein orders were established for each species based on species-specific phylogenetic history (Christin et al., 2013; Lundgren et al., 2019), and by estimations of vein size, presence/absence of enlarged metaxylem, and presence/absence of fibrous tissue above and/or below the vein (Ellis, 1976; Evert, 2006; Baird et al., 2021). I categorized major veins as the 1° vein, i.e., the midvein, the large central vein containing the largest metaxylem and fibrous tissue, and 2°, or "large" veins smaller than the midvein and of similar structure (Evert, 2006; Baird et al., 2021). I categorized minor veins as the 3° or "intermediate", 4° or "small" veins, and 5° or "transverse" veins (Evert, 2006; Baird et al., 2021). For C_{3} grasses and most C_{4} grasses, the smallest visible longitudinal veins were 30 "intermediate" veins. In NADP-ME C4 grasses of the subfamily Panicoideae, 4° small veins evolved, which co-opted their mestome sheath for carbon reduction (Christin et al., 2013); these species thus have both 3° "intermediate" and 4° "small" vein orders (Alloteropsis semialata, Andropogon gerardii, Cenchrus setaceus, Digitaria ciliaris, Digitaria eriantha, Echinochloa crus-galli, Paspalum dilatatum), whereas Panicoideae species that co-opted the outer bundle sheath for carbon reduction (Alloteropsis cimicina, Chloris elata, Chloris gayana, Eragrostis cilianensis, Eriachne aristidea, Panicum virgatum) or nonPanicoideae species that co-opted the inner bundle sheath for carbon reduction (Aristida purpurea, Aristida ternipes, Stipagrotis zeyheri) lack 4° "small" vein orders. Due to the parallel formation of longitudinal $\left(1^{\circ}-4^{\circ}\right)$ veins, vein density $\left(D_{v}\right)$ for each order was quantified as the vein number per leaf width, equivalent to vein length per leaf area, assuming the leaf is approximately rectangular (Baird et al., 2021). Because transverse veins were not quantifiable in the cross-sections, I utilized chemically cleared and stained sections to quantify the densities (vein lengths per area) and diameters of these veins. Vein diameters were measured excluding the bundle and mestome sheath cell layers, averaged from one measure parallel and one measure
perpendicular to the width of the section. For all vein orders, I calculated vein surface area per leaf area (VSA) as $D_{\mathrm{v}} \times \pi \times \mathrm{VD}$, vein projected area per leaf area (VPA) as $D_{\mathrm{v}} \times \mathrm{VD}$ and vein volume per leaf area (VV) as $D_{\mathrm{v}} \times \pi \times(\mathrm{VD} / 2)^{2}$. For the species Lasiacis sorghoidia, secondorder veins were too few to be counted from transverse sections, and I established vein orders and vein densities and diameters of second order veins using the chemically cleared stained leaves.

Conduit dimensions and numbers were directly measured from one vein per each vein order per species from transverse sections at $20 \times$ and $40 \times$, for one leaf per individual for three individuals per species. Xylem conduits were identified by the presence of toluidine blue staining of the highly lignified cell walls (John, Scoffoni \& Sack, 2013). As I lacked transverse sections of second-order veins for L. sorghoidea, I did not measure its second-order conduit dimensions, and thus was excluded from analyses involving these traits. All xylem conduits were elliptical and the theoretical conductivity $\left(k_{t} ; \mathrm{mmol} \mathrm{m} \mathrm{s}^{-1} \mathrm{MPa}^{-1}\right)$ was determined from Poiseuille's equation modified for ellipses (Lewis \& Boose, 1995; Cochard, Nardini \& Coll 2004; Scoffoni et al., 2016),
$K_{t}=\frac{\pi}{64 \mu} \frac{a^{3} b^{3}}{a^{2}+b^{2}}$
where μ is the viscosity of water at $25^{\circ} \mathrm{C}$, and a and b are the major and minor axes of the ellipse, respectively. I measured a and b for all xylem conduits, and their average, and averaged this estimate of conduit diameter for all conduits within a given vein order for each type. In grass leaves, proto-xylem conduits form early within major vein orders, and are obliterated during leaf
expansion, which results in an empty space termed the proto-xylem lacuna (Evert, 2006). By contrast, meta-xylem conduits differentiate and grow much later during leaf expansion, achieving large diameters in major veins, given their earlier initiation, but much smaller diameters in the minor vein orders (Evert, 2006). I measured the dimensions of the proto-xylem lacunae as this space also transports water (Westermaier, 1884; Strasburger, 1891; Buchholz, 1921; Canny, 2001), wide and narrow metaxylem conduits (Metaxylem I and II, respectively), within major veins and the narrow metaxylem of minor veins (Metaxylem II). The k_{t} of each vein order was determined as the sum of the k_{t} of all conduits of all types:
$1^{\circ} k_{t}=k_{t}$ Metaxylem I $+k_{t}$ Metaxylem II $+k_{t}$ Protoxylem Lacuna
$2^{\circ} k_{t}=k_{t}$ Metaxylem I $+k_{t}$ Metaxylem II $+k_{t}$ Protoxylem Lacuna
$3^{\circ} k_{t}=k_{t}$ Metaxylem II
$4^{\circ} k_{t}=k_{t}$ Metaxylem II
where k_{t} Metaxylem I is the summed k_{t} of all type I metaxylem conduits, k_{t} Metaxylem II is the summed k_{t} of all type II metaxylem conduits, and k_{t} Protoxylem Lacuna is the k_{t} of the single protoxylem lacuna.

I calculated whole leaf K_{t} by summing the k_{t} values for of each longitudinal vein order:
$K_{t}=1^{\circ} k_{t}+2^{\circ} k_{t}+3^{\circ} k_{t}+4^{\circ} k_{t}$
I calculated a leaf-length and area normalized specific conductivity $\left(K_{\mathrm{x}}, \mathrm{mmol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right.$ MPa^{-1}) by multiplying the k_{t} of each vein order by its vein density (D_{v}, i.e. vein length per leaf
area), which is equivalent to vein number per width for grasses (Baird et al., 2021), and then dividing by half the leaf length (LL) squared. Normalizing by leaf length as well as area is necessary to scale the K_{t} from a conductivity to an area-specific conductance (Pasquet-Kok et al., 2010); using half the leaf length yields a K_{x} representing the average vein hydraulic pathway, assuming that longitudinal veins deliver water similarly along their length, on average. K_{x} determined this way is thus normalized by length- and area-, and thus in the same units as $K_{\text {leaf: }}$: $\left.K_{x}=\left(\left(1^{\circ} k_{t} \times 1^{\circ} D_{V}\right)+\left(2^{\circ} k_{t} \times 2^{\circ} D_{V}\right)+\left(3^{\circ} k_{t} \times 3^{\circ} D_{V}\right)+\left(4^{\circ} k_{t} \times 4^{\circ} D_{V}\right)\right) \div\right)(0.5 \times$ $L L)^{2}$)

I also quantified the outer perimeter of the bundle and mestome sheath (P_{bs} and P_{ms}) layers for all vein orders, as an estimate of the surface available for flow out of the vasculature to the mesophyll. For each vein order, I measured the diameter of the major and minor axes of one small, medium and large bundle and/or mestome sheath cell, and averaged the major and minor axis diameters per cell, and then averaged across the cell size classes to obtain an average cell diameter. To estimate the outer perimeter, I divided this average cell diameter (D) by 2 and multiplied by π and by the number of bundle or mestome sheath cells $(C N)$ surrounding the vein of a given order and then averaged this value across all vein orders:

$$
\begin{align*}
& P_{b s}=\left(\left(1^{\circ}\left(D_{b s} \div 2\right) \times \pi \times C N_{b s}\right)+\left(2^{\circ}\left(D_{b s} \div 2\right) \times \pi \times C N_{b s}\right)+\left(3^{\circ}\left(D_{b s} \div 2\right) \times \pi \times\right.\right. \\
& \left.\left.C N_{b s}\right)+\left(4^{\circ}\left(D_{b s} \div 2\right) \times \pi \times C N_{b s}\right)\right) \div 2 \tag{9}
\end{align*}
$$

$P_{m s}=\left(\left(1^{\circ}\left(D_{m s} \div 2\right) \times \pi \times C N_{m s}\right)+\left(2^{\circ}\left(D_{m s} \div 2\right) \times \pi \times C N_{m s}\right)+\left(3^{\circ}\left(D_{m s} \div 2\right) \times\right.\right.$ $\left.\left.\pi \times C N_{m s}\right)+\left(4^{\circ}\left(D_{m s} \div 2\right) \times \pi \times C N_{m s}\right)\right) \div 2$

I also estimated the bundle and mestome sheath surface area per leaf area (BSSA, MSSA), projected area per leaf area $(B S P A, M S P A)$ and volume per leaf area $(B S V, M S V)$ for each vein order, and present total BSSA and $M S S A, B S P A$ and $M S P A$, and $B S V$ and $M S V$ (i.e., sum of all vein order bundle and mestome sheath surface areas, projected areas, or volumes), major $B S S A$ and MSSA, BSPA and MSPA, and BSV and MSV (i.e., sum of major vein bundle and mestome sheath surface areas, projected areas, or volumes) and minor BSSA and MSSA, BSPA and MSPA, and $B S V$ and $M S V$ (i.e., sum of minor vein bundle and mestome sheath surface areas, projected areas, or volumes). I estimated the $B S S A$ and $M S S A$ of each vein order by first multiplying the average bundle or mestome sheath cell diameter (D) (see above) by the D_{v} of the vein order and by π and by the number of cells present ($C N$), the $B S P A$ and $M S P A$ by multiplying the average bundle or mestome sheath cell diameter (D) (see above) by the D_{v} of the vein order and by the number of cells present (CN), the $B S V$ and $M S V$ by multiplying the square of half the average bundle or mestome sheath cell diameter (D) (see above) by the D_{v} of the vein order and by π and by the number of cells present ($C N$):

$$
\begin{align*}
& B S S A=\left(1^{\circ} D_{B S} \times \pi \times D_{V} \times C N_{B S}\right)+\left(2^{\circ} D_{B S} \times \pi \times D_{V} \times C N_{B S}\right)+\left(3^{\circ} D_{B S} \times \pi \times\right. \\
& \left.D_{V} \times C N_{B S}\right) \tag{11}
\end{align*}
$$

$B S P A=\left(1^{\circ} D_{B S} \times D_{V} \times C N_{B S}\right)+\left(2^{\circ} D_{B S} \times V L A \times C N_{B S}\right)+\left(3^{\circ} D_{B S} \times D_{V} \times C N_{B S}\right)$

$$
\begin{align*}
& B S V=\left(1^{\circ}\left(D_{B S} \div 2\right)^{2} \times D_{V} \times C N_{B S}\right)+\left(2^{\circ}\left(D_{B S} \div 2\right)^{2} \times D_{V} \times C N_{B S}\right)+ \\
& \left(3^{\circ}\left(D_{B S} \div 2\right)^{2} \times D_{V} \times C N_{B S}\right) \tag{13}
\end{align*}
$$

$$
\begin{align*}
& M S S A=\left(1^{\circ} D_{M S} \times \pi \times D_{V} \times C N_{M S}\right)+\left(2^{\circ} D_{M S} \times \pi \times D_{V} \times C N_{M S}\right)+\left(3^{\circ} D_{B S} \times \pi \times\right. \\
& \left.D_{V} \times C N_{M S}\right)+\left(4^{\circ} D_{M S} \times \pi \times D_{V} \times C N_{M S}\right) \tag{14}\\
& M S P A=\left(1^{\circ} D_{M S} \times D_{V} \times C N_{M S}\right)+\left(2^{\circ} D_{M S} \times D_{V} \times C N_{M S}\right)+\left(3^{\circ} D_{M S} \times D_{V} \times C N_{M S}\right)+ \\
& \left(4^{\circ} D_{M S} \times \pi \times D_{V} \times C N_{M S}\right) \tag{15}\\
& M S V=\left(1^{\circ}\left(D_{M S} \div 2\right)^{2} \times D_{V} \times C N_{M S}\right)+\left(2^{\circ}\left(D_{M S} \div 2\right)^{2} \times D_{V} \times C N_{M S}\right)+ \\
& \left(3^{\circ}\left(D_{M S} \div 2\right)^{2} \times D_{V} \times C N_{M S}\right)+\left(4^{\circ} D_{M S} \times \pi \times D_{V} \times C N_{M S}\right) \tag{16}
\end{align*}
$$

Compilation of grass leaf hydraulic and photosynthetic data

To characterize C_{3} and C_{4} differences in leaf hydraulic and photosynthetic physiology, as well as their potential contrasts in trait-trait associations, I extracted data from the 34 published studies that included data for the following traits for grasses: light-saturated leaf photosynthetic rate per leaf area $\left(A_{\text {area }}\right)$, stomatal conductance $\left(g_{s}\right)$, leaf hydraulic conductance $\left(K_{\text {leaf }}\right)$, leaf xylem hydraulic conductance $\left(\mathrm{K}_{\mathrm{x}}\right)$, leaf outside-xylem hydraulic conductance $\left(K_{\mathrm{ox}}\right)$, vein density $\left(D_{\mathrm{v}}\right)$, intrinsic leaf water-use efficiency $\left(W U E_{\mathrm{i}}\right)$, leaf water potential at turgor loss point ($T L P$), leaf water potential at 50% loss of leaf hydraulic conductivity $\left(P_{50}\right)$, leaf water potential at 80% loss of leaf hydraulic conductivity $\left(P_{80}\right)$ and leaf water potential at 88% loss of leaf hydraulic conductivity $\left(P_{88}\right)$ (Table S4.3). From each study, I extracted 328 species mean trait values, and when a species was present in multiple studies, the trait was averaged for that species between
studies. I also estimated the ratio of $K_{\text {leaf }} / \mathrm{g}_{\mathrm{s}}$ for studies that had data for $K_{\text {leaf }}$ and g_{s} at the species level.

Statistical analyses: phylogenetic comparative methods

I utilized a phylogenetic comparative approach to account for the influence of phylogenetic covariance on average C_{3} and C_{4} trait differences and on trait-trait relationships using the R Language and Environment. For analyses including the 27 species grown in a common garden, I utilized a previously published time-calibrated phylogeny using the same 27 grass species (Baird et al., 2021). For the compiled grass database, I implemented phylogenetic analyses to test differences in traits between C_{3} and C_{4} species, and to test relationships between traits for all grasses, C_{3} grasses only, and C_{4} grasses only. As each trait in the larger database had a different sample size, I used numerous different phylogenies depending on the sample size to test for trait differences or trait-trait relationships, each trimmed from a larger global grass phylogeny (Spriggs, Christin \& Edwards, 2014).

Our analyses utilized a custom-written code that is available on GitHub (https://github.com/smuel-tylor/grass-leaf-size-). For analyses of the 27 species from the common garden, and for the 328 species from the compiled database, I examined differences in species-level trait means between C_{3} and C_{4} species using a phylogenetically corrected analysis of variance (ANOVA), both parametric (based on $P G L S$) and nonparametric (Garland, Dickerman, Janis \& Jones, 1993) using the phyloANOVA package (Revell, 2012). I also tested for relationships of leaf gas exchange and leaf structure, of climate of species origin and leaf traits, and of leaf hydraulic traits and leaf hydraulic anatomy using phylogenetically corrected regressions, including reduced major axis regressions (PRMA) or phylogenetic generalized least-
square regressions (PGLS), which incorporate phylogenetic correction as Pagel's λ (Pagel, 1999; Freckleton, Harvey \& Pagel, 2002) estimated by maximum likelihood (Nlme - R - W3cubDocs). Thus, for $P R M A$ I used the function phyl.RMA (Revell, 2012) and for $P G L S$ I used the function corPagel (Revell, 2012) in combination with gls (Nlme - R - W3cubDocs) and optimized (Paradis \& Schliep, 2019) to establish maximum likelihood estimates of λ. Utilization of PRMA or $P G L S$ depended on the two traits being tested. The least squares approach is preferred when a dependent y-variable is related to an independent x-variable, when (1) there is less error in natural variation and/or measurement error in x than y and/or in cases when (2) y is determined by or to be predicted from x, but never x from y (Poorter \& Sack, 2012; Sack et al., 2012; Baird et al., 2021). The reduced major axis approach is preferable in cases in which (1) x and y have similar error and/or when (2) x and y are codetermined, or their relationship is due to an underlying functional coordination or could be predicted using each other (Poorter \& Sack, 2012; Sack et al., 2012; Baird et al., 2021). I note, however, that only the slope and intercept vary between $P R M A$ and $P G L S$, and thus a significant relationship under either $P R M A$ or $P G L S$ is equally meaningful. I examined trait-trait relationships for both raw and log-transformed data and present both in the supplementary tables.

I implemented both phylogenetic and nonphylogenetic tests for analyses of trait-trait relationships across the 328 species database. The phylogenetic tests resulted in reduced sample size as many of the phylogenies generated for each trait-trait relationship could not account for all of the species in the database, due to species not being present in the larger phylogeny. Thus, I present both phylogenetic and nonphylogenetic analyses, but emphasize the nonphylogenetic analyses for our findings on trait-trait relationships for the 328 species. I used the function
cor.test to test for significant correlations between traits and present the pearson correlation coefficient, r, and p-value.

Modeling of hydraulic-stomatal-photosynthetic function of C_{3} and C_{4} species during drought under varying vapor pressure deficit and atmospheric CO_{2}

I modeled the consequences of soil and atmospheric drought, given the experimentally determined variation in hydraulic, stomatal and photosynthetic traits between C_{3} and C_{4} species.

A previously-published model based on reasonable simplifying assumptions (Osborne and Sack, 2012) was used to determine the response of g_{s} and leaf water potential to declining soil water potential ($\Psi_{\text {soil }}$) and increasing vapor pressure deficit (VPD). Then, after adjusting $g_{\text {s }}$ for a response to ambient CO_{2} based on published relationships, I modeled the light-saturated net rate of photosynthesis at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ based on well-established models for C_{3} and C_{4} photosynthesis. The models were run for the mean C_{3} and C_{4} plant data, and also for a C_{3} plant with lower maximum g_{s}, giving the C_{4} advantage in $K_{\text {leaf }} / g_{\mathrm{s}}$, and for a C_{4} grass with the mean $K_{\text {leaf }} / g_{\mathrm{s}}$ of C_{3} species, achieved either by lowering maximum $K_{\text {leaf }}$ or by raising maximum g_{s}, to determine the impacts on g_{s} and $A_{\text {area }}$ under the range of simulated conditions.

The hydraulic-stomatal model determines leaf water potential ($\Psi_{\text {leaf }}$), plant hydraulic conductance ($K_{\text {plant }}$) and $g_{\text {s }}$ at a given $\Psi_{\text {soil }}$ and $V P D$ based on its decline in response to $\Psi_{\text {leaf }}$. First, $\Psi_{\text {leaf }}$ is determined based on steady-state water transport according to the Ohm's Law analogy (Wei et al., 1999; Tyree \& Zimmerman, 2002):

$$
\begin{equation*}
\Psi_{\text {leaf }}=\Psi_{\text {soil }}-\frac{\left(g_{\mathrm{s}} \times V P D\right)}{K_{\text {plant }}} \tag{17}
\end{equation*}
$$

Second, a hydraulic response function modeled the vulnerability of $K_{\text {plant }}$ to declining $\Psi_{\text {leaf }}$ as a linear function following the approximate fit of the data between full hydration and turgor loss for leaves of grasses and for several other taxa (Holloway-Phillips \& Brodribb, 2011; Scoffoni et al., 2012; Brodribb \& McAdam, 2011):
$K_{\text {plant }}=K_{\text {max }}+a \times \Psi_{\text {leaf }}$
where $K_{\max }$ and a were the mean of species' y-intercepts and slopes respectively for $K_{\text {leaf }}$ versus $\Psi_{\text {leaf }}$ plots. I assumed that $K_{\text {plant }}$ showed a similar vulnerability response to leaves (Brodribb \& Cochard, 2009; Holloway-Phillips \& Brodribb, 2011), calculating $K_{\text {plant }}=80 \% \times K_{\text {leaf, }}$, based on the range shown in previous work on grasses (65% to over 80% of plant resistance in the leaf) (Sack and Holbrook, 2006; Holloway-Phillips \& Brodribb, 2011). Changing these assumptions would not affect the comparative findings of our simulations.

Third, a stomatal response function modeled $g_{\text {s }}$ decline with more negative $\Psi_{\text {leaf }}$ as a sigmoidal function:
$g_{\mathrm{s}}=\frac{g^{*}}{1+e^{-\frac{-\left(\Psi_{\text {leaf }}-b\right)}{c}}}$
where g^{*} is a constant for a given species and b is the $\Psi_{\text {leaf }}$ at 50% stomatal closure; mean P_{50} was used, based on previous work showing the strong similarity in many species, including grasses (Brodribb \& Holbrook, 2003; Holloway-Phillips \& Brodribb, 2011). The constant c defines
the shape of the sigmoidal curve. For our simulations, g^{*} was determined by solving eq. S3 using the mean measured g_{s} and operating $\Psi_{\text {leaf }}$ for C_{3} and C_{4} species.

For given $\Psi_{\text {soil }}$ and $V P D$, eqns 17-19 were solved simultaneously, minimizing the implicit forms by iteration (Microsoft Visual Basic; Microsoft, Redmond, WA, USA).

Using this model, I simulated the response of g to $\Psi_{\text {soil }}$ from moist to droughted soil (0 to $-2 \mathrm{MPa})$ and at moderate to high values of $V P D(0.5$ and 3 kPa$)$, for C_{3} and C_{4} species, using experimentally determined values as parameters for eqns 17-19 or from the literature as available. I also tested scenarios for a C_{3} plant with lower g_{s}, giving the C_{4} advantage in $K_{\text {leaf }} / g_{\mathrm{s}}$, for a C_{4} grass with a lower $K_{\text {leaf }}$, giving the $K_{\text {leaf }} / g_{s}$ of C_{3} species, and for a C_{4} grass with higher g_{s}, also giving the $K_{\text {leaf }} / g_{\mathrm{s}}$ of C_{3} species, to determine the impacts on g_{s} and $A_{\text {area }}$ under the range of simulated conditions.

I simulated photosynthetic rate $\left(A_{\text {area }}\right)$ and its response to CO_{2}, by first modeling a direct response of g_{s} to CO_{2}, and then inputting the adjusted g_{s} values into equations for C_{3} and C_{4} photosynthesis.

First, for low and high CO_{2} I multiplied the g_{s} values by a factor corresponding to 20 or 80 Pa (1.72 and 0.58 respectively) based on a previous compilation of responses in C_{3} and C_{4} grasses (Osborne \& Sack, 2012). This multiplicative adjustment of g_{s} for CO_{2} level was applied independently of the g_{s} response to water status (from which g was determined from eqns 17-19 above) based on the finding that the response of g_{s} to CO_{2} and water status are independent (Morison \& Gifford, 1983). Future work must better elucidate the mechanisms and precise optimization by which stomata respond to CO_{2} and leaf water status; I modeled these as independent given the current state of understanding.

The $g_{\text {s }}$, now adjusted for CO_{2}, was used to predict $A_{\text {area }}$ based on the equations for C_{3} and C_{4} photosynthesis provided by von Caemmerer (2000), using parameters at $20^{\circ} \mathrm{C}$ from Vico and Porporato (2008), with temperature dependencies according to Vico and Porporato (2008) to allow simulations at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$. I assumed that the impact of $\Psi_{\text {leaf }}$ on photosynthesis was mediated by g_{s}, without any separate, direct impacts on mesophyll conductance or on metabolism itself; these impacts could be added, but without information of differential impacts on C_{3} and C_{4} species, would not change the outcome of our scenarios (Vico \& Porporato, 2008).

Thus, for C_{3} species, $A_{\text {area }}$ was determined as
$A_{\text {area }}=\min \left(A_{\mathrm{C}}, A_{\mathrm{J}}\right)-R_{\mathrm{d}}$
where A_{C} is the Rubisco limited rate of photosynthesis, A_{J} is the rate of RuBP-limited CO_{2} assimilation and R_{d} is the total mitochondrial rate of respiration.

In turn,
$A_{\mathrm{C}}=V_{\mathrm{c}, \text { max }} \frac{C_{\mathrm{m}}-\Gamma^{*}}{C_{\mathrm{m}}+K_{\mathrm{c}}\left(1+\frac{0}{K_{\mathrm{o}}}\right)}$
where $V_{\mathrm{c}, \text { max }}$ is the maximum catalytic activity of Rubisco at current leaf temperature; C_{m} is the CO_{2} concentration at the site of photosynthesis in the mesophyll cell; Γ^{*} is the equilibrium CO_{2} compensation point for gross photosynthesis; K_{c} and K_{o} are the coefficients for CO_{2} and O_{2} of the Michaelis-Menten kinetics, accounting for competitive inhibition by O_{2}; and o is the O_{2} concentration at the site of photosynthesis.
$A_{\mathrm{J}}=J_{\max } \frac{C_{\mathrm{m}}-\Gamma^{*}}{4\left(C_{\mathrm{m}}+2 \Gamma^{*}\right)}$
where $J_{\max }$ is the maximum potential rate of electron transport.

To determine $A_{\text {area }}$ the equations 21 and 22 were each separately equated with the diffusion equation:
$A_{\text {area }}=\left(C_{\mathrm{a}}-C_{\mathrm{m}}\right) \times g_{\mathrm{t}}$
where g_{t} was determined as the conductance to CO_{2} from ambient air to the intercellular space (stomatal conductance to $\mathrm{CO}_{2}, g_{\mathrm{s}, \mathrm{CO}_{2}}$) and from the intercellular space to the chloroplast (mesophyll conductance, g_{m}) in series:
$g_{\mathrm{t}}=\frac{1}{\frac{1}{g_{\mathrm{s}, \mathrm{CO}_{2}}+\frac{1}{g_{\mathrm{m}}}}}$
where $g_{\mathrm{s}, \mathrm{CO}_{2}}$ was determined as $g_{\mathrm{s}} / 1.6$ and g_{m} as maximum simulated g_{s} (i.e., at $\Psi_{\text {soil }}=0$ and $V P D$ of 0.5 kPa$) \times \alpha_{\mathrm{m}}$.

In each case (eqn $21=$ eqn 23 , and eqn $22=$ eqn 23) the equations were solved for given g_{s} and C_{a}, to determine C_{m} using the quadratic equation. The values of C_{m} were inserted into eqs 21 and 22 respectively to determine A_{C} and A_{J}, before applying eq. 20 to determine $A_{\text {area }}$.

For the C_{4} species, a similar approach was used, but the first step involved determining the PEP carboxylation rate $\left(V_{\mathrm{P}}\right)$:
$V_{\mathrm{P}}=\min \left(\frac{C_{\mathrm{m}} V_{P, \text { max }}}{C_{\mathrm{m}}+K_{P}}, V_{\mathrm{Pr}}\right)$
where $V_{\mathrm{P}, \text { max }}$ is the maximum rate of PEP carboxylation, V_{Pr} is an upper bound PEP regeneration rate, and K_{P} is the Michaelis-Menten coefficient of PEPC. The C_{m} was determined by equating eq. 25 with eq. 23 for a given C_{a} and g_{s}.

I then used the C_{m} and V_{P} to determine the $A_{\text {area }}$, by combining two equations:
$A_{\text {area }}=V_{\mathrm{P}}-L_{\mathrm{bs}}-R_{\mathrm{d}}$
where $L_{\text {bs }}$ is bundle sheath leakage, given by:
$L_{\mathrm{bs}}=g_{\mathrm{bs}}\left(C_{\mathrm{bs}}-C_{\mathrm{m}}\right)$
and C_{bs} is the CO_{2} concentration in the bundle sheath. Substituting eq. 27 into eq. 26 , and making this equation equal to each of eqs 21 and 22 separately (substituting C_{bs} for C_{m} in those equations), allowed solving for C_{bs}, and using eqs 21 and 22 allowed determination of A_{C} and A_{J}, and eq. 20 was used to determine $A_{\text {area }}$.

Results and Discussion

The anatomical drivers of grass leaf hydraulic function

The anatomical drivers of $K_{\text {leaf }}$ variation in grasses has been paradoxical. As part of their Kranz anatomy enabling carbon fixation to occur in the bundle or mestome sheath, C_{4} grasses have higher D_{v}, which confers greater photosynthetic area (Ueno et al., 2006; Christin et al., 2013; Lundgren et al., 2019; Pathare et al., 2020; Baird et al., 2021) (Figure 4.1, Box 1). However, no clear consensus for the role of this higher D_{v} on grass leaf hydraulic capacity has emerged (Ogle, 2003; Christin et al., 2013). Whether the higher D_{v} of C_{4} species provides higher $K_{\text {leaf }}$ is unclear, as studies of 27 species of grasses of temperate and subtropical habitats found similar $K_{\text {leaf }}$ on average for C_{3} and C_{4} species (Ocheltree, Nippert \& Prasad, 2014; Taylor et al., 2018) and for 25 perennial species (Liu et al., 2019), higher $K_{\text {leaf }}$ and D_{v} in $12 \mathrm{C}_{4}$ annuals than $5 \mathrm{C}_{3}$ annuals of subtropical regions (Liu et al., 2019), and higher $K_{\text {leaf }}$ in a C_{3} Panicum species compared to its C_{4} sister taxa (Sonawane, Koteyeva, Johnson \& Cousins, 2021). I thus hypothesized that in C_{4} grasses the higher D_{v} associated with Kranz anatomy would not confer a higher $K_{\text {leaf }}$ due to high outside-xylem limitation. Previous findings suggest that the evolutionary and ecological role of high D_{v} for C_{4} species is principally for driving carbon concentration that leads to high $A_{\text {area }}$ at low $g_{\text {s }}$ and does not result in a higher $K_{\text {leaf. }}$. Indeed, some have proposed that the high D_{v} of C_{4} species initially conferred a high $K_{\text {leaf }}$ relative to C_{3} in early evolved C_{4} species, continued selection for low $K_{\text {leaf }}$ would drive lower $K_{\text {leaf }}$ in lineages in which C_{4} more recently evolved (Zhou et al., 2021). I examined the hydraulic role of D_{v} and xylem anatomy and/or by bundle sheath anatomy in C_{4} species, the K_{x} and K_{ox} of C_{3} relative to C_{4} and their potential differences for the 27 diverse common garden-grown species (Table 4.1). The higher D_{v} of C_{4} grasses was not associated with higher $K_{\text {leaf }}\left(\right.$ Box 1, Table S4.4). First, K_{x} did not differ between C_{3} and C_{4} species, as the higher
minor D_{v} of C_{4} species was counteracted by thinner minor veins containing fewer xylem conduits, and the bulk of K_{x} is contributed by the major veins, which did not differ between C_{3} and C_{4} in density or xylem conduit numbers (Figures S4.2-S4.3, Table S4.4). Even more importantly, across grasses, variation in $K_{\text {leaf }}$ is most strongly determined by K_{ox} (Box 1E and F, Table S4.4), as has been shown previously across closely related Viburnum species and separately across Arabidopsis mutants (Caringella et al., 2015; Scoffoni et al., 2016; Scoffoni, Albuquerque, Buckley \& Sack). Indeed, C_{3} and C_{4} grasses exhibited similar $>90 \%$ hydraulic resistance in the outside-xylem which would lead to the determination of $K_{\text {leaf }}$ by K_{ox}, likely from greater anatomical and compositional complexity compared to within veins (Sack \& Holbrook, 2006; Scoffoni et al., 2016) (Box 1, Figure S 4.3). The low K_{ox} accounting for the dominant bottleneck within $K_{\text {leaf }}$ by K_{ox} is consistent with low membrane permeability, which would be adaptative to amplify the response of stomatal closure to leaf dehydration, and to protect the mesophyll from desiccation and the xylem from embolism (Tyree, Fiscus, Wullschleger \& Dixon, 1986; Cochard, Ewers \& Tyree, 1994; Stiller, Lafitte \& Sperry, 2003; Scoffoni et al., 2016, 2017). Across C ${ }_{3}$ and C $\mathrm{C}_{4-3 \mathrm{~L}}$ species, $K_{\text {ox }}$ and $K_{\text {leaf }}$ were positively associated with the outer perimeter of the bundle and mestome sheaths (Box 1, Figure S4.4, Table S4.4). A greater sheath perimeter could provide greater surface area for transport through sheath cell walls, which are likely highly resistant due to hydrophobic components such as suberin and lignin, and potentially for transport through membrane aquaporins and/or plasmodesmata ($18,51,52$). Across all species, $K_{\text {ox }}$ and $K_{\text {leaf }}$ were independent of other potential correlates of K_{ox}, including D_{v}, $I V D$, leaf thickness $(L T)$ and the minimum distance from veins to stomata (D_{m}) (Figure S4.5, Table S4.4). Notably, across species, K_{ox} was independent of minor D_{v}, though a high D_{v} would be associated with greater bundle sheath surface area and shorter flow pathways outside the xylem (Buckley, John, Scoffoni \& Sack, 2015). Overall, on average, C ${ }_{3}$
and C_{4} grass species did not differ in leaf outside-xylem hydraulic conductance $\left(K_{\mathrm{ox}}\right)$, though C_{3} species had higher leaf xylem hydraulic conductance $\left(K_{x}\right)$, which was largely driven by the three aquatic C_{3} species (Figure 4.2, Table $\mathrm{S} 4.2-\mathrm{S} 4.3$).

The decoupling of D_{v} with K_{x} and K_{ox} indicates that variation in D_{v} is less important for the evolution of maximum hydraulic flux in grasses, with a potential role in stress tolerance and for maintained photosynthetic performance. In C_{3} species, the higher major D_{v} of smaller leaves would contribute to stress tolerance during harsh conditions as well as stress avoidance by enabling a higher A that would mitigate shorter growing periods (Baird et al., 2021). The higher minor D_{v} in C_{4} species contributed to C_{4} species having on average more than double that of C_{3} species for total surface and projected area in the bundle and mestome sheaths, respectively, and two- to sixfold higher total volume per leaf area in the bundle sheath (BS) and mestome sheath (MS), which may contribute to maximized carbon concentration (Figure S4.6).

I partitioned the drivers of leaf xylem hydraulic conductance (K_{x}). Across the 27 grass species grown in the common garden, K_{x} increased positively with conduit diameter (CD), but was independent of conduit numbers $(C N)$ and D_{v} (Box 1, Table S4.4). K_{x} increased positively with the xylem conductance of $1^{\circ}-3^{\circ}$ longitudinal vein orders (i.e. $\mathrm{K}_{\mathrm{x} \text {-vein order, }}$, Figure S 4.7 , Table S4.4), and K_{x} of each longitudinal vein order (i.e. $K_{\mathrm{x} \text {-Midvein, }} K_{\mathrm{x} \text {-large, }} K_{\mathrm{x} \text {-Intermediate, }} K_{\mathrm{x} \text {-Small }}$) scaled positively with the corresponding vein order conduit diameter (Figure S4.7, Table S5). Indeed, the bulk of K_{x} was driven by the hydraulic conductance of the major vein xylem ($K_{\mathrm{x} \text {-major }}$, i.e., 1° and 2° veins), as $\mathrm{K}_{\mathrm{x} \text {-major }} / \mathrm{K}_{\mathrm{x}}$ was 0.99 and 0.96 for C_{3} and C_{4} species, respectively (Figure S4.3, Table S4.2). The diameters of the 1° and 2° veins were strongly associated with the diameters of their type I metaxylem conduits, which contrasts with 3° veins whose diameters were driven by changes in conduit numbers (Figure S4.2, Table S4.6). C_{4} grasses had 50\%
greater minor vein xylem construction costs ($C C_{\text {minor }}$), though similar on average in total $K_{\mathrm{x}} / C C$, indicating that the reduction in conduit number within these veins results in no change to xylem hydraulic supply relative to costs ($K_{\mathrm{x} \text {-minor }} / C C_{\text {minor }}$), and indicates little constraints on the evolution of high D_{v} for C_{4} carbon concentration (Table S4.2). Such little cost for the evolution of high D_{v} in C_{4} grasses would be similar to the expectation that stems of C_{4} eudicots would have reduced costs due to their lower hydraulic conductance (Kocacinar \& Sage, 2003, 2004). The similar investment in major vein $C C$ between C_{3} and C_{4} species is consistent with their similar $L M A$ as major vein volume is a main driver of $L M A$ variation across species (Sack et al., 2013) (Table S4.2). Across all species the D_{v} of 5° transverse veins was independent of transverse vein diameters and although the D_{v} of 5° transverse veins did not differ between C_{3} and C_{4} grasses, the diameters of these veins were significantly larger for C_{3} species, leading to them having larger 5° transverse vein diameters at a given D_{v} (Figure S4.2, Table S4.2 and S4.6).

Lastly, across the 27 species grown experimentally, a higher $A_{\text {area }}$ was related to several vein and bundle sheath size traits, including higher $D_{v}, V S A, V V A, M S S A, B S V A$ and $M S V A$, and lower $I V D$, indicating anatomical drivers of $A_{\text {area }}$ (Table 4.1, Figure S4.8, Table S4.7). For C_{3} species, the relationships of sheath traits and $A_{\text {area }}$ are consistent with the influence of sheath traits, such as P_{bs} and P_{ms} on $K_{\text {leaf }}$ and thus coordination mediated by g_{s} (Table S4.5 and S4.7). Yet, for C_{4} species, the higher $A_{\text {area }}$ with such traits is consistent with the role of sheath dimensionality on leaf carbon concentration mechanisms, as greater sheath surface area would facilitate higher flow rates between bundle sheath and mesophyll, and greater sheath volume provides more space for sheath compartmentalized carbon reduction. The higher D_{v} and lower $I V D$ would also contribute to maximized photosynthetic productivity by reducing the distance and transport resistance between veins and mesophyll.

C_{4} hydraulic hyper-efficiency

The hydraulic design associated with photosynthetic divergence in C_{3} and C_{4} grasses has remained a paradox (Figure 4.1). Among C_{3} species, high $A_{\text {area }}$ depends on higher D_{v} and $K_{\text {leaf }}$, but C_{4} grasses have higher D_{v} and lower g_{s}, presenting an apparent hydraulic surplus (Figure 4.1). I further hypothesized that a high $K_{\text {leaf }}$ relative to g_{s} in C_{4} species would provide hydraulic hyper-efficiency. In diversifying diversified across warmer, drier and more open environments, C_{4} grasses, benefitted from their greater $A_{\text {area }}$ at lower g_{s}, conferring higher water use efficiency (Osborne \& Freckleton, 2009; Edwards \& Smith, 2010). Yet, despite their typically lower g_{s}, associated with their lower stomatal density (Taylor et al., 2012), C_{4} photosynthetic rate can decline steeply when CO_{2} drawdown occurs within the leaf during stomatal closure (Osborne \& Sack, 2012; Israel, Watson-Lazowski, Chen \& Ghannoum, 2022). A high $K_{\text {leaf }} / g_{s}$ has been invoked to explain certain species' ability to maintain g_{s} at high VPD in temperate and tropical tree species (Sack, Tyree \& Holbrook, 2005; Brodribb \& Jordan, 2008; Scoffoni et al., 2016) and was previously hypothesized to enable evolution of C_{4} photosynthesis under drying conditions in a low CO_{2} past (Osborne \& Sack, 2012). I tested experimentally the hypothesis that unlike C_{3} grasses, which would have coordinated $A_{\text {area, }}, g_{\mathrm{s}}$ and $K_{\text {leaf, }}$ in C_{4} grasses, $A_{\text {area }}$ and g_{s} would be decoupled from $K_{\text {leaf, }}$ such that g_{s} would be consistently low relative to their $K_{\text {leaf }}$ and $\Psi_{\text {leaf }}$ remain high during gas exchange (Figure 4.1). Further, I used modeling to test our hypothesis that C_{4} plants would benefit from a higher $K_{\text {leat }} / g_{\mathrm{s}}$, i.e., a "hyper-efficient" water transport system that delivers higher hydraulic supply relative to demand to maintain stomata open, and avoid sensitive decline of $A_{\text {area }}$ during transpiration under high evaporative loads or moderate soil drought (Osborne \& Sack, 2012). Finally, I hypothesized that this contrasting coordination would be associated with differences between C_{3} and C_{4} grasses in their adaptation to climatic
aridity in species' native environments. Thus, among C_{3} grasses, species with higher hydraulic and photosynthetic rates would dominate the driest climates via an ability to mitigate stressful periods by growing rapidly when conditions are favorable, whereas among C_{4} grasses, the hydraulic surplus would enable a high $A_{\text {area }}$ to be achieved under both moist and dry conditions. Indeed, a safety-efficiency trade-off in $K_{\text {leaf }}$ and hydraulic vulnerability, P_{50}, has been previously shown across C_{4} grasses, and may also contribute varying impacts of C_{4} hyper-efficiency on adaptation to aridity (Ocheltree et al., 2016).

In our database of novel and compiled data C_{4} species had higher VLA, $K_{\text {leaf, }}, K_{\text {leaf }} / g_{\mathrm{s}}, A_{\text {area }}$ $W U E_{\mathrm{i}}$ and lower g_{s}, IVD and P_{80} than C_{3} species (phylogenetic ANOVA, Table 4.1, Figure 4.2, Table S 4.3). For the 27 common garden species, as C_{3} and C_{4} grasses invested similarly in leaf mass per unit area (LMA), C_{4} species had a 36% higher $A_{\text {mass }}$ (Figure 4.2, Table S4.2). Further, on average, C_{4} grass species had a twofold higher ratio of hydraulic conductance to stomatal conductance, $K_{\text {leaf }} / g_{\mathrm{s}}$, arising from C_{4} species having 51% lower g_{s}, and higher $K_{\text {leaf }}$ (Figure 4.2, Table S 4.2). C_{3} and C_{4} species did not differ in hydraulic vulnerability (i.e. $P_{50}=\Psi_{\text {leaf }}$ at 50% loss of $K_{\text {leaf }}$). C C_{4} species had higher operating $\Psi_{\text {leaf }}$ than their C_{3} counterparts, and a 48% lower ratio of intercellular to ambient $\mathrm{CO}_{2}\left(C_{\mathrm{i}} / C_{\mathrm{a}}\right)$, which reflects higher water use efficiency and is consistent with their higher intrinsic water-use efficiency $\left(W U E_{\mathrm{i}}\right.$, i.e., $A_{\text {area }} / g_{\mathrm{s}}$), (Figure 4.2, Table S4.2). Although $K_{\text {leaf }}$ did not differ statistically between C_{3} and C_{4} species for the 27 common garden species, the higher $K_{\text {leaf }}$ found for the compiled database drives an even higher $K_{\text {leaf }} / g_{\mathrm{s}}$ (Figure 4.2, Table S4.2-S4.3).

Modelling of the integrated photosynthetic, stomatal and hydraulic systems demonstrated the importance of $K_{\text {leaf }} / g_{\mathrm{s}}$ in the C_{4} photosynthetic advantage (Martin-StPaul, Delzon \& Cochard, 2017). For $\Psi_{\text {soil }}$ values representing moist soil and moderate drought, modeled C_{4} species
maintained less negative $\Psi_{\text {leaf }}$ values than C_{3} species and a superior ability to maintain g_{s} and $A_{\text {area }}$ (Figure 4.3). At moderate leaf temperature $\left(25^{\circ} \mathrm{C}\right)$ and vapor pressure deficit (VPD) (0.5 kPa), and at higher temperature $\left(35^{\circ} \mathrm{C}\right)$, the C_{4} photosynthetic advantage occurred at $\Psi_{\text {soil }}$ above -0.5 MPa, and was maintained over a broader range of $\Psi_{\text {soil }}$, respectively (Figure 4.3, Figures S4.9S4.10). At higher VPD (3 kPa), C_{4} assimilation advantages were maintained at all $\Psi_{\text {soil }}$ and were reproduced at current CO_{2} levels, at the low CO_{2} levels representing the atmospheric conditions when C_{4} evolved in many lineages (Edwards \& Smith, 2010) and at double current CO_{2} levels expected in future climates (Figure 4.3, Figures $\mathrm{S} 4.9-\mathrm{S} 4.10$). When I simulated a C_{4} grass with the lower $K_{\text {leaf }} / g_{\mathrm{s}}$ observed in C_{3} grasses, by maintaining g_{s} while reducing $K_{\text {leaf, }}$ this C_{4} grass failed in all conditions, with a low $g_{\text {s }}$ and $A_{\text {area }}$ in moist soil that declined steeply with reduction of $\Psi_{\text {soil }}$ (Figure 4.3, Figures S4.9-S4.10). I also simulated a C_{4} grass with the lower $K_{\text {leaf }} / g_{\text {s }}$ observed in C_{3} grasses, but maintaining $K_{\text {leaf }}$ while increasing maximum g_{s}, this C_{4} grass with high g_{s} showed a strong advantage in $A_{\text {area }}$ at low VPD, but failed hydraulically at high VPD, resulting in strong depression of $\Psi_{\text {leaf, }}, g_{\mathrm{s}}$, and $A_{\text {area }}$ (Figure 4.3, Figures S4.9-S4.10). I tested the impact of increasing $K_{\text {leaf }} / g_{\mathrm{s}}$ in a C_{3} plant to that observed in C_{4} species, by lowering maximum g_{s}. This manipulation led to a C_{4}-like ability to maintain g_{s} during drought, but exacted a considerable penalty in $A_{\text {area }}$ for the C_{3} species (Figure 4.3, Figures $\mathrm{S} 4.9-\mathrm{S} 4.10$).

The disproportionally higher $K_{\text {leaf }} / g_{\text {s }}$, i.e. hyper-efficiency, in C_{4} grasses is a required adaptation for their higher maximum photosynthetic rates and provides a physiological basis for the repeated evolution of C_{4} species and their subsequent radiation in dry environments (Sage, 2004; Edwards \& Smith, 2010; Sage et al., 2011; Osborne \& Sack, 2012). Our simulations show that the advantage of high $K_{\text {leaf }} / g_{s}$ is as important an adaptation as C_{4} biochemistry in contributing to the photosynthetic advantage of C_{4} over C_{3} grasses in moist soil and moderate drought, and thus
contributes to their domination of open, lower rainfall environments in the tropics (Edwards \& Smith, 2010). While rising global CO_{2} levels favor C_{3} plants by reducing their photorespiration (Higgins \& Scheiter, 2012), our models incorporating hydraulic adaptation indicated that C_{4} grasses would sustain their physiological advantage in dry environments, whereas a reduction of $K_{\text {leaf }}$ in concert with maximum $g_{\text {s }}$ would have limited $A_{\text {area }}$ even for C_{4} species under low VPD. Conversely, even with reduced maximum g_{s}, a high $K_{\text {leaf }} / g_{s}$ would drive an advantage in $A_{\text {area }}$ for C_{4} photosynthetic species at high VPD, especially under the low CO_{2} atmosphere experienced during the proliferation of the C_{4} grass lineages in the Miocene (Edwards et al., 2010). Hyperefficient water transport provides a hydraulic-basis for the higher $A_{\text {area }}$ in C_{4} grasses, and would arise repeatedly given that a low g_{s} and its anatomical basis in low stomatal density, and a high $K_{\text {leaf }}$ given its anatomical basis in vein sheath properties, and D_{v}, would be selected in C_{3} species of dry and sunny environments, along with the evolution of large bundle sheath cells (Sage, 2004; Taylor et al., 2012; Osborne \& Sack, 2012; Christin et al., 2013). Thus, a high $K_{\text {leaf }} f g_{\mathrm{s}}$ may have evolved simultaneously with C_{4} biochemistry, or even as a precursor adaptation (Marazzi et al., 2012), indicating that a high $K_{\text {leaf }} / g_{s}$ would be a necessary target in engineering novel C_{4} crop species, with emphasis on a high $K_{\text {leaf }}$.

Contrasting evolution of leaf hydraulics and gas exchange with climate in C_{3} and C_{4} grasses

 Hyper-efficient water transport also explains the contrasting coordination of leaf hydraulics and gas exchange traits among C_{3} and C_{4} grasses and their adaptation to climate (Figure S4.11, Table S4.7-S4.9). Across our database, C_{3} and C_{4} species exhibited contrasting coordination of hydraulics and gas exchange, reflecting differential adaptation to the environment as modulated by climate (Brodribb \& Jordan, 2008; Scoffoni et al., 2016) (Fig. 2, fig. S11, Table S4.7-S4.8).Among the terrestrial C_{3} grasses of the 27 species in the common garden, $A_{\text {area }}$ and g_{s} scaled with $K_{\text {leaf }}$, indicating investment in a hydraulic system to match the demand (Sack \& Holbrook, 2006), and is consistent with previous work on C_{3} grasses, and in the compiled database (Zhou et al., 2021) (Figure 4.2, Figure S4.11, Table S4.7-S4.8). Further, consistent with the hypothesis that a disproportionate hydraulic supply to similar demand could lead to their decoupling, the C_{4} grasses showed no correlation among gas exchange or hydraulics traits, having low g_{s} relative to C_{3} species, and moderate to high $A_{\text {area }}$ across the range of $K_{\text {leaf }}$ (Figure 4.2, Figure S4.11, Table S4.7-S4.8). C_{4} grasses in the common garden also exhibited a trade off in hydraulic safety vs. efficiency, as has been previously shown across nine C_{4} grasses, though this was not found in the compiled database (Ocheltree et al., 2016) (Figure S4.12, Table S4.8). Consistent with other studies and for species in the compiled database, for our 27 species the coordination of $A_{\text {area }}$ and $g_{\text {s }}$ differed strongly between C_{3} and C_{4} species (Downes, 1969; Osborne \& Sack, 2012; Zhou et al., 2021), as $A_{\text {area }}$ for C_{3} species saturated at high g_{s}, signifying increasing limitations on CO_{2} diffusion and assimilation (von Caemmerer \& Evans, 2010), whereas C_{4} species showed a steeper relationship, shifted towards higher $A_{\text {area }}$ at a given g_{s} (Figure 4.2, Figure S4.11), implying a consistent limitation of $A_{\text {area }}$ by g_{s} due to the greater intercellular CO_{2} drawdown (Bjorkman, 1971).

Coordination of hydraulics and gas exchange for C_{3} grasses would contribute to C_{3} species with higher physiological rates being associated in drier and colder climates, whereas the hydraulic specialization of C_{4} grasses would be associated with environments that are dryer and have greater evaporative demand. Such associations would arise from C_{3} and C_{4} avoidance of drought, compensating with rapid growth during the shorter duration of high moisture enabling distribution across climates (Baird et al., 2021). Indeed, across the 27 common garden grasses,
C_{3} species of warmer and drier areas (lower mean annual precipitation; MAP and higher mean annual temperature; MAT) exhibited higher $K_{\text {leaf }}, g_{\mathrm{s}}$ and $A_{\text {area }}$ (Figure 4.3, Figure S4.13, Table S4.9), consistent with stress avoidance, as such plants would capitalize on short rainfall pulses and growing seasons, and compensate for reduced performance during dry and cold periods (Grubb, 1998). However, for C_{4} grasses, $K_{\text {leaf }}, g_{\mathrm{s}}$ and $A_{\text {area }}$ were decoupled from MAP, which suggests an alternate mechanism for drought avoidance (Table S4.9). Indeed, C_{4} grass species with higher $K_{\text {leaf }} / g_{\mathrm{s}}$ and $K_{\text {leaf }} / A_{\text {area }}$ were associated with environments with higher potential evapotranspiration (PET, Figure 4.3, Table S4.9), and as our simulations showed, a high $K_{\text {leaf }} / g_{\text {s }}$ would provide advantages under resource plentiful and dry conditions, and thus contributes to maximized growth for C_{4} species contributing to their ability to avoid drought (Figure 4.1). Across all grasses, those with higher $W U E_{\mathrm{i}}$ were found in environments with greater evaporative demand and drier environments overall (potential evapotranspiration, PET, $\mathrm{mm} \mathrm{day}^{-1}$; aridity index, AI, Figure 4.3, Table S4.9). Lastly, three aquatic C_{3} grass species showed higher gas exchange rates at a given $K_{\text {leaf }}$ than terrestrial C_{3} species, consistent with adaptation to higher $\Psi_{\text {soil }}$, which would reduce the hydraulic conductance required to obtain a given water supply to stomata (Sack et al., 2005; Feild et al., 2011) (Figure 4.2, Figure S4.12).

Table

Table 4.1. Variables quantified to resolve the paradoxes of C_{4} grass ecology and

vasculature. Note that many of these traits can be partitioned between vein orders and/or
partitioned into total, major, or minor vein categories.

Trait	Symbol	Unit
Leaf hydraulic physiology		
Leaf hydraulic conductance	$K_{\text {leaf }}$	mmol mi ${ }^{-2} \mathrm{~s}^{-1} \mathrm{MPa}^{-1}$
Leaf xylem hydraulic conductance	$K_{\text {x }}$	$\mathrm{mmol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1} \mathrm{MPa}^{-1}$
Leaf outside-xylem hydraulic conductance	$K_{o x}$	$\mathrm{mmol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1} \mathrm{MPa}^{-1}$
Leaf water potential	$\Psi_{\text {leaf }}$	-MPa
Leaf water potential at 50\% loss of hydraulic conductance	P_{50}	-MPa
Leaf gas exchange physiology		
Light-saturated leaf photosynthetic rate per leaf area	$A_{\text {area }}$	$\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$
Light-saturated leaf photosynthetic rate per leaf mass	$A_{\text {mass }}$	$\mu \mathrm{mol} \mathrm{g}{ }^{-1} \mathrm{~s}^{-1}$
Light-saturated leaf stomatal conductance per leaf area	$g_{\text {s }}$	$\mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$
Ratio of photosynthetic rate to stomatal conductance, i.e. intrinsic leaf water-use efficiency	$A_{\text {area }} / g_{\text {s }}$ or $W U E_{\mathrm{i}}$	$\mu \mathrm{mol} \mathrm{mol}{ }^{-1}$
Ratio of leaf hydraulic conductance to stomatal conductance	$K_{\text {leaf }} / g_{\text {s }}$	$\mathrm{mmol} \mathrm{MPa}^{-1} \mathrm{~mol}^{-1}$
Ratio of leaf hydraulic conductance to photosynthetic rate	$K_{\text {leaf }} / A_{\text {area }}$	$\mathrm{mmol} \mathrm{MPa}{ }^{-1} \mu \mathrm{~mol}^{-1}$
Light-saturated leaf intrinsic water-use efficiency per leaf area	$W U E_{\mathrm{i}}$	$\mu \mathrm{mol} \mathrm{mol}^{-1}$
Leaf venation and structure		
Vein density, i.e. vein length per leaf area	D_{v}	$\mathrm{cm} \mathrm{cm}^{-2}$
Vein diameter	VD	mm
Vein surface area per leaf area	VSA	unitless
Vein projected area per leaf area	VPA	unitless
Vein volume per leaf area	$V V A$	mm
Conduit diameter		
Type I xylem conduit diameter	$C D_{\text {metal }}$	$\mu \mathrm{m}$
Type II xylem conduit diameter	$C D_{\text {meta } 2}$	$\mu \mathrm{m}$
Type I xylem conduit number	$C N_{\text {metal }}$	\#
Type II xylem conduit number	$C N_{\text {meta } 2}$	\#
Vein xylem construction cost	CC	unitless
Ratio of xylem hydraulic conductance to xylem construction cost	$K_{\mathrm{x}} / \mathrm{CC}$	$\mathrm{mmol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1} \mathrm{MPa}^{-1}$
Interveinal distance	IVD	$\mu \mathrm{m}$
Vein to epidermal distance	$D_{\text {m }}$	$\mu \mathrm{m}$
Leaf thickness	LT	$\mu \mathrm{m}$
Leaf mass per area	LMA	$\mathrm{g} \mathrm{m}^{-2}$
Vein sheath		
Bundle sheath surface area per leaf area	BSSA	unitless
Mestome sheath surface area per leaf area	MSSA	unitless
Bundle sheath projected area per leaf area	BSPA	unitless
Mestome sheath projected area per leaf area	MSPA	unitless
Bundle sheath volume per leaf area	BSV	$\mathrm{mm}^{3} \mathrm{~mm}^{-2}$
Mestome sheath volume per leaf area	MSV	$\mathrm{mm}^{3} \mathrm{~mm}^{-2}$
Bundle sheath perimeter	$P_{\text {bs }}$	$\mu \mathrm{m}$
Mestome sheath perimeter	$P_{\text {ms }}$	$\mu \mathrm{m}$

Box

Box 4.1. Leaf hydraulic anatomy and physiology of $\mathbf{C}_{\mathbf{3}}$ and C_{4} grasses. Grasses have

 linearized leaves with up to four orders of parallel longitudinal veins, including the 1° midvein and large 2° major veins, intermediate 3° minor veins and, in C_{4} NADP-ME species of the subfamily Panicoideae, small 4° veins, all connected by 5° transverse veins. Water flows through xylem conduits within veins and radially across sheaths, which often have hydrophobic cell walls due to suberization and/or lignification, and grasses have a mestome sheath interior to their bundle sheath (Sade, Shatil-Cohen \& Moshelion, 2015; Caringella, Bongers \& Sack, 2015; Ohtsuka, Sack \& Taneda, 2018) and through the outside-xylem mesophyll pathways before evaporating and diffusing out of the leaf. Three longitudinal vein orders occur in $(\mathbf{A}) \mathrm{C}_{3}$ and (\mathbf{B}) most C_{4} species (i.e., $\mathrm{C}_{4-3 \mathrm{~L}}$) although (C) most C_{4} species of the subfamily Panicoideae evolved an additional $4^{\text {th }}$ vein order, in which the mestome sheath is the only sheath type (i.e., $\mathrm{C}_{4-4 \mathrm{~L}}$). Carbon reduction reactions occur in mesophyll of C_{3} species (\mathbf{A}) and bundle sheath in $\mathrm{C}_{4-3 \mathrm{~L}}$ species (B) and in the mestome sheath in $\mathrm{C}_{4-4 \mathrm{~L}}$ species (C). (D) Leaf hydraulic conductance ($K_{\text {leaf }}$) can be partitioned into two components, i.e., the hydraulic conductance of the vein xylem pathways (K_{x}), which depends on xylem conduit conductivities and vein density $\left(D_{\mathrm{v}}\right)$, and the hydraulic conductance of the outside-xylem pathways (K_{ox}), which depends on biochemical and dimensional properties of the living tissues outside the xylem. Images from left to right: Triticum aestivum midrib cross-section (bar, 0.1 mm), micrograph of a chemically cleared and stained leaf, and lamina cross-section (bar, 0.1 mm). C_{4} grasses have higher minor D_{v}, higher bundle and mestome sheath diameters (Christin et al., 2013), and lower stomatal densities (Taylor et al., 2012). Across $27 \mathrm{C}_{3}$ and C_{4} grass species grown in a common garden, (E) $K_{\text {leaf }}$ and leaf xylem hydraulic conductance (K_{x}) were independent, and (F) $K_{\text {leaf }}$ is determined by leaf outside-xylem hydraulic conductance (K_{ox}). Relationships of K_{x} and $\mathbf{(G)}$ vein density $\left(D_{\mathrm{v}}\right),(\mathbf{H})$ vein conduitdiameter $(C D)$ and (I) vein conduit number $(C N)$, and of K_{ox} and (J) $D_{\mathrm{v}},(\mathbf{K})$ the outer perimeter of the bundle sheath tissue $\left(P_{\mathrm{bs}}\right)$ and (\mathbf{L}) the outer perimeter of the mestome sheath $\left(P_{\mathrm{ms}}\right)$. Barplots in panels (\mathbf{G}) and (\mathbf{H}) show the difference in total D_{v}, and type II $C N$ averaged across vein orders, respectively, between C_{3} and C_{4} species. Only terrestrial species with three longitudinal vein orders were included for relationships in (K) and (L).

Figures

Figure 4.1. Conceptual diagram depicting linkages of leaf anatomy and leaf hydraulics, leaf hydraulics and leaf gas exchange, and their coordinated influence that scales to influence leaf drought tolerance and adaptation to climatic aridity. Solid black, red or blue lines indicates a significant relationship across all, C_{3} only or C_{4} only species, respectively. Dotted black, red or blue lines indicates a hypothesized relationship but was independent across all, C_{3} only or C_{4} only species, respectively. Dashed red or blue lines indicate that averages for a trait for C_{3} or C_{4} species, respectively, contributes to another trait value that leads to differential adaptation to climate between C_{3} and C_{4} species. Boxes with thickened borders indicate a significant difference in average C_{3} and C_{4} traits, with colors representing which group had the higher value. Across all species, variation in P_{s} drives variation in K_{ox}, and variation in $C D$ drives variation in K_{x}, with variation in $K_{\text {ox }}$ ultimately determining $K_{\text {leaf. }}$. Only C 3 grasses exhibit coordination of $K_{\text {leaf }}, g_{\mathrm{s}}$ and $A_{\text {area, }}$, and C_{4} grasses exhibit coordination of only g_{s} and $A_{\text {area. }}$. This leads to both C_{3} and C_{4} grass species exhibiting greater drought avoidance via divergent mechanisms, as C_{3} grasses with highest $K_{\text {leaf }}, g_{\mathrm{s}}$ and $A_{\text {area }}$ would maximize growth under favorable conditions. The disproportionately high
$K_{\text {leaf }}$ relative to consistent low g_{s} in C_{4} grasses leads to a decoupling of $K_{\text {leaf }}$ and g_{s}, though the high $K_{\text {leaf }} / g_{\mathrm{s}}$ contributes to drought avoidance as the high $K_{\text {leaf }} / g_{\mathrm{s}}$ allows for maintained water potential and higher photosynthetic rate, leading to them also maximizing growth under favorable conditions and tolerance of dry conditions. Across all grasses, higher leaf water-use efficiency also contributes to drought avoidance, as a high leaf water-use efficiency would lead to reduced water loss relative to carbon gain and allow for continued growth under resource-rich conditions. Yet, the average higher $W U E_{\mathrm{i}}$ of C_{4} grasses would further contribute to their greater ability to avoid drought compared to C_{3} grasses. Grey and pink boxes reflect structural and physiological traits, respectively, whereas the orange box reflects the mechanism of adaptation to drought.

- C_{3} terrestrial 3 L - C_{3} aquatic 3 L

B $\quad \boldsymbol{g}_{\mathrm{s}}{ }^{* * *} \quad \begin{array}{cc}\boldsymbol{A}_{\text {area }}{ }^{* * *} \\ 250\end{array} \boldsymbol{A}_{\text {area }} / \boldsymbol{g}_{\mathrm{s}}{ }^{* * *}$
$K_{\text {ox }}$ $K_{\mathrm{x}}{ }^{*}$

VLA***
TLP

- C_{4} terrestrial 3L
$\triangle \mathrm{C}_{4}$ terrestrial 4L

$$
\begin{array}{llllll}
0 & 5 & 10 & 15 & 0.1 & 0.3 \\
& \begin{array}{lll}
K_{\text {leaf }} & 0.5 & 0.7 \\
\left(\mathrm{mmol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right. \\
\left.\mathrm{MPa}^{-1}\right)
\end{array} & \begin{array}{l}
\mathrm{g}_{\mathrm{s}} \\
\left(\mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)
\end{array}
\end{array}
$$

Figure 4.2. Differences and contrasting coordination in hydraulic and photosynthetic physiology for C_{3} and C_{4} grasses.

Radar graphs for leaf hydraulic and photosynthetic traits for (A) 27 common garden grown grasses and (B) 328 grasses from the compiled database, where C_{3} species means were fixed arbitrarily as the 100% reference value (dark dashed line), and the black solid line indicates the percent difference between the C_{3} and C_{4} species. Bolded traits indicate a significant difference by phylogenetic analysis of variance. Relationships of (C) stomatal conductance $\left(g_{\mathrm{s}}\right)$ and leaf hydraulic conductance ($K_{\text {leaf }}$) and of (D) light-saturated leaf photosynthetic rate per leaf area ($A_{\text {area }}$) and $g_{\text {s. }}$. Power laws were fitted using phylogenetic reduced major axis regressions (PRMA) for all relationships, except for C_{4} species in (D) in which a linear model better characterized this
relationship. Red and blue lines indicate that the relationship was significant across C_{3} or C_{4} species only, respectively, or C_{3} and C_{4} species with varying slopes, as in (D). Only terrestrial species were included for relationships of C_{3} species in (C). Significance: ${ }^{*} P<0.05 ; * * P<0.01$; ${ }^{* * *} P<0.001 . N=11 \mathrm{C}_{3}, 16 \mathrm{C}_{4}$ species in (C) and (D). Statistics and parameters are found in Tables S4.2-S4.3, S4.7-S4.8. See Table 4.1 for trait definitions and units.

$\circ \mathrm{C}_{3}$ terrestrial 3L $\circ \mathrm{C}_{4}$ terrestrial 3L

Figure 4.3. Contrasting physiological adaptation to aridity in \mathbf{C}_{3} and \mathbf{C}_{4} grasses. The responses of $\mathbf{(A)} A_{\text {area }} \mathbf{(B)} g_{\mathrm{s}}$ and $\mathbf{(C)} K_{\text {leaf }}$ to declining $\Psi_{\text {soil }}$ at vapor pressure deficit (VPD) of 0.5 kPA and at CO_{2} of 40 Pa (at 3 kPA VPD in figs. S9-S10). Simulations were run at $25^{\circ} \mathrm{C}$ (at $35^{\circ} \mathrm{C}$ in fig. S10). Relationships of (D) $A_{\text {area }},(\mathbf{E}) g_{\mathrm{s}}$ and $(\mathbf{F}) K_{\text {leaf }}$ with mean annual precipitation (MAP) for only terrestrial C_{3} plants in (D) and (E) and all C_{3} in (\mathbf{F}), and of (\mathbf{G}) the ratio of leaf hydraulic conductance to photosynthetic rate ($K_{\text {leaf }} / A_{\text {area }}$) and $\mathbf{(H)}$ of the ratio of leaf hydraulic conductance to stomatal conductance $\left(K_{\text {leaf }} / g_{\mathrm{s}}\right)$ to potential evapotranspiration (PET) for C_{4} grasses, and (I) of the ratio of photosynthetic rate to stomatal conductance $\left(A_{\text {area }} / g_{\mathrm{s}}\right.$, i.e. $\left.W U E_{\mathrm{i}}\right)$ with PET across all species. Significance: ${ }^{*} P<0.05 ; * * P<0.01 . N=11 \mathrm{C}_{3}, 16 \mathrm{C}_{4}$ species in (D) - (I). Statistics and parameters are found in Table S4.9. See Table 4.1 for trait definitions and units.

Supplementary Materials

Supplementary Data Captions (see attached Excel Workbook)

Table S4.1. Published studies for grasses on the relationships of photosynthetic rate, stomatal conductance, leaf hydraulic conductance and leaf hydraulic anatomical traits. For each study, I report the species numbers and taxonomic information; growing conditions; and confirmation of trends supported across species, as presented in the study or by our analyses of their data. Legend is provided below Table. References ordered from most recent to oldest.

Table S4.2. Species of grasses (Poaceae) included in the common garden study, subfamily, tribe, $\mathbf{C}_{3} / \mathbf{C}_{4}$ photosynthetic pathway, \mathbf{C}_{4} subtype, seed source, accession number, seed treatment for germination, terrestrial/aquatic, sun/shade, and means of anatomical and morphological traits measured and climate data, and statistics from phylogenetic analysis of variance below trait means. Traits left blank for a given species indicates that this species did not have this trait, e.g. did not have bundle sheath and only had the inner sheath, and did not have the 4° vein. Traits with NA for a given species indicates that I did not ascertain quantifiable data for these species, e.g. 2° vein traits for Lasiacis sorghoidea.

Table S4.3. Hydraulic, photosynthetic and anatomical data for $\mathbf{3 2 8}$ grass species from published studies and used to test relationships of leaf gas exchange and hydraulics across species, and to test average differences between C_{3} and C_{4} species. I present the reference, species, $\mathrm{C}_{3} / \mathrm{C}_{4}$ photosynthetic pathway for the species, method used to measure leaf hydraulic conductance ($K_{\text {leaf }}$), and values from all studies (A) for the traits: $K_{\text {leaf }}, K_{\mathrm{x}}, K_{\mathrm{ox}}, g_{\mathrm{s}}, A_{\text {area, }} W U E_{\mathrm{i}}$,
$T L P, P_{50}, P_{80}, P_{88}, V L A$, and $I V D$ or (B) averaged to the species level across all studies, including this study. Average C_{3} and C_{4} differences and statistics from phylogenetic analysis of variance are found below table (B)

Table S4.4. Statistics and parameters for associations of leaf hydraulic traits with leaf hydraulic, photosynthetic and anatomical traits across all species, terrestrial species only, C_{3} species only, C_{3} terrestrial species only and C_{4} species only. I present the leaf hydraulic traits and leaf structural traits as y - and x - variables, respectively, the r - and p - values, a - and b values which correspond to the intercept and slope, respectively, for significant relationships. Relationships using log-transformed data are presented first, and those with raw data are found directly beneath.

Table S4.5. Statistics and parameters for associations of leaf xylem hydraulic conductance per vein order with leaf hydraulic anatomy across all species. I present the leaf hydraulic traits and leaf structural traits as y - and x - variables, respectively, the r - and p-values, a - and b values which correspond to the intercept and slope, respectively, for significant relationships. Relationships using log-transformed data are presented first, and those with raw data are found directly beneath.

Table S4.6. Statistics and parameters for coordination or trade-offs of leaf structural traits across all species. I present leaf structural traits as both y - and x-variables, the r - and p-values, a - and b - values which correspond to the intercept and slope, respectively, for significant
relationships. Relationships using log-transformed data are presented first, and those with raw data are found to the right.

Table S4.7. Statistics and parameters for associations of leaf photosynthetic traits with leaf hydraulic and anatomical traits across all species, terrestrial species only, C_{3} species only, C_{3} terrestrial species only and \mathbf{C}_{4} species only. I present the photosynthetic traits and leaf traits as y - and x - variables, respectively, the r - and p-values, a - and b-values which correspond to the intercept and slope, respectively, for significant relationships. Relationships using logtransformed data are presented first, and those with raw data are found directly beneath.

Table S4.8. Correlation matrices for trait-trait relationships for the compiled grass

 database. I present pairwise tests for all traits, tested across all species, or C_{3} or C_{4} species alone. R - values are provided with p - values in parentheses. The upper and lower diagonals include analyses on log-transformed and raw data, respectively. Matrices are presented for nonphylogenetic and phylogenetic tests. NA indicates that the relationship was not tested due to sample size $n<4$ for at least one of the traits. Significant relationships are highlighted in yellow at $p<0.05$.Table S4.9. Statistics and parameters for associations of climate with leaf hydraulic, photosynthetic and anatomical traits across all species, terrestrial species only, C_{3} species only, \mathbf{C}_{3} terrestrial species only and $\mathbf{C}_{\mathbf{4}}$ species only. I present the climate variables and leaf traits as y - and x-variables, respectively, the r - and p - values, a - and b - values which correspond
to the intercept and slope, respectively, for significant relationships. Relationships using logtransformed data are presented first, and those with raw data are found directly beneath.

Supplementary Figures

Figure S4.1. Phylogenetic tree and biogeographic distributions of $\mathbf{2 7}$ grass species grown in a common garden and sampled for hydraulic and anatomical traits. (A) black branches, 11 C_{3} species; light blue branches, $9 \mathrm{C}_{4-3 \mathrm{~L}}$ species; dark blue branches, $7 \mathrm{C}_{4-4 \mathrm{~L}}$ species (Baird et al., 2021). Map of the distributions of (B) $11 \mathrm{C}_{3}$ and (C) $16 \mathrm{C}_{4}$ species (Baird et al., 2021).

Figure S4.2. Counteracting the influence of higher vein density $\left(D_{\mathbf{v}}\right)$ in C_{4} grasses.
Independence of leaf hydraulic conductance $\left(K_{\text {leaf }}\right)$ with vein density $\left(D_{\mathrm{v}}\right)$ of $\mathbf{(A)} 1^{\circ}$, (B) 2°, (C)
3°, (D) 4° and (E) 5° veins. Relationships of leaf vein order specific diameter (VD) with D_{v} of
(F) 1°, (G) 2°, (H) 3°, (I) 4° and (J) 5° veins, with leaf vein specific conduit diameter (CD) of
(K) $1^{\circ}, \mathbf{(L)} 2^{\circ}, \mathbf{(M)} 3^{\circ}$ and $\mathbf{(N)} 4^{\circ}$ veins, and with leaf vein specific conduit number ($C N$)
of $\mathbf{(O)} 1^{\circ}, \mathbf{(P)} 2^{\circ}, \mathbf{(Q)} 3^{\circ}$ and $\mathbf{(R)} 4^{\circ}$ veins. Relationships of leaf vein order specific $C D$ with leaf vein specific $C N$ of $(\mathbf{S}) 1^{\circ}$, (T) 2°, (U) 3° and (V) 4° veins. Lines were fitted with phylogenetic reduced major axis regressions (PRMA) and drawn when significant: $* P<0.05 ; * * P<0.01$; ${ }^{* * *} P<0.001 . N=11 \mathrm{C}_{3}, 16 \mathrm{C}_{4}$.

Figure S4.3. Partitioning of the leaf hydraulic resistance and leaf xylem conductance across vein orders (A) Leaf hydraulic resistance ($R_{\text {leaf }}$) of the outside-xylem and xylem pathways, (B) Leaf xylem hydraulic conductance (K_{x}) of each longitudinal vein order, (C) Percentage of $R_{\text {leaf }}$ of the outside-xylem and xylem pathways (D) Percentage of K_{x} of each longitudinal vein order. $N=$ $10 \mathrm{C}_{3}, 11 \mathrm{C}_{4}$.

Figure S4.4. Determinants of leaf hydraulic conductance ($K_{\text {leaf }}$) and leaf outside-xylem hydraulic conductance ($\mathbf{K}_{\mathbf{0 x}}$), for $\mathbf{2 7}$ grasses, grown in a common garden. Relationships of (A) $K_{\text {leaf }}$ and (C) $K_{\text {ox }}$ with the perimeter of the bundle sheath $\left(P_{\mathrm{bs}}\right)$, and of (B) $K_{\text {leaf }}$ and (D) K_{ox} with the perimeter of the mestome sheath $\left(P_{\mathrm{ms}}\right)$. Lines drawn through 17 terrestrial species with 3 longitudinal vein orders ($\mathrm{C}_{3}, 7$ species; $\mathrm{C}_{4}, 10$ species). Lines were fit with phylogenetic reduced major axis regressions (PRMA) and drawn when significant: ${ }^{*} P<0.05 ; * * P<0.01$; ${ }^{* * *} P<$ 0.001 .

Figure S4.5. Potential drivers of leaf outside-xylem hydraulic conductance. Independence of leaf outside-xylem hydraulic conductance $\left(K_{\mathrm{ox}}\right)$ with (\mathbf{A}) vein density $\left(D_{\mathrm{v}}\right),(\mathbf{B})$ inter-veinal distance (IVD), (C) leaf thickness $(L T)$ and (D) maximum distance from vein to stomata $\left(D_{m}\right) . N$ $=10 \mathrm{C}_{3}, 16 \mathrm{C}_{4}$.

Figure S4.6. Partitioning of the total surface area, projected area and volume of leaf vein sheaths and leaf vein xylem, and volume for C_{3} and C_{4} grass species and by vein order. (A) Leaf vein bundle and mestome sheath surface area per area $(S A)$, (C) projected area per area $(P A)$ and (E) volume per area ($V A$). (B) Leaf vein xylem $S A$, (D) $P A$ and (F) $V A$. Average C_{3} and C_{4} differences found in Table S4.2. $N=11 \mathrm{C}_{3}, 16 \mathrm{C}_{4}$.

Figure S4.7. Determinants of leaf xylem hydraulic conductance ($\mathbf{K}_{\mathbf{x}}$). Relationships of whole leaf xylem hydraulic conductance $\left(K_{\mathrm{x}}\right)$ with (\mathbf{A}) midvein xylem hydraulic conductance $\left(\mathrm{K}_{\mathrm{x}}\right.$ midvein), (B) second order xylem hydraulic conductance ($\mathrm{K}_{\mathrm{x} \text {-large }}$), (C) third order xylem hydraulic conductance $\left(\mathrm{K}_{\mathrm{x} \text {-intermediate }}\right)$ and (D) fourth order xylem hydraulic conductance $\left(\mathrm{K}_{\mathrm{x} \text {-small }}\right)$.
 large $),(\mathbf{G})$ third order vein density $\left(D_{\mathrm{v} \text {-intermediate }}\right)$ and (\mathbf{H}) fourth order vein density $\left(D_{\mathrm{v} \text {-small }}\right)$. Relationships of vein order specific K_{x} with (I) $D_{\mathrm{v} \text {-midvein }}(\mathbf{J}) D_{\mathrm{v}-\text { large }}(\mathbf{K}) D_{\mathrm{v} \text {-intermediate }}$ and (L) $D_{\mathrm{v}-}$ small, with vein order specific conduit diameter $(C D)$ for (\mathbf{M}) first order midvein $\left(C D_{\text {midvein }}\right)$, (\mathbf{N}) second order large veins $\left(C D_{\text {large }}\right), \mathbf{(O)}$ third order intermediate veins $\left(C D_{\text {intermediate }}\right)$ and $\mathbf{(P)}$ fourth order small veins $\left(C D_{\text {small }}\right)$, with vein order specific conduit number $(C N)$ for (\mathbf{Q}) midvein conduit number ($\left.C N_{\text {midvein }}\right), \mathbf{(R)}$ second order conduit number $\left(C N_{\text {large }}\right)$, (\mathbf{S}) third order conduit number ($\left.C N_{\text {intermediate }}\right)$ and (T) fourth order conduit number ($C N_{\text {small }}$). Lines were fit with phylogenetic reduced major axis regressions (PRMA) and drawn when significant: $* P<0.05$; ${ }^{* *} P<0.01 ;{ }^{* * *} P<0.001 . N=10 \mathrm{C}_{3}, 16 \mathrm{C}_{4}$ species.

Figure S4.8. Coordination of leaf photosynthetic rate with leaf hydraulic anatomy.
Relationships of leaf photosynthetic rate $\left(A_{\text {area }}\right)$ with (\mathbf{A}) total vein density $\left(D_{\mathrm{v}}\right)(\mathbf{B})$ interveinaldistance (IVD), (C) total vein surface area per area (VSA), (D) total vein volume per area (VVA), (E) total bundle sheath surface area per area $(B S S A)$, (F) total mestome sheath surface area per area $(M S S A),(\mathbf{G})$ total bundle sheath volume per area $(B S V A)$ and $\mathbf{(H)}$, total mestome sheath volume per area $(M S V A)$. Lines were fit with phylogenetic reduced major axis regressions (PRMA) and drawn when significant: ${ }^{*} P<0.05 ;{ }^{* *} P<0.01 ;{ }^{* * *} P<0.001 . N=11 \mathrm{C}_{3}, 16 \mathrm{C}_{4}$ species.

Figure S4.9. Results of simulation modeling of the hydraulic-stomatal-photosynthetic system of \mathbf{C}_{3} and \mathbf{C}_{4} grasses. The responses of (A and B) stomatal conductance $\left(g_{s}\right)$, (C and D) leaf water potential and (E-J) light-saturated leaf net photosynthetic rate $\left(A_{\text {area }}\right)$ to declining soil water
potential $\left(\Psi_{\text {soil }}\right)$ at low and high vapor pressure deficit (VPD) and at low, current and high CO_{2}. Simulations were run at $25^{\circ} \mathrm{C}$ (at $35^{\circ} \mathrm{C}$ in Figure S 4.10).

Figure S4.10. Results of simulation modeling of the hydraulic-stomatal-photosynthetic system of C_{3} and C_{4} grasses, showing the increasing photosynthetic advantage of C_{4} grasses at higher temperature $\left(35^{\circ} \mathrm{C}\right.$, by contrast with $25^{\circ} \mathrm{C}$ in Figure S 4.9$)$, in well-watered conditions as well as drought, due to the importance of hydraulic hyper-efficiency in \mathbf{C}_{4} grasses. The response of light-saturated leaf net photosynthetic rate $\left(A_{\text {area }}\right)$ to declining soil water potential at low and high vapor pressure deficit (VPD) i.e., $0.5 \mathrm{kPa}(\mathbf{A}, \mathbf{C}, \mathbf{E})$ and $3 \mathrm{kPa}(\mathbf{B}, \mathbf{D}, \mathbf{F})$, and additionally, the response of $A_{\text {area }}$ was simulated at low, current and high CO_{2}, i.e., 20 Pa (A and B), $40 \mathrm{~Pa}(\mathbf{C}$ and $\mathbf{D})$ and $80 \mathrm{~Pa}(\mathbf{E}$ and $\mathbf{F})$. The model was based on measured hydraulic and gas exchange parameters for C_{3} and C_{4} species (see Methods). Additionally simulations were run
for a modeled species with all parameters as for the C_{3} species, but with the maximum g_{s} value of C_{4} species, such that the ratio of leaf hydraulic conductance to $g_{\mathrm{s}}\left(K_{\text {leaf }} / g_{\mathrm{s}}\right)$ was equivalent to that of the C_{4} species, and for a modeled species with all parameters as for the C_{4} species, but with the $K_{\text {leaf }} / g_{\mathrm{s}}$ equivalent to that of the C_{3} species, achieved either by lowering $K_{\text {leaf }}$ or by raising maximum $g_{\text {s. }}$.

Figure S4.11. Results of leaf physiological coordination across grasses, compiled from published studies (Tables $\mathbf{S 4 . 3}$ and $\mathbf{S 4 . 8}$). Relationships of (A) leaf photosynthetic rate ($A_{\text {area }}$) with stomatal conductance $\left(g_{s}\right)$, (B) stomatal conductance with leaf hydraulic conductance ($K_{\text {leaf }}$) and (C) $A_{\text {area }}$ with $K_{\text {leaf. }}$ Lines were fit with standard major axis regressions (SMA) and drawn when significant: ${ }^{*} P<0.05 ; * * P<0.01 ; * * * P<0.001$. Values were averaged per species across studies, and analyses include data from this study, represented by filled circles in the plots. Statistics and parameters for both nonphylogenetic and phylogenetic regressions for all pairwise combinations of traits are found in Table S4.8.

Figure S4.12. Contrasting coordination of hydraulics and gas exchange traits for $27 \mathrm{C}_{3}$ and \mathbf{C}_{4} grasses, grown in a common garden. Relationships of (\mathbf{A}) leaf photosynthetic rate $\left(A_{\text {area }}\right)$, and (B) leaf water potential at 50% loss of leaf hydraulic conductivity $\left(P_{50}\right)$ with leaf hydraulic conductance ($K_{\text {leaf }}$), across C_{3} or C_{4} species, respectively. Lines were fit with phylogenetic reduced major axis regressions (PRMA) and drawn when significant: ${ }^{*} P<0.05 ; * * P<0.01$; ${ }^{* * *} P<0.001$. Line parameters are provided in Table S4.4. $N=11 \mathrm{C}_{3}, 16 \mathrm{C}_{4}$.

Figure S4.13. Relationships of leaf physiological traits with mean annual temperature for 27 grasses, grown in a common garden. (A) Leaf photosynthetic rate ($A_{\text {area }}$), (B) stomatal conductance $\left(g_{\mathrm{s}}\right)$ and $\mathbf{(C)}$ operating leaf water potential $\left(\Psi_{\mathrm{L}}\right)$, with mean annual temperature (MAT, ${ }^{\circ} \mathrm{C}$), across C_{3} terrestrial species in panel (\mathbf{A}) and all species in (\mathbf{B}) and (\mathbf{C}). Lines were fit with phylogenetic reduced major axis regressions (PRMA) and drawn when significant: ${ }^{*} P<$ $0.05 ;{ }^{* *} P<0.01 ;{ }^{* * *} P<0.001$. Line parameters are provided in Table S4.5. $N=11 \mathrm{C}_{3}, 16 \mathrm{C}_{4}$.

References

1. Baird, A. S., S. H. Taylor, J. Pasquet-Kok, C. Vuong, Y. Zhang, T. Watcharamongkol, C. Scoffoni, et al. 2021. Developmental and biophysical determinants of grass leaf size worldwide. Nature 592: 242-247.
2. Beer C., M., Reichstein, E., Tomelleri., P., Ciais., M., Jung., N., Carvalhais. 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329: 834-837
3. Bjorkman, O. 1971. Interaction between the effects of oxygen and CO_{2} concentration on quantum yield and light saturated rate of photosynthesis in the leaves of Atriplex patula, ssp. spicata. 70: 520-526.
4. Blackman, C. J., T. J. Brodribb, and G. J. Jordan. 2012. Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms. Oecologia 168: 1-10.
5. Brodribb, T. J. \& Holbrook, N. M. 2003. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology 132: 2166-2173.
6. Brodribb, T. J. \& Cochard, H. 2009. Hydraulic failure defines the recovery and point of death in water stressed conifers. Plant Physiology 149: 575-584.
7. Brodribb, T. J. \& McAdam, S. A. M. 2011 Passive origins of stomatal control in vascular plants Science 331: 582-585.
8. Brodribb, T. J., T. S. Feild, and G. J. Jordan. 2007. Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology 144: 1890-1898.
9. Brodribb, T. J., T. S. Feild, and L. Sack. 2010. Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology 37: 488-498.
10. Brodribb, T. J., and G. J. Jordan. 2008. Internal coordination between hydraulics and stomatal control in leaves. Plant, Cell \& Environment 31: 1557-1564.
11. Buchholz, M. 1921. Über die Wasserleitungsbahnen in den interkalaren Wachstumszonen monokotyler Sprosse. 114: 119-186.
12. Buckley, T. N., G. P. John, C. Scoffoni, and L. Sack. 2015. How Does Leaf Anatomy Influence Water Transport outside the Xylem? Plant Physiology 168: 1616-1635.
13. von Caemmerer, S., and J. R. Evans. 2010. Enhancing C 3 Photosynthesis. Plant Physiology 154: 589-592.
14. Canny, M. J. 2001. Embolisms and refilling in the maize leaf lamina, and the role of the protoxylem lacuna. American Journal of Botany 88: 47-51.
15. Caringella, M. A., F. J. Bongers, and L. Sack. 2015. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants: Leaf hydraulics of Arabidopsis venation mutants. Plant, Cell \& Environment 38: 2735-2746.
16. Christin, P.-A., C. P. Osborne, D. S. Chatelet, J. T. Columbus, G. Besnard, T. R. Hodkinson, L. M. Garrison, et al. 2013. Anatomical enablers and the evolution of C_{4} photosynthesis in grasses. Proceedings of the National Academy of Sciences 110: 13811386.
17. Cochard, H., F. W. Ewers, and M. T. Tyree. 1994. Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. Journal of Experimental Botany 45: 1085-1089.
18. Cochard, H., A. Nardini, and L. Coll. 2004. Hydraulic architecture of leaf blades: where is the main resistance? Plant, Cell and Environment 27: 1257-1267.
19. Cochard, H., J.-S. Venisse, T. S. Barigah, N. Brunel, S. Herbette, A. Guilliot, M. T. Tyree, and S. Sakr. 2007. Putative Role of Aquaporins in Variable Hydraulic Conductance of Leaves in Response to Light. Plant Physiology 143: 122-133.
20. Downes, R. W. 1969. Differences in Transpiration Rates between Tropical and Temperate Grasses under Controlled Conditions. Planta 88: 261-273.
21. Edwards, E. J., C. P. Osborne, C. A. E. Strömberg, S. A. Smith, C4 GRASSES CONSORTIUM, W. J. Bond, P.-A. Christin, et al. 2010. The Origins of C_{4} Grasslands: Integrating Evolutionary and Ecosystem Science. Science 328: 587-591.
22. Edwards, E. J., and S. A. Smith. 2010. Phylogenetic analyses reveal the shady history of C_{4} grasses. Proceedings of the National Academy of Sciences 107: 2532-2537.
23. Ellis, R. P. 1976. A procedure for standardizing comparative leaf anatomy in the Poaceae. I. The leaf-blade as viewed in transverse section. Bothalia 12: 65-109.
24. Evert, R. F. 2006. Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. 3rd ed. John Wiley.
25. Feild, T. S., T. J. Brodribb, A. Iglesias, D. S. Chatelet, A. Baresch, G. R. Upchurch, B. Gomez, et al. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proceedings of the National Academy of Sciences 108: 8363-8366.
26. Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence. The American Naturalist 160: 712726.
27. Garland, T., Jr., A. W. Dickerman, C. M. Janis, and J. A. Jones. 1993. Phylogenetic Analysis of Covariance by Computer Simulation. Systematic Biology 42: 265-292.
28. Gowik, U., and P. Westhoff. 2011. The Path from C_{3} to C_{4} Photosynthesis. Plant Physiology 155: 56-63.
29. Grubb, P. J. 1998. A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics 1: 3-31.
30. Higgins, S. I., and S. Scheiter. 2012. Atmospheric CO_{2} forces abrupt vegetation shifts locally, but not globally. Nature 488: 209-212.
31. Holloway-Phillips, M.-M., and T. J. Brodribb. 2011. Minimum hydraulic safety leads to maximum water-use efficiency in a forage grass. Plant, Cell \& Environment 34: 302313.
32. Ii, G. P. W. G. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C_{4} origins. New Phytologist 193: 304-312.
33. Israel, W. K., A. Watson-Lazowski, Z.-H. Chen, and O. Ghannoum. 2022. High intrinsic water use efficiency is underpinned by high stomatal aperture and guard cell potassium flux in C_{3} and C_{4} grasses grown at glacial CO_{2} and low light. Journal of Experimental Botany 73: 1546-1565.
34. John, G. P., C. Scoffoni, and L. Sack. 2013. Allometry of cells and tissues within leaves. American Journal of Botany 100: 1936-1948.
35. Kocacinar, F., and R. F. Sage. 2004. Photosynthetic pathway alters hydraulic structure and function in woody plants. Oecologia 139: 214-223.
36. Kocacinar, F., and R. F. Sage. 2003. Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant, Cell \& Environment 26: 2015-2026.
37. Langdale, J. A. 2011. C 4 cycles: past, present, and future research on C_{4} photosynthesis. The Plant Cell 23: 3879-3892.
38. Lewis, A. M., and E. R. Boose. 1995. Estimating volume flow rates through xylem conduits. American Journal of Botany 82: 1112-1116.
39. Liu, H., S. H. Taylor, Q. Xu, Y. Lin, H. Hou, G. Wu, and Q. Ye. 2019. Life history is a key factor explaining functional trait diversity among subtropical grasses, and its influence differs between C_{3} and C_{4} species. Journal of Experimental Botany 70: 15671580.
40. Lundgren, M. R., L. T. Dunning, J. K. Olofsson, J. J. Moreno-Villena, J. W. Bouvier, T. L. Sage, R. Khoshravesh, et al. 2019. C4 anatomy can evolve via a single developmental change. Ecology Letters 22: 302-312.
41. Maherali, H., W. T. Pockman, and R. B. Jackson. 2004. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85: 2184-2199.
42. Marazzi, B., C. Ané, M. F. Simon, A. Delgado-Salinas, M. Luckow, and M. J. Sanderson. 2012. Locating Evolutionary Precursors on a Phylogenetic Tree. Evolution 66: 39183930.
43. Martin-StPaul, N., S. Delzon, and H. Cochard. 2017. Plant resistance to drought depends on timely stomatal closure. Ecology Letters 20: 1437-1447.
44. McSteen, P., Kellog, E.A. 2022. Molecular, cellular, and developmental foundations of grass diversity. Science 377: 599-602.
45. Morison, J. I. L. \& Gifford, R. M. 2983. Stomatal sensitivity to carbon dioxide and humidity: a comparison of two C_{3} and two C_{4} grass species. Plant Physiology 71: 789796.
46. Ocheltree, T. W., J. B. Nippert, and P. V. V. Prasad. 2016. A safety vs efficiency tradeoff identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation. New Phytologist 210: 97-107.
47. Ocheltree, T. W., J. B. Nippert, and P. V. V. Prasad. 2014. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance. Plant, Cell \& Environment 37: 132-139.
48. Ogle, K. 2003. Implications of interveinal distance for quantum yield in C_{4} grasses: a modeling and meta-analysis. Oecologia 136: 532-542.
49. Ohtsuka, A., Sack, L., \& Taneda H. 2018. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation. Plant, Cell \& Environment 41: 342-353.
50. Osborne, C. P., and R. P. Freckleton. 2009. Ecological selection pressures for C_{4} photosynthesis in the grasses. Proceedings of the Royal Society B: Biological Sciences 276: 1753-1760.
51. Osborne, C. P., and L. Sack. 2012. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 583-600.
52. Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877884.
53. Pan, L., B. George-Jaeggli, A. Borrell, D. Jordan, F. Koller, Y. Al-Salman, O. Ghannoum, and F. J. Cano. 2022. Coordination of stomata and vein patterns with leaf width underpins water-use efficiency in a C_{4} crop. Plant, Cell \& Environment 45: 16121630.
54. Paradis, E., and K. Schliep. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528.
55. Pasquet-Kok, J., C. Creese, and L. Sack. 2010. Turning over a new 'leaf': multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa. Plant, Cell \& Environment 33: 2084-2100.
56. Pathare, V. S., B. V. Sonawane, N. Koteyeva, and A. B. Cousins. 2020. C4 grasses adapted to low precipitation habitats show traits related to greater mesophyll conductance and lower leaf hydraulic conductance. Plant, Cell \& Environment 43: 1897-1910.
57. Poorter, H., and L. Sack. 2012. Pitfalls and Possibilities in the Analysis of Biomass Allocation Patterns in Plants. Frontiers in Plant Science 3.
58. Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223.
59. Sack, L., P. D. Cowan, N. Jaikumar, and N. M. Holbrook. 2003. The 'hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell \& Environment 26: 1343-1356.
60. Sack, L., and N. M. Holbrook. 2006. Leaf Hydraulics. Annual Review of Plant Biology 57: 361-381.
61. Sack, L., P. J. Melcher, M. A. Zwieniecki, and N. M. Holbrook. 2002. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. Journal of Experimental Botany 53: 2177-2184.
62. Sack, L., and C. Scoffoni. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198: 983-1000.
63. Sack, L., and C. Scoffoni. 2012. Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM). Journal of Visualized Experiments : JoVE: 4179.
64. Sack, L., C. Scoffoni, G. P. John, H. Poorter, C. M. Mason, R. Mendez-Alonzo, and L. A. Donovan. 2013. How do leaf veins influence the worldwide leaf economic spectrum?

Review and synthesis. Journal of Experimental Botany 64: 4053-4080.
65. Sack, L., C. Scoffoni, A. D. McKown, K. Frole, M. Rawls, J. C. Havran, H. Tran, and T. Tran. 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3: 837.
66. Sack, L., M. T. Tyree, and N. M. Holbrook. 2005. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytologist 167: 403-413.
67. Sade, N., A. Shatil-Cohen, and M. Moshelion. 2015. Bundle-sheath aquaporins play a role in controlling Arabidopsis leaf hydraulic conductivity. Plant Signaling \& Behavior 10: e1017177.
68. Sage, R. F. 2004. The evolution of C4 photosynthesis. New Phytologist 161: 341-370.
69. Sage, R. F., P.-A. Christin, and E. J. Edwards. 2011. The C4 plant lineages of planet Earth. Journal of Experimental Botany 62: 3155-3169.
70. Scoffoni, C., C. Albuquerque, C. R. Brodersen, S. V. Townes, G. P. John, M. K. Bartlett, T. N. Buckley, et al. 2017. Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration. Plant Physiology 173: 1197-1210.
71. Scoffoni, C., C. Albuquerque, T. N. Buckley, and L. Sack. The dynamic multifunctionality of leaf water transport outside the xylem. New Phytologist n/a.
72. Scoffoni, C., D. S. Chatelet, J. Pasquet-kok, M. Rawls, M. J. Donoghue, E. J. Edwards, and L. Sack. 2016. Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants 2: 1-8.
73. Scoffoni, C., A. D. McKown, M. Rawls, and L. Sack. 2012. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. Journal of Experimental Botany 63: 643-658.
74. Scoffoni, C., A. Pou, K. Aasamaa, and L. Sack. 2008. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant, Cell \& Environment 31: 1803-1812.
75. Sokal, R. R., and F. J. Rohlf. 1995. Biometry. W.H. Freeman.
76. Sonawane, B. V., N. K. Koteyeva, D. M. Johnson, and A. B. Cousins. 2021. Differences in leaf anatomy determines temperature response of leaf hydraulic and mesophyll CO_{2} conductance in phylogenetically related C_{4} and C_{3} grass species. New Phytologist 230: 1802-1814.
77. Spriggs, E. L., P.-A. Christin, and E. J. Edwards. 2014. C4 Photosynthesis Promoted Species Diversification during the Miocene Grassland Expansion. PLOS ONE 9: e97722.
78. Stiller, V., H. R. Lafitte, and J. S. Sperry. 2003. Hydraulic Properties of Rice and the Response of Gas Exchange to Water Stress. Plant Physiology 132: 1698-1706.
79. Strasburger, E. 1891. Über den Bau und die Verrichtungen der Leitungsbahnen in den Pflanzen.
80. Taylor, S. H., M. J. Aspinwall, C. J. Blackman, B. Choat, D. T. Tissue, and O. Ghannoum. 2018. CO_{2} availability influences hydraulic function of C_{3} and C_{4} grass leaves. Journal of Experimental Botany 69: 2731-2741.
81. Taylor, S. H., P. J. Franks, S. P. Hulme, E. Spriggs, P. A. Christin, E. J. Edwards, F. I. Woodward, and C. P. Osborne. 2012. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologist 193: 387-396.
82. Tyree, M. T., E. L. Fiscus, S. D. Wullschleger, and M. A. Dixon. 1986. Detection of Xylem Cavitation in Corn under Field Conditions 1. Plant Physiology 82: 597-599.
83. Tyree, M. T., \& Zimmermann, M. H. Xylem structure and the ascent of sap. (Springer, 2002).
84. Tyree, M. T., A. Nardini, S. Salleo, L. Sack, and B. El Omari. 2005. The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response? Journal of Experimental Botany 56: 737-744.
85. Ueno O., Kawano Y., Wakayama M. \& Takeda T. 2006. Leaf Vascular Systems in C3 and C_{4} Grasses: A Two-dimensional Analysis. Annals of Botany 97: 611-621.
86. Vico, G., \& Porporato, A. 2008. Modelling C_{3} and C_{4} photosynthesis under waterstressed conditions. Plant Soil 313: 187-203.
87. Von Caemmerer S. 2002. Biochemical Models of Leaf Photosynthesis. Collingwood, Aust: CSIRO.
88. Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. smatr 3 - an R package for estimation and inference about allometric lines: The smatr 3-an package . Methods in Ecology and Evolution 3: 257-259.
89. Weast, R. C. 1974. Handbook of Chemistry and Physics. 54th ed. CRC Press.
90. Wei, C. F., Tyree, M. T. \& Steudle, E. 1999. Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiology 121: 1191-1205.
91. Westermaier, M. 1884. Untersuchungen über die Bedeutung todter Röhren und lebender Zellen für die Wasserbewegung in der Pflanze. 1105-1117.
92. Zhou, H., E. Akçay, E. Edwards, and B. Helliker. 2021. The legacy of C4 evolution in the hydraulics of C_{3} and C_{4} grasses. BioRxiv. 2020.05.14.097030.
93. Zhou, H., E. Akçay, and B. Helliker. 2022. Optimal reorganization of photosynthesis after the evolution of C4. Plant, Cell \& Environment 46: 796-811

Chapter 5: Disentangling the developmental associations of leaf trichome and stomatal densities across diverse angiosperm species

Abstract

Trichome density (D_{t}, i.e., no. trichomes/leaf area) contributes to acclimation and adaptation to the environment. Studies of model species indicated a trade-off between D_{t} and stomatal density $\left(D_{\mathrm{s}}\right)$ due to shared cell precursors in development, but studies across closely-related or diverse species have not supported a trade-off. I aimed to answer the question of how a developmental trade-off may be overcome, and under what conditions this would be likely to occur. I compiled studies $(n=18)$ that examined $D_{\mathrm{t}}-D_{\mathrm{s}}$ relationships within and across species to determine the commonness of trade-offs vs. positive coordination vs. independence. In a novel dataset for 78 trichomous species of California ecosystems I disentangled the developmental origin of the relationship across diverse species by deriving mathematical expressions for D_{t} and D_{s} as functions of anatomical variables proximal to development, i.e, trichome and stomatal initiation rates (i_{t} and i_{s}), and the mature sizes of epidermal pavement cells (e), trichome bases (t) and stomata (s). In studies comparing patterns within species, a $D_{\mathrm{t}}-D_{\mathrm{s}}$ trade-off was found in 4/16 studies, positive coordination in $12 / 16$ studies and independence of D_{t} and D_{s} in $5 / 16$ studies. Positive coordination was found in both previous studies testing patterns across diverses species, and in our novel analysis of California species, in which a high D_{t} arose on average 86% due to high i_{t} and 10% to low e, whereas a high D_{s} arose due 51% to high i_{s} and 41% to low e, and a positive $D_{\mathrm{t}}-D_{\mathrm{s}}$ coordination arose principally due to $i_{\mathrm{t}}-i_{\mathrm{s}}$ coordination, with lesser role of e. Across and within diverse species, a positive $D_{\mathrm{t}}-D_{\mathrm{s}}$ coordination is common. The trade-off reported within certain model species, associated with a developmental antagonism of shared

trichome and stomatal precursor cells, is evidently overcome in many species that have evolved a greater number of precursor cells, and thus higher i_{t} and i_{s} and, in addition, smaller e, and thereby higher D_{t} and D_{s}, providing an adaptive advantage in multiple scenarios. These findings indicate the power of developmental mechanisms in determining patterns of trait diversity and coordination within and across diverse species.

Introduction

Trichomes, plant hairs, occur in the majority of plant species (Evert, 2006) and their diversity in number, shape, size and adaptive functions have fascinated biologists for centuries (Figure 1; Haberlandt, 1914; Werker, 2000; Evert, 2006). Trichomes can be uni- or multi-cellular, with straight, spiral, star, hooked or branched morphology, and can be glandular (Werker, 2000; Li et al., 2023). Diversity in trichome morphology and number arises between organs on the same plant, between surfaces of the same organ, in plastic responses to environmental stress, and in adaptive differences among species (Bickford, 2016; Wang et al., 2021). An emerging key functional trait is leaf trichome density $\left(D_{\mathrm{t}}\right.$, Table 5.1), i.e., the number of trichomes per leaf area, which can influence plant survival and performance in crop and wild ecosystems, depending on trichome properties and their environmental context (Doughty et al., 2011; Snyder and Antonious, 2011; Bickford, 2016; Huchelmann et al., 2017; Sack and Buckley, 2020; Gupt et al., 2021; Vinod et al., 2023). A high D_{t} reduces light absorbance, including UV (Ehleringer et al., 1976; Ehleringer and Björkman, 1978), and thereby can lessen leaf overheating and photochemical damage. This protection from light and heat enables gain in carbon accumulation at lower transpiration rates, as does the contribution of trichomes to a greater boundary layer thickness, and these effects further improve water-use efficiency, which is advantageous in hot and arid environments (Ehleringer and Mooney, 1978; Ripley et al., 1999; Bickford, 2016). A high D_{t} may also reduce surface wettability during rainy conditions (Brewer et al., 1991), and/or improve water uptake (Fernández et al., 2014; Kim et al.,, 2017; Schwerbrock and Leuschner, 2017; Schreel et al., 2020; Pan et al., 2021; Li et al., 2023). In many species trichomes are important for sequestering and detoxifying metals (Choi et al., 2001; Azmat et al., 2009; Li et al., 2023). Lastly, higher D_{t} may increase resistance to herbivores and pathogens by providing a
physical barrier and/or influencing secondary metabolite production (Agren and Schemske, 1993; Mauricio, 1998; Valverde et al., 2001; Hare and Elle, 2002; Handley et al., 2005; Agrawal et al., 2009).

The many functions of a high D_{t} would contribute to leaf survival and function under multiple environmental factors, including high irradiance and potentially short growing seasons, and thus might especially benefit species with a high stomatal density $\left(D_{\mathrm{s}}\right)$, which would contribute to a high maximum rate of gas exchange (Wong et al., 1979; Hetherington and Woodward, 2003; Franks and Beerling, 2009; Lin et al., 2015). However, detailed research in model species has suggested a developmentally constrained trade-off between D_{t} and D_{s} (Glover et al., 1998; Yan et al., 2014; Adrian et al., 2015; Torii, 2021). Trichomes are initiated early in leaf development as protodermal precursors divide and successively undergo cell fate determination, specification and morphogenesis (Figure 5.1; Larkin et al., 1997; Glover, 2000; Fambrini \& Pugliesi, 2019; Torii, 2021). Protodermal cell divisions meristemoid mother cells (MMCs), which can either develop into trichomes themselves, or can give rise to stomatal cell lineages, by dividing and differentiating into stomatal meristemoid cells, which in turn divide and give rise to guard mother cells, and finally guard cells (Figure 5.1; Torii, 2021). In Arabidopsis, the molecular mechanisms overlap between stomatal and trichome formation (Adrian et al., 2015). Thus, a high expression of SPEECHLESS (SPCH) proteins in MMCs drives the initiation of the stomatal cell lineage pathway (Torii, 2021), and upregulates the expression of TOO MANY MOUTHS (TMM), which drives a negative feedback loop that ensures one-cell-spacing between stomata, and also reduces trichome numbers via an unknown mechanism (Yan et al., 2014). Yet, several studies have shown that SPCH also upregulates the expression of the genes that drive trichome initiation, indicating that its direct role in trichome
and stomatal development is still uncertain (Adrian et al., 2015; Torii, 2021). These molecular mechanisms may result in mutual inhibition between stomatal versus trichome formation during cell fate specification and development (Torii, 2021), resulting in a trade-off between D_{s} and D_{t} (Glover et al., 1998).

However, in apparent contrast with the suggestion of a developmentally-determined $D_{\mathrm{s}^{-}}$ D_{t} trade-off, a number of studies across species have indicated a positive relationship between D_{s} and D_{t} (Skelton et al., 2012; Pan et al., 2021).

I aimed to clarify how a developmental trade-off may be overcome, and under what conditions this would be likely to occur. I compiled studies of $D_{\mathrm{t}}-D_{\mathrm{s}}$ relationships within and across species to determine the commonness of trade-offs vs positive coordination vs independence. Further, for 78 trichomous species of California ecosystems I disentangled the developmental origin of the relationship by deriving mathematical expressions for D_{t} and D_{s} as functions of anatomical variables of mature leaves that reflect their development, i.e, trichome and stomatal initiation rates (i_{t} and i_{s}), and the area of epidermal pavement cells (e), trichome bases (t) and stomata (s) (Table 5.1).

Our approach extends that of a previous study of stomatal variables as functions of developmental traits including stomatal initiation rate $\left(i_{s}\right.$, the number of stomata per number of total epidermal cells), e and s (Sack and Buckley, 2016). In that study of glabrous-leafed species, species tended to achieve higher D_{s} through both higher i_{s} and lower e-that is, by initiating more stomata as well as by reducing spacing between them with smaller epidermal pavement cells (Sack and Buckley, 2016). The achievement of higher D_{s} through higher i_{s} has been referred to as 'active initiation' and that through smaller e as 'passive dilution' for plants of given species grown under different light or vapor pressure deficits (Carins Murphy et al., 2012,
$2014,2017 \mathrm{~b}, \mathrm{a})$. Indeed, the ability to disentangle the effect of i_{s} on D_{s} from that of e, i.e., the effect of stomatal numbers independent of cell and leaf size, dates to Salisbury (Salisbury, 1927), and i_{s} has become a major trait used to quantify stomatal development and its influence on D_{s} independently of epidermal cell size, with application in studies of stomatal evolution and paleobiology (Royer, 2001; Konrad et al., 2021; Muir et al., 2022). In this study, I introduce the analogous variable i_{t}, which similarly resolves the contribution of increased trichome numbers to D_{t}, independently of cell and leaf size.

I applied our equations for D_{t} and D_{s} to resolve these traits' developmental drivers, and the origin of their relationship across 78 angiosperm species of California ecosystems. I hypothesized that a positive D_{s} vs D_{t} coordination would arise if developmental antagonism can be overcome by evolving greater number of precursor cells, which would enable development of both higher i_{t} and i_{s}, or through smaller e, which would reduce cell spacing and increase both D_{t} and $D_{\mathrm{s} .}$ I thus tested the commonness of $D_{\mathrm{t}}-D_{\mathrm{s}}$ relationships and the developmental basis for D_{t}, D_{s} and their relationship.

Materials and Methods

Meta-analysis of the relationship between leaf trichome and stomatal densities

I compiled studies that included analyses of the relations between leaf trichome density and stomatal density for individuals, genotypes or populations of a species, or for distinct species, from published literature via searches using GoogleScholar, Web of Science, and references from articles (Table 5.2). I searched for studies using the keywords 'leaf trichome density', 'leaf stomatal density' combined with 'coordination', 'association', and 'relationship'.

Plant material

To quantify the basis of D_{t} and D_{s} across diverse species, I sampled 157 common angiosperm species at seven sites (19 to 41 species, depending on site) representative of ecosystems within the California Floristic Province (Table S5.1; alpine, chaparral, coastal sage scrub, desert, mixed conifer-broadleaf forest, mixed riparian woodland and montane wet forest). From each of five individuals per species I sampled fresh fully expanded, mature leaves. For 78 of the 157 species, representative of 29 families, trichomes were apparent on leaf surfaces, and all epidermal cell types could be resolved and traits quantified using our methods (Table S5.1; Quantification of anatomical traits).

Sample anatomical preparation

Sampled leaves were fixed in formalin-acetic-acid (FAA) solution. I quantified epidermal traits from micrographs taken from nail varnish impressions of the abaxial and adaxial leaf surfaces (Medeiros et al., 2019) for one leaf for each of the five individuals per species, imaged with a light microscope ($40 \times$ objective; Leica Lietz DMRB; Leica Microsystems) and a camera with imaging software (SPOT Imaging Solution, Diagnostic Instruments).

Quantification of anatomical traits

From the leaf micrographs, I measured the areas of individual trichome bases (t), stomata (s; one guard cell pair) and epidermal pavement cells (e), and trichome, stomatal and epidermal densities $\left(D_{\mathrm{t}}, D_{\mathrm{s}}\right.$ and D_{e}; number of cells or stomata per mm^{2}) for both abaxial and adaxial surfaces (Medeiros et al., 2019). For each image, I distinguished quadrants by drawing central vertical and horizontal lines, and measured the area of four stomata, two epidermal pavement cells, and
one to four trichome bases from distinct quadrants as centrally as possible, given visibility. Traits were quantified using the software ImageJ (https://imagej.nih.gov/ij/index.html). I traced stomatal and pavement cell outlines to measure s and e, and estimated t by measuring the major and minor axes (a and b respectively) of the trichome cell base and calculating the area of an ellipse, as, area $=\pi \times a \times b$. Trichome and stomatal cell densities (D_{t} and D_{s}) were estimated by counting the number of trichomes and stomata and dividing these values by the area of the image. For epidermal cell density $\left(D_{\mathrm{e}}\right)$, I counted the number of epidermal cells for two of the four quadrants, divided these numbers by the areas of the respective quadrants, and then averaged these two values. D_{e} was assessed for images for three to five of the individuals per species, i.e., when the image quality assured accurate cell counts. As our measures of cell densities were sometimes from different individuals per species, I calculated mean trichome and stomatal indices (i_{t} and i_{s}) at the species level using species mean values of numbers of trichomes and stomata respectively per total number of trichomes, stomata and epidermal pavement cells (Salisbury, 1927; Sack and Buckley, 2016).

Our method for measurement of epidermal traits was successful for most leaves, for trichome densities up to $360 \mathrm{~mm}^{-2}$, though not for very densely hairy leaves, for which D_{t} and other epidermal traits cannot be resolved from impressions. I acknowledge and emphasize the need for further studies of D_{t} for the hairiest leaves; scanning electron microscopy of shaved leaves (Hoof et al., 2008) can work in some cases but not others. Further, for some leaves, epidermal irregularities prevented assessment of epidermal pavement cell numbers or sizes. For 78 species, measurements could be made of all traits for one or both leaf surfaces; for 37 of the 78 species, both surfaces could be measured, but for 26 species, only the adaxial surface, and for 15 species only the abaxial (Table S5.1). For species in which measurements could only be made
for one surface and not the other, this difficulty was typically due to inability to assure accuracy in epidermal pavement cell number or trichome base diameters. Thus, for analyzing the developmental basis of trichome density, I present data for all 78 species, but for species for which all variables were quantifiable for only one surface, I present data only for that surface (Table S5.1). For 24 amphistomatous and for 13 hypostomatous species I had complete data for both surfaces. For 46 of the 78 species, I could also determine from our micrograph images the trichome types present, i.e. simple, pilate/capitate, peltate or stellate, and glandular or nonglandular (Table S5.1). Trichomes of the simple type are single-stalked, without a distinct secretory cell tip, and either unicellular or multicellular uniseriate (Werker, 2000). Pilate and capitate trichomes are single stalked, with a secretory cell tip; pilate trichomes have elongated stalks, though this was not discernible in our images (Werker, 2000). Peltate trichomes are also single stalked, with multicellular secretory cells at the head of the stalk (Werker, 2000). Stellate trichomes are star-shaped with several elongated arms attached to a common base (Werker, 2000). Lastly, glandular trichomes possess a secretory cell at the tip of the trichome, capable of secreting specialized metabolites (Werker, 2000).

Derivation of leaf trichome density and stomatal density on the basis of developmental traits

I derived a novel equation for leaf trichome density $\left(D_{\mathrm{t}}\right)$ on the basis of developmental traits i_{t} and i_{s}, and anatomical traits t, s and e, to enable calculation of how quantitative changes in size and initiation of epidermal cell types influence D_{t}. I derived a similar equation for the D_{s} of trichomous species, as the original study that derived D_{s} as a function of developmental parameters focused on glabrous-leafed species, and thus did not include i_{t} or t (Sack and Buckley, 2016).

Statistical and comparative analyses

For the six species that were sampled in two sites (Table S5.1), I averaged traits across individuals within each site, and then averaged the two species values for each site.

To validate the correctness of our mathematical derivation of the developmental basis of leaf trichome density, I tested relationships of measured D_{t} with that estimated from eqn 4 for the abaxial and adaxial surfaces using ordinary least squares (OLS) regressions with a fixed zero intercept using the SMATR package (Warton et al., 2012). Similarly, I implemented the same analysis to validate the correctness of our mathematical derivation of leaf stomatal density $\left(D_{\mathrm{s}}\right)$. Validation of the mathematical derivations were indicated by a high R^{2} and if the 1:1 line falls within the 95% prediction intervals of the tested relationships (Sack and Buckley, 2016). Analyses were performed using the R Language and Environment (R Core Team, 2021).

I tested for potential trade-offs or positive coordination in trichome and stomatal densities (D_{t} and D_{s}), and in trichome and stomatal initiation rates (i_{t} and i_{s}) using standard major axes (SMA) (Warton et al., 2012). Of the 78 total species, I tested these relationships across the subset of 39 and 52 species for the adaxial and abaxial surfaces, respectively, for which I had complete data (Table S5.1).

I tested the quantitative impact of the variables that determine leaf D_{t} using two causal analyses. First, I tested the "intrinsic sensitivity" of D_{t} to each input variable from eqn 6, i.e., how D_{t} varied when each variable was changed from -100% to 200% of its mean across species, maintaining all other variables constant at their mean value (John et al., 2017). Second, I tested the "realized sensitivity" of D_{t} and D_{s} to each input variable by partitioning the causal contribution of each input variable to the differences in D_{t} or D_{s} for each pairwise species combination, and then calculating the median contribution across all pairwise species
combinations (Buckley and Diaz-Espejo, 2015; John et al., 2017). A higher positive \% contribution indicates that variable plays a stronger causal role in determining D_{t} or D_{s} across the species set. By contrast, a variable with negative $\%$ causal contribution indicates that for a species with higher D_{t} or D_{s}, that variable differed across species in the direction that would have caused a lower D_{t} or D_{s}, and this negative effect is overcome by positive effects of the other variables. Notably, the causal contributions of underlying variables in a realized sensitivity analysis depends on the variation of all variables and thus on the species-set (John et al., 2017). To enable robust comparisons of the realized sensitivity of D_{t} and D_{s} to input variables on both leaf surfaces, this analysis focused on the 37 species for which data were available for D_{t} and D_{s} for both surfaces, separately considering the 24 amphistomatous species, i.e., with $D_{\mathrm{s}}>0$ on both surfaces, and the 13 hypostomatous species, i.e., with D_{s} and s of 0 on the adaxial surface.

Results

Meta-analysis of the relationship of D_{t} and D_{s}

Our meta-analysis resulted in a compilation of 17 studies that leaf trichome and stomatal densities across diverse species, or across populations or genotypes of given species, or for plants of given species grown under different experimental treatments (Table 5.2). 14 of 18 (78\%) studies supported positive $D_{\mathrm{t}-} D_{\mathrm{s}}$ coordination, $3 / 18(27 \%)$ a trade-off, and $7 / 18(39 \%)$ independence (Table 5.2). Notably, $6 / 18$ (33\%) studies showed mixed results, depending on specific comparison sets (i.e., abaxial vs adaxial, or comparisons between populations or genotypes within species of given studies). These studies typically provided greater support for positive $D_{\mathrm{t}}-D_{\mathrm{s}}$ coordination or independence than for a trade-off (Table 5.2).

Derivation and validation of an expression of the basis for D_{t} in developmental traits

I derived equations for trichome density (D_{t}, no. trichomes/leaf area mm^{2}) and stomatal density (D_{t}, no. stomata/leaf area mm^{2}) as functions of underlying epidermal anatomical traits with proximal relationship to development, i.e., trichome and stomatal initiation rates (i_{t} and i_{s}, respectively), and the areas of trichome cell bases (t), stomata (s) and epidermal pavement cells (e) (Table 5.1). The i_{t} is analogous to the i_{s} introduced by Salisbury (Salisbury, 1927) as a means to correct D_{t} for the effect of larger epidermal cells in spacing stomata apart; these indices correspond to the number of trichomes $\left(n_{t}\right)$ or stomata $\left(n_{\mathrm{s}}\right)$ divided by the sum of $n_{\mathrm{t}}, n_{\mathrm{s}}$ and the number of epidermal pavement cells $\left(n_{\mathrm{e}}\right)$. Thus, the i_{t} and i_{s} are related to $n_{\mathrm{t}}, n_{\mathrm{s}}, n_{\mathrm{e}}, t, s$ and e as:

$$
\begin{equation*}
i_{t}=\frac{n_{t}}{n_{t}+n_{s}+n_{e}} \quad i_{s}=\frac{n_{s}}{n_{s}+n_{t}+n_{e}} \tag{1}
\end{equation*}
$$

D_{t} is related to $n_{\mathrm{t}}, n_{\mathrm{s}}, n_{\mathrm{e}}, t, s$ and e as:

$$
\begin{equation*}
D_{\mathrm{t}}=\frac{n_{t}}{\text { total area }}=\frac{n_{t}}{n_{t} t+n_{s} s+n_{e} e}=\frac{1}{t+\frac{n_{s}}{n_{t}}+\frac{n_{e} e}{n_{t}}}=\frac{1}{t+\frac{n_{s}}{n_{t}} S+\frac{n_{e} n_{s}}{n_{s} n_{t}}} \tag{2}
\end{equation*}
$$

where total area is that of the entire leaf surface with trichomes and/or stomata $\left(\mathrm{mm}^{2}\right)$. Noting that $n_{\mathrm{e}} / n_{\mathrm{s}}=i_{\mathrm{e}} / i_{\mathrm{s}}$, and $n_{\mathrm{s}} / n_{\mathrm{t}}=i_{\mathrm{s}} / i_{\mathrm{t}}$, equation 2 can be rearranged as:

$$
\begin{equation*}
D_{\mathrm{t}}=\frac{1}{t+\frac{i_{s}}{i_{\mathrm{t}}} S+\frac{i_{\mathrm{e}} i_{s}}{i_{\mathrm{s}} i_{\mathrm{t}}} e} \tag{3}
\end{equation*}
$$

Applying $i_{\mathrm{e}}=1-\left(i_{\mathrm{s}}+i_{\mathrm{t}}\right)$ to equation 3 gives:

$$
\begin{equation*}
D_{t}=\frac{i_{\mathrm{t}}}{i_{t} t+i_{s} s+\left(1-i_{t}-i_{s}\right) e} \tag{4}
\end{equation*}
$$

An equation for D_{s} for trichomous species can be derived by swapping i_{s} for i_{t}, and s for t in Equation 4:

$$
\begin{equation*}
D_{s}=\frac{i_{s}}{i_{s} s+i_{t} t+\left(1-i_{s}-i_{t}\right) e} \tag{5}
\end{equation*}
$$

I validated eqns 4 and 5 using data for the 78 diverse angiosperm California species, for which D_{t} varied from $4.51 \mathrm{~mm}^{-2}$ for Adenostoma fasciculatum to $310 \mathrm{~mm}^{-2}$ for Antennaria media on the abaxial surface, and from $5.09 \mathrm{~mm}^{-2}$ for Cercocarpus betuloides to $418 \mathrm{~mm}^{-2}$ for Eriogonum douglasii on the adaxial surface (Figure 5.2; Table S5.1). For both D_{t} and D_{s}, observed D_{t} and D_{s} values versus values estimated from eqns 4 and 5 were closely related, and lines fitted through the origin across abaxial and adaxial surfaces had 95% prediction intervals that included the 1:1 line (Figure 5.2; Table S5.1; $R^{2}=0.98-0.99$, slope $b=0.91-0.94$).

Intrinsic sensitivity of D_{t} and D_{s} to its developmental drivers

Equations 4 and 5 enables analyses of the developmental determinants of differences in D_{t} and D_{s}. In an intrinsic sensitivity analysis, i.e., shifting each driver of D_{t} and D_{s} in trichomous leaves from their mean values, holding other drivers at their mean values, i_{t} and e most strongly influence D_{t} and i_{s} and e most strongly influence D_{s}, a finding, for D_{s}, congruous with that shown for non-trichomous leaves previously (Sack and Buckley, 2016). Notably, while i_{t} positively influences D_{t} and i_{s} positively influences D_{s}, e has a negative influence on both, as larger e spaces specialized cell types further apart (Figure 5.3; Table S5.2-S5.5). The other variables have much lower intrinsic impacts on D_{t}. The influence of i_{s} is positive for D_{t}, because differentiating more epidermal cells with generally small stomata, would result in trichomes spaced more closely together, and similarly the influence of i_{t} is also positive for D_{s}. The intrinsic influences of t and s are negative on both D_{t} and D_{s}, as larger cells space trichomes and stomata further apart (Figure 5.3; Table S5.2-S5.3).

Causal partitioning of D_{t} and D_{s} with respect to developmental traits in California angiosperm

 speciesThe 78 California species were diverse in trichomes i.e., simple, pilate/capitate, peltate or stellate, and glandular or non-glandular (Table 5.1). The variation in D_{t} and D_{s} across a set of species is driven by the simultaneous differences in all input variables of equations 4 and 5 . For a subset of 24 amphi- and 13 hypostomatous California angiosperm species for which I had data for all input variables, I analyzed the realized drivers of shifts in D_{t} and D_{s} against the background of true trait variation (Figure 5.4). I found the determination of D_{t} was similar for both surfaces, and for amphi- and hypostomatous leaves, whereas that of D_{s} differed depending on the surface and stomatal distribution (Table S5.6). On average for the two surfaces of amphistomatous species and the abaxial surface of hypostomatous species, i_{t} accounted for the bulk (72-88\%) of variation in D_{t} across species, and e for a substantial minority of variation (7.7$20 \%$), and i_{s}, s and t contributed negligibly on average (Table S5.6). For D_{s}, for amphistomatous species i_{s} accounted for the majority of variation (66\%) on the adaxial surface, and e for a substantial minority of variation (29\%), whereas on the abaxial surface, e accounted for the majority (55\%) of variation in D_{s} across species and i_{s} a minority (36%); in all cases, on average, t and s contributed negligibly to variation in D_{s} across species (Figure 5.4; Table S5.6). Similar determinants of D_{s} were observed for the abaxial surface of hypostomatous species, except that variation in s accounted for 6% of across species variation in D_{s} (Table S5.6).

Positive coordination of D_{t} and D_{s}, and its developmental basis in California angiosperm species

Across the dataset for California angiosperm species, D_{t} and D_{s} were positively related on the adaxial and abaxial surfaces (Figure 5.5; $(n=39$ and 52 , respectively; $r=0.51-0.62, p<0.001)$. In both cases, this positive coordination was driven both by the association between i_{t} and i_{s} across species, which were major causal drivers of, respectively, D_{t} and D_{s} (Figure 5.5; $r=0.33$ $0.4, p<0.05$), and by the influence of small e as a minor causal driver of high D_{t} and substantial causal driver of D_{s} across species (Figure 5.4).

Discussion

I found that despite the developmental conflict between D_{t} and D_{s} identified in the model species Nicotiana tabacum (Glover et al., 1998), in the meta-analysis, a positive coordination of D_{t} and $D_{\text {s }}$ was the most general pattern (Table 5.2). Our derivation of a novel equation for leaf trichome density $\left(D_{\mathrm{t}}\right)$ and D_{s} on the basis of developmental traits i_{t} and i_{s}, and anatomical traits e, s and t, enables calculation of how quantitative shifts in size and initiation of epidermal cell types influence D_{t}. These equations enabled deeper causal analysis for California species of the drivers of D_{t} and D_{s} and their coordination and showed that the coordination was achieved by both 'active' and 'passive' developmental determinants, i.e. i and e.

In the meta-analysis I found much more support for positive $D_{\mathrm{t}}-D_{\mathrm{s}}$ coordination than for their trade-off or independence. Notably, trade-offs and independence in D_{t} and D_{s} arose particularly in studies focusing within species, including Arabidopsis helleri, Artemisia tridentata, Capsicum annuum, Digitaria insularis, Nicotiana tabacum, Quercus brantii, Solanum lycopersicum, Solanum melongena, Tillandsia streptophylla and Trichosanthes cucumerina
(Table 5.2). The variation in $D_{\mathrm{t}}-D_{\mathrm{s}}$ relationships across studies indicates a lack of strict developmental constraint on this relationship, and thus, the possibility for species to adapt a wide range of combinations, and for different sets of genotypes or of species to vary in the $D_{\mathrm{t}}-D_{\mathrm{s}}$ association depending on adaptive context. Thus, the trade-offs in D_{t} and D_{s} may reflect responses to environments wherein a high D_{t} coupled with low D_{s}, or low D_{t} coupled with high D_{s} would provide advantages or be too costly in certain environments, depending on the numerous functions of trichomes. For example, a high D_{t} if coupled with a low D_{s} may impose fitness costs, e.g. in the absence of herbivores, as was proposed for Arabidopsis halleri (Simon et al., 2020). Similarly, a low D_{t} and high D_{s} may be advantageous in resource-rich environments if herbivory is not a driving selective pressure, as a high D_{s} would drive rapid carbon accumulation and growth. Indeed, plants in resource-rich environments may experience more herbivory than those in temperate environments, and have evolved other defenses beyond trichomes (Coley, 1998). By contrast, a high D_{t} and low D_{s} has been proposed to contribute to adaptation to dry and/or salty environments (Glover et al., 1998), by increasing light reflectance and leaf overheating, coupled with reduced water loss to transpiration (Ehleringer and Mooney, 1978; Weiglin and Winter, 1991). In the meta-analysis the independence of D_{t} and D_{s} did not arise across species, but within species of varying populations or genotypes. This may reflect plasticity to the microenvironment or local adaptation in populations and genotypes of species, as decoupling of D_{t} and D_{s} would allow for a wide range of D_{t} and D_{s}. By contrast, the positive coordination of D_{t} and D_{s} is much more general, arising across many taxonomic scales, including across species of different plant families (Figure 5.5), across species within a family, e.g. Proteaceae, across species within a genus, e.g. Dendrobium, between isolated populations for several species, between genotypes of several crop species, and between individuals grown under
experimental treatments such as salt or water stress, and for both adaxial and abaxial leaf surfaces (Table 5.2; Downs and Black, 1999; Zsögön, 2011; Adebooye et al., 2012; Skelton et al., 2012; Barroso et al., 2015; Cach-Pérez et al., 2016; Mediavilla et al., 2019; Mirzaie et al., 2020; Pan et al., 2021; Patel et al., 2021; Aryane do Nascimento Accioly et al., 2022; Soheili et al., 2023; Zhu et al., 2023).

Our sensitivity analysis of the developmental drivers of D_{t} and D_{s} with respect to equations 4 and 5 showed their determination from different factors. All else being equal, a high D_{t} is principally achieved by increasing i_{t}, due to the initiation of a higher proportion of trichomes from epidermal precursors, with an additional lesser role of small epidermal pavement cell size decreasing the spacing between trichomes (Figure 5.3), as previously described for stomata in glabrous-leafed species (Salisbury, 1927; Sack and Buckley, 2016). Our analysis of D_{s} for the California angiosperms found that high D_{s} is principally achieved with high i_{s} and small e. Yet, our causal analysis, which clarifies the true drivers of variation in D_{t} and D_{s} against the background of variation in all input variables, indicated contrasting developmental drivers for the two leaf surfaces for the California angiosperms, with adaxial D_{s} being more strongly driven by i_{s}, followed by e, and abaxial D_{s} more strongly driven by e, followed by i_{s}, consistent with previous studies showing independent molecular controls on development and anatomy of adaxial and abaxial leaf surfaces (Figure 5.4; Kidner \& Timmermans, 2010; Yamaguchi et al., 2012). Notably, the "passive dilution" effect of larger e in reducing D_{s}, would also drive coordinated changes in trichomes, stomata as well as vein density (Brodribb et al., 2013; Carins Murphy et al., 2016). Although trichome cell fate determination occurs early during development in Arabidopsis, our finding that D_{t} was more strongly determined by i_{t} and less by e, whereas D_{s} was less strongly determined by i_{s} and more by e, may indicate that for other plant species,
trichome initiation might continue for longer than stomatal initiation, and even as epidermal cells are still expanding. Additionally, shedding of trichomes between early development and leaf maturation (Choinski and Wise, 1999; Fernández et al., 2014) may also contribute to the lesser impact of e on D_{t}, as shedding of trichomes would be represented in the i_{t}, and may be an alternate mechanism to shift D_{t} independently of changes in e.

Notably, some previous studies within species, especially of genetic TMM mutants in Arabidopsis, found negative relationships between D_{t} with D_{s}, attributed to an allocation tradeoff of epidermal precursor cells, driven by mutual inhibition in the development of trichomes vs stomata (Yan et al., 2014; Simon et al., 2020). Our finding of a positive relationship between i_{t} and i_{s} across a set of diverse species indicates that during diversification any allocation trade-off between trichome and stomata precursors was superseded by a positive coordination in trichome and stomatal initiation rates. In theory, such positive coordination may arise from increasing total precursor number and from loss of mutual inhibition of trichomes vs. stomata.

The positive relationship of D_{t} and D_{s} across a set of diverse California angiosperm species, as for that reported in other studies within and across species (Table 5.2), is consistent with coordinated trait evolution and/or plasticity in response to the environment. For the California angiosperm species in our study, this positive relationship arose from the coordination of i_{t} and i_{s}, and from the contribution of small e to high D_{t} and D_{s}. Multiple explanations may underlie this coordination. First, under higher irradiance, where greater D_{s} would promote higher maximum rates of gas exchange, a higher D_{t} may be beneficial to reflect excess irradiance, maintain lower leaf temperatures, and improve water use efficiency (Camargo and Marenco, 2011). Second, a high $D_{\text {s }}$ to achieve higher maximum gas exchange rates can contribute to 'drought avoidance', i.e., rapid growth in shorter growing periods when water is available
(Grubb, 1998; Hetherington and Woodward, 2003; Sack and Buckley, 2016). When trichomes benefit water relations, through improved foliar surface water uptake, or enabling more rapid leaf drying after rainfall due to repellency (Brewer et al., 1991), this too would benefit adaptation to arid climates by allowing for maintained gas exchange. Third, faster growing plants may show higher D_{s} and may be especially benefitted by hairs as a specialized defense to resist insect damage, given their generally higher leaf nutrient concentrations (Grubb, 1992, 1998). Finally, as plants with high D_{s} have greater likelihood of disease susceptibility through entering the stomata (Gudesblat et al., 2009), a high D_{t} may entrap spores and prevent their contact with the epidermis (Gupt et al., 2021). Indeed, the advantages of such coordination would be especially important for more vulnerable, young, developing leaves when the numerous functions of trichomes are even more important (Karabourniotis and Fasseas, 1996; Choinski and Wise, 1999), and given the higher cost of developing a leaf with high D_{s} (Franks and Beerling, 2009). Despite the evidence for positive coordination in trichome and stomatal densities from the metaanalysis and as I show here, it is evident that some species can have high D_{t} but low D_{s}, or vice versa (Figure 5.5; Table 5.2), indicating that their coupling may not be advantageous and/or potentially too costly, in certain environments.

Disentangling the molecular and genetic drivers across diverse species underlying the coordination or decoupling of D_{t} and D_{s} is a critical avenue for future studies, given the importance of both traits on wild and agricultural species. The coordination of D_{t} and D_{s} has implications and applications in agriculture. Indeed, several studies in the meta-analysis found positive coordination in D_{t} and D_{s} on comparisons of crop varieties. Engineering and breeding of traits that enhance biotic resistance into crops is a promising alternative to harmful chemical agents (Dong and Ronald, 2019). Indeed, a high D_{t} is a trait that has been bred for higher
herbivore deterrence and disease resistance (Pillemer and Tingey, 1976; Snyder and Antonious, 2011), and a high D_{s} would allow for maximized gas exchange. Yet, the carbon cost of plant defenses, including high D_{t}, has raised concern due to the allocation of resources away from growth or reproduction (Strauss and Agrawal, 1999). However, a high D_{t} coupled with high D_{s} may result in herbivory resistance without reducing growth or reproductive yield, which is consistent with several studies testing the growth-defense trade-off of trichomes (Agren and Schemske, 1993; Kaplan et al., 2009). Consistent with this, a high D_{s} has been shown to drive higher yield (Lu et al., 1998; Roche, 2015). A high D_{t} has also been suggested for increasing albedo of crops, and influencing regional temperatures (Doughty et al., 2011), although much work is needed on the impact of trichome density across greater scales. As increasing global food production is essential for global food security (Searchinger et al., 2019), future studies should resolve the combined impacts of high D_{t} and D_{s} on crop productivity and yield, and stress tolerance.

Tables

Table 5.1. Definitions of anatomical and developmental traits influencing leaf trichome
density $\left(D_{t}\right)$.

Trait	Symbol	Unit	Definition
Trichome density	D_{t}	$\text { no. } \mathrm{mm}^{-}$	The number of trichomes per leaf area.
Stomatal density	$D_{\text {s }}$	${ }_{2} \text { no. } \mathrm{mm}^{-}$	The number of stomata per leaf area.
Epidermal pavement cell initiation rate/index	$i_{\text {e }}$	unitless	The number of pavement epidermal cells relative to the total number of epidermal cell types $\left(n_{\mathrm{e}} \div\left(n_{\mathrm{s}}+n_{\mathrm{t}}+n_{\mathrm{e}}\right)\right.$).
Stomatal initiation rate/index	$i_{\text {s }}$	unitless	The number of stomata relative to the total number of epidermal cell types $\left(n_{\mathrm{s}} \div\left(n_{\mathrm{s}}+n_{\mathrm{t}}+n_{\mathrm{e}}\right)\right.$).
Trichome initiation rate/index	$i_{\text {t }}$	unitless	The number of trichomes relative to the total number of epidermal cell types $\left(n_{\mathrm{t}} \div\left(n_{\mathrm{s}}+n_{\mathrm{t}}+n_{\mathrm{e}}\right)\right.$).
Epidermal area	e	mm^{2}	The projected area of an epidermal pavement cell.
Stomatal area	s	mm^{2}	The projected area of an epidermal stoma.
Trichome area	t	mm^{2}	The projected area of an epidermal trichome cell.
Stomatal number	$n_{\text {s }}$	no.	The total number of stomata.
Trichome number	$n_{\text {t }}$	no.	The total number of trichome cells.
Epidermal number	$n_{\text {e }}$	no.	The total number of epidermal pavement cells.

Table 5.2. Published studies showing variation in the association of leaf trichome and stomatal densities within and across species. For each study, I report whether or not the study supported evidence of a trade-off (i.e, decreasing trend), positive coordination (i.e,. increasing trend) or independence (i.e., no trend) in trichome and stomatal densities, sampled species and family, scale at which the comparison was made, growing conditions, leaf surface tested, and the reference. References ordered by their support for a trade-off, positive coordination or independence. For the leaf surface, NA indicates information about the leaf surface tested was not provided in the study.

| Relationship of trichome
 density vs. stomatal density
 (Trade-off = TO; Positive
 Coordination = PC; I =
 Independent) | | Species | Family | Scale | Reference |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TO | | | | | |

Figures

Figure 5.1. The developmental sequence of leaf trichome and stomata formation, and diversity of leaf trichomes of California species. (A) The developmental sequence of trichome and stomatal formation (modified from figures 2 and 3 of Torii, 2021). In eudicots, trichomes are initiated by protodermal cells or meristemoid mother cells (MMC), i.e., prior to stomatal meristemoid formation. Asymmetric cell divisions of the MMC result in meristemoid precursors that divide further and then differentiate into guard mother cells (GMC) which divide and differentiate into stomatal guard cells (GC). High activity of SPEECHLESS (SPCH) proteins in the protoderm and MMCs drives stomatal formation. SPCH activity is also high in meristemoid cells, and drives upregulation of TOO MANY MOUTHS (TMM), which contributes to ensuring
one-cell spacing and also reduces trichome numbers via an unknown mechanism. SPCH activity also leads to the upregulation of genes that drive trichome formation. Both trichome and stomatal precursors may exclude each other's development from protodermal precursors. Abaxial trichomes visualized from nail varnish peels of leaf surfaces for (B) Ericameria cuneata, (C) Encelia californica, (D) Quercus garryana, (E) Ceanothus cordulatus and (F) Chrysolepis sempervirens. The white arrow in panels (B) - (F) indicates a trichome and the number in the bottom left indicates the abaxial trichome density $\left(D_{\mathrm{t}}\right)$ for that species, ordered from lowest to highest.

Figure 5.2. Validating the developmental basis for leaf trichome density and analyzing the contributions of anatomical and developmental traits to leaf trichome density for diverse

California species. Estimation of adaxial and abaxial (A) leaf trichome density $\left(D_{\mathrm{t}}\right)$, and (B) leaf stomatal density $\left(D_{\mathrm{s}}\right)$ as functions of the trichome index $\left(i_{\mathrm{t}}\right)$, stomatal index $\left(i_{\mathrm{s}}\right)$, trichome cell area (t), stomatal cell area (s) and epidermal pavement cell area (e), plotted against measured values of D_{t} and $D_{\mathrm{s} .}{ }^{* * *} p<0.001$. Black solid lines in both panels are ordinary least square regressions (OLS) fitted to the data with a fixed zero intercept, with the $1: 1$ line in orange and 95% prediction intervals as segmented black lines. $N=63$ and 54 in (A) and $N=39$ and 51 in (B), corresponding to adaxial and abaxial surfaces, in red and blue, respectively. The total species number represented by both surfaces for both traits was 78 .

Figure 5.3. The intrinsic sensitivity of leaf trichome and stomatal densities to underlying developmental parameters. Panels (A) and (B) show the intrinsic sensitivity of D_{t} and D_{s}, respectively, for the abaxial surface (Tables S5.2-S5.3). The intrinsic sensitivity for the adaxial surface was similar with that of abaxial surface (Table S5.4-S5.5). The intrinsic sensitivity signifies the impact on D_{t} or D_{s} of shifting one parameter in equations 4 and 5 , respectively, while holding all others constant.

Figure 5.4. Contributions of anatomical and developmental traits to leaf trichome density for diverse California species. The realized sensitivity of D_{t} and D_{s} to underlying developmental parameters for (A) amphistomatous and (B) hypostomatous leaves. Causal influences are presented as percentages adjacent to arrows, with the upper red value for the adaxial surface and lower blue value for the abaxial surface; the thickness of the arrows reflect relative causal influences (Table S5.6).

Figure 5.5. Testing the association of leaf trichome density $\left(D_{t}\right)$ with stomatal density $\left(D_{s}\right)$, and trichome initiation rates (i_{t}) with stomatal initiation rates $\left(i_{s}\right)$ across diverse California species. Relationships of (A) trichome density $\left(D_{\mathrm{t}}\right)$ with stomatal density $\left(D_{\mathrm{s}}\right)$ and (\mathbf{B}) leaf trichome initiation rate $\left(i_{t}\right)$ and stomatal initiation rate $\left(i_{s}\right)$, for the adaxial and abaxial leaf surfaces, in red and blue points, respectively. $N=39$ and 52 in both panels, corresponding to adaxial and abaxial surfaces, in red and blue, respectively. Lines are standard major axes (SMA) regressions. ${ }^{*} p<0.05,{ }^{* * *} p<0.001$.

Supplementary Materials

Supplementary Table Captions (see attached excel workbook)

Table S5.1. Species of diverse California angiosperm species included in the study, site(s) sampled, site latitude and longitude, site vegetation type, family, trichome morphology, trichome glandular/non-glandular, measurements able to quantify per surface and used for analyses, mean and \pm standard errors of leaf epidermal traits measured. Traits left blank for a given species indicates that data could not be collected for the abaxial or adaxial surface for these species.

Table S5.2. The intrinsic sensitivity of leaf abaxial trichome density $\left(D_{t}\right)$ to developmental parameters: $\boldsymbol{i}_{\mathrm{s}}, \boldsymbol{i}_{\mathrm{t}}, \boldsymbol{t}, \boldsymbol{s}$ and \boldsymbol{e}. I present calculations for changing mean estimated D_{t} across a range of increasing and decreasing parameter values from $0-100 \%$, for each developmental parameter. Thus, I estimated D_{t} by inputting mean values for the parameters listed, and then increased and decreased each parameter from $0-100 \%$, holding all other parameters constant. I then calculated the $\%$ change in D_{t} across the range of increasing and decreasing parameter values relative to the mean estimated D_{t} of 69.6. I then normalized this value to reflect actual $\%$ change values from the mean D_{t}, in columns I and P .

Table S5.3. The intrinsic sensitivity of leaf abaxial stomatal density $\left(D_{s}\right)$ to developmental parameters: $\boldsymbol{i}_{\mathrm{s}}, \boldsymbol{i}_{\mathrm{t}}, \boldsymbol{t}, \boldsymbol{s}$ and \boldsymbol{e}. I present calculations for changing mean estimated D_{s} across a range of increasing and decreasing parameter values from $0-100 \%$, for each developmental parameter. Thus, I estimated D_{s} by inputting mean values for the parameters listed, and then
increased and decreased each parameter from $0-100 \%$, holding all other parameters constant. I then calculated the \% change in D_{s} across the range of increasing and decreasing parameter values relative to the mean estimated D_{s} of 215.2 . I then normalized this value to reflect actual $\%$ change values from the mean D_{s}, in columns I and P .

Table S5.4. The intrinsic sensitivity of leaf adaxial trichome density $\left(D_{t}\right)$ to developmental

 parameters: $\boldsymbol{i}_{\mathbf{s}}, \boldsymbol{i}_{\mathbf{t}}, \boldsymbol{t}, \boldsymbol{s}$ and \boldsymbol{e}. I present calculations for changing mean estimated D_{t} across a range of increasing and decreasing parameter values from 0-100\%, for each developmental parameter. Thus, I estimated D_{t} by inputting mean values for the parameters listed, and then increased and decreased each parameter from $0-100 \%$, holding all other parameters constant. I then calculated the \% change in D_{t} across the range of increasing and decreasing parameter values relative to the mean estimated D_{t} of 44.3 . I then normalized this value to reflect actual $\%$ change values from the mean D_{t}, in columns I and P .Table S5.5. The intrinsic sensitivity of leaf adaxial stomatal density $\left(D_{s}\right)$ to developmental parameters: $\boldsymbol{i}_{\mathrm{s}}, \boldsymbol{i}_{\mathbf{t}}, \boldsymbol{t}, \boldsymbol{s}$ and \boldsymbol{e}. I present calculations for changing mean estimated D_{s} across a range of increasing and decreasing parameter values from $0-100 \%$, for each developmental parameter. Thus, I estimated D_{s} by inputting mean values for the parameters listed, and then increased and decreased each parameter from $0-100 \%$, holding all other parameters constant. I then calculated the \% change in D_{s} across the range of increasing and decreasing parameter values relative to the mean estimated D_{s} of 144.5 . I then normalized this value to reflect actual \% change values from the mean D_{s}, in columns I and P .

Table S6.6. The realized sensitivity of leaf trichome density $\left(D_{t}\right)$ and leaf stomatal density $\left(D_{s}\right)$ to developmental parameters: i_{s}, i_{t}, t, s and e. To enable robust comparisons of the realized sensitivity of D_{t} and D_{s} to input variables on both leaf surfaces, this analysis focused on the 37 species for which data were available for D_{t} and D_{s} for both surfaces, separately considering the 24 amphistomatous species, i.e., with $D_{\mathrm{s}}>0$ on both surfaces, and the 13 hypostomatous species, i.e., with D_{s} and s of 0 on the adaxial surface. Values in bold indicate contribution $>5 \%$.

References

1. Adebooye, O. C., M. Hunsche, G. Noga, and C. Lankes. 2012. Morphology and density of trichomes and stomata of Trichosanthes cucumerina (Cucurbitaceae) as affected by leaf age and salinity. Turkish Journal of Botany 36: 328-335.
2. Adrian, J., J. Chang, C. E. Ballenger, B. O. R. Bargmann, J. Alassimone, K. A. Davies, O. S. Lau, et al. 2015. Transcriptome dynamics of the stomatal lineage: birth, amplification and termination of a self-renewing population. Developmental cell 33: 107118.
3. Agrawal, A. A., M., Fishbein, R., Jetter, J., Salminen, J. B., Goldstein, A. E., Freitag, and J. P., Sparks. 2009. Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behavior. New Phytologist 183: 848-867.
4. Agren, J., and D. W. Schemske. 1993. The Cost of Defense Against Herbivores: An Experimental Study of Trichome Production in Brassica rapa. The American Naturalist 141: 338-350.
5. do Nascimento Accioly, A., N., Corte-Real, R., de Paiva Farias, and E.C., Pereira de Arruda. 2022. Phenotypic plasticity of trichomes and stomatal density in Cenostigma microphyllum (Mart. ex G. Don) E. Gagnon and G. P. Lewis (Fabaceae) in a seasonally dry tropical forest, Brazil. Revista brasileira de botânica 45: 645-650.
6. Azmat, R., S. Haider, H. Nasreen, F. Aziz, and M. Riaz. 2009. A viable alternative mechanism in adapting the plants to heavy metal environment. Pakistan Journal of Botany 41: 2729-2738.
7. Barroso, A. A. M., E. Galeano, A. J. P. Albrecht, F. C. dos Reis, and R. V. Filho. 2015. Does Sourgrass leaf anatomy influence glyphosate resistance? Comunicata Scientiae 6: 445-453.
8. Bickford, C. P. 2016. Ecophysiology of leaf trichomes. Functional plant biology 43: 807-814.
9. Brewer, C. A., W. K. Smith, and T. C. Vogelmann. 1991. Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant, Cell \& Environment 14: 955-962.
10. Brodribb, T. J., G. J. Jordan, and R. J. Carpenter. 2013. Unified changes in cell size permit coordinated leaf evolution. New Phytologist 199: 559-570.
11. Buckley, T. N., and A. Diaz-Espejo. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant, Cell \& Environment 38: 1200-1211.
12. Cach-Pérez, M. J., J. L. Andrade, W. Cetzal-Ix, and C. Reyes-García. 2016. Environmental influence on the inter- and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula. Botanical Journal of the Linnean Society 181: 441-458.
13. Camargo, M. A. B., and R. A. Marenco. 2011. Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. Acta Amazonica 41: 205-212.
14. Carins Murphy, M. R., G. J. Dow, G. J. Jordan, and T. J. Brodribb. 2017a. Vein density is independent of epidermal cell size in Arabidopsis mutants. Functional Plant Biology 44: 410-418.
15. Carins Murphy, M. R., G. J. Jordan, and T. J. Brodribb. 2017b. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms. PLOS ONE 12: e0185648.
16. Carins Murphy, M. R., G. J. Jordan, and T. J. Brodribb. 2014. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant, Cell \& Environment 37: 124-131.
17. Carins Murphy, M. R., G. J. Jordan, and T. J. Brodribb. 2016. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Annals of Botany 118: 1127-1138.
18. Carins Murphy, M. R., G. J. Jordan, and T. J. Brodribb. 2012. Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant, Cell \& Environment 35: 14071418.
19. Choi, Y.-E., E. Harada, M. Wada, H. Tsuboi, Y. Morita, T. Kusano, and H. Sano. 2001. Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213: 45-50.
20. Choinski, J. S., and R. R. Wise. 1999. Leaf Growth Development in Relation to Gas Exchange in Quercus marilandica Muenchh. Journal of Plant Physiology 154: 302-309.
21. Coley, P. D. 1998. Possible Effects of Climate Change on Plant/Herbivore Interactions in Moist Tropical Forests. Climatic Change 39: 455-472.
22. Dong, O. X., and P. C. Ronald. 2019. Genetic Engineering for Disease Resistance in Plants: Recent Progress and Future Perspectives. Plant Physiology 180: 26-38.
23. Doughty, C. E., C. B. Field, and A. M. S. McMillan. 2011. Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate? Climatic Change 104: 379-387.
24. Downs, J. L., and R. A. Black. 1999. Leaf surface characteristics and gas exchange in Artemisia tridentata subspecies wyomingensis and tridentata. USDA Forest Service Proceedings.
25. Ehleringer, J., O. Björkman, and H. A. Mooney. 1976. Leaf Pubescence: Effects on Absorptance and Photosynthesis in a Desert Shrub. Science 192: 376-377.
26. Ehleringer, J. R., and O. Björkman. 1978. Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36: 151-162.
27. Ehleringer, J. R., and H. A. Mooney. 1978. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia 37: 183-200.
28. Evert, R. F. 2006. Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. 3rd ed. John Wiley.
29. Fambrini, M., and C. Pugliesi. 2019. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. Plants (Basel, Switzerland) 8: 253.
30. Fernández, V., D. Sancho-Knapik, P. Guzmán, J. J. Peguero-Pina, L. Gil, G. Karabourniotis, M. Khayet, et al. 2014. Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age. Plant Physiology 166: 168-180.
31. Franks, P. J., and D. J. Beerling. 2009. Maximum leaf conductance driven by CO_{2} effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences 106: 10343-10347.
32. Glover, B. J. 2000. Differentiation in plant epidermal cells. Journal of Experimental Botany 51: 497-505.
33. Glover, B. J., M., Perez-Rodriguez, and C., Martin. 1998. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125: 3497-3508.
34. Grubb, P. J. 1998. A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics 1: 3-31.
35. Grubb, P. J. 1992. Presidential Address: A Positive Distrust in Simplicity - Lessons From Plant Defences and From Competition Among Plants and Among Animals. Journal of Ecology 80: 585-610.
36. Gudesblat, G. E., P. S. Torres, and A. A. Vojnov. 2009. Stomata and pathogens. Plant Signaling \& Behavior 4: 1114-1116.
37. Gupt, S. K., R. Chand, V. K. Mishra, R. N. Ahirwar, M. Bhatta, and A. K. Joshi. 2021. Spot blotch disease of wheat as influenced by foliar trichome and stomata density. Journal of Agriculture and Food Research 6: 100227.
38. Haberlandt, G. 1914. Physiological plant anatomy. 4th ed. MacMillan, London, UK.
39. Handley, R., B. Ekbom, and J. Ågren. 2005. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecological Entomology 30: 284-292.
40. Hare, J. D., and E. Elle. 2002. Variable Impact of Diverse Insect Herbivores on Dimorphic Datura wrightii. Ecology 83: 2711-2720.
41. Hetherington, A. M., and F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901-908.
42. Hoof, J., L. Sack, D. T. Webb, and E. T. Nilsen. 2008. Contrasting Structure and Function of Pubescent and Glabrous Varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at High Elevation. Biotropica 40: 113-118.
43. John, G. P., C. Scoffoni, T. N. Buckley, R. Villar, H. Poorter, and L. Sack. 2017. The anatomical and compositional basis of leaf mass per area. Ecology Letters 20: 412-425.
44. Kaplan, I., G. P. Dively, and R. F. Denno. 2009. The costs of anti-herbivore defense traits in agricultural crop plants: a case study involving leafhoppers and trichomes. Ecological Applications 19: 864-872.
45. Karabourniotis, G., and C. Fasseas. 1996. The dense indumentum with its polyphenol content may replace the protective role of the epidermis in some young xeromorphic leaves. Canadian Journal of Botany 74: 347-351.
46. Kidner, C. A., and M. C. P. Timmermans. 2010. Signaling sides adaxial-abaxial patterning in leaves. Current Topics in Developmental Biology 91: 141-168.
47. Kim, K., H. Kim, S. Ho Park, and S. Joon Lee. 2017. Hydraulic Strategy of Cactus Trichome for Absorption and Storage of Water under Arid Environment. Frontiers in Plant Science 8.
48. Konrad, W., D. L. Royer, P. J. Franks, and A. Roth-Nebelsick. 2021. Quantitative critique of leaf-based paleo- CO_{2} proxies: Consequences for their reliability and applicability. Geological Journal 56: 886-902.
49. Larkin, J. C., M. D. Marks, J. Nadeau, and F. Sack. 1997. Epidermal cell fate and patterning in leaves. The Plant Cell 9: 1109-1120.
50. Li, C., Y. Mo, N. Wang, L. Xing, Y. Qu, Y. Chen, Z. Yuan, et al. 2023. The overlooked functions of trichomes: Water absorption and metal detoxication. Plant, Cell \& Environment 46: 669-687.
51. Lin, Y.-S., B. E. Medlyn, R. A. Duursma, I. C. Prentice, H. Wang, S. Baig, D. Eamus, et al. 2015. Optimal stomatal behaviour around the world. Nature Climate Change 5: 459464.
52. Lu, Z., R. G. Percy, C. O. Qualset, and E. Zeiger. 1998. Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. Journal of Experimental Botany 49: 453-460.
53. Mauricio, R. 1998. Costs of Resistance to Natural Enemies in Field Populations of the Annual Plant Arabidopsis thaliana. The American Naturalist 151: 20-28.
54. Medeiros, C. D., C. Scoffoni, G. P. John, M. K. Bartlett, F. Inman-Narahari, R. Ostertag, S. Cordell, et al. 2019. An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. Functional Ecology 33: 712734.
55. Mediavilla, S., I. Martín, J. Babiano, and A. Escudero. 2019. Foliar plasticity related to gradients of heat and drought stress across crown orientations in three Mediterranean Quercus species. PLoS ONE 14: e0224462.
56. Mirzaie, M., A. R. Ladanmoghadam, L. Hakimi, and E. Danaee. 2020. Water Stress Modifies Essential Oil Yield and Composition, Glandular Trichomes and Stomatal Features of Lemongrass (Cymbopogon citratus) Inoculated with Arbuscular Mycorrhizal Fungi. Journal of Agricultural Science and Technology 22: 1575-1585.
57. Muir, C. D., M. À. Conesa, J. Galmés, V. Pathare, P. Rivera, R. L. Rodríguez, T. Terrazas, and D. Xiong. 2022. How important are functional and developmental constraints on phenotypic evolution? An empirical test with the stomatal anatomy of flowering plants. The American Naturalist.
58. Pan, Z.-L., W. Guo, Y.-J. Zhang, J. D. M. Schreel, J.-Y. Gao, Y.-P. Li, and S.-J. Yang. 2021. Leaf trichomes of Dendrobium species (epiphytic orchids) in relation to foliar water uptake, leaf surface wettability, and water balance. Environmental and Experimental Botany 190: 104568.
59. Patel, I., L. Y. Gorim, K. Tanino, and A. Vandenberg. 2021. Diversity in Surface Microstructures of Trichomes, Epidermal Cells, and Stomata in Lentil Germplasm. Frontiers in Plant Science 12.
60. Pillemer, E. A., and W. M. Tingey. 1976. Hooked Trichomes: A Physical Plant Barrier to a Major Agricultural Pest. Science 193: 482-484.
61. Ripley, B. S., N. W. Pammenter, and V. R. Smith. 1999. Function of Leaf Hairs Revisited: The Hair Layer on Leaves Arctotheca populifolia Reduces Photoinhibition, but Leads to Higher Leaf Temperatures Caused by Lower Transpiration Rates. Journal of Plant Physiology 155: 78-85.
62. Roche, D. 2015. Stomatal Conductance Is Essential for Higher Yield Potential of C3 Crops. Critical Reviews in Plant Sciences 34: 429-453.
63. Royer, D. L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO_{2} concentration. Review of Palaeobotany and Palynology 114: 1-28.
64. Sack, L., and T. N. Buckley. 2016. The Developmental Basis of Stomatal Density and Flux. Plant Physiology 171: 2358-2363.
65. Sack, L., and T. N. Buckley. 2020. Trait Multi-Functionality in Plant Stress Response. Integrative and Comparative Biology 60: 98-112.
66. Salisbury, E. 1927. I. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philosophical Transactions of the Royal Society B: Biological Sciences 216: 1-65.
67. Schreel, J. D. M., O. Leroux, W. Goossens, C. Brodersen, A. Rubinstein, and K. Steppe. 2020. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): a major role for trichomes. The Plant Journal 103: 769-780.
68. Schwerbrock, R., and C. Leuschner. 2017. Foliar water uptake, a widespread phenomenon in temperate woodland ferns? Plant Ecology 218: 555-563.
69. Searchinger, T., R. Waite, C. Hanson, J. Ranganathan, and E. Matthews. 2019. Creating a Sustainable Food Future.
70. Simon, N. M. L., J. Sugisaka, M. N. Honjo, S. A. Tunstad, G. Tunna, H. Kudoh, and A. N. Dodd. 2020. Altered stomatal patterning accompanies a trichome dimorphism in a natural population of Arabidopsis. Plant Direct 4: e00262.
71. Skelton, R. P., J. J. Midgley, J. M. Nyaga, S. D. Johnson, M. D. Cramer, R. P. Skelton, J. J. Midgley, et al. 2012. Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait? Australian Journal of Botany 60: 104-113.
72. Snyder, J. C., and G. F. Antonious. 2011. Trichomes - importance in plant defence and plant breeding. CABI Reviews 2009: 1-16.
73. Soheili, F., M. Heydari, S. Woodward, and H. R. Naji. 2023. Adaptive mechanism in Quercus brantii Lindl. leaves under climatic differentiation: morphological and anatomical traits. Scientific Reports 13: 3580.
74. Strauss, S. Y., and A. A. Agrawal. 1999. The ecology and evolution of plant tolerance to herbivory. Trends in Ecology \& Evolution 14: 179-185.
75. Torii, K. U. 2021. Stomatal development in the context of epidermal tissues. Annals of Botany 128: 137-148.
76. Valverde, P. L., J. Fornoni, and J. NÚÑez-Farfán. 2001. Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium. Journal of Evolutionary Biology 14: 424-432.
77. Vinod, N., M. Slot, I. R. McGregor, E. M. Ordway, M. N. Smith, T. C. Taylor, L. Sack, et al. 2023. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. New Phytologist 237: 22-47.
78. Wang, X., C. Shen, P. Meng, G. Tan, and L. Lv. 2021. Analysis and review of trichomes in plants. BMC Plant Biology 21: 70.
79. Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. smatr 3 - an R package for estimation and inference about allometric lines: The smatr 3-an R package Methods in Ecology and Evolution 3: 257-259.
80. Weiglin, C., and E. Winter. 1991. Leaf Structures of Xerohalophytes from an East Jordanian Salt Pan. Flora 185: 405-424.
81. Werker, E. 2000. Trichome diversity and development. Advances in Botanical Research, 1-35. Elsevier.
82. Wong, S. C., I. R. Cowan, and G. D. Farquhar. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282: 424-426.
83. Yamaguchi, T., A. Nukazuka, and H. Tsukaya. 2012. Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development. Plant and Cell Physiology 53: 1180-1194.
84. Yan, L., X. Cheng, R. Jia, Q. Qin, L. Guan, H. Du, and S. Hou. 2014. New phenotypic characteristics of three tmm alleles in Arabidopsis thaliana. Plant Cell Reports 33: 719731.
85. Zhu, Y., J. Zheng, H. Kang, N. Hui, S. Yin, Z. Chen, B. Du, and C. Liu. 2023. Spatial variations in leaf trichomes and their coordination with stomata in Quercus variabilis across Eastern Asia. Preprints.
86. Zsögön, A. 2011. Identification and characterization of a tomato introgression line with reduced wilting under drought.

Chapter 6: Integrating leaf expansion kinematics into the leaf economics spectrum: a meta-analysis across species

Abstract

Leaf traits, including those related to size and economics importantly influence species’ adaptation, resource-acquisition and productivity. While leaf size confers adaptation to climate and microclimate, leaf economics spectrum (LES) traits underlie growth "strategy" according to the "fast vs. slow" axis of trait variation, such that, on average, species with higher rates of photosynthesis and respiration per unit leaf mass ($A_{\text {mass }}$ and $R_{\text {mass }}$) have lower leaf mass per area ($L M A$), higher foliar nitrogen per mass ($N_{\text {mass }}$), and shorter leaf lifespans $(L L)$. Although mature leaf size is typically weakly related to LES traits, I hypothesized that the "fast vs slow" developmental rates and durations underlying leaf area would be associated within the LES, through metabolism and ecological adaptation. To address previous debates on whether leaf expansion rate or duration tends to be the strongest drivers of mature leaf area $\left(L A_{\mathrm{m}}\right)$, I applied a novel approach to extracting leaf expansion kinematics parameters from the sigmoidal dynamics of leaf expansion with time, i.e., primordium size $\left(L A_{\mathrm{p}}\right)$, leaf maximum expansion rate (R) and expansion duration (T) and to determining their causal influences on $L A_{\mathrm{m}}$. I extracted these parameters for a compiled database for 38 diverse angiosperm species including all published leaf expansion trajectories, and further estimated parameters for the 118 additional species for which leaf size and expansion time were available, and tested relationships with LES traits. Higher $L A_{\mathrm{p}}$ and R and lower T were associated across species with high $A_{\text {mass }}, R_{\text {mass }}$ and $N_{\text {mass }}$ and low $L M A$ and $L L$. Yet, a strong general trade-off between R and T constrains $L A_{\mathrm{m}}$ across species, and thus, the bulk of across species variation in $L A_{\mathrm{m}}$ is determined by $L A_{\mathrm{p}}$ rather than R or T.

Despite such constraint, higher $L A_{\mathrm{m}}$ was positively associated with both mass- and area- based LES traits, excluding LMA, and LL was negatively related to $L A_{\mathrm{m}}$. Our findings resolve developmental trait causality of $L A_{\mathrm{m}}$ across diverse species and their relationship with the LES, with key implications species' productivity, stress tolerance and biogeographical distributions.

Introduction

Leaf traits influence plant species performance, productivity, adaptation and biogeography in past and present ecosystems worldwide (Osborne et al., 2004; Violle et al., 2007; Wright et al., 2017; Baird et al., 2021). The mature leaf area $\left(L A_{\mathrm{m}}\right)$ varies $>100,000$-fold across species, affecting leaf energy balance, stress tolerance and carbon accumulation (Wright et al., 2017; Baird et al., 2021). Yet, its determination by underlying developmental processes, i.e. leaf expansion rate vs. duration, across diverse species is poorly understood (Gázquez \& Beemster, 2017; Wright et al., 2017; Baird et al., 2021). Further, the potential association of leaf developmental traits with other leaf traits has remained unexamined. By contrast, a strong understanding of associations among other key leaf traits has arisen in recent decades (Wright et al., 2004). The leaf economic spectrum (LES) represents a unified axis of leaf trait variation across species globally, in which traits are associated that confer fast-growth and resource acquisition or, conversely slow growth and resource retentiveness (Wright et al., 2004; Reich, 2014). Thus, species with lower leaf mass per area $(L M A)$ also have lower leaf lifespan $(L L)$, higher photosynthetic rate per mass ($A_{\text {mass }}$), dark respiration rate per mass ($R_{\text {mass }}$), and foliar nitrogen and phosphorus contents per mass ($N_{\text {mass }}$ and $P_{\text {mass }}$) (Wright et al., 2004). This generalization is mechanistically based, as higher $A_{\text {mass }}, N_{\text {mass }}, P_{\text {mass }}$ and $R_{\text {mass }}$ arise from greater allocation to photosynthetic machinery and associated metabolic reactions relative to structural components that would contribute to higher $L M A$ and longer leaf longevity, and higher $A_{\text {mass }}$ and lower $L M A$ (or higher specific leaf area) contribute to rapid plant relative growth rate (Poorter, 1990; Poorter \& Van Der Werk, 1998; Poorter \& Garnier, 2007). The aim of this study was to resolve the control of final leaf size by leaf expansion rate and duration and test their associations with LES traits, with implications and applications across biological scales.

Although the regulation of leaf growth has been extensively studied at the molecular, cellular, and genetic scale, mainly in model organisms, we still lack a clear understanding of how leaf developmental processes determine final leaf size across diverse species (Van Volkenburgh, 1999; Granier et al., 2000; Granier \& Tardieu, 2009; Gonzalez et al., 2010, 2012; Kalve et al., 2014; Ma, Buckley \& Sack in prep.). Species differences in final leaf size are driven by variation in the rate of leaf expansion and/or its duration (Moles \& Westoby, 2000; Sun et al., 2006; Granier \& Tardieu, 2009; Ma, Buckley \& Sack in prep.). The few comparative studies of the developmental determinants of $L A_{\mathrm{m}}$ have alternatively suggested that across species, larger leaves arise from longer durations of leaf expansion (Moles \& Westoby, 2000), or more rapid rates leaf expansion, or both (Sun et al., 2006; Gázquez \& Beemster, 2017). Previous approaches to resolve the developmental traits underlying $L A_{\mathrm{m}}$ faced several challenges. First, the parameters of leaf expansion have typically been estimated from functions fitted to time series, but there has not been a clear approach to independently resolving separate initial (primordium) leaf size from expansion rate and duration. Second, the causal role of developmental traits in driving leaf size has been inferred by comparing the strength of their correlations with $L A_{\mathrm{m}}$, although this approach cannot provide robust evidence for causation, especially when variables are intercorrelated (Granier et al., 2000; Moles \& Westoby, 2000; Sun et al., 2006; Voorend et al., 2014; Gázquez \& Beemster, 2017; John et al., 2017). I aimed to resolve the developmental controls of leaf size across species, resolving primordium leaf size, and leaf expansion rate and duration independently and their separate causal influences on $L A_{\mathrm{m}}$, and to provide insight into the underlying drivers of diversity in leaf size and their potential relationship with other ecologically important traits across species.

Studies of the relationship of $L A_{\mathrm{m}}$ with other LES traits have typically shown weak relationships across diverse species. Thus, a study across 1943 species found larger leaves tended to have higher $L M A$, representing a weak tendency for larger leaves to require increasing allocation to structural support resulting in "diminishing returns" in photosynthetic mass per leaf area (Niklas et al., 2007). By contrast, tests of the relationship of $L A_{\mathrm{m}}$ to $L M A$ on smaller diverse species sets, whether closely related within lineages, or across lineages, tended to show an opposite trend, with smaller leaves tending to have higher $L M A$, apparently driven by independent trait adaptation to dry or higher irradiance conditions, within lineages or across communities (Grubb, 1998; Osada, 2020). Other studies within communities or across species have found no associations (Scoffoni et al., 2011; John et al., 2018; Medeiros et al., 2019). Yet, while several studies have shown that rapidly growing species tend to have rapid rates of canopy leaf area expansion (Lambers et al., 1998; Poorter \& Van Der Werk, 1998), no studies to our knowledge have directly considered potential relationships of developmental traits underlying $L A_{\mathrm{m}}$ with LES traits. I hypothesized that leaf expansion rate and duration may be linked with LES traits due to multiple mechanisms, based on developmental or metabolic or ecological processes. First, leaf developmental traits may be linked with LES traits due to developmental coordination. High $L M A$ leaves may take longer to expand in size due to the need to transport and assimilate more materials to construct the leaf with larger thick-walled cells, and with more tissue layers (John et al., 2017). Second, leaf expansion rate may be linked with higher metabolic rates (Green et al., 1971; Cleland, 1981; Nielsen \& Veierskov, 1990), and thus with greater $A_{\text {mass }}$ and $R_{\text {mass }}$, and higher nutrient concentrations that underlie these rates. Indeed, a higher source leaf photosynthetic activity might enable greater rates of sugar export, and thus, a higher relative sink strength in growing leaves, and thus more rapid rates of leaf expansion (Marcelis, 1996;

White et al., 2016). Third, the linkage may arise from coordinated selection for rapid growth, resource-acquisition and competition under high resource supplies, and slow growth, resource retention and stress resistance under low nutrient supplies (Grubb, 1998). Such impacts would be consistent with a high $A_{\text {mass }}$ driving rapid leaf flush and expansion, with high leaf turnover of less-protected leaves due to self-shading, herbivory, mechanical damage and senescence (Ackerly \& Bazzaz, 1995). By contrast, selection may favor greater structural tissue allocation under low resources, i.e., high $L M A$, and $L L$, which are associated with lower $A_{\text {mass }}$ and $N_{\text {mass }}$, leading to lower allocation to rapid leaf expansion and longer expansion times. Finally, adaptive responses of both leaf expansion processes and metabolism to environmental factors such as temperature may also contribute to their coordination (Morison \& Morecroft, 2006). Indeed, the covariation in area-based LES traits is typically much weaker than mass-based traits in large data sets (Wright et al., 2004), however linkages of area-based LES traits with leaf size and leaf expansion traits may arise across angiosperms, though indirectly due to variation in height and/or diversification across light environments (Price et al., 2014; Scoffoni et al., 2016). $L A_{\mathrm{m}}$ is often associated with climate (Wright et al., 2017; Baird et al., 2021), and its developmental determinants would potentially also be related to climate as shifts in $L A_{\mathrm{m}}$ would necessitate shifts in its underlying developmental processes (Gray \& Brady, 2016). Yet, LES traits tend to exhibit weak relationships with climate overall, as there is typically large variation in LES traits within communities under similar climates, with trait variation reflecting functional diversity that contributes to partitioning of niches (Wright et al., 2004, 2005).

I tested the hypothesis of general determination of species differences in $L A_{\mathrm{m}}$ by specific underlying developmental traits, and that these would be linked with LES traits and climate. I developed our approach expanding on a previous study of the causal basis of $L A_{\mathrm{m}}$ in epidermal
cell developmental traits within and across 12 eudicotyledonous species (Ma, Buckley and Sack in prep.). That study found that $L A_{\mathrm{m}}$ was determined most strongly by leaf primordium cell number, and the rate of cell proliferation during leaf expansion, and resolved multiple trade-offs among parameters, including between primordium cell size and overall cell expansion, between primordium cell number and cell overall proliferation, between the rate and duration of cell proliferation, and between the rate and duration of cell expansion (Ma, Buckley \& Sack in prep.). Here I developed an analogous approach for whole leaf expansion, enabling analyses of many more available data, and tests of developmental trait relationships with LES traits. I compiled available data for time series of leaf expansion and measurements of leaf expansion durations, for a total of 140 widely distributed angiosperm species, representing 53 families, grown in controlled and natural conditions, and extracted developmental parameters for the determinants of leaf size, including primordium size $\left(L A_{\mathrm{p}}\right)$ and absolute growth (G), and further analyzed G as a function of maximum relative rate of leaf expansion (R) and the duration of leaf expansion (T). I extracted LES trait data from the TRY global trait network database (Kattge et al., 2020). I then tested the hypothesis that leaf expansion developmental parameters are linked with LES traits, such that R would be positively coordinated with LES traits related to fastgrowth and resource acquisition (i.e., high $A_{\text {mass }}, R_{\text {mass }}, N_{\text {mass }}$ and $P_{\text {mass }}$) and negatively with traits associated with slow growth and resource retention (i.e., high $L M A$ and $L L$). I also tested the hypotheses that trade-offs reported at the leaf cell level would scale up to whole leaf development, i.e., between $L A_{\mathrm{p}}$ and G and between R and T.

Materials and Methods

Compilation of leaf expansion datasets

I compiled a database of time-series data for leaf expansion growth for 38 wild and crop eudicot species, representative of 34 genera in 23 families, grown under controlled and natural conditions from published literature via searches using GoogleScholar, Web of Science, and references from articles (Table S6.1-S6.2; Figure 6.1). Our selection included species for which at least six data points were available for leaf area growth as a function of time (Table S6.2). I also compiled a second database for 140 diverse species, representative of 108 genera in 53 families, from studies that included measurements of final leaf area and leaf expansion duration, also including the species from the first database, for which I could also estimate R (see equation 10 below). I searched for studies for both databases using the keywords 'leaf expansion, 'leaf growth', 'leaf area' or 'leaf expansion' combined with 'rate', 'duration', 'time' and 'during'. For some of the studies for which I compiled data for dataset two, some species were sampled from multiple sites, thus I averaged $L A_{\mathrm{m}}$ and T_{99} values between sites per species.

Extraction of leaf economics data from TRY

For the 140 diverse species, I extracted leaf mass per area excluding the petiole, leaf lifespan, leaf photosynthetic rate per area and per mass, leaf dark respiration rate per area and per mass, leaf nitrogen per area and per mass and leaf phosphorus per area and per mass, and averaged values for each trait per species (Table S6.1). Prior to averaging per species, I excluded misentered values of Lonicera maackii for $A_{\text {area }}$ which were $154 \mathrm{umol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$, a value orders of magnitude higher than the typical $A_{\text {area }}$. Further, for Arabidopsis thaliana, I excluded values from Blonder et al., 2015 as many of the values were extremely low compared to other studies,
entered numerous times in the database, measured from mutants and the conditions upon measuring were not provided, i.e. uncertainty if at light-saturation.

Data Analysis

For species in the first database of 38 species, for which species had at least six data points for leaf area growth with time, I fitted a statistical model capturing the sigmoidal process of leaf expansion with time (Ma, Buckley \& Sack in prep.):

$$
\begin{equation*}
L A(t)=\frac{L A_{m}}{1+e^{-R\left(T-T_{50}\right)}} \tag{1}
\end{equation*}
$$

where $L A(t)$ is the instantaneous value of leaf area at time $t, L A_{m}$ is the maximum value of $L A, R$ is the maximum growth rate of leaf area, T is time, and T_{50} is the time at which y reaches 50% of its maximum value. I fitted this equation to each species using the R programming language and extracted $L A_{m}, R$, and T_{50}. Our aim was to determine traits influencing the expansion of final leaf size reflecting the in principle independent roles of primordium size, expansion rate and duration. Thus, I extracted primordium size $\left(L A_{\mathrm{p}}\right)$ and leaf absolute growth $(G$; the proportional increase, i.e., $L A_{\mathrm{m}} / L A_{\mathrm{p}}$), and partitioned G as a function of maximum relative growth rate and growth duration. Mature leaf size is causally partitioned as:

$$
\begin{equation*}
L A_{m}=L A_{p} G \tag{2}
\end{equation*}
$$

where $L A_{\mathrm{p}}$ and G are primordium size $\left(\mathrm{cm}^{2}\right)$ and its absolute growth increase, respectively. Thus, for each species, I calculated the primordium size, i.e., the initial value at $t=0$ from equation 1, and using the inputs from the extracted values of $L A_{\mathrm{m}}, R$, and T_{50} as:

$$
\begin{equation*}
L A_{\mathrm{p}}=y_{0}=\frac{L A_{m}}{1+e^{R T_{50}}} \tag{3}
\end{equation*}
$$

The absolute growth of the primordium to mature leaf area is:

$$
\begin{equation*}
G=\frac{\left(1+0.01 e^{R T}\right)}{1.01} \tag{4}
\end{equation*}
$$

where R is the maximum growth rate of $L A_{\mathrm{m}}$ and T is the duration of leaf expansion. I calculated the time at which y, i.e., leaf area, reaches 99% of its mature value as:

$$
\begin{equation*}
0.99 L A_{m}=\frac{L A_{m}}{1+e^{-R\left(T_{99}-T_{50}\right)}} \tag{5}
\end{equation*}
$$

Equation 5 can be re-arranged as:

$$
\begin{equation*}
T_{99}=T_{50}-\frac{\ln (0.01)}{R} \tag{6}
\end{equation*}
$$

Equation 3 can be re-arranged as:

$$
\begin{equation*}
L A_{m}=L A_{p}\left(1+e^{R T_{50}}\right) \tag{7}
\end{equation*}
$$

Solving for T_{50} in equation 6 , and applying this to equation 7 , and then to equation 1 gives:

$$
\begin{equation*}
y(t)=L A_{p} \frac{\left(1+0.01 e^{\left.R T_{99}\right)}\right.}{1+0.01 e^{\left(-R\left(T-T_{99}\right)\right)}} \tag{8}
\end{equation*}
$$

Equation 8 represents the growth in leaf area as functions of primordium size $\left(y_{p}\right)$ and growth durations $\left(t_{y}\right)$. Thus, a mature leaf, i.e. at leaf expansion of 99% leaf area, can be expressed by replacing t with the total durations of growth (i.e. cell proliferation and expansion) in the denominator of equation 8 , to give:

$$
\begin{equation*}
L A_{m}=L A_{p} \frac{\left(1+0.01 e^{R T_{99}}\right)}{1.01} \tag{9}
\end{equation*}
$$

This equation 9 is the same as equation 2 , but with the drivers of G explicitly considered, and thus allows for causal partitioning of $L A_{\mathrm{m}}$ by $L A_{\mathrm{p}}, R$ and T_{99}. Lastly, solving for R in equation 9 gives:

$$
\begin{equation*}
R=\frac{\ln \frac{\frac{L A_{\mathrm{m}}}{L A_{\mathrm{p}} 1.01}-1}{0.01}}{T_{99}} \tag{10}
\end{equation*}
$$

Equation 9 represents the causal determination of mature leaf area by primordium size and growth, i.e. the rates and durations of cell proliferation and expansion. Further, Equation 10 allows for estimation of r from values of $L A_{\mathrm{m}}, L A_{\mathrm{p}}$ and T_{99}. I acknowledge uncertainty in our $L A_{\mathrm{p}}$ values, for several reasons. First, the criteria for selecting $T=0$ in each compiled study was not clear, i.e. how the emerging primordium was first distinguished from the shoot apical meristem, and secondly, studies varied in the time points at which leaf areas were quantified, with some studies using as $t=0$ the time of certain processes, e.g. seed sowing, seed germinating, etc. Thus, for species in which the first time point was $t>5$ and $L A_{\mathrm{m}}<1 \mathrm{~cm}^{2}$, I standardized t by setting the first time point as $t=0$ with the corresponding initial $L A_{\mathrm{m}}$, and each following t value was the difference of the two next data points, such that increasing $L A_{\mathrm{m}}$ corresponded to the differences in t. In other cases, some species first time points were $1<t<5$, and $1<L A_{\mathrm{m}}<5$, and for these I added a $t=0$, and $L A_{\mathrm{m}}=0$ as the first time point. Thus, $t=0$, and $L A_{\mathrm{m}}=0$ were not added as the first time point when a species first $L A_{\mathrm{m}}$ was $<1 \mathrm{~cm}^{2}$, as this first value was considered close to 0.

For species in the larger second database of, for which measurements were made only for final leaf area and the total duration of leaf expansion, I estimated R based on eqn 8 using different scenarios for assumed $L A_{\mathrm{p}}$ values. First, because in the first dataset, $L A_{\mathrm{p}}$ and $L A_{\mathrm{m}}$ were related $\left(\log _{10}\left(L A_{\mathrm{p}}\right)=0.879 \times \log _{10}\left(L A_{\mathrm{m}}\right)-1.9 ; r^{2}=0.16 ; P=0.011\right)$, I estimated $L A_{\mathrm{p}}$ based on $L A_{\mathrm{m}}$. To validate this method for estimating R, for the first dataset, I compared R values estimated from the sigmoidal trajectory with R values estimated this way. Values did not significantly differ in the two methods of determination (Figure S6.1; 0.43 ± 0.05 vs. $0.42 \pm$ $0.03 ; P=0.74$; paired t-test), and were correlated (Figure S6.1; $r=0.86 ; P<0.001$). For
subsequent analyses of the larger dataset I focused on R values for the larger dataset estimated using the correlation of $L A_{\mathrm{p}}$ and $L A_{\mathrm{m}}$.

I also causally partitioned the realized drivers of leaf expansion on mature leaf size in two ways. First, I conducted a hierarchical causal partitioning analysis that partitioned the impacts of $L A_{\mathrm{p}}$ and G on $L A_{\mathrm{m}}$, and then I partitioned the impacts of R and T on G, i.e., using Equations 2 and 4. Second, I determined the overall impacts of $L A_{\mathrm{p}}, R$ and T on $L A_{\mathrm{m}}$, i.e. equation 9, by multiplying the impact of G on $L A_{\mathrm{m}}$ by the impact of R on G, and of T_{99} on G. For the causal partitioning analyses, I utilized the species from dataset one, i.e. including the 38 species from which I had leaf area growth with time data, using equation 1 to extract R, equation 3 to extract $L A_{\mathrm{p}}$ and equation 6 to extract T_{99}. Such causal analyses partition the causal contribution of each input variable to the differences in mature leaf size for each pairwise species combination, and then calculating the median contribution across all pairwise combinations (Buckley \& DiazEspejo, 2015; John et al., 2017; Ma, Buckley \& Sack in prep.). Thus, a higher positive \% contribution indicates that the variable has a strong causal role in determining mature leaf size, whereas a negative $\%$ contribution indicates that for species with higher mature leaf size, the variable differed across species in the direction that would reduce leaf size, and this negative impact is overcome by the positive impacts of the other variables. Notably, the realized causal contributions depend on the variation of all variables, and thus on the species-set of the analysis.

To elucidate potential associations of leaf traits with developmental processes, I tested correlations. First, I tested for a trade-off in R and T_{99}, across the 140 species from the larger second database. I also tested for correlations of mature leaf area and leaf economic spectrum (LES) area- and mass-based traits with $L A_{\mathrm{p}}, R$ and T_{99}, using ordinary least square (OLS) regressions. Further, I also re-confirmed the tight covariation in mass-based LES traits for our
species, using standard major axis (SMA) regressions (Figure S6.2). Data were log-transformed prior to correlation analyses. In all figures, datasets one and two are presented as solid black and grey points, respectively. Analyses were performed using the R Programming Language (R Core Team 2023).

Results

Variation in leaf expansion parameters

I found large variation in developmental traits for the 38 species for which full time series for leaf expansion was available, and the sigmoidal function was fitted (Figure 6.1). Across these 38 species, $L A_{\mathrm{m}}$ varied from $1.55-331 \mathrm{~cm}^{2}, L A_{\mathrm{p}}$ from $2,600 \mu \mathrm{~m}^{2}$ to $6.86 \mathrm{~cm}^{2}, R$ from $0.09-1.75 \mathrm{~cm}^{2}$ day $^{-1}$, and T_{99} from 9.8 to 94 days. I also found large variation across the 140 species for which T was measured, and I estimated R (Table S6.1); $L A_{\mathrm{m}}$ varied from $0.027-331 \mathrm{~cm}^{2}, R$ from 0.048 1.14 day $^{-1}$ and T_{99} from 8.4-201 days (Table S6.1).

Causal drivers of leaf size across species and trade-offs among developmental traits

Our causal partitioning analysis showed that across the 38 species for which full time series for leaf expansion was available, $L A_{\mathrm{p}}$ and G determined 93% and 7% of $L A$ variation, respectively (Figure 6.2; Table S6.3). In turn, on average, G was causally determined entirely by R, and T_{99} had a negative causal impact on G (Figure 6.2; Table S6.3). Thus, on average, a species with a higher G than another achieved this with higher R, and it also tended to have a shorter T (thus a negative causal influence of T). Our analysis of the ultimate developmental drivers of $L A_{\mathrm{m}}$, i.e., of the influences of $L A_{\mathrm{p}}, R$ and T, showed that $L A_{\mathrm{m}}$ was positively determined 93% by $L A_{\mathrm{p}}$ and 9% by R, and -2% by T_{99} (Figure 6.2; Table S6.3). The causal partitioning analysis differed in
some respects from the findings of correlation analyses across species. The critical importance of $L A_{\mathrm{p}}$ in determining $L A_{\mathrm{m}}$ across species was supported by the their positive association, and, additionally, the robustness of this trend, despite the extraction of $L A_{\mathrm{p}}$ from fitted curves was supported by the association of $L A_{\mathrm{m}}$ with the first measured leaf area for each species, and the first measured leaf area was related to $L A_{\mathrm{p}}$ (Figure S6.3-S6.4). Further, $L A_{\mathrm{m}}$ was not associated with G and T_{99}. However, across species, $L A_{\mathrm{m}}$ was positively correlated with R (Figure S6.3; Table 2), despite this relationship being nonreflective of causality.

I resolved strong trade-offs across species between the developmental traits. Across the 38 species, I found strong trade-offs between $L A_{\mathrm{p}}$ and G and between T and R (standard major axis; $P<0.001$; Figure 6.2; Table S6.4). The trade-off in T and R was supported for both the 38 species with full time series and the 140 species for which T was measured and I estimated R (standard major axis; $P<0.001$; Figure 6.2; Table S6.4).

Coordination in leaf expansion parameters and leaf economic spectrum traits

I found novel relationships of leaf economic spectrum traits with leaf expansion developmental traits across species (Figure 6.3). For the 38 species with full time series I tested relationships of LES traits with $L A_{\mathrm{p}}, G, R$ and T_{99}. Across species, leaf mass per area ($L M A$) was negatively associated with $L A_{\mathrm{p}}$ (ordinary least squares, $P<0.05$; Figure 6.3 ; Table 6.2) and positively with T_{99} (ordinary least squares, $P<0.05$; Figure 6.3; Table 6.2). Photosynthetic and respiration rates per mass ($A_{\text {mass }}$ and $R_{\text {mass }}$), and nitrogen and phosphorus per mass ($N_{\text {mass }}$ and $P_{\text {mass }}$) were positively associated with R and negatively associated with $T_{99}(P<0.001$; Figure 6.3, Table 6.2). Indeed, photosynthetic rate per area ($A_{\text {area }}$) was also positively associated with R ($P<0.001$; Figure 6.2, Table 6.2). All LES traits were independent of G for the 38 species (Figure S6.5). For
the 140 species for which T was measured and I estimated G and R, I found broadly similar relationships with LES traits, with additional resolution, given the greater power arising in the larger dataset. $L M A$ and $L L$ were negatively related to R and positively related to T_{99}, and independent of $G\left(P<0.05\right.$; Figure 6.3; Table 2; Figure S6.5), and $A_{\text {mass }}, R_{\text {mass, }}, N_{\text {mass }}$ and $P_{\text {mass }}$ increased positively with R, and negatively with T_{99}, and $A_{\text {mass, }}, N_{\text {mass }}$ and $P_{\text {mass }}$ were positively related to higher $G\left(P<0.001\right.$; Figure 6.3; Table 2; Figure S6.5). $R_{\text {area }}$ and $P_{\text {area }}$ also increased positively with R, and negatively with T_{99}, and $N_{\text {area }}$ declined with increasing R and increased with higher T_{99} ($P<0.001$; Figure 6.3; Table 2).

Discussion

Our meta-analyses linking leaf expansion processes with leaf economic spectrum (LES) traits provides a novel understanding of the drivers and importance of leaf structure and function across scales. First, I confirmed a critical role of primordium size $\left(L A_{\mathrm{p}}\right)$ and the maximum growth rate (R) as main determinants of across species variation in mature leaf size $\left(L A_{\mathrm{m}}\right)$, rather than T_{99} as has been previously proposed. Second, I provide strong evidence for two important trade-offs, in the primordium size $\left(L A_{\mathrm{p}}\right)$ and absolute growth of the primordium to final leaf size (G), and in the determinants of G, i.e. the maximum rate (R) versus duration $\left(T_{99}\right)$ of leaf expansion. These trade-offs both provide insight into how the determinants of $L A_{\mathrm{m}}$ arise, and how such determinants would be linked with LES traits. Third, I demonstrate important linkages of LES traits with leaf expansion processes that would arise for several reasons, which I discuss below.

Our study resolves the higher level developmental traits driving differences in mature leaf size across species. Our results indicate a critical role of the leaf primordium size in determining
$L A_{\mathrm{m}}$. This finding is consistent with higher primordium cell number driving increasing $L A$ in a previous analysis of cell-level determinants of $L A_{\mathrm{p}}$ (Ma, Buckley \& Sack in prep.). This finding indicates a very early canalization of leaf size variation even in the shoot apical meristem, as larger leaf primordia would recruit more cells from the apical meristem during leaf initiation (Autran et al., 2002; Gonzalez et al., 2012; Schnablová et al., 2017). Thus, larger apical meristems arise from greater cell numbers, which in turn leads to larger leaf primordium with greater cell numbers (Schnablová et al., 2017). Our finding that the leaf primordium size contributes strongly to the determination of mature leaf size across species may extend the overall pattern of size-coordination among plant organs known as Corner's Rules, by which stems/branches of trees with greater cross sectional area support leaves with higher $L A_{\mathrm{m}}$, whereas trees with thinner but more numerous branches will support leaves with lower $L A_{\mathrm{m}}$ (Corner, 1949; Lauri, 2019).

The trade-offs resolved among leaf area expansion traits are consistent with those determined at the cell scale (Ma, Buckley \& Sack in prep.), i.e., those between $L A_{\mathrm{p}}$ and G, and R vs. T reflect at a higher level those previously shown to hold between primordium cell number and size and their increases in leaf development, and between the rates and durations of cell proliferation and cell expansion. Several mechanisms have been proposed to explain the cell level trade-offs, and such mechanisms can also explain the higher level trade-offs shown here, including mechanical and biochemical constraints, fitness advantages, and/or constrained selection for optimal range of leaf sizes across species (Brown et al., 2004; Savage et al., 2007; Pantin et al., 2012; Niklas \& Cobb, 2017; Trinh et al., 2021; Ma, Buckley \& Sack in prep.). Thus, larger primordia, with more numerous or larger cells may be constrained in expansion capacity by their lower surface area-to-volume ratio (Savage et al., 2007; Trinh et al., 2021).

Biochemically, processes occurring at greater rates typically cannot be sustained because of greater resource depletion and/or the accumulation of waste-products (Brown et al., 2004; Pantin et al., 2012), which has been proposed to explain and is also consistent with high $A_{\text {mass }}$ being coupled with low $L M A$ and $L L$ (Wright et al., 2004). The trade-offs may also arise from fitness advantages that would occur from selection on one of the variables, e.g. selection to reduce duration but increase expansion rate to acclimate to herbivory or other abiotic stresses (Moles \& Westoby, 2000; Baird et al., 2021). Lastly, the trade-offs would arise extrinsically if $L A_{\mathrm{m}}$ was selected for an optimal range of values, and thus the trade-offs would then constrain the range of $L A_{\mathrm{m}}$ (Ma, Buckley \& Sack in prep.). Notably, the trade-off in $L A_{\mathrm{p}}$ and G indicates that species with lower $L A_{\mathrm{p}}$ have higher growth from $L A_{\mathrm{p}}$ to $L A_{\mathrm{m}}$, however this higher growth is not high enough to drive higher $L A_{\mathrm{m}}$.

I found that $L A_{\mathrm{m}}$ was also causally determined by variation in R and not T, as has been proposed from some correlation analyses in studies for which we re-analyzed data as part of our compiled dataset (Sun et al., 2006; Gázquez \& Beemster, 2017); but see (Moles \& Westoby, 2000). Indeed, I found that species with higher $L A_{\mathrm{m}}$ do not generally arise from higher T, but in fact, species with higher $L A_{\mathrm{m}}$ actually would have lower T. While a high $L A_{\mathrm{m}}$ could intrinsically arise from either a high R or T, or both, the trade-off in R and T leads to species with higher R having lower T, and explains the negative causal impact of T on $L A_{\mathrm{m}}$. That species with higher $L A_{\mathrm{m}}$ have higher R but lower T is consistent with species with lower T having higher shoot hydraulic conductance, as a higher shoot hydraulic conductance would provide greater water availability to expanding leaves (Nardini, 2002), and potentially increasing R. Notably, R and T values are partially interdependent mathematically; R and T_{50} are extracted from the same curves, and T is calculated based on T_{50} and R (Methods, equation 6). Thus, the trade-off between R and
T would correspond to conservative variation in T_{50} relative to R (see Brett, 2004). The conservation of T_{50} is consistent with adaptation to reduce the period of leaf vulnerability early in development (Ma, Buckley \& Sack in prep.), during which leaves would be vulnerable to herbivory or dehydration (Moles \& Westoby, 2000; Barton et al., 2019; Kane et al., 2020). Our resolution of the higher level developmental traits underlying species variation in $L A_{\mathrm{m}}$ provides insight into previously proposed ecological patterns. Previous hypotheses that a lower T would result in a lower $L A_{\mathrm{m}}$, and thus a lower T would be adaptive to reduce the susceptibility to herbivory (Moles \& Westoby, 2000), yet our findings suggest that T_{50} is conserved, and that overall a higher $L A_{\mathrm{m}}$ would arise from higher R, and not generally from higher T.

The linkages between leaf expansion developmental traits and LES traits would arise for numerous non-exclusive reasons and highlight the linkages of leaf growth with leaf functional traits. First, high $L M A$ species also arose from meristems that developed smaller $L A_{\mathrm{p}}$, (Figure 6.3), though $L M A$ was not related to $L A_{\mathrm{m}}$ in spite of its relationship with its principal driver. I hypothesize that small primordia may be selected for stress tolerance, similarly to low $L M A$, given the strong vulnerability of the early expanded leaf. Second, the positive coordination of $L M A$ and $L L$ with T indicates that the anatomical and compositional components underlying high $L M A$, i.e. larger cells, thicker cell walls, denser cells and more cell layers (John et al., 2017; Onoda et al., 2017), may require greater leaf expansion durations. Third, a greater mass and N allocation to cell walls arises from increases in wall thickness, which also reduces mesophyll conductance, and reduces $A_{\text {mass }}$ (Onoda et al., 2017). Indeed, this is one of several ways in which R may be linked with metabolic rates (Green et al., 1971; Cleland, 1981; Nielsen \& Veierskov, 1990), which would lead to the positive coordination in R with $A_{\text {mass }}, R_{\text {mass, }} N_{\text {mass }}$ and $P_{\text {mass. }}$ A linkage of R with metabolism would also potentially arise from complex source-sink processes
as greater source activity arising from high $A_{\text {mass }}$ would drive higher export rates, and therefore enabling higher relative sink strength in growing leaves, and contributing to greater R. Such a proposition would be consistent with source-sink feedback and regulation, i.e. reduced utilization of photosynthetic products through reduced sink activity or reduced export reduces photosynthetic activity (Moorby, 1977; Paul \& Foyer, 2001; Ainsworth \& Bush, 2011). Finally, the linkages of developmental traits with LES traits may arise from co-selection for rapid growth, resource-acquisition and competition under high resource supplies versus slow growth, resource retention and stress resistance under low nutrient supplies (Grubb, 1998). Indeed, selection for rapid growth may favor greater allocation to properties underlying high photosynthetic rate and thus, higher $A_{\text {mass }}$ and $N_{\text {mass }}$, as well as more rapid expansion and shorter duration to achieve mature leaves faster. This would be consistent with more rapid leaf expansion leading to quicker source maturation, self-shading, and whole plant growth, as mediated by impacts of high A mass $, R_{\text {mass }}, N_{\text {mass }}$ and $P_{\text {mass }}$, and causing positive-feedback (Ackerly \& Bazzaz, 1995).

The developmental traits underlying leaf size expansion can also provide mechanistic detail to clarify trends observed across mature leaves of diverse species. Thus, the higher R in larger leaves can also explain the scaling across eudicots globally of greater major vein diameters and lower major vein densities with higher $L A_{\mathrm{m}}$, a pattern proposed to constrain the global distribution of leaf size and climate (Sack et al., 2012). Those traits would be achieved by the greater rate of tissue expansion of major veins, enabling their larger diameters at maturity, and of the lamina between veins, contributing to their lower major vein density at maturity. Future studies should explore the linkages of climate adaptation with leaf expansion developmental parameters.

Our study highlights the important developmental traits that underlie diversity in $L A_{\mathrm{m}}$, and will provide greater resolution in future research on the evolution of leaf size variation within and across lineages. Further, leaf expansion developmental traits may be more proximally related to genetics and evolution than $L A_{\mathrm{m}}$, with applications in global ecology and agriculture. The relationship of developmental traits to LES traits provides further potential applications. In particular, crop yield is highly influenced by source limitations (White et al., 2016), and species with higher leaf expansion rates have higher yields (Cross, 1991; van den Boogaard et al., 1996). Thus, the potential role of R in increasing $L A_{\mathrm{m}}$ and its coordination with fast-growing LES traits such as $A_{\text {mass }}$ suggests that R may be a promising target for increasing yield, though potentially at the expense of reduced $L M A$ and $L L$, and stress tolerance (Richards, 2000). Indeed, as the genetic and molecular drivers underlying $L A_{\mathrm{m}}$ are being increasingly dissected, our study provides an additional functional linkage of the resulting structural and functional components that would be coupled with genetic and molecular transformation, and also would allow for more precise bioengineering. Furthermore, elucidating the higher level processes driving leaf expansion and their linkage with the LES across species provides a foundational basis of leaf functional ecology and points to further pursuits of $L A_{\mathrm{m}}$ variation, including the developmental drivers of leaf size within single plants and species and those developmental drivers underpinning leaf size adaptation to sun vs. shade, low vs. high soil nutrients and aridity,

Tables

Table 6.1. Definitions of developmental variables and leaf traits involved in the link between leaf size and the leaf economic spectrum (LES).

Trait, variable or feature	Symbol	Unit	N
Leaf area and leaf expansion traits			
Maximum leaf area at maturity	$L A_{\text {m }}$	cm^{2}	140
Primordium size	$L A_{\mathrm{p}}$	cm^{2}	38
Absolute leaf growth, i.e., estimated from equation 8	G	unitless	
Obtained two ways,			
Estimated with R_{1} and T_{99}	G_{1}	unitless	38
Estimated with R_{2} and T_{99}	G_{2}	unitless	140
Maximum absolute rate of rapid leaf expansion - Obtained two ways,	R	cm^{2} day	
1. Extracted as model parameter	R_{1}	cm^{2} day	38
from equation 1 for leaf expansion and time data	R_{2}		
Estimated from equation 10 with observed $L A_{\mathrm{m}}$ and t_{99}, and estimated $L A_{\mathrm{p}}$.		cm^{2} day	140
Duration of leaf expansion at 99% final leaf area	T_{99}	days	140
Duration of leaf expansion at 50% final leaf area	T_{50}	days	38
Leaf economics traits			
Leaf mass per area	LMA	$\mathrm{mg} \mathrm{m} \mathrm{m}^{-2}$	75
Leaf lifespan	LL	months	34
Photosynthetic rate per leaf mass and per leaf area	$A_{\text {mass }}$ and $A_{\text {area }}$	$\mu \mathrm{mol} \mathrm{~g}^{-1} \mathrm{~s}_{\mathrm{s}^{-2}} \text { and } \mu \mathrm{mol} \mathrm{~m}$	50
Dark respiration rate per leaf mass and per leaf area	$R_{\text {mass }}$ and $R_{\text {area }}$	$\mu \mathrm{mol} \mathrm{g}^{-1} \mathrm{~s}^{-2} \mathrm{~s}_{\mathrm{s}}^{-2} \mathrm{and} \mu \mathrm{mol} \mathrm{m}{ }^{-2}$	28
Leaf nitrogen per leaf mass and per leaf area	$N_{\text {mass }}$ and $N_{\text {area }}$	$\mathrm{mg} \mathrm{g}^{-1}$ and $\mathrm{mg} \mathrm{mm}^{-2}$	82
Leaf phosphorus per leaf mass or per leaf area	$P_{\text {mass }}$ and $P_{\text {area }}$	$\mathrm{mg} \mathrm{g}^{-1}$ and $\mathrm{mg} \mathrm{mm}^{-2}$	75

Table 6.2. Bivariate relationships between leaf expansion parameters with leaf area and

 mass-based leaf economics traits. Ordinary least square regressions were used to test relationships of leaf expansion traits (x-variables) with leaf area and leaf economics spectrum traits (y-variables). R^{2} and P-values are provided for all tests, and slopes, including 95\% confidence intervals when significant at $P<0.05 . R_{1}$ and R_{2}, correspond to the expansion traits extracted from model fits for the 38 species with leaf area growth with time data (equation 1), and for 140 species for which we estimated $L A_{\mathrm{p}}$ from a relationship of $L A_{\mathrm{m}}$ and $L A_{\mathrm{p}}$ across the 38 species, which was then used to estimate R_{2} (equation 10). Tests with T_{99} were performed across all 140 species. Parameters in bold indicate significant relationships.| X | Y | Raw | | Log | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | $R^{2}(P)$ | Slope (95 C.I.s) | $R^{2}(P)$ | Slope (95 C.I.s) |
| $L A_{\mathrm{p}}$ | LA | 0.10 (0.055) | | 0.16 (0.011) | 0.187 (0.045, 0.330) |
| | LMA | 0.29 (0.045) | $\begin{gathered} -0.018(-0.035,- \\ 0.00045) \end{gathered}$ | 0.27 (0.059) | |
| | LL | 0.083 (0.42) | | 0.00018 (0.97) | |
| | $A_{\text {mass }}$ | 0.13 (0.12) | | 0.0066 (0.73) | |
| | $A_{\text {area }}$ | 0.037 (0.41) | | 0.0082 (0.69) | |
| | $R_{\text {mass }}$ | 0.38 (0.057) | | 0.0035 (0.87) | |
| | $R_{\text {area }}$ | 0.36 (0.051) | | 0.36 (0.050) | |
| | $N_{\text {mass }}$ | 0.025 (0.52) | | 0.085 (0.23) | |
| | $N_{\text {area }}$ | 0.071 (0.24) | | 0.0043 (0.78) | |
| | $P_{\text {mass }}$ | 0.23 (0.07) | | 0.019 (0.62) | |
| | $P_{\text {area }}$ | 0.054 (0.52) | | 0.28 (0.12) | |
| $\begin{aligned} & R_{1} \\ & R_{2} \end{aligned}$ | LA | 0.19 (0.007); 0.08 (0.001) | $\begin{gathered} 132(39.23, \\ 224.0) ; 89.6 \\ (36.7,142) \end{gathered}$ | 0.04 (0.224); $\mathbf{0 . 0 6}$ (0.01) | 0.636 (0.193, 1.08) |
| | LMA | 0.01 (0.75); $\mathbf{0 . 1 6 (0 . 0 0 0 4)}$ | $\begin{gathered} -0.07(-0.10,- \\ 0.03) \end{gathered}$ | $\begin{gathered} \text { 2.1e-06 (0.99); } \mathbf{0 . 3 0} \\ \left(\mathbf{3 . 5 7} \mathrm{e}^{-7}\right) \end{gathered}$ | -0.384 (-0.521, -0.248) |
| | LL | 0.50 (0.03); 0.21 (0.006) | $\begin{gathered} -25.2(-47.9,- \\ 2.51) ;-17.3(- \\ 29.2,-5.32) \end{gathered}$ | $\begin{gathered} 0.35(0.096) ; \mathbf{0 . 3 3} \\ \mathbf{(0 . 0 0 0 3)} \end{gathered}$ | -0.532 (-0.797, -0.266) |
| | $A_{\text {mass }}$ | 0.14 (0.11); 0.18 (0.002) | $\begin{gathered} 0.330(0.125, \\ 0.534) \end{gathered}$ | $0.38(0.005) ; 0.34\left(7.55 \mathrm{e}^{-}\right.$ | $\begin{gathered} 0.83(0.28,1.37) ; 0.630 \\ (0.377,0.882) \end{gathered}$ |
| | $A_{\text {area }}$ | 0.22 (0.03); 0.014 (0.37) | | 0.11 (0.15); 0.011 (0.42) | |
| | $R_{\text {mass }}$ | $\begin{gathered} 0.75(0.003) ; 0.53\left(1.16 \mathrm{e}^{-}\right. \\ \left.{ }^{5}\right) \end{gathered}$ | $\begin{gathered} 0.10(0.05,1.5) ; \\ 0.052(0.032 \\ 0.072) \end{gathered}$ | $\left.0.60(0.014) ;{ }_{6}^{6}\right)$ | $\begin{gathered} 0.98 \text { (0.27, 1.69); } 0.741 \\ (0.484,0.998) \end{gathered}$ |
| | $R_{\text {area }}$ | $\begin{gathered} 0.34 \text { (0.075); } \mathbf{0 . 2 4} \\ (\mathbf{0 . 0 0 6 1)} \end{gathered}$ | | 0.12 (0.32); $\mathbf{0 . 1 7}$ (0.02) | |
| | $N_{\text {mass }}$ | $\begin{gathered} 0.43(0.003) ; 0.14 \\ (0.0005) \end{gathered}$ | $\begin{gathered} 51.7(20.3, \\ 83.1) ; 15.1 \\ (6.80,24.4) \end{gathered}$ | $0.41(0.004) ; 0.30\left(1.10 \mathrm{e}^{-}\right.$ | $\begin{gathered} 0.54(0.19,0.89) ; 0.342 \\ (0.225,0.458) \end{gathered}$ |
| | $N_{\text {area }}$ | $\begin{gathered} 0.052 \text { (0.33); } \mathbf{0 . 0 5 1} \\ \text { (0.041) } \end{gathered}$ | | 0.13 (0.12); 0.08 (0.0088) | |
| | $P_{\text {mass }}$ | 0.20 (0.11); $\mathbf{0 . 2 1}$ (3.588 ${ }^{-5}$) | 3.02 (1.65, 4.38) | $0.24(0.072) ; \mathbf{1 1}) .45\left(4.32 \mathrm{e}^{-}\right.$ | 0.814 (0.604, 1.02) |
| | $P_{\text {area }}$ | $0.021 \text { (0.71); } \mathbf{0 . 2 3} \text { (4.86e- }$
 5) | | 0.11 (0.39); 0.26 (1.23e-5) | |
| T_{99} | LA | 0.02 (0.07) | | 0.04 (0.018) | -0.545 (-0.995, -0.095) |
| | LMA | 0.33 (6.10e ${ }^{-8}$) | $\begin{gathered} 0.0006(0.0004, \\ 0.0008) \end{gathered}$ | 0.30 (3.669 ${ }^{-7}$) | 0.387 (0.249, 0.525) |
| | LL | 0.21 (0.005) | 0.09 (0.03, 0.16) | 0.33 (0.0003) | 0.531 (0.263, 0.798) |
| | $A_{\text {mass }}$ | 0.20 (0.001) | $\begin{gathered} -0.002(-0.003,- \\ 0.0008) \end{gathered}$ | 0.33 (1.17e ${ }^{-5}$) | -0.623 (-0.879, -0.367) |
| | $A_{\text {area }}$ | 0.061 (0.062) | | 0.011 (0.44) | |
| | $R_{\text {mass }}$ | 0.21 (0.014) | $\begin{gathered} -1.54 \mathrm{e}^{-4}\left(-2.73 \mathrm{e}^{-}\right. \\ \left.4,-3.42 \mathrm{e}^{-5}\right) \end{gathered}$ | 0.56 (4.07 ${ }^{-6}$) | -0.734 (-0.994, -0.474) |
| | $R_{\text {area }}$ | 0.18 (0.018) | | 0.17 (0.021) | |
| | $N_{\text {mass }}$ | 0.18 (6.90e $\left.{ }^{-5}\right)$ | $\begin{gathered} -0.1(-0.15,- \\ 0.05) \end{gathered}$ | 0.29 (1.94e $\left.{ }^{-7}\right)$ | -0.338 (-0.456, -0.220) |
| | $N_{\text {area }}$ | 0.058 (0.029) | | 0.083 (0.0087) | |
| | $P_{\text {mass }}$ | 0.20 (4.76e ${ }^{-5}$) | $\begin{gathered} -0.017(-0.025,- \\ 0.010) \end{gathered}$ | 0.43 (1.34e ${ }^{-10}$) | -0.803 (-1.02, -0.589) |
| | $P_{\text {area }}$ | 0.19 (0.0002) | | 0.24 (2.29e-5) | |

Figures

Figure 6.1. Schematics of leaf expansion with time and the influence of developmental traits on LES traits, and leaf expansion growth with time for 38 diverse species from published studies. (A) and (B) The process of leaf expansion is sigmoidal with time, reflecting rapid increases in cell proliferation and expansion. In theory, species that have a higher R, i.e. the maximum rate of increase of the sigmoidal curve, also evolve a lower T_{99}, i.e., the time at 99% of leaf expansion. (C) The trade-off in these developmental processes would be coordinated with the spectrum of LES trait variation, as a higher R represents more rapid expansion growth, which would be coupled with quick resource acquisition and investment and thus higher $A_{\text {mass }}, R_{\text {mass }}$, $N_{\text {mass }}$ and $P_{\text {mass, }}$, but lower $L M A$ and $L L$ given the lower T_{99}. Leaf expansion curves from (D) -
 (GG) $-\mathbf{(O O}), 101+\mathrm{cm}^{2}$. Within each bin, species are presented from low to high R to demonstrate that species with higher T_{99} have less steep curves, i.e. the distance between the red and blue lines decreases from left to right, as shown in the schematics in (A) and (B). (D) Arbutus unedo, (E) Rhamnus alaternus, (F) Lithrea brasiliensis, (G) Quercus ilex, (H) Ochna pulchra, (I) Myrciaria cuspidata, (J) Trifolium repens, (K) Arabidopsis thaliana, (L) Pisum sativum, (M) Lonicera maackii, (N) Syringa oblata, (O) Prunus yedoensis, (P) Lupinus albus, (Q) Erythroxylum argentinum, (R) Nicotiana tabacum, (S) Capsicum annuum, (T) Phaseolus vulgaris, (U) Populus alba, (V) Populus nigra, (W) Tarenaya hassleriana, (X) Gynandropsis gynandra, (Y) Eucalyptus regnans, (Z) Pelargonium zonale, (AA) Litsea pierrei, (BB) Litsea dilleniifolia, (CC) Fragaria virginiana, (DD) Cucurbita pepo, (EE) Lactuca sativa, (FF) Quercus rubra, (GG) Solanum tuberosum, (HH) Myrsine umbellata, (II) Manihot esculenta, (JJ) Actinidia deliciosa, (KK) Cucumis sativus, (LL) Populus euramericana, (MM) Glycine max, (NN) Helianthus annus, (OO) Anthocephalus chihensis. Notably, although R and T differ
dramatically in panels (A) versus (B), the maximum leaf size is the same, and thus leaves of similar sizes may in theory achieve such sizes via higher R or T, however a trade-off in R and T would constrain which of these drives higher $L A_{\mathrm{m}}$ and LES traits. The $L A_{\mathrm{p}}$ in (A) and (B) were 0.0017 and $5.18 \mathrm{~cm}^{2}$, respectively.

Figure 6.2. Causal determinants of maximum leaf size ($\mathbf{L A}_{\mathbf{m}}$), trade-offs in leaf expansion developmental traits, and coordination of leaf expansion developmental traits with areaand mass-based photosynthetic rate. Causal partitioning of $L A_{\mathrm{m}}$ for the 38 species for which we had leaf area growth with time data, with causal influences presented as percentages adjacent to arrows. $L A_{\mathrm{m}}$ is a function of primordium size $\left(L A_{\mathrm{p}}\right)$ and the total growth from the primordium to the mature leaf (G), which is a function of the maximum rate (R) and duration of growth (T_{99}). Grey numbers indicate causal influences based on the hierarchical causal partitioning, whereas black numbers indicate causal influences without hierarchical causal partitioning, i.e. $L A_{\mathrm{m}}$ causally determined by the three ultimate traits. Black and red arrows indicate a positive or negative causal influence, with arrows scaled in size to the magnitude of the causal influence. A negative causal role, as for T_{99} indicates that larger $L A$ was associated with lower t99 that would ultimately reduce $L A$, but this was compensated for by higher R, given the trade-off in R and T_{99} shown in (C). Across species, trade-offs in (B) leaf expansion absolute growth (G) and primordium size $\left(L A_{\mathrm{p}}\right)$ and in (C) leaf expansion duration $\left(T_{99}\right)$ and maximum growth rate (R).

Across species, coordination of (D) photosynthetic rate per leaf area $\left(A_{\text {area }}\right)$ and (E) photosynthetic rate per leaf mass ($A_{\text {mass }}$) with R, and a trade-off of $(\mathbf{F}) A_{\text {mass }}$ with T_{99}. Lines in panels (B) and (C) were fitted with standard major axis (SMA) regressions on log-transformed data across the 38 species with $L A$ growth with time. Lines in panels (D) - (F) were fitted with ordinary least square (OLS) regressions on log-transformed data, across the 38 species with $L A$ growth with time shown in blue, and across the larger dataset of 140 species for which I additionally estimated R, shown in grey. As the 38 species from data set one are also included in data set two, the black line is fitted against all points in (E).

Figure 6.3. Integration of leaf expansion kinematics with the leaf economic spectrum. Negative associations of leaf mass per area $(L M A)$ with (A) leaf primordium size $\left(L A_{\mathrm{p}}\right),(\mathbf{B})$ maximum absolute leaf expansion rate (R), and a positive association with (C) the duration of leaf expansion $\left(T_{99}\right)$. Leaf lifespan $(L L)$ exhibited similar negative and positive associations with (D) R and $\mathbf{(E)} T_{99}$. By contrast, $(\mathbf{F})-(\mathbf{P})$, dark-respiration rate per mass $\left(R_{\text {mass }}\right)$, dark-respiration rate per area ($R_{\text {area }}$), nitrogen content per mass ($N_{\text {mass }}$), phosphorus content per mass ($P_{\text {mass }}$) and phosphorus content per area ($P_{\text {area }}$) were positively coordinated with R and negatively related to T_{99}. By contrast, (L) - (M) nitrogen content per area ($N_{\text {area }}$) was negatively related to R and positively coordinated with T_{99}. Trait definitions, and statistics and slopes are found in Tables 6.1 and 6.2 , respectively. Plotted lines are ordinary least square (OLS) regressions on logtransformed data. Blue and grey points correspond to datasets one and two, respectively.

Supplementary Materials

Supplementary Data Captions (see attached Excel Workbook)

Table S6.1. Species included in the study, the reference from which leaf expansion with time, or final leaf expansion and leaf expansion duration were extracted, leaf expansion traits, and leaf economics traits extracted from the TRY global plant trait database.

Table S6.2. Leaf expansion with time data extracted from published studies. The data used to fit equation 1 per species are in columns E and F .

Table S6.3. Causal partitioning of leaf area ($L A$) to developmental traits: primordium size $\left(L A_{\mathrm{p}}\right)$ and growth (G), and of (G) partitioned by leaf expansion rate (R) and duration ($\left.T_{99}\right)$, or, non-hierarchical partitioning of $L A$, partitioned by $L A_{\mathrm{p}}, \boldsymbol{R}$ and \boldsymbol{T}_{99}.

Table S6.4. Correlation matrix of the associations between leaf expansion traits

Supplementary Figures

Figure S6.1. Comparison of leaf expansion rates (\boldsymbol{R}). (A) Barplot showing the average R_{1}, extracted from equation 1 , and R_{2}, estimated from equation 10 , for the 38 species from dataset one. (B) Correlation between R_{1} and R_{2}. Averages in (A) were compared and not statistically significant by t-test, and the relationship in (B) was significant, at $P<0.05$.

Figure S6.2. Covariation in leaf economics traits for the species in dataset 2. Confirmation of the covariation in mass-based leaf economics traits, extracted from TRY. All relationships are significant at $P<0.05$. Trait definitions are found in Tables 6.1

Figure S6.3. Correlations of the drivers of mature leaf size $\left(L A_{\mathrm{m}}\right)$ across species. $L A_{\mathrm{m}}$ with (A) primordium size $\left(L A_{\mathrm{p}}\right),(\mathbf{B})$ growth $(\mathrm{G}),(\mathbf{C})$ expansion rate (R) and (D) expansion duration (T_{99}), across the same 38 species used for causal analyses. Lines in panels (A) - (D) are ordinary least square (OLS) regressions on log-transformed data in all excluding (C) for which only the analysis on raw data was significant. Although $L A_{\mathrm{m}}$ was independent from T_{99} across the 38 species here, there was a negative association between the two traits across the 140 species (Table 6.2). Trait definitions, and statistics and slopes are found in Tables 6.1 and 6.2, respectively.

Figure S6.4. Additional support for the critical role of primordium size ($L A_{\mathrm{p}}$) on final leaf $\boldsymbol{\operatorname { s i z e }}\left(\boldsymbol{L} \boldsymbol{A}_{\mathbf{m}}\right)$. Associations of $\mathbf{(A)}$ maximum leaf size at maturity $\left(L A_{\mathrm{m}}\right),(\mathbf{B})$ the last $L A$ value of each of the 38 species $L A$ with time data ($L A_{\text {last }}$, and (C) primordium size $\left(L A_{\mathrm{p}}\right)$ with the first $L A$ value of each of the 38 species $L A$ with time data ($L A_{\text {first }}$). Lines were fitted with standard major axis (SMA) regression on log-transformed data.

Figure S6.5. Integration of leaf economic spectrum (LES) traits with leaf expansion growth $(\boldsymbol{G}) .(\mathbf{A})-(\mathbf{D}),(\mathbf{G})-\mathbf{(H)}$ Independence of leaf mass per area $(L M A)$, leaf lifespan $(L L)$, and dark respiration rate per mass ($R_{\text {mass }}$) with absolute leaf expansion growth (G), and (F), (J) and (L) coordination of light-saturated photosynthetic rate per mass ($A_{\text {mass }}$), nitrogen content per mass ($N_{\text {mass }}$) and phosphorus content per mass ($P_{\text {mass }}$) with G. Trait definitions are found in Table 6.1.

Plotted lines are ordinary least square (OLS) regressions on log-transformed data. Black and grey points correspond to datasets one and two, respectively, and are plotted separately due to varying ranges in G.

References

1. Ackerly, D.D. \& F.A., Bazzaz 1995. Leaf dynamics, self-shading and carbon gain in seedlings of a tropical pioneer tree. Oecologia 101: 289-298.
2. Alves, A.C. \& T.L., Setter 2004. Response of Cassava Leaf Area Expansion to Water Deficit: Cell Proliferation, Cell Expansion. and Delayed Development. Annals of Botany 94: 605-613.
3. Ainsworth, E.A. \& D.R., Bush 2011. Carbohydrate Export from the Leaf: A Highly Regulated Process and Target to Enhance Photosynthesis and Productivity. Plant Physiology 155: 64-69.
4. Amer, F.A. \& W.T., Williams 1957. Leaf-area growth in Pelargonium zonale. Annals of Botany 21: 339-342.
5. Autran, D., C., Jonak, K., Belcram, G.T.S., Beemster, J., Kronenberger, O., Grandjean, O., et al., 2002. Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J 21: 6036-6049.
6. Baird, A.S., S.H., Taylor, J., Pasquet-Kok, C., Vuong, Y., Zhang, T., Watcharamongkol, T., et al., 2021. Developmental and biophysical determinants of grass leaf size worldwide. Nature 592: 242-247.
7. Barton, K.E., K.F., Edwards, \& J., Koricheva, 2019. Shifts in woody plant defence syndromes during leaf development. Funct Ecol, 33, 2095-2104.
8. Blonder, B., F., Vasseur, C., Violle, B., Shipley, B.J., Enquist, D., Vile. 2015. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7.
9. van den Boogaard, R., E. J. Veneklaas, J. M. Peacock, and H. Lambers. 1996. Yield and water use of wheat (Triticum aestivum) in a Mediterranean environment: Cultivar differences and sowing density effects. Plant and Soil 181: 251-262.
10. Brett, M. T. 2004. When is a correlation between non-independent variables "spurious"? Oikos 105: 647-656.
11. Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West. 2004. Toward a Metabolic Theory of Ecology. Ecology 85: 1771-1789.
12. Buckley, T. N., and A. Diaz-Espejo. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant, Cell \& Environment 38: 1200-1211.
13. Cai, Z.Q., M., Slot, Z.-X., Fan. 2005. Leaf development and photosynthetic properties of three tropical tree species with delayed greening. Photosynthetica 43: 91-98.
14. Cleland, R. E. 1981. Wall Extensibility: Hormones and Wall Extension. In W. Tanner, and F. A. Loewus [eds.], Plant Carbohydrates II: Extracellular Carbohydrates, Encyclopedia of Plant Physiology, 255-273. Springer, Berlin, Heidelberg.
15. Cookson, S.J., M., van Lijsebettens, C., Granier. 2005. Correlation between leaf growth variables suggest intrinsic and early controls of leaf size in Arabidopsis thaliana. Plant, Cell \& Environment 21: 1355-1366.
16. Corner, E. J. H. 1949. The Durian Theory or the Origin of the Modern Tree. Annals of Botany 13: 367-414.
17. Cross, H. Z. 1991. Leaf Expansion Rate Effects on Yield and Yield Components in Early-Maturing Maize. Crop Science 31: cropsci1991.0011183X003100030006x.
18. Denne, P.M. (1966) Leaf development in Trifolium repens. Botanical Gazette 127: 202210.
19. Ding, Y., Q.-S., Zheng, Y., Zhang, C., He, B., Xie. 2014. Observation of Apparently Unchanging Mesophyll Cell Diameters Throughout Leaf Ontogeny in Woody Species. Journal of Plant Growth Regulation 33: 150-159.
20. England, J.R., P.M., Attiwill. 2008. Patterns of growth and nutrient accumulation in expanding leaves of Eucalyptus regnans (Myrtaceae). Australian Journal of Botany 56, 44-50
21. Ferris, M., G., Taylor. 2001. Leaf area is stimulated in Populus by free air CO_{2} enrichment (POPFACE), through increased cell expansion and production. Plant, Cell \& Environment. 24: 305-315
22. Gázquez, A., and G. T. S. Beemster. 2017. What determines organ size differences between species? A meta-analysis of the cellular basis. New Phytologist 215: 299-308.
23. Gonzalez, N., S. De Bodt, R. Sulpice, Y. Jikumaru, E. Chae, S. Dhondt, T. Van Daele, et al. 2010. Increased Leaf Size: Different Means to an End. Plant Physiology 153: 12611279.
24. Gonzalez, N., H. Vanhaeren, and D. Inzé. 2012. Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science 17: 332-340.
25. Granier, C., and F. Tardieu. 2009. Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts. Plant, Cell \& Environment 32: 1175-1184.
26. Granier, C., O. Turc, and F. Tardieu. 2000. Co-Ordination of Cell Division and Tissue Expansion in Sunflower, Tobacco, and Pea Leaves: Dependence or Independence of Both Processes? Journal of Plant Growth Regulation 19: 45-54.
27. Gratani, L., A., Bonito. 2009. Leaf traits variation during leaf expansion in Quercus ilex L. Photosynthetica. 47: 323-330.
28. Gratani, L., E., Ghia. 2002. Changes in morphological and physiological traits during leaf expansion of Arbutus unedo. Environmental and Experimental Botany 48: 51-60.
29. Gray, S. B., and S. M. Brady. 2016. Plant developmental responses to climate change. Developmental Biology 419: 64-77.
30. Green, P. B., R. O. Erickson, and J. Buggy. 1971. Metabolic and Physical Control of Cell Elongation Rate. Plant Physiology 47: 423-430.
31. Gregory, F. G. 1921. Studies in the Energy Relations of Plants. Annals of Botany. 35: 93123.
32. Grubb, P. J. 1998. A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics 1: 3-31.
33. Jing, J., K. Li, Z Liu. 2016. Effects of varying temperature on leaf phenology and herbivory of dominant tree species in subtropical evergreen broad-leaves forest in eastern China. Polish Journal of Plant Ecology 64: 53-69.
34. John, G. P., C. Henry, and L. Sack. 2018. Leaf rehydration capacity: Associations with other indices of drought tolerance and environment. Plant, Cell \& Environment 41: 2638-2653.
35. John, G. P., C. Scoffoni, T. N. Buckley, R. Villar, H. Poorter, and L. Sack. 2017. The anatomical and compositional basis of leaf mass per area. Ecology Letters 20: 412-425.
36. Jurik, T. W., B.F. Chabot. 1986. Leaf dynamics and profitability in wild strawberries. Oecologia. 69: 296-304
37. Kalve, S., D. De Vos, and G. T. S. Beemster. 2014. Leaf development: a cellular perspective. Frontiers in Plant Science 5.
38. Kane, C. N., G. J. Jordan, S. Jansen, and S. A. M. McAdam. 2020. A Permeable Cuticle, Not Open Stomata, Is the Primary Source of Water Loss From Expanding Leaves. Frontiers in Plant Science 11.
39. Kattge, J., G. Bönisch, S. Díaz, S. Lavorel, I. C. Prentice, P. Leadley, S. Tautenhahn, et al. 2020. TRY plant trait database - enhanced coverage and open access. Global Change Biology 26: 119-188.
40. Külahoglu, C., A.K. Denton, M. Sommer, J. Mab, S. Schliesky, T.J. Wrobel, et al. 2014. Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C_{3} and C_{4} plant species. Plant Cell
41. Lambers, H., H. Poorter, and M. M. I. Van Vuuren. 1998. Inherent Variation in Plant Growth. Backhuys Publishers, Leiden, The Netherlands.
42. Lauri, P.-É. 2019. Corner's rules as a framework for plant morphology, architecture and functioning - issues and steps forward. New Phytologist 221: 1679-1684.
43. Ludlow, A.E. 1991. Ochna pulcha Hook: Leaf growth and development related to photosynthetic activity. Annals of Botany 68: 527-540.
44. Marcelis, L. F. M. 1996. Sink strength as a determinant of dry matter partitioning in the whole plant. Journal of Experimental Botany 47: 1281-1291.
45. Medeiros, C. D., C. Scoffoni, G. P. John, M. K. Bartlett, F. Inman-Narahari, R. Ostertag, S. Cordell, et al. 2019. An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. Functional Ecology 33: 712734.
46. Moles, A. T., and M. Westoby. 2000. Do Small Leaves Expand Faster Than Large Leaves, and Do Shorter Expansion Times Reduce Herbivore Damage? Oikos 90: 517524.
47. Moorby, J. 1977. Integration and regulation of translocation within the whole plant. Symposia of the Society for Experimental Biology 31: 425-454.
48. Morison, J. I. L., and M. D. Morecroft eds. . 2006. Plant growth and climate change. Blackwell Pub, Oxford; Ames, Iowa.
49. Nardini, A. 2002. Relations between efficiency of water transport and duration of leaf growth in some deciduous and evergreen trees. Trees 16: 417-422.
50. Nielsen, T. H., and B. Veierskov. 1990. Regulation of Carbon Partitioning in Source and Sink Leaf Parts in Sweet Pepper (Capsicum annuum L.) Plants 1. Plant Physiology 93: 637-641.
51. Niklas, K. J., and E. D. Cobb. 2017. Size-dependent variation in plant form. Current Biology 27: R900-R905.
52. Niklas, K. J., E. D. Cobb, Ü. Niinemets, P. B. Reich, A. Sellin, B. Shipley, and I. J. Wright. 2007. "Diminishing returns" in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America 104: 8891-8896.
53. Onoda, Y., I. J. Wright, J. R. Evans, K. Hikosaka, K. Kitajima, Ü. Niinemets, H. Poorter, et al. 2017. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist 214: 1447-1463.
54. Osada, N. 2020. Intraspecific variation in spring leaf phenology and duration of leaf expansion in relation to leaf habit and leaf size of temperate tree species. Plant Ecology 221: 939-950.
55. Osborne, C. P., D. J. Beerling, B. H. Lomax, and W. G. Chaloner. 2004. Biophysical constraints on the origin of leaves inferred from the fossil record. Proceedings of the National Academy of Sciences 101: 10360-10362.
56. Pantin, F., T. Simonneau, and B. Muller. 2012. Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytologist 196: 349-366.
57. Paul, M. J., and C. H. Foyer. 2001. Sink regulation of photosynthesis. Journal of Experimental Botany 52: 1383-1400.
58. Poorter, H. 1990. Interspecific Variation in Relative Growth Rate: On Ecological Causes and Physiological Consequences. Causes and consequences of variation in growth rate and productivity of higher plants, 45-68. The Hague: SPB Academic Publishing.
59. Poorter, H., and E. Garnier. 2007. Ecological Significance of Inherent Variation in Relative Growth Rate and Its Components. Functional Plant Ecology, CRC Press.
60. Poorter, H., and A. Van Der Werk. 1998. Is Inherent Variation in RGR Determined by LAR at Low Irradiance and by NAR at High Irradiance? A review of Herbaceous Species. Physiological Mechanisms and Ecological Consequences, Backhuys Publishers, Leiden, The Netherlands.
61. Price, C. A., I. J. Wright, D. D. Ackerly, Ü. Niinemets, P. B. Reich, and E. J. Veneklaas. 2014. Are leaf functional traits 'invariant' with plant size and what is 'invariance' anyway? Functional Ecology 28: 1330-1343.
62. Reich, P. B. 2014. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto H. Cornelissen [ed.],. Journal of Ecology 102: 275-301.
63. Richards, R. A. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany 51: 447-458.
64. Ron'zhina E.S. 2003. Cytokinin-regulated mesophyll cell division and expansion during development of Cucurbita pepo leaves. Russian Journal of Plant Physiology 50: 646655.
65. Sack, L., C. Scoffoni, A. D. McKown, K. Frole, M. Rawls, J. C. Havran, H. Tran, and T. Tran. 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3: 837.
66. Savage, V. M., A. P. Allen, J. H. Brown, J. F. Gillooly, A. B. Herman, W. H. Woodruff, and G. B. West. 2007. Scaling of number, size, and metabolic rate of cells with body size in mammals. Proceedings of the National Academy of Sciences 104: 4718-4723.
67. Schlindwein C.C.D., A.G. Fett-Neto, and L.R. Dillenburg. Chemical and mechanical changes during leaf expansion of four woody species of a dry resting woodland. Plant Biology 8: 430-438.
68. Schnablová, R., T. Herben, and J. Klimešová. 2017. Shoot apical meristem and plant body organization: a cross-species comparative study. Annals of Botany 120: 833-843.
69. Scoffoni, C., D. S. Chatelet, J. Pasquet-kok, M. Rawls, M. J. Donoghue, E. J. Edwards, and L. Sack. 2016. Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants 2: 1-8.
70. Scoffoni, C., M. Rawls, A. McKown, H. Cochard, and L. Sack. 2011. Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture. Plant Physiology 156: 832-843.
71. Seleznyova A.N., D.H. Greer. 2001. Effects of temperature and leaf position on leaf area expansion of kiwifruit (Actinidia deliciosa) shoots: development of a modelling framework. Annals of Botany 88: 605-615.
72. Sui, Z.L., S.L Mao., L.H. Wang., B.X., Zhang., Z.X. Zhang. 2012. Effect of low light on the characteristics of photosynthesis and chlorophyll a fluorescence during leaf development of sweet pepper. Journal of Integrative Agriculture. 11: 1633-1643.
73. Sun, S., D. Jin, and R. Li. 2006. Leaf emergence in relation to leaf traits in temperate woody species in East-Chinese Quercus fabri forests. Acta Oecologica 30: 212-222.
74. Taneda, H., I. Terashima. 2012. Co-ordinated development of the leaf midrib xylem with the lamina in Nicotiana tabacum. Annals of Botany 110: 35-45.
75. Trinh, D.-C., J. Alonso-Serra, M. Asaoka, L. Colin, M. Cortes, A. Malivert, S. Takatani, et al. 2021. How Mechanical Forces Shape Plant Organs. Current Biology 31: R143R159.
76. Van Volkenburgh, E. 1999. Leaf expansion - an integrating plant behaviour. Plant, Cell \& Environment 22: 1463-1473.
77. Varone, L., L. Gratani. 2009. Leaf expansion in Rhamnus alaternus L. by leaf morphological, anatomical and physiological analysis. Trees 23: 1255-1262.
78. Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116: 882-892.
79. Voorend, W., P. Lootens, H. Nelissen, I. Roldán-Ruiz, D. Inzé, and H. Muylle. 2014. LEAF-E: a tool to analyze grass leaf growth using function fitting. Plant Methods 10: 37.
80. Vos, K., and H. Biemond. 1992. Effects of nitrogen on the development and growth of the potato plant. 1. Leaf appearance, expansion growth, life span of leaves and stem branching. Annals of Botany. 70: 27-35.
81. Wargent J, J., J.P. Moore, A.R. Ennos, N.D. Paul. 2009. Ultraviolet radiation as a limiting factor in leaf expansion and development. Photochemistry and photobiology. 85: 279-286.
82. White, A. C., A. Rogers, M. Rees, and C. P. Osborne. 2016. How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany 67: 31-45.
83. Wilson, G. L., and M.M. Ludlow. 1968. Bean leaf expansion in relation to temperature. Journal of Experimental Botany 19: 309-321.
84. Wright, I. J., N. Dong, V. Maire, I. C. Prentice, M. Westoby, S. Díaz, R. V. Gallagher, et al. 2017. Global climatic drivers of leaf size. Science 357: 917-921.
85. Wright, I. J., P. B. Reich, J. H. C. Cornelissen, D. S. Falster, P. K. Groom, K. Hikosaka, W. Lee, et al. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14: 411-421.
86. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821827

Chapter 7: Conclusions and Future Directions

The integration of leaf hydraulics with developmental processes is a key avenue to understand the evolutionary basis for structural and functional diversity. The emergence and expansion of leaf hydraulics throughout the past few decades has vastly increased our understanding of leaf and whole plant function (Sack \& Holbrook 2006; Sack \& Scoffoni 2013; Scoffoni \& Sack 2017). Historically, many in the field of plant water relations have focused on water transport through stems or roots, as the pathways for water transport through leaves are much more complex, though this complexity has been increasingly embraced and disentangled for eudicotyledonous angiosperms and other more basal lineages (Sack \& Holbrook 2006). Indeed, the leaf has been of key focus for researchers focusing on plant growth and/or development for many decades beyond that of leaf hydraulics (Van Volkenburgh 1999; Granier \& Tardieu 2009; Pantin, Simonneau \& Muller 2012; Kalve, De Vos \& Beemster 2014). My dissertation work aimed to integrate leaf developmental and growth processes with leaf hydraulic structure and function, and also to increase our understanding of leaf level adaptations and leaf hydraulic function in the grasses, an ecologically and agriculturally vital lineage within the monocotyledons.

In Chapter 2 I established a global relationship of leaf size and climate for the grasses (Poaceae) and provided experimental and modeling evidence for the biophysical and developmental processes driving such relationship. Indeed, associations of leaf size variation with climate have been noted since classical times by Theophrastus (Hort 1948), who noted the occurrence of larger leaves in warm and wet environments, and smaller leaves in cold and dryer climates. Consistent with what has been shown for eudicotyledons globally (Wright et al., 2017), narrower and shorter grass leaves are found in colder and dryer climates worldwide, though the
mechanisms differed for such patterns. This study highlighted how processes during development can constrain trait evolution, i.e. small leaves are developmentally constrained to have vein traits that provide tolerance of cold and aridity. This work thus demonstrates how biophysical and developmental processes can drive convergence across major lineages, and highlights the importance of leaf size and venation architecture for grass performance.

In Chapter 3 I aimed to further understand the evolution of grass leaf design. Anatomical allometries across grass leaves shown theoretically and empirically in this chapter highlight the critical role of developmental processes in driving allometries across species, and should be explored in future studies focused at the level of cell development within and across species, e.g. identifying the genetic regulators of differences in cell size within the model grass Brachypodium. The strong allometric patterns demonstrated show how leaf construction emerges from differences at the level of cells that cascade upwards to tissues, organs, and through linkages with photosynthetic efficiency, potentially to whole plant form and function. Future studies should resolve whether allometric scaling patterns determined here are generalizable across further diversity in the grass family by sampling additional C_{3} and C_{4} lineages across the grass phylogeny (e.g. C_{3} Pooid, PCK C_{4}, bamboos), and other monocots.

In chapter 4 I coupled experimental data for 27 common garden grown grass species with data compiled from the literature for 328 grass species and examined the anatomical drivers of leaf hydraulic function for C_{3} and C_{4} grasses. This study highlighted the critical role of grass leaf structure and hydraulic function for grass leaf photosynthetic physiology, with implications for grass evolution, ecology and bio-geography. The contrasting evolutionary diversification in the coordination of leaf hydraulics and gas exchange suggests different mechanisms for adaptation to climate. A high vein density $\left(D_{\mathrm{v}}\right)$ in C_{4} species contributes to greater potential photosynthetic
rate $\left(A_{\text {area }}\right)$, but not to leaf hydraulic conductance $\left(K_{\text {leaf }}\right)$ and given their lower stomatal conductance $\left(g_{s}\right)$, the higher $K_{\text {leaf }} / g_{s}$ ratio enables this potential to be realized. Whereas C_{3} grasses with the highest $A_{\text {area }}, K_{\text {leaf }}$ and $g_{\text {s }}$ can persist in stressful climates, by avoiding harsh conditions via dormancy and maximizing growth under high resource conditions, among C_{4} grasses, those with the greatest $K_{\text {leaf }} / g_{\text {s }}$ ratios that enables their higher $A_{\text {area. }}$. Our findings also have applications in agriculture, as a high $K_{\text {leaf }} / g_{\text {s }}$ would be a necessary target in engineering novel C_{4} crop species, with emphasis on a high $K_{\text {leaf }}$ that would arise from increasing leaf outside-xylem hydraulic condutance (K_{ox}). The critical importance of C_{4} hyper-efficiency will inform both evolutionary ecologists and agricultural breeders on the anatomical and physiological mechanisms by which C_{4} photosynthesis evolves and can be engineered into crops.

In Chapter 5 I utilized developmental processes to disentangle the potential association or independence of two critical leaf functional traits, i.e. leaf trichome and stomatal densities. Such findings emphasize the power of analyzing a functional trait in terms of its underlying developmental traits, resolving the role of multiple developmental factors that underlie variation in leaf trichome density $\left(D_{\mathrm{t}}\right)$, and that account for its contrasting associations with leaf stomatal density $\left(D_{\mathrm{s}}\right)$ in different contexts. Thus, future studies should examine the relationships of these developmental drivers that underlie D_{t} and D_{s} in relation to environmental controls. The higher resolution of developmental causation of important functional traits provides new avenues to examine trait evolution, and toward breeding climate-forward variants in crop species.

In Chapter 6 I returned to focus on leaf size and its underlying determinants for diverse eudicotyledonous species. My study highlights the important developmental traits that underlie diversity in mature maximum leaf size $\left(L A_{\mathrm{m}}\right)$, and will provide greater resolution in future research on the evolution of leaf size variation within and across lineages. Further, leaf
expansion developmental traits may be more proximally related to genetics and evolution than $L A_{\mathrm{m}}$, with applications in global ecology and agriculture. The relationship of developmental traits to the leaf economics spectrum (LES) traits provides further potential applications. In particular, crop yield is highly influenced by source limitations (White, Rogers, Rees \& Osborne 2016), and species with higher leaf expansion rates have higher yields (Cross 1991; van den Boogaard, Veneklaas, Peacock \& Lambers 1996). Thus, the potential role of expansion rate (R) in increasing $L A_{\mathrm{m}}$ and its coordination with fast-growing LES traits such as photosynthetic rate per leaf mass ($A_{\text {mass }}$) suggests that R may be a promising target for increasing yield, though potentially at the expense of reduced leaf mass per area (LMA) and leaf lifespan ($L L$), and stress tolerance (Richards 2000). Indeed, as the genetic and molecular drivers underlying $L A_{\mathrm{m}}$ are being increasingly dissected, our study provides an additional functional linkage of the resulting structural and functional components that would be coupled with genetic and molecular transformation, and also would allow for more precise bioengineering. Furthermore, elucidating the higher level processes driving leaf expansion and their linkage with the LES across species provides a new foundational basis for leaf functional ecology to consider the developmental drivers of leaf size within single plants and species and those developmental drivers underpinning leaf size adaptation to sun vs. shade, low vs. high soil nutrients and aridity.

Overall, my dissertation provides evidence for the power of integrating quantitative developmental processes with leaf structure and function to increase our understanding of leaf adaptive design and function. My first three chapters add to a body of literature that was lacking in studies focusing on leaf level adaptation for the grasses, i.e. the bulk of leaf ecophysiological studies focus on eudicotyledons, despite the importance of the grasses and other monocotyledonous lineages. Such foundational work presented here will provide fundamental
implications for grass ecology and applications for agricultural breeding. Indeed, my studies focusing on the grasses focused on highly diverse grasses across the phylogeny, and thus future studies should examine the generality of the findings presented here within closer related lineages within the grasses, and also with respect to the evolution of the specific C_{4} subtypes. My fifth chapter took a novel approach to assess whether or not the molecular processes underlying leaf trichome and stomatal formation in model species also translate across diverse species. The quantification of developmental traits and assessing their roles in driving variation in trichome and stomatal densities allowed for this examination. Thus, future studies should aim to link molecular processes in model species with trait diversity across species as mediated by development, which will provide greater resolution on whether or not findings in model species occur for non-model species. My last chapter was also novel by linking leaf growth kinematics with leaf global ecology across species. This study also highlighted the importance of quantifying developmental traits and linking them to leaf functional traits. Future studies should assess the generality of my findings across different scales, e.g. within individuals and between early-forming and late-forming leaves, across individuals within a species, and across species within a genera. Overall, this dissertation highlights the power of taking a broadly integrative approach to understanding leaf design and function.

References

1. van den Boogaard, R., E.J. Veneklaas, J.M. Peacock, and H. Lambers. 1996. Yield and water use of wheat (Triticum aestivum) in a Mediterranean environment: Cultivar differences and sowing density effects. Plant and Soil 181: 251-262.
2. Cross, H.Z. 1991. Leaf Expansion Rate Effects on Yield and Yield Components in EarlyMaturing Maize. Crop Science 31, cropsci1991.0011183X003100030006x.
3. Granier, C. and F. Tardieu. 2009. Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts. Plant, Cell \& Environment 32: 1175-1184.
4. Hort, A. 1948. Enquiry into Plants by Theophrastus. Harvard University Press.
5. Kalve, S., D. De Vos, and G.T.S. Beemster. 2014. Leaf development: a cellular perspective. Frontiers in Plant Science 5.
6. Pantin, F., T., Simonneau, and B. Muller. 2012. Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytologist 196: 349-366.
7. Richards, R.A. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany 51: 447-458.
8. Sack, L., and N.M. Holbrook. 2006. Leaf Hydraulics. Annual Review of Plant Biology 57, 361-381.
9. Sack, L., and C. Scoffoni. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198: 983-1000.
10. Scoffoni, C., and L. Sack. 2017. The causes and consequences of leaf hydraulic decline with dehydration. Journal of Experimental Botany 68: 4479-4496.
11. Van Volkenburgh, E. 1999. Leaf expansion - an integrating plant behaviour. Plant, Cell \& Environment 22: 1463-1473.
12. White, A.C., A. Rogers, M. Rees, and C.P. Osborne. 2016. How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany 67: 31-45.
13. Wright, I.J., N. Dong, V. Maire, I.C. Prentice, M. Westoby, S. Díaz, et al. (2017) Global climatic drivers of leaf size. Science 357: 917-921.

[^0]: Additional information
 Supplementary information The online version contains supplementery materid available at httpa://doi.org/10.1038/b41596-021-03370-0
 Correspondenceand requestsfor materlats should be addressed to A.S.B. or L.S.
 Peer review Information Nature thanks Tirnothy Brodribb, lon Wright and the other
 anonymous, reviewer(a) for their contribution to the peer review of this work.
 Reprints and permissions information is availsble of http://www.nature.corn/reprinta

